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Abstract

Background: Hidden Markov models (HMM) are a powerful tool for analyzing
biological sequences in a wide variety of applications, from profiling functional
protein families to identifying functional domains. The standard method used for
HMM training is either by maximum likelihood using counting when sequences
are labelled or by expectation maximization, such as the Baum-Welch algorithm,
when sequences are unlabelled. However, increasingly there are situations where
sequences are just partially labelled. In this paper, we designed a new training
method based on the Baum-Welch algorithm to train HMMs for situations in

which only partial labeling is available for certain biological problems.

Results: Compared with a similar method previously reported that is designed for
the purpose of active learning in text mining, our method achieves significant
improvements in model training, as demonstrated by higher accuracy when the

trained models are tested for decoding with both synthetic data and real data.

Conclusions: A novel training method is developed to improve the training of
hidden Markov models by utilizing partial labelled data. The method will impact
on detecting de novo motifs and signals in biological sequence data. In particular,
the method will be deployed in active learning mode to the ongoing research in
detecting plasmodesmata targeting signals and assess the performance with

validations from wet-lab experiments.
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1

'‘Background
*Hidden Markov model [1, 2, 3, 4, 5] is a well known probabilistic model in the field”
®of machine learning, suitable for detecting patterns in sequential data, such as plain3
4texts, biological sequences, and time series data in the stock market. For all these”
5applications, successful learning depends, to a large degree, on the amount and,5
®more importantly, the quality of the data. In text mining problem, though the data’
"amount is huge, careful labelling tasks consume massive human labor [6]. In bio-’
810gical sequence analysis, discovering de novo signal remains challenging because a®
9precise full labeling via wet-lab experiments demand even more resources and time,9
®and hence it is considered unfeasible in general. Therefore, research is necessary in'
"data handling with different labelling quality for applied machine learning commu-""
12nity. In this paper, we focus on designing a Baum-Welch-algorithm based 1eaurnimg12
“method for HMMs to handle the biological problems when only partial labeling is'®
Havailable in training data. 1

This work is inspired by our recent research on detecting de novo plasmodesmata15
letargeting signals in Arabidopsis Plasmodesmata-located proteins (PDLPs). PDLPs™
Yare type I transmembrane proteins, which are targeted to intercellular pores called’
1Splausmodesmautau that form at the cellular junctions in plants [7]. In our study [8], by18
19building a 3-state HMM, we predicted the presence of two different plasmodesmata19
2Otau"geting signals (named alpha and beta) in the juxta membrane region of PDLPs.”
*'While all the predicted signals were successfully verified in wet-lab experiment321
50 far, some predicted signals contain residues that do not conform to the true
23signal; wet-lab experiments showed that those residues alone was not sufficient to23
24target the protein to plasmodesmata. Because both the cost and time are high for™*
*wet-lab experiments, an improved HMM would be highly desirable. However, due”
40 the limitation in the number of the training examples — Arabidopsis genome26
% encodes only eight PDLP members, further improvements of the model can be
2Sh:amdly achieved. It would require to fully utilize the current wet-lab experimental28

®results to train the model, i.e., by labeling the residues that have been already29

*shown to be either part of the signals or not part of the signals, given that labels>®

3 31

1
are not available for all the residues due to limited experimental results.

32 32
In a related work by Tamposis et al, a semi-supervised approach is developed

33 33
to handle a mixture of training sequences that contains a subset of fully labelled
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'sequences, with the remaining sequences having no labels at all or partial labels [9].1
>Their method uses the fully labelled sequences to train the parameters for HMMs?
3and then use Viterbi algorithm to predict the missing labels followed by training the®
“model again with the predicted labels. This process is iterated until a convergence®
®condition is met. Instead, we are specifically interested in situations where no fully®
®labelled sequences are available and often the partial labeling is also sparse. In the®
"text mining field, HMM training algorithm of handling partial label was developed’
8especially for active learning purposes and designed to fit into text mining special®
%situation: no label scenario, or in other words, no meaningful label can be assigned®
'9[6]. However the unit of observation in text mining and information retrieval is™
3 word, instead of a single letter, corresponding to individual amino acid residue!
%as in biological sequences. So, in order to deal with the partial labeling aforemen-"*
“tioned, we have designed a novel Baum-Welch based HMM training algorithm to
“leverage partial label information with techniques of model selection through par-'*
'®tjal labels. Besides the difference in the observation unit, our algorithm differs from"®
16[6] primarily in how to calculate the expected value for a given partial label at a'®
Ygiven position: our method sums over hidden state paths that must be subject to'”
Bconstraints anywhere given partial labels in the training sequence. In contrast, in'®
19[6] the expected value for a given partial label at a given position is calculated by*®
Xsumming over paths that are only constrained at the position being considered, and*
Hanywhere else in the sequence the hidden paths are free to go through all possible®!
2states (labels) even at positions where partial labels are given. Moreover, this differ-*
Bence affects how the expected value for a transition is calculated, regardless whether®
**the transition happens to involve one partial label, two partial labels, or no partial®*
*labels at all. The comparison between our method and the method described in [6]*°
%showed that our method outperformed in both synthetic and real data for decoding®

task in biological problems. 2

28 28
The rest of this paper is organized as follows. First, the relevant background

29 29
knowledge of HMM is briefly reviewed, and notations are introduced. Then, our

30 30
method of training HMM when only partial label sequences are available is described

31 31
in details. This is followed with experiments and results to examine and demonstrate

32 32
the modelling power of the novel algorithm. Discussion and conclusion are given at

33 33
the end.
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'Methods !

Hidden Markov model review 2

°In general, a HMM consists of a set of states S;, i =1 to N, and a set of adphabets3
K that can be emitted from these states with various frequencies; b;(k) stands for*
®the frequency of letter k € K being emitted from state S;, and we use B to denote”
®the emission matrix of dimension N x K, containing b;(k) as elements. Transitions®
7amomg states can be depicted as a graph, often referred as model architecture or’
®model structure: each state is represented as a node, and transition from state Sis
*to state S is represented by a directed edge, with a weight a;; being the transition®
1Oprobability, and we use A to denote the transition matrix of dimension N x N ,10
11containing a;; as elements. Hereafter, we often refer to a state S; by its index . "

Given a HMM, let 6 stand for collectively all its parameters, namely the ernission
13frcqucncics b;(k) and transition probabilities a;;. Given a sequence of observation™
140, and its elements O; € K, where t = 1..T, a main assumption of using HMM ™
" is that each letter in the sequence is emitted from a state of the model, so corre-'°
16spondingly there is a state sequence, forming a Markov chain, which is hidden from ™
" divect observation, hence the name: hidden Markov model. One task (decoding) is,17
18therefore7 to find the most probable state sequence (also called hidden path) X* 18
Pxr = argmax y Pr(0, X|0), among all possible state sequences that can emit the'
*observation sequence O. The second task is to train the model on a set of m training20

21 . . . N .2
sequences. This task is accomplished by adjusting model parameters 6 to maximize !

*the likelihood > Pr(Of]) of observing the given training sequences O%, where””

23 23

s =1..m [10].
24 24
The decoding task is well studied and straightforward and is solved by Viterbi

25alg0rithm efficiently [11]. The technique guarantees to return the optimal answer.25

*Note that, in the work by Bagos et al [12], a modified Viterbi algorithm is developed26

27 27
to incorporate prior topological information as partial labels to improve predictions,
28 28

whereas our focus is instead on how to use the partial labels in training the model.
29 29
However, the second task, or the training of a HMM is not guaranteed to reach

30 30
optimum when labels are not given for the training sequences.

31 31
The major training algorithms of HMM are the following three in general: maxi-

32mum likelihood, Baum-Welch algorithm, and Viterbi training [13]. Maximum like—32

33 33
lihood is used when label information is available fully, and it returns the optimal
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!solution. The latter two algorithms are used when no label information is available.*
Interested readers can find a gentle introduction and tutorial for hidden Markov?
®models in [10]. For the purposes of comparison, we adopt notations in [6] for future®

“discussion of both the background knowledge and our method. The description of*

®notations is shown in Table 1. 5

® In this paper, we focus on a special case for training HMMs when only partial®
"label is available. Or in other words, we aimed at finding model 6 so that Pr(0|f)"

%is maximized (locally) and the resulting decoded state sequence must satisfy the®

®partial labels given in the training sequences at the same time. o

10 10

1, Training hidden Markov model with partial label sequences 1

,,As introduced in the previous section, when no labels are available, Baum-Welch,,
zalgorithm is typically used to train HMM and Viterbi training is sometimes used, ,
o for speed and simplicity; when all label information is given, training HMM is ,
Straight forward by maximum likelihood approach. Currently, training HMM with,
,cpartial label is mainly studied in the field of text mining, with a particular focus on,

,7active learning problems, such as the work done in [6], with which we compare our 17

,gproposed method. 18

Our proposed method is a novel approach to this partial label training problem,

19 9

,oWith modification of Baum-Welch algorithm (called constrained Baum-Welch algo-,
) 1hthm) and a model selection technique, which helps our algorithm leverage available,
pinformation and improve the training and performance in decoding task. In the next,,
,3tWO subsections, we discuss in detail our constrained Baum-Welch algorithm and,,
othe model selection methods respectively and how to combine the two for model,,

ostraining. 5

26 26
Constrained Baum-Welch algorithm

2 27
The standard Baum-Welch algorithm is an Expectation-Maximization approach to

28 28
maximizing likelihood when the system contains latent variables, which are the state

29 29
sequences for hidden Markov models when training sequences are not labelled. Our

30constrauined Baum-Welch algorithm (¢cBW) is similar to the standard BaLum—V\/'elch30

31 31
algorithm except that the training sequences are partially labelled, which imposes

32 32
the constraints on the possible hidden state paths in calculating the expectation.

33 33
Standard Baum-Welch algorithm is divided into E-step and M-step. The M-step of
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'¢BW algorithm is identical to standard Baum-Welch’s. The difference is the E-step,’
2computing forward and backward matrices. The forward matrix o is of N x T2
*where N is the number of states and T is the sequence length. An element oy (t) is®
“the probability of the observed sequence up to and including Oy, with the symbol4
°0, being emitted from state 7. The backward matrix 8 is of N x T dimension has®
Selement Bi(t) as the probability of the observed sequence from position ¢ onto the®
"end, with the symbol O; being emitted from state i. The formulas of computing o’
8and S are shown as following respectively. 8

Given the model 8 = (m, A, B), where 7 is a N dimension vector, with 7; being9
Ythe probability that any hidden state path would start with state i. Then, the™
“initial values of forward matrix o for one given training sequence O = (Ox, ..., OT)11

g computed as follows. 12

13 13
14 a; (1) = 7b;(O1) (1)14
15 15

,cAfter calculating the initial values of , by dynamic programming, the remaining, .
,7values at any position for any state are calculated recursively by summing over the,,
,gbossible state paths X = (X1, ..., Xr), allowed by the model, that lead to the point, g
1oWhose a value is being calculated. However, since we now have partial labels for the, g
sotraining sequence O, care must be taken to satisfy the constraints at each position,
51Ot imposed by the partial label, L(O;) € SU{0}, where a value zero means no label,,

ypavailable. Specifically, 99

23 23
bi(Ori1) Yoy aj(t)aji, if L(Orp1) =0 or i

24 o (t+ 1) = (2)24

0 if L(O411) # 0 and L(O1) # i

25

26
In the above equation, the first case is when position O, is either unconstrained

2 27
(0) or constrained to be state ¢ by the partial label. In such a case, the « value

28 28
is computed in the same way as the standard Baum-Welch algorithm, though the

29 29
actual value can still be affected by partial labels at earlier positions via recursion.

30 30
The second case is when the position t+1 is constrained by the partial label to be

31 31
a state other than 4. In this case, (¢ + 1) = 0. This latter case is what makes the

32 32
algorithm different from the standard Baum-Welch algorithm in order to ”honor”

33 ) 33
the partial labels.

Page 6 of 21
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! The backward matrix J is initialized as the following.

B =1 (3)°

5Then7 similarly, a recursive procedure is applied for the remaining of backward”

6matrix. 6
7 7
s N Bt 4+ 1)aibj (Ot +1)), if L(Oy) =0 or i 8
9 Bi(t) = 2371 Bi( Jaijb; (O( ), if L(Oy) or 7 (4)9
10 10

"Note that, while the « is calculated the same way as the modified Forward adgorithm11
“in [12] but the § is calculated differently from their modified Backward algorithm."*
®After the calculations of a and 3, then we can calculate v variable, where ~; (t) is™

“the probability of observing the training sequence O from all possible state paths14

®that are allowed by hidden Markov model 6 as constrained by the partial labels and™®

16go through state i at position ¢. 7;(¢) is computed as follows. 16
17 17
18 ‘ P(X(t) =1,0l0) 18
i(t) = P(X(t) =16,0) =
w(t) = PX() = i18,0) = =g
19 . i (H)B:(1) (5>19
20 Soims o155 (1) 20
21 21

sowhere the last equal sign holds because P(O|0) = Ejvzl a;(t)5;(t). The next stepas
23is to compute &;;(t), which is the probability of of observing the training sequenceos
240 from all possible state paths that are allowed by hidden Markov model 6 aso,

ssconstrained by the partial labels and go through state i at positive ¢ and transitionys

2sto state j at position ¢ + 1: 26
27 27
P(X(t) =i, X(t+1) = j,0l0)
28 §ij(t) = 28
P(0]0)
29 _ a;(t)a;;B;(t+1)b;(O(t+ 1)) (6)29
P(010)

30 30
31 . . . . o, . K 31
Finally, with ~, £, the M-step is to update the initial probability 7*, every elements
32 32
of the transition matrix A*: aj;, and every elements of the emission matrix B*:

33

33
b;-“(ok).

Page 7 of 21
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3 m(1)* =v(1) (7)3
4 o= S &) 4

] K Y 1%() ]
Py %—( Mo)=o
Zt 1 %()

7 7

6 b; (ox) =

8Where Io(t)=0, stands for indicator function, which equals to 1 if O(t) = o, and 08
9otherwise. Then, for the case of multiple sequences, each sequences indexed by 53

Ototal number of sequences of m, The only changing is the updating of 7*,A*, and10

B* as follows.
11 11

12 m s(1 12
W(l)* _ 23:1 FYZ ( ) (10)
13 mTS—l 13
14 at. = 2521 t=1 Zsj(t) (11)14
iy m T5—-1 ¢
Dosm1 D=1 %’ (t)
T°—1 ¢
* b* _ Do Dt 'Yi () o: (1), 12 *
on) = ==L (12)
16 Dem1 2=t V(1) 16
7 17

The procedure above is repeated till either the >-""log(P(O*|6)) converge or

18 18
reaching maximum iteration numbers set by the user. As mentioned in the Intro-

19
duction section, a key difference between our method and [6] lies in the E-step

20 20
for calculating the expected value for a given emission or transition. Our method

21 21
handles the partial label constraints recursively for the a and g, whereas [6] cal-

22 22
culates a and 8 without using the partial labels and only uses the partial labels

23 2
in resetting v at each partial labelled position independently, as if partial labels

24 24
elsewhere would have no effect for the position being considered. Since E-step in

25Bzwm—Welch algorithm invokes forward and backward algorithms, which are essen—25

26 26
tially a dynamic programming to more efficiently calculate the likelihood: Pr(0O|0)

7 7
> xerPr(0, X|0) with T being the set of all hidden paths, and hence should give2

28 28
the same result when the likelihood is computed by exhaustively summing over

29probability for all possible hidden state paths. Therefore, we believe, the partial29
*labels would restrict the possible hidden state paths, Pr(0|0) = Xxcr Pr(O, X|0)30

31 31
with TV being the set of all hidden paths constrained by partial labels and such

32 32
constraints should be handled recursively in the dynamic programming. Figure 1

33 33
shows an example for the forward /backward dynamic programming table construc-

Page 8 of 21
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'tion. Another advantage of our method comparing with the method in [6] is that’
our training method can keep the topology of the initial transition and emission?
3guesses for the model as standard Baum-Welch does. In other words, if prior knowl->
“edge is available for the model topology, our training method for partial label data®
®can keep the knowledge to the end of training. °
6 6
7Model selection based on partial label information 7
8The second part of our method is model selection based on partial label informa-8
stion. The rationale is straightforward: while the constrained Baum-Welch algorithms
toincreases the log-likelihood of the given training sequences (with partial labels), it-10
tteration after iteration monotonically as ensured by EM approach, there is no direct1t
t2guarantee that the increased log-likelihood would necessarily lead to higher decod-12
13ing accuracy. Therefore, at each iteration of constrained Baum-Welch algorithm,13
t4decoding accuracy for the partially labelled training sequence can be calculatedi4
tsand factored into model selection. 15
16 Specifically, after reaching convergence condition or maximum number of iter-16
17ations, the total number of iteration is @ and the " iteration’s model and thei?
18corresponding log-likelihood can be denoted as 6; and >_." Log(P(O*|6;)) respec-18

19tively and let the decoding accuracy denote as Accuracy(6;, O, X). The final model19

20returned by the algorithm can be expressed as: 20
21 21
9 argmin Pr(0|0* = {argmax Accuracy(0;,0, X)}) (13),,
0* 0;€01..0
23 23
Notice that #* is a set of models in general. Finally, combining the constrained
24 24
Baum-Welch and the model selection described above, the overall algorithm of our
25 25
proposed method is given in Algorithm 1. In next section, Table 2 to Table 5 will
26 26
show the usefulness of both this model selection method and the ability of keeping
27 27
correct topology of cBW method.
28 28
29 29
Results

30 30
In this section, we set up experiments using both real biological data and synthetic

31 31
data to test our method for decoding task and compared the results with those

32 32
from using the method in [6]. It has been reported that [14, 15] posterior decoding

33 33
in general performs better than Viterbi algorithm. So, in order to evaluate how our

Page 9 of 21
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' Algorithm 1: Constrained Baum-Welch with model selection based on de-

2

coding accuracy.

3

4

10

11

12

13

Data: sequences: O, partially label X
Result: bestA,bestB
initialization: 0 = (7, A, B) ;

best

whi

end

Accuracy < 0 ;
le not reaching maximum iteration nor convergent do
calculate «,8 by Eq. 1 to 4 ;
calculate «, £ by Eq. 5to 6 ;
update 7*,A*,B* by Eq. 7to 9 ;
X* « Decoding(n*,A*,B*,0) ;
myAccuracy + Accuracy( X*,X) ;
if myAccuracy > bestAccuracy then
bestAccuracy <— myAccuracy ;
T Tr
bestA < A* ;
bestB < B* ;

end

10

11

12

13

14

15

14

15

16training method can impact on decoding, we carried out the decoding on the testing16

Sequences with the trained model using both the standard Viterbi algorithm [10]

17

18amd Posterior-Viterbi algorithm described in [15], and the accuracy was computed18

19by comparing the predicted label with the ground truth label at each position to19

2Odetermine the number of correct predictions:

21

22

#of correct predicted labels

Accuracy =

#of total labels

20

21

22

23 23
The results of these experiments show that our method outperforms Scheffer et al’s

24 2
method in model training, as evidenced in the improved decoding accuracy, regard-

25
less which decoding algorithm is used. Specifically, on average, decoding accuracy

4

25

26 26
improves by 33% with Viterbi algorithm, 36% with Posterior-Viterbi algorithm

7 7
“in real data, and improves by 7.35% to 14.06% with Viterbi algorithm, 7.08% to

28 2
13.89% with Posterior-Viterbi algorithm in synthetic data with significant p-values.

8

29 29
Note that, in two cases when the sequences are either almost fully labelled (95%) or

30

3

32
from making good use of partial labels diminishes when labels are extremely sparse,

33
which makes the various algorithms converge to Baum-Welch algorithm, or when

3
very sparsely labelled (5%), the differences between various algorithms are insignif-

0

1 31
icant. This phenomenon is no surprising though, as it is expected that the benefit

32

33

Page 10 of 21
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sequences are almost fully labelled, which makes the various algorithms converge to*
%the maximum likelihood. Therefore, our evaluations are divided into two settings?

3for synthetic data. Setting 1 has partial label information from 5% to 95%. Setting®

“9 has partial label information from 10% to 90%. 4
5 5
8Synthetic data 6

"The method described in [6] is mainly focused on handling text mining problems’
8using synthetic data. To make the comparison fair, we have also performed exper—8
®iments using synthetic data, which allowed us to observe our method’s different®
1Operforrnance in different situations. In the experiments with synthetic data, the'°
data is generated from ground truth HMMs, which are also generated 1raundonr11y11
Pwith predefined connections. For each experiment, the size for initial guess of tran-'
“sition and emission matrices are identical to the corresponding ground truth model. "
"“We fixed the number of symbols in hidden Markov model to be 20 to mimic the 20"
Y®amino acids in protein sequences. To test how model complexity may impact the'®
16training, we chose three different numbers of states: 3, 5, and 7. Moreover, differ-"
Tent levels of training sample size were also considered as an experimental variable."”
®Each experiment (with fixing state number and training examples) was evaluated'®
Yfor different levels of partial label and repeated for 50 times, and the corresponding19
*paired p-values were also calculated to assess the statistical significance of the per->°
*formance difference between our method and the other method. Since our method*
*can maintain the topology of initial guess of transition matrix, experiments were”?
#divided into two different groups. One was initialized the transition matrix with the”
*same connectivity as the ground truth model, and the other was initialized with*

25fully connected transition matrix. »

% Three sets of experimental results with fully connected transition matrix as initial”®

27guess are shown in Figure 2 to Figure 4. Additional results are shown in Table 2 to’

*Table 5 for comparison. 2
29

Conducted using different numbers of states, training examples, and different

30 30
decoding algorithms, the results show that our method outperforms the method by

31Scheffer et al by 7.08% to 14.06% across different percentage of unlabelled data, With31

32 32
significant p-value (< 0.05) for majority of the experiments. While both methods

33 33
achieve a performance closer to that of the ground truth model as the level of partial



Li et al.

abels increases, the improvement of our method over the method of Scheffer et al’s*
%is more pronounced when partial labels are sparse, namely the level of unlabelled?
3data is high, as shown in the X-axis of the Figures. For example, in Figure 2,°
“with Viterbi decoding, at the level of 70% unlabelled data, i.e., 30% partial labels,*
®our method reaches an accuracy of 62%, which is 98% of the ground truth model®
®accuracy, whereas Scheffer et al’s reaches accuracy of 54%, which is 85% of the®
"ground truth model accuracy. Similar trends hold true for Figure 3 and Figure 47

8when the model has 5 and 7 states respectively regardless of the decoding algorithm®

used. °

10 10

11 11
Real data

12 12
For the real biological data, we adopted data from [16]. The data contains 83 multi-

13 13
pass transmembrane proteins with complete label information. The topology of

14 4

1
multi-pass transmembrane protein is shown in Figure 5. The label for each se-

15 15
quence contain three different values: i, o, M. They stand for the region of protein

16 16
sequence inside, outside cell membrane, and the transmembrane domain respec-

7tively. While much more sophisticated hidden Markov models have been used for17

1 8

8 1
modeling transmembrane protein topology [16, 17, 18, 19], a simple HMM is used in

19 19
this study to primarily evaluate the new training algorithm for partial labels. The

20 20
architecture of the HMM is shown in Figure 6, in which a redundant M’ node is

21 21
introduced as a simple mechanism to avoid a state path, such as iiiimmmmiii or

22 2

2
oooommmoooo, that does not correspond to the real topology of transmembrane

23 23
protein, in which a membrane domain has to be flanked by i on one side and o

24 24
on the other side. Therefore, the transition matrix is 4 by 4, corresponding to the

25 25
four states. Note that the amino acid emission frequencies for the transmembrane

26 26
state are calculated by lumping together counts or expectation from both M and

o 27
M’ states. We set up two different experiments with different initial conditions: (1)

28 28
Transition matrix has correct zeros as ground truth model. (2) Transition matrix

29 29
is fully connected. We set up experiments for condition (2) because the method

30 30
in [6] cannot enforce initial zeros to remain zeros during the training, therefore,

3t 31
condition (2) gives more fair comparison of the two methods when no prior knowl-

32edge is available. The HMM is trained by these two different methods in a 1()—f01d32

33 33
cross validation scheme. Different levels of unlabelled data in training examples are

Page 12 of 21
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'actuated by selecting locations randomly to be unlabelled for each sequence. Since'
no ground truth model is available, maximum likelihood method with fully labelled?

3training data is used to mimic the role of the ground truth model in experiments®

“with synthetic. 4

For condition (1), the result shown in Figure 7 demonstrates that our method (°
®constrained Baum-Welch with model selection ) outperforms other method (Schef—6
"fer et al) by 33.59% with Viterbi Algorithm and 36.16% with Posterior-Viterbi’
®algorithm. For condition (2), the result shown in Figure 8 attests that our method®
®outperforms other method by 33.20% with Viterbi Algorithm and 36.32% with®
®posterior-Viterbi algorithm. For both conditions, the performance of our method™®

"with or without model selection technique and maximum likelihood are very close.'!

12 12

3Discussion 13

“From the results of experiments with synthetic data in Table 2 to Table 5, they show:™

15(1). constrained Baum-Welch algorithm with or without model selection technique'®
*achieve significant better performance than Scheffer et al in [6]; (2). constrained®
"Baum-Welch benefit from having correct topology ( comparisons between the 4th"’

*®columns of Table 2 and Table 3); (3). constrained Baum-Welch algorithm performs'®
“hetter when model selection technique used, especially when the task is hard (19
*’comparisons between 2nd and 4th column in Tables); (4). disregarding the training®

21methods7 Posterior-Viterbi always outperforms standard Viterbi ( Shown in Figure 2%

0 Figure 4, Figure 7, and Figure 8 ). 2

From the results of experiments with real data, performance of constrained Baum---
*Welch with or without model selection are very close to maximum likelihood ap—24
25proach across different percentages of partial label. However, the performance of
*Scheffer et al’s drops dramatically after the percentage of unlabelled data is greater26

*than 10. The reason behind this is the method done by Scheffer et al cannot enforce

28 Co . . . . 28
the correct topology even the initial guess is correct. For this problem in particular,

*have a HMM with correct topology is key for higher accuracy. 2

30 30
Moreover, there are a few points worth mentioning for the benefits of those who

31 31
may consider using this method for their applications. First, the ability of keeping

32 32
correct topology makes cBW method compatible with more complex HMM, such as

33 33
profile HMMs. However, as a trade-off, the training time can significantly increase.
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'Second, model selection technique, although optional, is highly recommended to be*
used with Posterior-Viterbi instead of standard Viterbi for best decoding perfor-2
®mance. Lastly, our method is designed especially for the task of detecting de novo®
“targeting signals, which assumes no fully labelled sequence is available in general.*
°For the cases with relaxing constrain: some fully labelled sequences are available,’

®our method is not the only choice, interested readers may also consider methods®

"in [9]. 7
8 8
sConclusion 9

toln this work, by modifying the standard Baum-Welch algorithm, we developed a1o
11novel training method, which, along with a model selection scheme, enables leverag-11
12ing the partial labels in the data to improve the training of hidden Markov models.12
13Compared with a similar method, our method achieved significant improvementsis
14in training hidden Markov models as evidenced by better performance in decodingia
1sboth synthetic data and the real biological sequence data. 15
16 For future work, we will further investigate the impact of this training method1e
17on detecting de novo motifs and signals in biological data. In particular, we plani7
18to deploy the method in active learning mode to the ongoing research in detecting1s

toplasmodesmata targeting signals and assess the performance with validations fromz1s

20wet-lab experiments. 20

21 21
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HMM: Hidden Markov model

23PDLP: Plasmodesmata-located proteins 23

cBW: constrained Baum-Welch algorithm
24 24
EM: Expectation-Maximization
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Figure 3 Comparison results 2 with synthetic data when initialized with fully connected
transition matrix State number = 5 and training sample size = 1600. Training Methods: Ground
truth model — black; cBW — green; cBW+model_selection — blue; Scheffer et al — red. Decoding
Methods: Viterbi — cross tick mark; Posterior-Viterbi — circle tick mark. Generated by Matlab
2020a
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Figure 4 Comparison results 3 with synthetic data when initialized with fully connected
transition matrix State number = 7 and training sample size is 1600. Training Methods: Ground
truth model — black; cBW — green; cBW-+model_selection — blue; Scheffer et al — red. Decoding
Methods: Viterbi — cross tick mark; Posterior-Viterbi — circle tick mark. Generated by Matlab
2020a
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Figure 5 multi-pass transmembrane proteins the red lines represents protein sequence outside of
cell membrane, the blue lines represents protein sequence inside of cell membrane, and green line

represents transmembrane domain of the protein sequence. Generated by Google Drawings
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Figure 6 Topology of 4-state HMM for multi-pass transmembrane prediction States i and o
represent inside and outside cell membrane respectively. Both M and M’ stand for transmembrane
domain, the redundant M’ is used to avoid direct connection between state i and o, which is

impossible. Generated by Google Drawings
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10

11

12

13

14Table 1 Notations

Symbols Explanations
15 0 Hidden Markov model: 6 = (w, A, B)
16 N States’ number in hidden Markov model.
K Symbolic Number in hidden Markov model.
17 A Transition matrix with dimension N x N.
18 a;j Probability of state i transition to state j.
B Emission matrix with dimension N x K.
19 b; (k) Probability of state j emitted from symbol k.
2 T Initial probability of states with dimension N x 1.
(0 The s" sequence with length T
21 X*® State sequence of O°
9 m Total number of sequences

Table 2 Improvements of cBW + model selection, cBW alon vs Scheffer et al, with Fully Connected

23Initial Transition Matrix for Synthetic Data with Viterbi Algorithm

24

25

26

27

28

29

30

31

32

33

state # / | Average improvements Average p-value of Average improvements
training of cBW+model selection | cBW+model selection | of cBW alone
sample in setting 1 / 2 in setting 1 / 2 in setting 1 / 2

3 /1600 7.35% / 8.29% 2.1E-02 / 6.2E-05 7.61% / 8.49%
3 /2000 7.99% / 8.82% 3.9E-02 / 2.6E-09 8.31% / 9.00%
3 /2400 8.47% / 9.13% 2.8E-03 / 2.4E-10 8.71% / 9.18%
3 /2800 8.51% / 9.24% 5.8E-03 / 6.9E-10 8.65% / 9.24%
5 /1600 12.97% / 14.75% 7.8E-05 / 3.3E-05 11.13% / 12.82%
5 /2000 14.63% / 16.32% 2.5E-03 / 1.2E-06 12.65% / 14.11%
5 /2400 14.69% / 16.54% 7.8E-04 / 6.2E-06 12.73% / 14.50%
5 /2800 15.56% / 17.22% 1.6E-02 / 1.3E-07 13.72% / 15.22%
7 /1600 8.61% / 10.42% 3.5E-02 / 1.1E-02 5.56% / 7.20%
7 /2000 10.56% / 12.40% 6.4E-03 / 6.2E-03 7.87% / 9.52%
7 /2400 11.35% / 13.21% 8.2E-03 / 7.8E-03 8.71% / 10.43%
7 /2800 12.16% / 14.06% 1.0E-03 / 1.1E-04 9.68% / 11.41%
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3

Table 3 Improvements of cBW + model selection, cBW alone vs Scheffer et al in Cases of Correct

4lnitial Transition Matrix for Synthetic Data with Viterbi Algorithm

5
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20Table 4 Improvements of cBW + model selection, cBW alon vs Scheffer et al, with Fully Connected

state # / | Average improvements Average p-value of Average improvements
training of cBW+model selection | cBW+model selection | of cBW alone
sample in setting 1 / 2 in setting 1 / 2 in setting 1 / 2

3 /1600 8.07% / 8.57% 2.3E-04 / 4.7E-07 8.11% / 8.56%
3 /2000 8.58% / 9.05% 1.9E-06 / 6.5E-09 8.63% / 9.03%
3 /2400 8.93% / 9.24% 1.6E-07 / 1.0E-09 8.97% / 9.20%
3 /2800 8.87% / 9.31% 1.3E-08 / 1.5E-09 8.94% / 9.26%
5 /1600 11.99% / 13.24% 1.7E-02 / 4.5E-06 11.76% / 13.08%
5 /2000 13.07% / 14.20% 4.1E-02 / 3.4E-06 12.87% / 14.11%
5 /2400 13.22% / 14.59% 2.0E-02 / 1.2E-05 12.94% / 14.35%
5 /2800 13.89% / 15.20% 4.1E-02 / 1.6E-07 13.85% / 15.16%
7 /1600 7.85% / 9.37% 6.7E-02 / 3.5E-02 6.04% / 7.34%
7 /2000 9.75% / 11.28% 5.6E-03 / 4.1E-03 7.93% / 9.32%
7 /2400 10.50% / 12.10% 1.8E-02 / 1.9E-02 8.99% / 10.53%
7 /2800 11.39% / 12.95% 1.4E-03 / 1.9E-04 9.75% / 11.29%

Initial Transition Matrix for Synthetic Data with Posterior-Viterbi Algorithm

21

22
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24

25
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28

29

30

31

32

33

state # / | Average improvements Average p-value of Average improvements
training of cBW+model selection | cBW-+model selection | of cBW alone
sample in setting 1 / 2 in setting 1 / 2 in setting 1 / 2

3 /1600 7.08% / 8.02% 3.6E-02 / 1.9E-04 7.49% / 8.35%
3 /2000 7.93% / 8.57% 9.5E-03 / 3.9E-05 8.32% / 8.88%
3 /2400 8.21% / 8.85% 1.7E-03 / 2.5E-05 8.55% / 9.03%
3 /2800 8.43% / 9.15% 1.8E-03 / 1.1E-06 8.82% / 9.36%
5 /1600 9.13% / 10.62% 2.4E-02 / 3.2E-03 9.08% / 10.58%
5 /2000 10.32% / 11.68% 1.4E-02 / 6.2E-05 10.38% / 11.76%
5 /2400 11.26% / 12.74% 1.1E-02 / 2.0E-06 11.29% / 12.84%
5 /2800 12.48% / 13.76% 9.8E-03 / 2.1E-08 12.56% / 13.86%
7 /1600 8.40% / 10.08% 6.0E-02 / 2.5E-02 7.77% / 9.50%
7 /2000 10.22% / 11.96% 3.2E-02 / 1.3E-04 9.82% / 11.65%
7 /2400 11.10% / 12.68% 8.1E-03 / 1.5E-05 10.60% / 12.31%
7 /2800 12.18% / 13.89% 1.6E-04 / 8.4E-08 11.96% / 13.77%
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12Table 5 Improvements of cBW + model selection, cBW alone vs Scheffer et al in Cases of Correct
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Initial Transition Matrix for Synthetic Data with Posterior-Viterbi Algorithm

state # / | Average improvements Average p-value of Average improvements
training of cBW+model selection | cBW-+model selection | of cBW alone
sample in setting 1 / 2 in setting 1 / 2 in setting 1 / 2

3 /1600 7.46% / 8.01% 2.8E-02 / 1.7E-02 7.64% / 8.11%
3 /2000 8.09% / 8.52% 3.0E-02 / 1.6E-02 8.25% / 8.60%
3 /2400 8.32% / 8.67% 3.7E-02 / 5.9E-03 8.49% / 8.73%
3 /2800 8.58% / 8.99% 4.9E-02 / 1.2E-03 8.79% / 9.09%
5 /1600 9.52% / 10.62% 1.1E-01 / 5.1E-02 9.45% / 10.59%
5 /2000 10.53% / 11.55% 6.0E-02 / 8.2E-03 10.47% / 11.63%
5 /2400 11.51% / 12.58% 2.0E-02 / 3.5E-04 11.44% / 12.58%
5 /2800 12.49% / 13.55% 1.7E-02 / 8.0E-06 12.55% / 13.61%
7 /1600 8.75% / 10.19% 2.9E-02 / 2.6E-02 8.27% / 9.77%
7 /2000 10.50% / 11.99% 2.1E-02 / 4.2E-03 9.82% / 11.31%
7 /2400 11.15% / 12.47% 6.9E-02 / 7.8E-04 10.69% / 12.11%
7 /2800 12.36% / 13.75% 5.2E-02 / 1.1E-05 12.05% / 13.57%
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