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Abstract—Synchronization of pulse-coupled oscillators (PCOs)
has gained significant attention recently due to their increased
applications in sensor networks and wireless communications.
Given the distributed and unattended nature of wireless sensor
networks, it is imperative to enhance the resilience of PCO syn-
chronization against malicious attacks. However, most existing re-
sults on attack-resilient pulse-based synchronization are obtained
under assumptions of all-to-all coupling topologies or restricted
initial phase distributions. In this paper, we propose a new
pulse-based synchronization mechanism to improve the attack
resilience of PCO synchronization that is applicable to non-all-to-
all networks. Under the proposed synchronization mechanism, we
prove that perfect synchronization of legitimate oscillators can be
guaranteed in the presence of multiple Byzantine attackers who
can emit attack pulses arbitrarily without any constraint except
that practical bit rate constraint renders the number of pulses
from an attacker to be finite. The new mechanism can guarantee
synchronization even when the initial phases of all legitimate
oscillators are arbitrarily distributed in the entire oscillation
period, which is in distinct difference from most existing attack-
resilient synchronization approaches (including the seminal paper
from Lamport and Melliar-Smith [1]) that require a priori
(almost) synchronization among legitimate oscillators. Numerical
simulation results are given to confirm the theoretical results.

Index Terms—Pulse-Coupled Oscillators, Global Synchroniza-
tion, Byzantine Attacks.

I. INTRODUCTION

Inspired by flashing fireflies and contracting cardiac cells,
pulse-based synchronization is attracting increased attention
in sensor networks and wireless communications [2]–[5]. By
exchanging simple and identical messages (so-called pulses),
pulse-based synchronization incurs much less energy con-
sumption and communication overhead compared with con-
ventional packet-based synchronization approaches [6]. These
inherent advantages make pulse-based synchronization ex-
tremely appealing for event coordination and clock synchro-
nization in various networks [7]–[11]. In the past decade,
plenty of results have been reported on pulse-based synchro-
nization. For example, by optimizing the interaction function,
i.e., phase response function, the synchronization speed of
pulse-coupled oscillators (PCOs) is maximized in [12]; with
a judiciously-added refractory period in the phase response
function, the energy consumption of PCO synchronization is
reduced in [13]–[15]; [16]–[18] show that PCOs can achieve
synchronization under a general coupling topology even when
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their initial phases are randomly distributed in the entire
oscillation period. Recently, synchronization of PCOs in the
presence of time-delays and unreliable links is also discussed
[19], [20]. Other relevant results include [21]–[29].

However, all the above results are obtained under the
assumption that all oscillators behave correctly with no nodes
compromised by malicious attackers. Due to the distributed
and unattended nature, wireless sensor nodes are extremely
vulnerable to attacks, making it imperative to study synchro-
nization in the presence of attacks. Recently, some results have
emerged for attack-resilient pulse synchronization [30]–[42].
In [30], the authors showed that pulse-based synchronization is
more robust than its packet-based counterpart in the presence
of a faulty node. In [31], a new phase response function
was proposed to combat non-persistent random attacks. The
authors in [32] considered pulse-based synchronization in
the presence of faulty nodes which fire periodically ignoring
neighboring nodes’ influence. However, all the above results
only apply to a priori synchronized PCO network, i.e., all legit-
imate nodes are required to have identical phases when faulty
pulses are emitted. Furthermore, these results also require that
the communication topology of legitimate oscillators is all-to-
all.

To relax the constraint on initial phase distributions, [33]
proposed a pulse-based synchronization approach that is ap-
plicable even when legitimate oscillators have different but
restricted initial phases; [34] further proposed a pulse-based
synchronization mechanism that can achieve synchronization
under stealthy attacks even when the initial phases of le-
gitimate oscillators are randomly distributed in the entire
oscillation period (global synchronization) under all-to-all con-
nection. The authors in [36]–[39] proposed to achieve global
synchronization by exchanging packets besides pulses.

On the other hand, to relax the constraint on all-to-all
topology, our most resent result [35] proposed a new attack
resilient pulse-based interaction mechanism to synchronize
non-all-to-all connected PCOs when their initial phases are
restricted in a half cycle; the authors in [40], [41] employ
extra packet based communication to achieve global synchro-
nization under Byzantine attacks even when the network is
generally connected. Using a similar approach, the authors in
[42] showed that a (5 f + 1)-connected network can achieve
global synchronization in the presence of f attackers with
each attacker unable to send two attack pulses in one natural
oscillation period. Because of the introduction of extra packet
messages, these approaches have higher communication and
computation overhead, which will further restrict scalability
as well as achievable synchronization accuracy.
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Table 1. Comparison of attack-resilient pulse synchronization approaches.

`````````Approaches
Merits Unrestricted phase

distribution conditions
Not restricted to

all-to-all networks
Attack model is

Byzantine attacks

Communication
uses content-free

pulses only

[31]–[33] × × ×
√

[34]
√

× ×
√

[35] ×
√

×
√

[36]–[39]
√

×
√

×

[40] [41]
√ √ √

×

[42]
√ √

× ×

This paper
√ √ √ √

In this paper, we propose an approach to synchronizing
densely connected PCO networks from an arbitrary initial
phase distribution under Byzantine (arbitrary) attacks. The
approach only employs content-free pulses. It is worth noting
that the content-free pulse-based communication reduces the
attack surface and avoids the manipulation of message contents
by Byzantine attacks. In fact, what can be manipulated by
Byzantine attacks becomes the timing of attack pulses, which
will be elaborated in Sec. III.

Table 1 summarizes the advantage of our approach over
existing results on pulse-based synchronization. More specif-
ically, compared with existing results, our contributions are
as follows: 1) Under Byzantine attacks, our proposed mech-
anism can synchronize legitimate oscillators even when their
initial phases are arbitrarily distributed in the entire oscillation
period; 2) Our mechanism is applicable to densely connected
PCO networks that are not necessarily all-to-all; 3) We con-
sider an attack model that is much more difficult to deal with
than existing results like [31]–[35]; 4) Our mechanism only
use contend-free pulses, which is different from [36]–[42]
relying on the assistance of packet communication to achieve
synchronization; 5) Our proposed mechanism guarantees that
the collective oscillation period is identical to the free-running
period irrespective of attacks, which is superior to existing
mechanisms (e.g., [32]–[34]) that lead to a collective oscilla-
tion period affected by attacker pulses.

It is worth noting that the results in this paper are fundamen-
tally different from our recent result [35] in the following as-
pects: 1) The attack model in this paper is much stronger. [35]
considers an attack model in which an attacker is restricted to
send at most one attack pulse in any time interval of length
T/2 (to stay stealthy) whereas this paper allows attackers to
send as many attack pulses as possible under a given commu-
nication channel with a fixed bit rate. So synchronization under
attacks in this paper is much more challenging; 2) This paper
has more relaxed requirement on the initial distribution of
oscillator phases compared with [35]. [35] requires legitimate
oscillators to have initial phases contained in a half cycle
whereas this paper allows legitimate oscillators’ phases to
be arbitrarily distributed in the entire cycle; 3) This paper

proves finite-time synchronization whereas [35] only proves
asymptotic synchronization even in the case of l = 1. More
specifically, [35] proves that the length of the containing arc of
legitimate oscillators will decrease to no greater than (1− l/2)
of its original value after every two consecutive firing rounds,
and hence can only yield synchronization when time goes to
infinity. (It is worth noting that our prior result on non-all-to-all
PCO networks in [33] needs 0 < l < 1 to address the practical
case of non-identical initial phases of legitimate oscillators and
hence also only proves asymptotic synchronization.)

This paper is organized as follows. Sec. II reviews the
main concepts of PCO networks. Sec. III presents the attack
model considered in this paper. Sec. IV presents a new pulse-
based synchronization mechanism. Sec. V addresses the case
of multiple Byzantine attackers and Sec. VI addresses the case
where the total number of oscillators is unknown to individual
oscillators. Simulation results are presented in Sec. VII.

II. PRELIMINARIES

Consider a network of N pulse-coupled oscillators. Each
oscillator is equipped with a phase variable which evolves
clockwise on a unit circle. When the evolving phase of an
oscillator reaches 2π rad, the oscillator fires (emits a pulse).
Receiving pulses from neighboring oscillators will lead to the
adjustment of the receiving oscillator’s phase, which can be
designed to achieve a desired collective behavior such as phase
synchronization. To define synchronization, we first introduce
the concept of containing arc. The containing arc of legitimate
oscillators is defined as the shortest arc on the unit circle that
contains all legitimate oscillators’ phases.

Definition 1 (Phase Synchronization): We define phase
synchronization as a state on which all legitimate oscillators
have identical phases and fire simultaneously with a period of
T = 2π seconds.

An edge (i, j) from oscillator i to oscillator j means
that oscillator j can receive pulses from oscillator i but not
necessarily vice versa. The number of edges entering oscillator
i is called the indegree of oscillator i and is represented
as d−i . The number of edges leaving oscillator i is called
the outdegree of oscillator i and is represented as d+

i . The
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value di , min{d−i ,d+
i } is called the degree of oscillator i.

The degree of a network is defined as d , mini=1,2,··· ,N{di}.
Since an oscillator cannot receive the pulse emitted by itself,
the maximal degree of a network of N PCOs is d = N− 1,
meaning that the network is all-to-all connected. In this paper,
we consider dense networks where the network degree d is
assumed to be greater than b2N/3c. Making use of the fact
d , mini=1,2,··· ,N{di}, we always have di−b2N/3c−1≥ 0 for
i = 1, 2, · · · ,N.

III. ATTACKER MODEL

In this section, we present the model of Byzantine attacks.
We assume that Byzantine attacks are able to compromise
an oscillator and completely take over its behavior. Since
the communicated messages in PCO networks are identical
and content-free, i.e., pulses, a Byzantine attacker cannot
manipulate the content of pulses, but rather, it will judiciously
craft attacks via injecting pulse trains at certain time instants
to negatively affect pulse-based synchronization.

Because in realistic wireless sensor networks (WSNs), the
bit rate of a communication channel between two connected
oscillators is limited, an attacker cannot send infinitely many
pulses in any finite time interval. In other words, there is
always a nonzero time interval between two consecutive pulses
from an attacker. Therefore, Byzantine attackers will launch
attacks with a time separation greater than ε seconds, where
ε is the minimum time separation between two consecutive
pulses that can be conveyed by a channel. We summarize the
Byzantine attacker model in this paper as follows:

Byzantine Attacker: a Byzantine attacker will emit attack
pulses with a time separation greater than ε seconds, where ε

is the minimum time separation between two pulses that can
be successfully conveyed by a communication channel.

Remark 1: In PCO networks, the communication messages
are all content-free pulses. So the transmission of one pulse
will only occupy the communication channel for a very short
time. Only after finishing transmitting one pulse, an attacker
can initiate the transmission of another attack pulse. Hence,
ε is determined by the length of the pulse and the bit rate of
the communication channel. For example, the bit rate of the
IEEE 802.15.4 channel is 250kbps. If we use a control packet
(21 bytes) to realize a pulse, then transmitting such pulses
will need time separation ε = (21×8)/250000= 0.672×10−3

seconds [10], [43].
Remark 2: All existing attack patterns considered under

pulse-based synchronization such as random attacks [30], [31],
static attacks [32], and stealthy attacks [33]–[35] are special
cases of the attacker model considered in this paper.

IV. A NEW PULSE-BASED SYNCHRONIZATION
MECHANISM

Motivated by the fact that the conventional pulse-based
synchronization mechanism is vulnerable to attacks, we pro-
pose a new pulse-based synchronization mechanism to combat
attacks. To present our new mechanism, we first describe the
conventional pulse-based synchronization mechanism.

Conventional Pulse-Based Synchronization Mechanism [32]:

1) The phase φi of oscillator i evolves from 0 to 2π rad with
a constant speed ω = 1 rad/second.

2) Once φi reaches 2π rad, oscillator i fires and resets its
phase to 0.

3) Whenever oscillator i receives a pulse, it instantaneously
resets its phase to:

φ
+
i = φi + l×F(φi) (1)

where l ∈ (0,1] is the coupling strength and F(•) is the
phase response function (PRF) given below:

F(φ) :=
{
−φ 0≤ φ ≤ π

2π−φ π < φ ≤ 2π
(2)

For l = 1, oscillator i will fire immediately if it has φ
+
i =

2π rad.

In the above conventional pulse-based synchronization
mechanism, every incoming pulse will trigger a jump on
the receiving oscillator’s phase, which makes it easy for
attackers to perturb the phases of legitimate oscillators and
hence destroy their synchronization. Moreover, we have that
synchronization can never be maintained when attackers only
affect part of the network, even when the coupling strength
is set to l = 1. This is because attack pulses can always
exert nonzero phase shifts on affected legitimate oscillators
and make them deviate from unaffected ones. This is also
confirmed by numerical simulation results in Figure 8 and
Figure 9, which illustrate that existing results in [32]–[34]
cannot achieve synchronization in the presence of Byzantine
attacks when the topology is not all-to-all.

To overcome the inherent vulnerability of existing pulse-
based synchronization approaches, we propose a new pulse-
based synchronization mechanism (Mechanism 1) to improve
the attack resilience of PCO networks. Our key idea to enable
attack resilience is a “pulse response mechanism” which
can restrict the number of pulses able to affect a receiving
legitimate oscillator’s phase in any oscillation period and a
“phase resetting mechanism” which resets the phase value
of a legitimate oscillator upon reaching phase 2π rad to
different values depending on the number of received pulses.
The “pulse response mechanism” and the “phase resetting
mechanism” only allow pulses meeting certain conditions to
affect a receiving oscillator’s phase and hence can effectively
filter out attack pulses with extremely negative effects on the
synchronization process. Noting that all pulses are identical
and content-free, Mechanism 1 is judiciously designed based
on the number of pulses an oscillator received in the past,
i.e., based on memory. The new pulse-based synchronization
mechanism is detailed below:

New Pulse-Based Synchronization Mechanism (Mechanism 1):

1) The phase φi of legitimate oscillator i evolves from 0 to
2π rad with a constant speed ω = 1 rad/second.
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2) Once φi reaches 2π rad at time t, oscillator i fires (emits
a pulse) if it did not fire within (t− ε, t] and an entire
period T = 2π seconds has elapsed since initiation. Then
oscillator i resets its phase from 2π rad to 0 if it received
over bN/3c pulses within (t − ε, t], where b•c is the
largest integer no greater than “ • .” Otherwise, it resets
its phase from 2π rad to π rad.

3) When oscillator i receives a pulse at time t ′, it shifts its
phase to 2π rad only if φi ∈ [π, 2π] at time instant t ′ and
one of the following conditions is satisfied:

a) before receiving the current pulse, oscillator i has
already received at least di − b2N/3c − 1 pulses in
[t ′ − T/2, t ′] and it did not reset its phase from 2π

rad to 0 within (t ′−T, t ′).
b) before receiving the current pulse, oscillator i has

already received at least di − b2N/3c − 1 pulses in
(t ′− ε, t ′].

Otherwise, the pulse has no effect on φi who will evolve
freely towards 2π rad.

Remark 3: Following [8], [24]–[26], we assume that when
a legitimate oscillator receives multiple pulses simultaneously,
it can determine the number of received pulses and processes
them consecutively. In other words, no two pulses will be
regarded as an aggregated pulse.

V. SYNCHRONIZATION OF PCO NETWORKS IN THE
PRESENCE ATTACKS

In this section, we address the synchronization of PCO
networks in the presence of Byzantine attacks. Among N
PCOs, we assume that M are compromised and act as Byzan-
tine attackers. We will show that Mechanism 1 synchro-
nizes legitimate oscillators even in the presence of multiple
Byzantine attackers. Specifically, we will prove that under
Mechanism 1, legitimate oscillators achieve synchronization
even when their topology is non-all-to-all and their initial
phases are distributed arbitrarily in the entire oscillation period
[0, 2π]. More interestingly, when synchronization is achieved,
the collective oscillation period of all legitimate oscillators
is invariant under attacks and is identical to the free-running
oscillation period T = 2π seconds. To facilitate theoretical
analysis, we first establish Lemma 1 about the properties of
floor function b•c.

Lemma 1: For three arbitrary positive integers x, y, and Q,
with x > y, the following inequalities always hold: by ·Q/xc ≥ y · bQ/xc

by ·Q/xc+ b(x− y) ·Q/xc+1≥ Q

Proof: First, we prove by ·Q/xc≥ y ·bQ/xc. Since x and Q
are positive integers, dividing Q by x and letting q and r be the
quotient and remainder, respectively, we have Q = x ·q+r and
0 ≤ r/x < 1. By substituting them into by ·Q/xc− y · bQ/xc,
we have:

by ·Q/xc− y · bQ/xc=by ·q+ y · r/xc− y · bq+ r/xc
=y ·q+ by · r/xc− y ·q
=by · r/xc ≥ 0.

Hence, we obtain by ·Q/xc ≥ y · bQ/xc.
Next, we proceed to prove by ·Q/xc+ b(x− y) ·Q/xc+1≥

Q. Dividing y ·Q by x and letting q̄ and r̄ be the quotient and
remainder, respectively, we have y ·Q = q̄ ·x+ r̄ and 0≤ r̄/x <
1. Substituting them into by ·Q/xc+ b(x− y) ·Q/xc+ 1−Q
leads to

by ·Q/xc+ b(x− y) ·Q/xc+1−Q

=bq̄+ r̄/xc+ bQ− q̄− r̄/xc+1−Q

≥bq̄c+ bQ− q̄−1c+1−Q = 0.

Thus, we obtain by ·Q/xc+ b(x− y) ·Q/xc+1≥ Q.
Now we are in position to prove that all legitimate oscilla-

tors will synchronize under Mechanism 1 in the presence of
Byzantine attacks even when legitimate oscillators are under a
non-all-to-all connection and the initial phases are arbitrarily
distributed in the entire oscillation period [0, 2π].

Theorem 1: For a network of N PCOs among which M
are compromised and launch attacks following the Byzantine
attack model in Sec III, if the degree of the PCO network
satisfies d > b2N/3c and the number of attackers M satisfies
M < d−b2N/3c, then all legitimate oscillators will synchro-
nize under Mechanism 1 from any initial phase distribution.

Proof: We set the initial time instant to t0. The following
proof is divided into two parts. In part I, we prove that all
N−M legitimate oscillators’ phases reside in [π, 2π] at t0 +
T from any initial phase distribution. In Part II, we prove
that these legitimate oscillators will reset their phases to 0 at
the same time and will keep having identical phases with a
collective oscillation period T = 2π seconds, i.e., they will
achieve synchronization.

Part I (all N −M legitimate oscillators’ phases reside in
[π, 2π] at t0+T ): Since the number of attackers satisfies M <
d−b2N/3c for d ≤ N−1, using Lemma 1, we have

M < d−b2N/3c ≤ N−1−b2N/3c ≤ bN/3c.

According to the attacker model in Sec. III, we know that M <
bN/3c attackers can emit at most M < bN/3c pulses within
any time interval of length ε . Since no legitimate oscillator
fires within time interval [t0, t0 + T ] under Mechanism 1, a
legitimate oscillator can receive at most M < bN/3c pulses
in any time interval of length ε within [t0, t0 +T ]. Therefore,
upon reaching 2π rad within [t0, t0+T ], a legitimate oscillator
will reset its phase to π rad instead of 0.

Since the initial phases of all N−M legitimate oscillators
distribute arbitrarily in [0, 2π], at time t0, they can be cate-
gorized into three possible scenarios, as depicted in Figure
1:
Scenario a): all legitimate oscillators’ initial phases reside in

[π, 2π];
Scenario b): all legitimate oscillators’ initial phases reside in

[0, π);
Scenario c): legitimate oscillators’ initial phases reside par-

tially in [0, π) and partially in [π, 2π].
Next, we show that no matter which of the three scenarios

the initial phase distribution belongs to, all legitimate oscilla-
tors’ phases will reside in [π, 2π] at time t0 +T . We discuss
all three scenarios of initial phase distribution one by one:
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Figure 1: Three possible initial phase distributions of legiti-
mate oscillators.

Scenario a): All legitimate oscillators’ initial phases reside
in [π, 2π]. After reaching 2π rad within [t0, t0 +T ], because
a legitimate oscillator will receive less than bN/3c pulses in
any time interval of length ε , it will reset its phase to π

rad according to Mechanism 1. Therefore, we have that all
legitimate oscillators will reside in [π, 2π] at time t0 +T .

Scenario b): All legitimate oscillators’ initial phases reside
in [0, π). According to Mechanism 1, a legitimate oscillator
will not respond to incoming pulses when its phase resides in
[0, π). So all legitimate oscillators’ phases will evolve freely
towards π rad without perturbation and will enter [π, 2π] no
later than time instant t0 +T/2. After reaching 2π rad within
[t0, t0+T ], because a legitimate oscillator will receive less than
bN/3c pulses in any time interval of length ε , it will reset its
phase to π rad according to Mechanism 1. Therefore, we have
that all legitimate oscillators’ phases will reside in [π, 2π] at
time t0 +T .

Scenario c): Legitimate oscillators’ initial phases reside
partially in [0, π) and partially in [π, 2π]. Since legitimate
oscillators with phases residing in [0, π) will evolve freely
into [π, 2π] under Mechanism 1, we have that no later than
time instant t0+T/2, these oscillators’ phase will be in [π,2π].
Further making use of the fact that a legitimate oscillator will
reset its phase to π rad upon reaching 2π rad since less than
bN/3c pulses will be received by a single oscillator in any time
interval of length ε , we obtain that all legitimate oscillators’
phases will reside in [π, 2π] at time t0 +T .

Summarizing the above three scenarios, we have that regard-
less of the initial phase distribution, all legitimate oscillators’
phases will reside in [π, 2π] at time t0+T despite the presence
of attacker pulses.

Part II (all legitimate oscillators will reset their phases to 0
at the same time and will keep having identical phases with a
collective oscillation period T = 2π seconds): From Part I, we
know that no legitimate oscillator fires or resets its phase to 0
within time interval [t0, t0 +T ] and all legitimate oscillators’
phases reside in [π, 2π] at time t0+T . Therefore, all legitimate
oscillators’ phases will reach 2π rad and fire at least once
within (t0+T, t0+3T/2]. Without loss of generality, we label
all N−M legitimate oscillators according to the order of their
first firing time1 and denote t1 ∈ (t0 + T, t0 + 3T/2] as the
first firing time of legitimate oscillator bN/3c+ 1. Only the
following two scenarios could happen right before legitimate
oscillator bN/3c+1 fires at t1:

Scenario 1.1: no legitimate oscillator has reset its phase to 0

1For example, if the firing sequence of legitimate oscillators A, B, C is A, A,
B, A, C, then oscillators A, B, C are labeled as oscillators 1, 2, 3, respectively.

before legitimate oscillator bN/3c+ 1 fires at
t1.

Scenario 1.2: at least one legitimate oscillator has reset its
phase to 0 before legitimate oscillator bN/3c+
1 fires at t1.

Next, we show that in both scenarios all legitimate oscillators
will reset their phases to 0 at the same time and will keep
having identical phases with a collective oscillation period T =
2π seconds, i.e., they will achieve synchronization.

We first consider Scenario 1.1, i.e., no legitimate oscillator
has reset its phase to 0 before legitimate oscillator bN/3c+1
fires at t1. Since all the N−M legitimate oscillators are labeled
according to the order of their first firing time instants and
no legitimate oscillator fired within [t0, t0 + T ] according to
Mechanism 1, we have that before the firing of legitimate
oscillator bN/3c+ 1 at t1, bN/3c legitimate oscillators fired
within time interval (t0 +T, t1] and every legitimate oscillator
i for i = 1, 2, · · · ,N −M received at least bN/3c− (N − di)
pulses within time interval (t0 +T, t1], where (N− di) is the
number of oscillators which are not connected with oscillator
i. According to Lemma 1, we have:

bN/3c− (N−di) =bN/3c+ b2N/3c−N +di−b2N/3c
≥di−b2N/3c−1 (3)

meaning that before the firing of legitimate oscillator bN/3c+
1, every legitimate oscillator i for i = 1, 2, · · · ,N −M has
already received at least di−b2N/3c− 1 pulses within time
interval (t0 +T, t1] (note that this interval has length less than
T/2).

When legitimate oscillator i fires at t1, at least d legitimate
oscillators will receive the pulse. As every legitimate oscillator
has received at least di−b2N/3c−1 pulses within (t0 +T, t1]
(as proven in the previous paragraph), we have that for all
legitimate oscillators, the condition 3a) of Mechanism 1 is
satisfied (note that in Scenario 1.1 we consider the case that no
legitimate oscillators reset their phases to 0 within (t1−T, t1))
and hence all legitimate oscillators that receive the pulse from
legitimate oscillator bN/3c+1 (with quantity at least d−M)
will shift their phases to 2π rad.

Next, we proceed to proved that among the d −M le-
gitimate oscillators whose phases are shifted to 2π rad by
the pulse from legitimate oscillator bN/3c+ 1 at t1, at least
d−M−bN/3c of them will fire. According to condition 2) of
Mechanism 1, if an oscillator fired within (t1−ε, t1], it cannot
fire again at t1. Since only bN/3c legitimate oscillators fired
before the firing of legitimate oscillator bN/3c+1 at t1 (note
that these oscillators might fire within (t1− ε, t1]), we obtain
that among the d−M legitimate oscillators whose phases are
shifted to 2π rad at t1 by the pulse from legitimate oscillator
bN/3c+1, at least d−M−bN/3c of them will fire at t1. From
Lemma 1 and making use of the fact M < d−b2N/3c, we have

d−M−bN/3c> bN/3c

meaning that the firing of legitimate oscillator bN/3c+1 will
trigger at least bN/3c+ 1 other legitimate oscillators to fire
simultaneously at t1. The firing of these oscillators will further
makes every legitimate oscillator i for i = 1,2, · · · ,N −M
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to receive at least di − b2N/3c pulses at t1 based on the
relationship in (3). Since all legitimate oscillators’ phases
reside in [π, 2π], according to Mechanism 1, they will be
shifted to 2π rad at t1. Then, all the non-firing legitimate
oscillators except those fired within the past ε time will fire
at t1.

Recalling that only bN/3c legitimate oscillators fired before
legitimate oscillator bN/3c+ 1 fires at t1, we obtain that
at least N −M−bN/3c legitimate oscillators will fire at t1
and every legitimate oscillator i for i = 1,2, · · · ,N −M will
receive at least N −M− bN/3c − (N − di) pulses from this
firing event. According to Lemma 1 and combining the fact
M < d−b2N/3c, we have

N−M−bN/3c− (N−di) = di−M−bN/3c> bN/3c

meaning that every legitimate oscillator receives over bN/3c
pulses at t1. Since every legitimate oscillator has phase residing
on 2π and receives over bN/3c pulses within (t1− ε, t1], all
legitimate oscillators’ phases will reset to 0 after the firing
event at t1.

Next, we proceed to prove that after time instant t1, all
legitimate oscillators will keep having identical phases and
their collective oscillation period is T = 2π seconds, i.e., they
will achieve synchronization.

From the above analysis, all legitimate oscillators’ phases
will be reset to 0 at t1. Because a legitimate oscillator’s phase
can only be affected by an incoming pulse when it resides
in [π, 2π], we have that all legitimate oscillators’ phases will
evolve freely towards π rad within time interval (t1, t1+T/2).
As soon as all legitimate oscillators’ phases reach π rad at
time instant t1 +T/2, according to Mechanism 1, legitimate
oscillator i’s phase can be affected by an incoming pulse at
time instant t ′1 ∈ [t1 + T/2, t1 + T ) only if it receives over
di−b2N/3c− 1 pulses within (t ′1− ε, t ′1]. Since the number
of attackers satisfies M ≤ d−b2N/3c− 1 ≤ di−b2N/3c− 1
and each attacker can emit at most one attack pulse within a
time interval less than ε , so attack pulses alone are not enough
to trigger a phase shift on any legitimate oscillator’s phase.
Therefore, all legitimate oscillators will have identical phases
and evolve freely towards 2π rad.

At time instant t1 +T , all legitimate oscillators reach phase
2π rad and fire simultaneously, which makes legitimate oscilla-
tor i for i= 1, 2, · · · ,N−M receive at least N−M−(N−di) =
di −M > bN/3c pulses. Therefore, all legitimate oscillators
will reset their phases to 0 immediately. By repeating the above
analyses, we can get that after time instant t1, all legitimate
oscillators will have identical phases with a collective oscil-
lation period T = 2π seconds, i.e., phase synchronization of
all legitimate oscillators is achieved immediately after time
instant t1.

Next, we consider Scenario 1.2, i.e., at least one legitimate
oscillator has reset its phase to 0 before legitimate oscillator
bN/3c+ 1 fires at t1. Without loss of generality, we assume
that legitimate oscillator k is the first legitimate oscillator who
resets its phase to 0 within time interval (t0+T, t1] and it resets
its phase to 0 at tk ∈ (t0 +T, t1]. According to Mechanism 1,
legitimate oscillator k must have received over bN/3c pulses
within (tk− ε, tk].

We assume that legitimate oscillator k receives the bN/3c+
1’th pulse at time t ′k within time interval (tk− ε, tk] and the
pulse is sent by oscillator k′. According to condition 2) of
Mechanism 1, an oscillator can only fire once within (tk −
ε, tk]. So before the firing of oscillator k′ at t ′k, at least bN/3c
oscillators fired within (tk−ε, t ′k]. Based on the relationship in
(3), every legitimate oscillator i for i = 1, 2, · · · ,N−M should
have received at least di−b2N/3c−1 pulses within (tk−ε, t ′k].

Then following the same line of reasoning in Scenario 1.1,
we have that the pulse of oscillator k′ will shift the phases of
at least d−M legitimate oscillators (which receive the pulse)
to 2π rad and at least bN/3c+1 of them will fire at t ′k. Then,
all legitimate oscillators’ phases will be shifted to 2π rad and
at least N −M−bN/3c legitimate oscillators will fire at t ′k.
Every legitimate oscillator will receive over bN/3c pulses in
this firing event at t ′k and will reset its phase to 0. We can also
infer t ′k = tk = t1.

Next, following the same line of reasoning in Scenario 1.1,
we obtain that after time instant t1, all legitimate oscillators
will have identical phases and their collective oscillation
period is T = 2π seconds, i.e., phase synchronization of all
legitimate oscillators is achieved immediately after time instant
t1.

Remark 4: Theorem 1 requires that the degree of the net-
work is over b2N/3c, which, according to [15], also guarantees
that the network is strongly connected.

Remark 5: The mechanism requires that all legitimate os-
cillators to start at the same time instant. However, starting
at the same time instant does not avoid dealing with arbitrary
phase distribution since even after synchronization, for a non-
all-to-all topology on which different attackers can affect
different legitimate oscillators, attackers considered in this
paper can disturb the phases of legitimate oscillators to an arbi-
trary distribution under existing pulse-coupled synchronization
strategies.

Remark 6: It is worth noting that the theoretical analysis
in this paper is significantly different from our prior results
in [33]–[35]. In [33]–[35], we can prove that the length of
the containing arc will decrease monotonically with time.
However, in this paper, since the initial phases of all legitimate
oscillators are arbitrarily distributed in the entire oscillation
period and the considered attacker model is much stronger,
such monotonic decreasing does not exist (see numerical
simulation results in Figure 5, Figure 7, Figure 8, and Figure
9. Instead, we opt to prove that after initiation, our judiciously
designed interaction mechanism can drive the phases of legit-
imate oscillators to within a half cycle in finite time. Then
we proceed to prove that one legitimate oscillator’s firing can
(either directly or indirectly) trigger all legitimate oscillators
to reset their phases to 0 and the interaction mechanism can
maintain phase synchronization even in the presence of attack
pulses.

Mechanism 1 can also guarantee synchronization of densely
connected PCO networks in the absence of attacks, as detailed
below:

Corollary 1: For a network of N legitimate PCOs, if the
degree of the PCO network satisfies d > b2N/3c, then all
oscillators will synchronize under Mechanism 1 from an
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arbitrary initial phase distribution.
Proof: Corollary 1 is a special case of Theorem 1 when

the number of attackers M is set to 0 and hence is omitted.

VI. EXTENSION TO THE CASE WHERE N IS UNKNOWN TO
INDIVIDUAL OSCILLATORS

The implementation of Mechanism 1 requires each node to
have access to N, which may not be feasible in a completely
decentralized network. Therefore, in this section, we propose
a mechanism for the case where N is unknown to individual
oscillators. The essence is to leverage the degree information
of individual oscillators, as detailed below:

New Pulse-Based Synchronization Mechanism (Mechanism 2):

1) The phase φi of legitimate oscillator i evolves from 0 to
2π rad with a constant speed ω = 1 rad/second.

2) Once φi reaches 2π rad at time t, oscillator i fires (emits
a pulse) if it did not fire within (t− ε, t] and an entire
period T = 2π seconds has elapsed since initiation. Then
oscillator i resets its phase from 2π rad to 0 if it received
at least bdi/3c pulses within (t−ε, t]. Otherwise, it resets
its phase from 2π rad to π rad.

3) When oscillator i receives a pulse at time instant t ′, it
shifts its phase to 2π rad only if φi ∈ [π, 2π] at time
instant t ′ and one of the following conditions is satisfied:

a) before receiving the current pulse, oscillator i has al-
ready received at least bdi/6c−1 pulses in [t ′−T/2, t ′]
and it did not reset its phase from 2π rad to 0 within
(t ′−T, t ′).

b) before receiving the current pulse, oscillator i has
already received at least bdi/6c−1 pulses in (t ′−ε, t ′].

Otherwise, the pulse has no effect on φi who will evolve
freely towards 2π rad.

Following a similar line of reasoning in Section V, we can
prove that Mechanism 2 can synchronize densely connected
PCO networks both in the presence and absence of Byzantine
attackers.

Theorem 2: For a network of N PCOs among which M are
compromised and launch attacks following the attack model in
Sec III, if the degree of the PCO network satisfies d > b3N/4c
and the number of attackers M satisfies M < bd/6c, then
all legitimate oscillators will synchronize under Mechanism
2 from any initial phase distribution even if N is unknown to
individual oscillators.

Proof: We set the initial time instant to t0. Similar to the
proof in Theorem 1, the following proof is divided into two
parts. In part I, we prove that all N−M legitimate oscillators
will have phases residing in [π, 2π] at t0 +T . In Part II, we
prove that these legitimate oscillators will reset their phases
to 0 at the same time and will keep having identical phases
with a collective oscillation period T = 2π seconds, i.e., they
will achieve synchronization.

Part I (all N −M legitimate oscillators’ phases reside in
[π, 2π] at t0+T ): Since the number of attackers satisfies M <

bd/6c, we have

M < bd/6c ≤ bd/3c ≤ bdi/3c

for i = 1, 2, · · · ,N−M. Following the same line of reasoning
in the proof of Theorem 1, Part I, we have that a legitimate
oscillator will only reset its phases to π rad within time interval
[t0, t0 +T ] and all legitimate oscillators’ phases will reside in
[π, 2π] at time instant t0 +T no matter what the initial phase
distribution is.

Part II (all legitimate oscillators will reset their phases to
0 at the same time and will keep having identical phases
with a collective oscillation period T = 2π seconds): Since no
legitimate oscillator fires or resets its phase to 0 within time
interval [t0, t0+T ] and all legitimate oscillators’ phases reside
in [π, 2π] at time t0 +T , all legitimate oscillators’ phases will
reach 2π rad and fire at least once within (t0 +T, t0 +3T/2].
Without loss of generality, we label all N −M legitimate
oscillators according to the order of their first firing time and
denote t ′1 ∈ (t0 +T, t0 + 3T/2] as the first firing time instant
of legitimate oscillator bd/2c+ 1. Only the following two
scenarios could happen before legitimate oscillator bd/2c+1
fires at t ′1:
Scenario 2.1: no legitimate oscillator has reset its phase to

0 before legitimate oscillator bd/2c+1 fires at
t ′1.

Scenario 2.2: at least one legitimate oscillator has reset its
phase to 0 before legitimate oscillator bd/2c+1
fires at t ′1.

Next, we show that in both scenarios all legitimate oscillators
will reset their phases to 0 at the same time and will keep
having identical phases with a collective oscillation period T =
2π seconds, i.e., they will achieve synchronization.

We first consider Scenario 2.1, i.e., no legitimate oscillator
has reset its phase to 0 before legitimate oscillator bd/2c+1
fires at t ′1. Since all the N−M legitimate oscillators are labeled
according to the order of their first firing time instants and
no legitimate oscillator fired within [t0, t0 + T ] according to
Mechanism 1, we have that before the firing of legitimate
oscillator bd/2c+1 at t ′1, bd/2c legitimate oscillators should
have fired within time interval (t0+T, t ′1] and every legitimate
oscillator i for i = 1, 2, · · · ,N −M should have received at
least bd/2c− (N− di) pulses within (t0 +T, t ′1], where (N−
di) is the number of oscillators which are not connected to
oscillator i. Since we have d > b3N/4c, one can obtain di ≥
d≥b3N/4c+1> 3N/4 for i= 1, 2, · · · ,N−M. Using Lemma
1 and combining the fact di > 3N/4, we have:

bd/2c− (N−di)≥bd/2c−N + b5di/6c+ bdi/6c
≥b3N/8c+ b5N/8c−N + bdi/6c
≥bdi/6c−1 (4)

meaning that before the firing of legitimate oscillator bd/2c+
1, every legitimate oscillator i for i = 1, 2, · · · ,N −M has
already received at least bdi/6c−1 pulses within time interval
(t0 +T, t ′1] (note that this interval has length less than T/2).
Then following the same line of reasoning in Scenario 1.1
of Theorem 1, we can prove that every legitimate oscillator i
will receive at least bdi/3c pulses at t ′1 and reset its phases to
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0. Then starting from time instant t ′1, all legitimate oscillators
will have identical phases with a collective oscillation period
T = 2π seconds, i.e., they will achieve synchronization.

The proof of Scenario 2.2 follows the same line of reasoning
in Scenario 1.2 of Theorem 1 and is omitted.

Summarizing the above analyses, we conclude that Mecha-
nism 2 can synchronize densely connected PCO networks in
the presence of Byzantine attacks even when N is unknown
to individual oscillators and initial phases are distributed
arbitrarily.

It is worth noting that Mechanism 2 can also guarantee
synchronization of densely connected PCO networks in the
absence of attacks when N is unknown to individual oscilla-
tors, as shown below:

Corollary 2: For a network of N legitimate PCOs, if the
degree of the PCO network satisfies d > b3N/4c, then all
oscillators will synchronize under Mechanism 2 from any
initial phase distribution even if N is unknown to individual
oscillators.

Proof: Corollary 2 is a special case of Theorem 2 when
the number of attackers M is set to 0 and hence is omitted.

Remark 7: According to Theorem 1 and Theorem 2, Mech-
anism 1 and Mechanism 2 guarantee that all legitimate oscil-
lators synchronize with a collective oscillation period T = 2π

seconds (which is equal to the free-running period) even in
the presence of Byzantine attacks. This is in distinct difference
from existing results where the collective oscillation period is
affected by attacks.

Remark 8: When N is unknown to individual oscillators, d
has to be larger than b3N/4c, which is greater than b2N/3c
for the case where N is known. The requirement of increased
connectivity is intuitive in that less knowledge of a PCO
network requires stronger connectivity conditions to guarantee
synchronization.

VII. SIMULATIONS

We considered a network of N = 24 PCOs placed on a
circle with diameter 40 meters as illustrated in Figure 2. Two
oscillators can communicate if and only if their distance is less
than 39 meters. Thus, the degree of the network is d = 20. We
set t0 = 0 and chose initial phases of oscillators randomly from
[0, 2π].

A. In the Absence of Attacks

We first considered the attacker-free case. As d = 20 >
b3N/4c = 18, we know from Corollary 1 and Corollary 2
that the network will always synchronize from any initial
phase distribution, whether or not N is available to individual
oscillators. This was confirmed by the numerical simulation
results in Figure 3.

Using the same initial phase distribution as in Figure 3,
we also simulated the phase evolution of PCOs under the
pulse-based synchronization mechanism in [32]. It can be seen
in Figure 4 that the pulse-based synchronization mechanism
in [32] cannot achieve synchronization, which shows the
advantage of our new mechanisms even when attack-resilience
is not relevant.
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Figure 2: The deployment of the 24 oscillators used in
simulations.
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Figure 3: Plot (a) and (b) presented the phase evolutions of the
24 PCOs under Mechanism 1 and Mechanism 2, respectively.
ε was set to 0.01T .
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Figure 4: Phase evolution and the length of the containing
arc of the 24 PCOs under the pulse-based synchronization
mechanism in [32]. l was set to 0.021.
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B. In the Presence of Attacks
Using the same network, we also ran simulations in the

presence of Byzantine attacks when N is known to individual
oscillators.

We assumed that 3 out of the 24 PCOs (oscillators 1, 8,
and 20) were compromised and acted as Byzantine attackers.
As 3 < d−b2N/3c = 4, we know from Theorem 1 that the
network will synchronize. This was confirmed by numeri-
cal simulations in Figure 5, which showed that even under
Byzantine attacks the length of the containing arc of legitimate
oscillators converged to zero.

Figure 5: Phase evolution and the length of the containing
arc of 21 legitimate oscillators under Mechanism 1 in the
presence of 3 Byzantine attackers (oscillators 1, 8, and 20)
with attacking pulse time instants represented by asterisks. ε

was set to 0.01T .

Using the same network, when N is unknown to individual
oscillators, according to Theorem 2, the maximal allowable
number of attackers is bd/6c− 1 = 2. Hence, the condition
in Theorem 2 was not satisfied. Simulation results confirmed
that legitimate oscillators indeed could not synchronize as the
collective oscillation period is time-varying and less than T =
2π seconds, which is illustrated in Figure 6.
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Figure 6: Phase evolution of 21 legitimate oscillators under
Mechanism 2 in the presence of 3 attackers (oscillators 1,
8, and 20) with attacking pulse time instants represented by
asterisks. N was unknown to individual oscillators and ε was
set to 0.01T .

However, when we decreased the number of attackers to
2 (oscillators 1 and 8), all legitimate oscillators synchronized

under Mechanism 2 (see Figure 7), confirming the results in
Theorem 2.
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Figure 7: Phase evolution and the length of the containing arc
of 22 legitimate oscillators under Mechanism 2 in the presence
of 2 attackers (oscillators 1 and 8) with attacking pulse time
instants represented by asterisks. N was unknown to individual
oscillators and ε was set to 0.01T .

C. Comparison with Existing Results

Under the same PCO network deployment, we also com-
pared our proposed Mechanisms 1 and 2 with existing attack
resilient pulse-based synchronization approaches in [32]–[35]
which solely use content-free pulses in communications. When
comparing with [32]–[35], we did not use the settings in [32]–
[35] since they are special cases of our setting, as can be seen
in Table 1.

Figure 8 showed the evolutions of containing arc length of
legitimate oscillators under Mechanism 1 and approaches in
[32]–[35] in the presence of 3 Byzantine attackers (oscillators
1, 8, and 20) when N was known to individual oscillators. All
approaches used the same initial phase distribution (randomly
chosen from [0, 2π]) and identical malicious pulse attack pat-
terns. It can be seen in Figure 8 that Mechanism 1 can achieve
perfect synchronization whereas pulse-base synchronization
approaches in [32]–[35] failed to achieve synchronization even
when the coupling strength was set to l = 1. It is worth
noting that similar results were obtained in all 1,000 runs of
our simulation with the initial phases randomly chosen from
[0, 2π] and 40 attack pulses randomly distributed in [0, 3.5T ].

Figure 9 showed the evolutions of containing arc length of
legitimate oscillators under Mechanism 2 and the approaches
in [32]–[35] in the presence of 2 Byzantine attackers (oscilla-
tors 1 and 8) when N was unknown to individual oscillators.
Under the same set up, it can be seen in Figure 9 that Mech-
anism 2 can achieve perfect synchronization whereas existing
pulse-base synchronization approaches in [32]–[35] cannot,
which confirmed the advantages of our new mechanism. It
is worth noting that similar results were obtained in all 1,000
runs of our simulation with the initial phases randomly chosen
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Figure 8: The length of the containing arc of 21 legitimate
oscillators under Mechanism 1 and approaches in [32]–[35] in
the presence of 3 Byzantine attackers (oscillators 1, 8, and 20).
The attack pulse time instants were represented by asterisks.
The coupling strength in [32]–[35] was set to l = 1, N was
known to individual oscillators, and ε was set to 0.01T .

from [0, 2π] and 40 attack pulses randomly distributed in
[0, 3.5T ].

VIII. CONCLUSIONS

Due to unique advantages in simplicity, scalability, and
energy efficiency over conventional packet-based synchroniza-
tion approaches, pulse-based synchronization has been widely
studied recently. However, all existing attack resilient pulse-
based synchronization results are obtained either under all-to-
all coupling topology or restricted initial phase distributions.
In this paper, we propose a new pulse-based interaction
mechanism to improve the resilience of PCO networks against
Byzantine attackers. The new mechanism can enable synchro-
nization in the presence of multiple Byzantine attackers even
when the PCO network is not restricted to all-to-all and the
initial phases are distributed arbitrarily. This is in distinct dif-
ference from most of the existing attack resilience algorithms
which require a priori (almost) synchronization among all
legitimate oscillators. The approach is also applicable when the
total number of oscillators is unknown to individual oscillators.
Numerical simulations confirmed the analytical results. In
future work, we plan to relax the condition that all legitimate
oscillators start at the same time instant and allow different
oscillators to be turned on at different time instants.
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[17] F. Núñez, Y. Q. Wang, and F. J. Doyle III. Synchronization of pulse-
coupled oscillators on (strongly) connected graphs. IEEE Transactions
on Automatic Control, 60(6):1710–1715, 2015.
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