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Abstract

Background: Hidden Markov models (HMM) are a powerful tool for analyzing

biological sequences in a wide variety of applications, from profiling functional

protein families to identifying functional domains. The standard method used for

HMM training is either by maximum likelihood using counting when sequences

are labelled or by expectation maximization, such as the Baum-Welch algorithm,

when sequences are unlabelled. However, increasingly there are situations where

sequences are just partially labelled. In this paper, we designed a new training

method based on the Baum-Welch algorithm to train HMMs for situations in

which only partial labeling is available for certain biological problems.

Results: Compared with a similar method previously reported that is designed for

the purpose of active learning in text mining, our method achieves significant

improvements in model training, as demonstrated by higher accuracy when the

trained models are tested for decoding with both synthetic data and real data.

Conclusions: A novel training method is developed to improve the training of

hidden Markov models by utilizing partial labelled data. The method will impact

on detecting de novo motifs and signals in biological sequence data. In particular,

the method will be deployed in active learning mode to the ongoing research in

detecting plasmodesmata targeting signals and assess the performance with

validations from wet-lab experiments.

Keywords: hidden Markov model; partial label
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Background

Hidden Markov model [1, 2, 3, 4, 5] is a well known probabilistic model in the field

of machine learning, suitable for detecting patterns in sequential data, such as plain

texts, biological sequences, and time series data in the stock market. For all these

applications, successful learning depends, to a large degree, on the amount and,

more importantly, the quality of the data. In text mining problem, though the data

amount is huge, careful labelling tasks consume massive human labor [6]. In bio-

logical sequence analysis, discovering de novo signal remains challenging because a

precise full labeling via wet-lab experiments demand even more resources and time,

and hence it is considered unfeasible in general. Therefore, research is necessary in

data handling with different labelling quality for applied machine learning commu-

nity. In this paper, we focus on designing a Baum-Welch-algorithm based learning

method for HMMs to handle the biological problems when only partial labeling is

available in training data.

This work is inspired by our recent research on detecting de novo plasmodesmata

targeting signals in Arabidopsis Plasmodesmata-located proteins (PDLPs). PDLPs

are type I transmembrane proteins, which are targeted to intercellular pores called

plasmodesmata that form at the cellular junctions in plants [7]. In our study [8], by

building a 3-state HMM, we predicted the presence of two different plasmodesmata

targeting signals (named alpha and beta) in the juxta membrane region of PDLPs.

While all the predicted signals were successfully verified in wet-lab experiments

so far, some predicted signals contain residues that do not conform to the true

signal; wet-lab experiments showed that those residues alone was not sufficient to

target the protein to plasmodesmata. Because both the cost and time are high for

wet-lab experiments, an improved HMM would be highly desirable. However, due

to the limitation in the number of the training examples – Arabidopsis genome

encodes only eight PDLP members, further improvements of the model can be

hardly achieved. It would require to fully utilize the current wet-lab experimental

results to train the model, i.e., by labeling the residues that have been already

shown to be either part of the signals or not part of the signals, given that labels

are not available for all the residues due to limited experimental results.

In a related work by Tamposis et al, a semi-supervised approach is developed

to handle a mixture of training sequences that contains a subset of fully labelled
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sequences, with the remaining sequences having no labels at all or partial labels [9].

Their method uses the fully labelled sequences to train the parameters for HMMs

and then use Viterbi algorithm to predict the missing labels followed by training the

model again with the predicted labels. This process is iterated until a convergence

condition is met. Instead, we are specifically interested in situations where no fully

labelled sequences are available and often the partial labeling is also sparse. In the

text mining field, HMM training algorithm of handling partial label was developed

especially for active learning purposes and designed to fit into text mining special

situation: no label scenario, or in other words, no meaningful label can be assigned

[6]. However the unit of observation in text mining and information retrieval is

a word, instead of a single letter, corresponding to individual amino acid residue

as in biological sequences. So, in order to deal with the partial labeling aforemen-

tioned, we have designed a novel Baum-Welch based HMM training algorithm to

leverage partial label information with techniques of model selection through par-

tial labels. Besides the difference in the observation unit, our algorithm differs from

[6] primarily in how to calculate the expected value for a given partial label at a

given position: our method sums over hidden state paths that must be subject to

constraints anywhere given partial labels in the training sequence. In contrast, in

[6] the expected value for a given partial label at a given position is calculated by

summing over paths that are only constrained at the position being considered, and

anywhere else in the sequence the hidden paths are free to go through all possible

states (labels) even at positions where partial labels are given. Moreover, this differ-

ence affects how the expected value for a transition is calculated, regardless whether

the transition happens to involve one partial label, two partial labels, or no partial

labels at all. The comparison between our method and the method described in [6]

showed that our method outperformed in both synthetic and real data for decoding

task in biological problems.

The rest of this paper is organized as follows. First, the relevant background

knowledge of HMM is briefly reviewed, and notations are introduced. Then, our

method of training HMM when only partial label sequences are available is described

in details. This is followed with experiments and results to examine and demonstrate

the modelling power of the novel algorithm. Discussion and conclusion are given at

the end.
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Methods

Hidden Markov model review

In general, a HMM consists of a set of states Si, i = 1 to N , and a set of alphabets

K that can be emitted from these states with various frequencies; bj(k) stands for

the frequency of letter k ∈ K being emitted from state Sj , and we use B to denote

the emission matrix of dimension N ×K, containing bj(k) as elements. Transitions

among states can be depicted as a graph, often referred as model architecture or

model structure: each state is represented as a node, and transition from state Si

to state Sj is represented by a directed edge, with a weight aij being the transition

probability, and we use A to denote the transition matrix of dimension N × N ,

containing aij as elements. Hereafter, we often refer to a state Si by its index i.

Given a HMM, let θ stand for collectively all its parameters, namely the emission

frequencies bj(k) and transition probabilities aij . Given a sequence of observation

O, and its elements Ot ∈ K, where t = 1..T , a main assumption of using HMM

is that each letter in the sequence is emitted from a state of the model, so corre-

spondingly there is a state sequence, forming a Markov chain, which is hidden from

direct observation, hence the name: hidden Markov model. One task (decoding) is,

therefore, to find the most probable state sequence (also called hidden path) X∗ :

X∗ = argmaxX Pr(O,X|θ), among all possible state sequences that can emit the

observation sequence O. The second task is to train the model on a set of m training

sequences. This task is accomplished by adjusting model parameters θ to maximize

the likelihood
∑m
s=1 Pr(O

s|θ) of observing the given training sequences Os, where

s = 1...m [10].

The decoding task is well studied and straightforward and is solved by Viterbi

algorithm efficiently [11]. The technique guarantees to return the optimal answer.

Note that, in the work by Bagos et al [12], a modified Viterbi algorithm is developed

to incorporate prior topological information as partial labels to improve predictions,

whereas our focus is instead on how to use the partial labels in training the model.

However, the second task, or the training of a HMM is not guaranteed to reach

optimum when labels are not given for the training sequences.

The major training algorithms of HMM are the following three in general: maxi-

mum likelihood, Baum-Welch algorithm, and Viterbi training [13]. Maximum like-

lihood is used when label information is available fully, and it returns the optimal
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solution. The latter two algorithms are used when no label information is available.

Interested readers can find a gentle introduction and tutorial for hidden Markov

models in [10]. For the purposes of comparison, we adopt notations in [6] for future

discussion of both the background knowledge and our method. The description of

notations is shown in Table 1.

In this paper, we focus on a special case for training HMMs when only partial

label is available. Or in other words, we aimed at finding model θ so that Pr(O|θ)

is maximized (locally) and the resulting decoded state sequence must satisfy the

partial labels given in the training sequences at the same time.

Training hidden Markov model with partial label sequences

As introduced in the previous section, when no labels are available, Baum-Welch

algorithm is typically used to train HMM and Viterbi training is sometimes used

for speed and simplicity; when all label information is given, training HMM is

straight forward by maximum likelihood approach. Currently, training HMM with

partial label is mainly studied in the field of text mining, with a particular focus on

active learning problems, such as the work done in [6], with which we compare our

proposed method.

Our proposed method is a novel approach to this partial label training problem

with modification of Baum-Welch algorithm (called constrained Baum-Welch algo-

rithm) and a model selection technique, which helps our algorithm leverage available

information and improve the training and performance in decoding task. In the next

two subsections, we discuss in detail our constrained Baum-Welch algorithm and

the model selection methods respectively and how to combine the two for model

training.

Constrained Baum-Welch algorithm

The standard Baum-Welch algorithm is an Expectation-Maximization approach to

maximizing likelihood when the system contains latent variables, which are the state

sequences for hidden Markov models when training sequences are not labelled. Our

constrained Baum-Welch algorithm (cBW) is similar to the standard Baum-Welch

algorithm except that the training sequences are partially labelled, which imposes

the constraints on the possible hidden state paths in calculating the expectation.

Standard Baum-Welch algorithm is divided into E-step and M-step. The M-step of
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cBW algorithm is identical to standard Baum-Welch’s. The difference is the E-step,

computing forward and backward matrices. The forward matrix α is of N × T ,

where N is the number of states and T is the sequence length. An element αi(t) is

the probability of the observed sequence up to and including Ot, with the symbol

Ot being emitted from state i. The backward matrix β is of N × T dimension has

element βi(t) as the probability of the observed sequence from position t onto the

end, with the symbol Ot being emitted from state i. The formulas of computing α

and β are shown as following respectively.

Given the model θ = (π,A,B), where π is a N dimension vector, with πi being

the probability that any hidden state path would start with state i. Then, the

initial values of forward matrix α for one given training sequence O = (O1, ..., OT )

is computed as follows.

αi(1) = πbi(O1) (1)

After calculating the initial values of α, by dynamic programming, the remaining

values at any position for any state are calculated recursively by summing over the

possible state paths X = (X1, ..., XT ), allowed by the model, that lead to the point

whose α value is being calculated. However, since we now have partial labels for the

training sequence O, care must be taken to satisfy the constraints at each position

Ot imposed by the partial label, L(Ot) ∈ S∪{0}, where a value zero means no label

available. Specifically,

αi(t+ 1) =


bi(Ot+1)

∑N
j=1 αj(t)aji, if L(Ot+1) = 0 or i

0 if L(Ot+1) 6= 0 and L(Ot+1) 6= i

(2)

In the above equation, the first case is when position Ot+1 is either unconstrained

(0) or constrained to be state i by the partial label. In such a case, the α value

is computed in the same way as the standard Baum-Welch algorithm, though the

actual value can still be affected by partial labels at earlier positions via recursion.

The second case is when the position t+1 is constrained by the partial label to be

a state other than i. In this case, αi(t+ 1) = 0. This latter case is what makes the

algorithm different from the standard Baum-Welch algorithm in order to ”honor”

the partial labels.
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The backward matrix β is initialized as the following.

βi(T ) = 1 (3)

Then, similarly, a recursive procedure is applied for the remaining of backward

matrix.

βi(t) =


∑N
j=1 βj(t+ 1)aijbj(O(t+ 1)), if L(Ot) = 0 or i

0 if L(Ot) 6= 0 and L(Ot) 6= i

(4)

Note that, while the α is calculated the same way as the modified Forward algorithm

in [12] but the β is calculated differently from their modified Backward algorithm.

After the calculations of α and β, then we can calculate γ variable, where γi(t) is

the probability of observing the training sequence O from all possible state paths

that are allowed by hidden Markov model θ as constrained by the partial labels and

go through state i at position t. γi(t) is computed as follows.

γi(t) = P (X(t) = i|θ,O) =
P (X(t) = i, O|θ)

P (O|θ)

=
αi(t)βi(t)∑N
j=1 αj(t)βj(t)

(5)

where the last equal sign holds because P (O|θ) =
∑N
j=1 αj(t)βj(t). The next step

is to compute ξij(t), which is the probability of of observing the training sequence

O from all possible state paths that are allowed by hidden Markov model θ as

constrained by the partial labels and go through state i at positive t and transition

to state j at position t+ 1:

ξij(t) =
P (X(t) = i,X(t+ 1) = j,O|θ)

P (O|θ)

=
αi(t)aijβj(t+ 1)bj(O(t+ 1))

P (O|θ)
(6)

Finally, with γ, ξ, the M-step is to update the initial probability π∗, every elements

of the transition matrix A∗: a∗ij , and every elements of the emission matrix B∗:

b∗i (ok).
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π(i)∗ = γi(1) (7)

a∗ij =

∑T−1
t=1 ξij(t)∑T−1
t=1 γi(t)

(8)

b∗i (ok) =

∑T−1
t=1 γi(t)IO(t)=ok∑T−1

t=1 γi(t)
(9)

where IO(t)=ok stands for indicator function, which equals to 1 if O(t) = ok, and 0

otherwise. Then, for the case of multiple sequences, each sequences indexed by s,

total number of sequences of m, The only changing is the updating of π∗,A∗, and

B∗ as follows.

π(i)∗ =

∑m
s=1 γ

s
i (1)

m
(10)

a∗ij =

∑m
s=1

∑T s−1
t=1 ξsij(t)∑m

s=1

∑T s−1
t=1 γsi (t)

(11)

b∗i (ok) =

∑m
s=1

∑T s−1
t=1 γsi (t)IOs(t)=ok∑m

s=1

∑T s−1
t=1 γsi (t)

(12)

The procedure above is repeated till either the
∑m
s log(P (Os|θ)) converge or

reaching maximum iteration numbers set by the user. As mentioned in the Intro-

duction section, a key difference between our method and [6] lies in the E-step

for calculating the expected value for a given emission or transition. Our method

handles the partial label constraints recursively for the α and β, whereas [6] cal-

culates α and β without using the partial labels and only uses the partial labels

in resetting γ at each partial labelled position independently, as if partial labels

elsewhere would have no effect for the position being considered. Since E-step in

Baum-Welch algorithm invokes forward and backward algorithms, which are essen-

tially a dynamic programming to more efficiently calculate the likelihood: Pr(O|θ)

= ΣX∈ΓPr(O,X|θ) with Γ being the set of all hidden paths, and hence should give

the same result when the likelihood is computed by exhaustively summing over

probability for all possible hidden state paths. Therefore, we believe, the partial

labels would restrict the possible hidden state paths, Pr(O|θ) = ΣX∈Γ′Pr(O,X|θ)

with Γ′ being the set of all hidden paths constrained by partial labels and such

constraints should be handled recursively in the dynamic programming. Figure 1

shows an example for the forward/backward dynamic programming table construc-
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tion. Another advantage of our method comparing with the method in [6] is that

our training method can keep the topology of the initial transition and emission

guesses for the model as standard Baum-Welch does. In other words, if prior knowl-

edge is available for the model topology, our training method for partial label data

can keep the knowledge to the end of training.

Model selection based on partial label information

The second part of our method is model selection based on partial label informa-

tion. The rationale is straightforward: while the constrained Baum-Welch algorithm

increases the log-likelihood of the given training sequences (with partial labels), it-

eration after iteration monotonically as ensured by EM approach, there is no direct

guarantee that the increased log-likelihood would necessarily lead to higher decod-

ing accuracy. Therefore, at each iteration of constrained Baum-Welch algorithm,

decoding accuracy for the partially labelled training sequence can be calculated

and factored into model selection.

Specifically, after reaching convergence condition or maximum number of iter-

ations, the total number of iteration is Q and the ith iteration’s model and the

corresponding log-likelihood can be denoted as θi and
∑m
s Log(P (Os|θi)) respec-

tively and let the decoding accuracy denote as Accuracy(θi, O,X). The final model

returned by the algorithm can be expressed as:

argmin
θ∗

Pr(O|θ∗ ≡ {argmax
θi∈θ1...Q

Accuracy(θi, O,X)}) (13)

Notice that θ∗ is a set of models in general. Finally, combining the constrained

Baum-Welch and the model selection described above, the overall algorithm of our

proposed method is given in Algorithm 1. In next section, Table 2 to Table 5 will

show the usefulness of both this model selection method and the ability of keeping

correct topology of cBW method.

Results

In this section, we set up experiments using both real biological data and synthetic

data to test our method for decoding task and compared the results with those

from using the method in [6]. It has been reported that [14, 15] posterior decoding

in general performs better than Viterbi algorithm. So, in order to evaluate how our
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Algorithm 1: Constrained Baum-Welch with model selection based on de-

coding accuracy.
Data: sequences: O, partially label X

Result: bestA,bestB

initialization: θ = (π,A,B) ;

bestAccuracy ← 0 ;

while not reaching maximum iteration nor convergent do

calculate α,β by Eq. 1 to 4 ;

calculate γ, ξ by Eq. 5 to 6 ;

update π∗,A∗,B∗ by Eq. 7 to 9 ;

X∗ ← Decoding(π∗,A∗,B∗,O) ;

myAccuracy ← Accuracy( X∗,X) ;

if myAccuracy > bestAccuracy then

bestAccuracy ← myAccuracy ;

π ← π∗ ;

bestA ← A∗ ;

bestB ← B∗ ;

end

end

training method can impact on decoding, we carried out the decoding on the testing

sequences with the trained model using both the standard Viterbi algorithm [10]

and Posterior-Viterbi algorithm described in [15], and the accuracy was computed

by comparing the predicted label with the ground truth label at each position to

determine the number of correct predictions:

Accuracy =
#of correct predicted labels

#of total labels

The results of these experiments show that our method outperforms Scheffer et al’s

method in model training, as evidenced in the improved decoding accuracy, regard-

less which decoding algorithm is used. Specifically, on average, decoding accuracy

improves by 33% with Viterbi algorithm, 36% with Posterior-Viterbi algorithm

in real data, and improves by 7.35% to 14.06% with Viterbi algorithm, 7.08% to

13.89% with Posterior-Viterbi algorithm in synthetic data with significant p-values.

Note that, in two cases when the sequences are either almost fully labelled (95%) or

very sparsely labelled (5%), the differences between various algorithms are insignif-

icant. This phenomenon is no surprising though, as it is expected that the benefit

from making good use of partial labels diminishes when labels are extremely sparse,

which makes the various algorithms converge to Baum-Welch algorithm, or when
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sequences are almost fully labelled, which makes the various algorithms converge to

the maximum likelihood. Therefore, our evaluations are divided into two settings

for synthetic data. Setting 1 has partial label information from 5% to 95%. Setting

2 has partial label information from 10% to 90%.

Synthetic data

The method described in [6] is mainly focused on handling text mining problems

using synthetic data. To make the comparison fair, we have also performed exper-

iments using synthetic data, which allowed us to observe our method’s different

performance in different situations. In the experiments with synthetic data, the

data is generated from ground truth HMMs, which are also generated randomly

with predefined connections. For each experiment, the size for initial guess of tran-

sition and emission matrices are identical to the corresponding ground truth model.

We fixed the number of symbols in hidden Markov model to be 20 to mimic the 20

amino acids in protein sequences. To test how model complexity may impact the

training, we chose three different numbers of states: 3, 5, and 7. Moreover, differ-

ent levels of training sample size were also considered as an experimental variable.

Each experiment (with fixing state number and training examples) was evaluated

for different levels of partial label and repeated for 50 times, and the corresponding

paired p-values were also calculated to assess the statistical significance of the per-

formance difference between our method and the other method. Since our method

can maintain the topology of initial guess of transition matrix, experiments were

divided into two different groups. One was initialized the transition matrix with the

same connectivity as the ground truth model, and the other was initialized with

fully connected transition matrix.

Three sets of experimental results with fully connected transition matrix as initial

guess are shown in Figure 2 to Figure 4. Additional results are shown in Table 2 to

Table 5 for comparison.

Conducted using different numbers of states, training examples, and different

decoding algorithms, the results show that our method outperforms the method by

Scheffer et al by 7.08% to 14.06% across different percentage of unlabelled data, with

significant p-value (< 0.05) for majority of the experiments. While both methods

achieve a performance closer to that of the ground truth model as the level of partial
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labels increases, the improvement of our method over the method of Scheffer et al’s

is more pronounced when partial labels are sparse, namely the level of unlabelled

data is high, as shown in the X-axis of the Figures. For example, in Figure 2,

with Viterbi decoding, at the level of 70% unlabelled data, i.e., 30% partial labels,

our method reaches an accuracy of 62%, which is 98% of the ground truth model

accuracy, whereas Scheffer et al’s reaches accuracy of 54%, which is 85% of the

ground truth model accuracy. Similar trends hold true for Figure 3 and Figure 4

when the model has 5 and 7 states respectively regardless of the decoding algorithm

used.

Real data

For the real biological data, we adopted data from [16]. The data contains 83 multi-

pass transmembrane proteins with complete label information. The topology of

multi-pass transmembrane protein is shown in Figure 5. The label for each se-

quence contain three different values: i, o, M. They stand for the region of protein

sequence inside, outside cell membrane, and the transmembrane domain respec-

tively. While much more sophisticated hidden Markov models have been used for

modeling transmembrane protein topology [16, 17, 18, 19], a simple HMM is used in

this study to primarily evaluate the new training algorithm for partial labels. The

architecture of the HMM is shown in Figure 6, in which a redundant M’ node is

introduced as a simple mechanism to avoid a state path, such as iiiimmmmiii or

oooommmoooo, that does not correspond to the real topology of transmembrane

protein, in which a membrane domain has to be flanked by i on one side and o

on the other side. Therefore, the transition matrix is 4 by 4, corresponding to the

four states. Note that the amino acid emission frequencies for the transmembrane

state are calculated by lumping together counts or expectation from both M and

M’ states. We set up two different experiments with different initial conditions: (1)

Transition matrix has correct zeros as ground truth model. (2) Transition matrix

is fully connected. We set up experiments for condition (2) because the method

in [6] cannot enforce initial zeros to remain zeros during the training, therefore,

condition (2) gives more fair comparison of the two methods when no prior knowl-

edge is available. The HMM is trained by these two different methods in a 10-fold

cross validation scheme. Different levels of unlabelled data in training examples are
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actuated by selecting locations randomly to be unlabelled for each sequence. Since

no ground truth model is available, maximum likelihood method with fully labelled

training data is used to mimic the role of the ground truth model in experiments

with synthetic.

For condition (1), the result shown in Figure 7 demonstrates that our method (

constrained Baum-Welch with model selection ) outperforms other method (Schef-

fer et al) by 33.59% with Viterbi Algorithm and 36.16% with Posterior-Viterbi

algorithm. For condition (2), the result shown in Figure 8 attests that our method

outperforms other method by 33.20% with Viterbi Algorithm and 36.32% with

Posterior-Viterbi algorithm. For both conditions, the performance of our method

with or without model selection technique and maximum likelihood are very close.

Discussion

From the results of experiments with synthetic data in Table 2 to Table 5, they show:

(1). constrained Baum-Welch algorithm with or without model selection technique

achieve significant better performance than Scheffer et al in [6]; (2). constrained

Baum-Welch benefit from having correct topology ( comparisons between the 4th

columns of Table 2 and Table 3); (3). constrained Baum-Welch algorithm performs

better when model selection technique used, especially when the task is hard (

comparisons between 2nd and 4th column in Tables); (4). disregarding the training

methods, Posterior-Viterbi always outperforms standard Viterbi ( Shown in Figure 2

to Figure 4, Figure 7, and Figure 8 ).

From the results of experiments with real data, performance of constrained Baum-

Welch with or without model selection are very close to maximum likelihood ap-

proach across different percentages of partial label. However, the performance of

Scheffer et al’s drops dramatically after the percentage of unlabelled data is greater

than 10. The reason behind this is the method done by Scheffer et al cannot enforce

the correct topology even the initial guess is correct. For this problem in particular,

have a HMM with correct topology is key for higher accuracy.

Moreover, there are a few points worth mentioning for the benefits of those who

may consider using this method for their applications. First, the ability of keeping

correct topology makes cBW method compatible with more complex HMM, such as

profile HMMs. However, as a trade-off, the training time can significantly increase.
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Second, model selection technique, although optional, is highly recommended to be

used with Posterior-Viterbi instead of standard Viterbi for best decoding perfor-

mance. Lastly, our method is designed especially for the task of detecting de novo

targeting signals, which assumes no fully labelled sequence is available in general.

For the cases with relaxing constrain: some fully labelled sequences are available,

our method is not the only choice, interested readers may also consider methods

in [9].

Conclusion

In this work, by modifying the standard Baum-Welch algorithm, we developed a

novel training method, which, along with a model selection scheme, enables leverag-

ing the partial labels in the data to improve the training of hidden Markov models.

Compared with a similar method, our method achieved significant improvements

in training hidden Markov models as evidenced by better performance in decoding

both synthetic data and the real biological sequence data.

For future work, we will further investigate the impact of this training method

on detecting de novo motifs and signals in biological data. In particular, we plan

to deploy the method in active learning mode to the ongoing research in detecting

plasmodesmata targeting signals and assess the performance with validations from

wet-lab experiments.
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Figure 3 Comparison results 2 with synthetic data when initialized with fully connected

transition matrix State number = 5 and training sample size = 1600. Training Methods: Ground

truth model – black; cBW – green; cBW+model selection – blue; Scheffer et al – red. Decoding

Methods: Viterbi – cross tick mark; Posterior-Viterbi – circle tick mark. Generated by Matlab

2020a

Figure 4 Comparison results 3 with synthetic data when initialized with fully connected

transition matrix State number = 7 and training sample size is 1600. Training Methods: Ground

truth model – black; cBW – green; cBW+model selection – blue; Scheffer et al – red. Decoding

Methods: Viterbi – cross tick mark; Posterior-Viterbi – circle tick mark. Generated by Matlab

2020a
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Figure 8 Comparison results with real data when initialized with fully connected transition

matrix. Training Methods: ML – black; cBW – green; cBW+model selection – blue; Scheffer et

al – red. Decoding Methods: Viterbi – cross tick mark; Posterior-Viterbi – circle tick mark.

Generated by Matlab 2020a

Table 1 Notations

Symbols Explanations

θ Hidden Markov model: θ = (π,A,B)

N States’ number in hidden Markov model.

K Symbolic Number in hidden Markov model.

A Transition matrix with dimension N ×N .

aij Probability of state i transition to state j.

B Emission matrix with dimension N ×K.

bj(k) Probability of state j emitted from symbol k.

π Initial probability of states with dimension N × 1.

Os The sth sequence with length T s

Xs State sequence of Os

m Total number of sequences

Table 2 Improvements of cBW + model selection, cBW alon vs Scheffer et al, with Fully Connected

Initial Transition Matrix for Synthetic Data with Viterbi Algorithm

state # /

training

sample

Average improvements

of cBW+model selection

in setting 1 / 2

Average p-value of

cBW+model selection

in setting 1 / 2

Average improvements

of cBW alone

in setting 1 / 2

3 /1600 7.35% / 8.29% 2.1E-02 / 6.2E-05 7.61% / 8.49%

3 /2000 7.99% / 8.82% 3.9E-02 / 2.6E-09 8.31% / 9.00%

3 /2400 8.47% / 9.13% 2.8E-03 / 2.4E-10 8.71% / 9.18%

3 /2800 8.51% / 9.24% 5.8E-03 / 6.9E-10 8.65% / 9.24%

5 /1600 12.97% / 14.75% 7.8E-05 / 3.3E-05 11.13% / 12.82%

5 /2000 14.63% / 16.32% 2.5E-03 / 1.2E-06 12.65% / 14.11%

5 /2400 14.69% / 16.54% 7.8E-04 / 6.2E-06 12.73% / 14.50%

5 /2800 15.56% / 17.22% 1.6E-02 / 1.3E-07 13.72% / 15.22%

7 /1600 8.61% / 10.42% 3.5E-02 / 1.1E-02 5.56% / 7.20%

7 /2000 10.56% / 12.40% 6.4E-03 / 6.2E-03 7.87% / 9.52%

7 /2400 11.35% / 13.21% 8.2E-03 / 7.8E-03 8.71% / 10.43%

7 /2800 12.16% / 14.06% 1.0E-03 / 1.1E-04 9.68% / 11.41%
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Table 3 Improvements of cBW + model selection, cBW alone vs Scheffer et al in Cases of Correct

Initial Transition Matrix for Synthetic Data with Viterbi Algorithm

state # /

training

sample

Average improvements

of cBW+model selection

in setting 1 / 2

Average p-value of

cBW+model selection

in setting 1 / 2

Average improvements

of cBW alone

in setting 1 / 2

3 /1600 8.07% / 8.57% 2.3E-04 / 4.7E-07 8.11% / 8.56%

3 /2000 8.58% / 9.05% 1.9E-06 / 6.5E-09 8.63% / 9.03%

3 /2400 8.93% / 9.24% 1.6E-07 / 1.0E-09 8.97% / 9.20%

3 /2800 8.87% / 9.31% 1.3E-08 / 1.5E-09 8.94% / 9.26%

5 /1600 11.99% / 13.24% 1.7E-02 / 4.5E-06 11.76% / 13.08%

5 /2000 13.07% / 14.20% 4.1E-02 / 3.4E-06 12.87% / 14.11%

5 /2400 13.22% / 14.59% 2.0E-02 / 1.2E-05 12.94% / 14.35%

5 /2800 13.89% / 15.20% 4.1E-02 / 1.6E-07 13.85% / 15.16%

7 /1600 7.85% / 9.37% 6.7E-02 / 3.5E-02 6.04% / 7.34%

7 /2000 9.75% / 11.28% 5.6E-03 / 4.1E-03 7.93% / 9.32%

7 /2400 10.50% / 12.10% 1.8E-02 / 1.9E-02 8.99% / 10.53%

7 /2800 11.39% / 12.95% 1.4E-03 / 1.9E-04 9.75% / 11.29%

Table 4 Improvements of cBW + model selection, cBW alon vs Scheffer et al, with Fully Connected

Initial Transition Matrix for Synthetic Data with Posterior-Viterbi Algorithm

state # /

training

sample

Average improvements

of cBW+model selection

in setting 1 / 2

Average p-value of

cBW+model selection

in setting 1 / 2

Average improvements

of cBW alone

in setting 1 / 2

3 /1600 7.08% / 8.02% 3.6E-02 / 1.9E-04 7.49% / 8.35%

3 /2000 7.93% / 8.57% 9.5E-03 / 3.9E-05 8.32% / 8.88%

3 /2400 8.21% / 8.85% 1.7E-03 / 2.5E-05 8.55% / 9.03%

3 /2800 8.43% / 9.15% 1.8E-03 / 1.1E-06 8.82% / 9.36%

5 /1600 9.13% / 10.62% 2.4E-02 / 3.2E-03 9.08% / 10.58%

5 /2000 10.32% / 11.68% 1.4E-02 / 6.2E-05 10.38% / 11.76%

5 /2400 11.26% / 12.74% 1.1E-02 / 2.0E-06 11.29% / 12.84%

5 /2800 12.48% / 13.76% 9.8E-03 / 2.1E-08 12.56% / 13.86%

7 /1600 8.40% / 10.08% 6.0E-02 / 2.5E-02 7.77% / 9.50%

7 /2000 10.22% / 11.96% 3.2E-02 / 1.3E-04 9.82% / 11.65%

7 /2400 11.10% / 12.68% 8.1E-03 / 1.5E-05 10.60% / 12.31%

7 /2800 12.18% / 13.89% 1.6E-04 / 8.4E-08 11.96% / 13.77%



Li et al. Page 21 of 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

Table 5 Improvements of cBW + model selection, cBW alone vs Scheffer et al in Cases of Correct

Initial Transition Matrix for Synthetic Data with Posterior-Viterbi Algorithm

state # /

training

sample

Average improvements

of cBW+model selection

in setting 1 / 2

Average p-value of

cBW+model selection

in setting 1 / 2

Average improvements

of cBW alone

in setting 1 / 2

3 /1600 7.46% / 8.01% 2.8E-02 / 1.7E-02 7.64% / 8.11%

3 /2000 8.09% / 8.52% 3.0E-02 / 1.6E-02 8.25% / 8.60%

3 /2400 8.32% / 8.67% 3.7E-02 / 5.9E-03 8.49% / 8.73%

3 /2800 8.58% / 8.99% 4.9E-02 / 1.2E-03 8.79% / 9.09%

5 /1600 9.52% / 10.62% 1.1E-01 / 5.1E-02 9.45% / 10.59%

5 /2000 10.53% / 11.55% 6.0E-02 / 8.2E-03 10.47% / 11.63%

5 /2400 11.51% / 12.58% 2.0E-02 / 3.5E-04 11.44% / 12.58%

5 /2800 12.49% / 13.55% 1.7E-02 / 8.0E-06 12.55% / 13.61%

7 /1600 8.75% / 10.19% 2.9E-02 / 2.6E-02 8.27% / 9.77%

7 /2000 10.50% / 11.99% 2.1E-02 / 4.2E-03 9.82% / 11.31%

7 /2400 11.15% / 12.47% 6.9E-02 / 7.8E-04 10.69% / 12.11%

7 /2800 12.36% / 13.75% 5.2E-02 / 1.1E-05 12.05% / 13.57%




