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Abstract. We propose a novel end-to-end deep scene flow model, called
PointPWC-Net, that directly processes 3D point cloud scenes with large
motions in a coarse-to-fine fashion. Flow computed at the coarse level is
upsampled and warped to a finer level, enabling the algorithm to accom-
modate for large motion without a prohibitive search space. We intro-
duce novel cost volume, upsampling, and warping layers to efficiently
handle 3D point cloud data. Unlike traditional cost volumes that require
exhaustively computing all the cost values on a high-dimensional grid,
our point-based formulation discretizes the cost volume onto input 3D
points, and a PointConv operation efficiently computes convolutions on
the cost volume. Experiment results on FlyingThings3D and KITTI out-
perform the state-of-the-art by a large margin. We further explore novel
self-supervised losses to train our model and achieve comparable results
to state-of-the-art trained with supervised loss. Without any fine-tuning,
our method also shows great generalization ability on the KITTI Scene
Flow 2015 dataset, outperforming all previous methods. The code is
released at https://github.com/DylanWusee/PointPWC.

Keywords: Cost volume · Self-supervision · Coarse-to-fine · Scene
flow

1 Introduction

Scene flow is the 3D displacement vector between each surface point in two
consecutive frames. As a fundamental tool for low-level understanding of the
world, scene flow can be used in many 3D applications including autonomous
driving. Traditionally, scene flow was estimated directly from RGB data
[44,45,72,74]. But recently, due to the increasing application of 3D sensors such as
LiDAR, there is interest on directly estimating scene flow from 3D point clouds.

Fueled by recent advances in 3D deep networks that learn effective feature
representations directly from point cloud data, recent work adopt ideas from
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-58558-7 6) contains supplementary material, which is avail-
able to authorized users.

c© Springer Nature Switzerland AG 2020
A. Vedaldi et al. (Eds.): ECCV 2020, LNCS 12350, pp. 88–107, 2020.
https://doi.org/10.1007/978-3-030-58558-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58558-7_6&domain=pdf
https://github.com/DylanWusee/PointPWC
https://doi.org/10.1007/978-3-030-58558-7_6
https://doi.org/10.1007/978-3-030-58558-7_6
https://doi.org/10.1007/978-3-030-58558-7_6


PointPWC-Net 89

Fig. 1. (a) illustrates how the pyramid features are used by the novel cost volume, warp-
ing, and upsampling layers in one level. (b) shows the overview structure of PointPWC-
Net. At each level, PointPWC-Net first warps features from the first point cloud using
the upsampled scene flow. Then, the cost volume is computed using features from the
warped first point cloud and the second point cloud. Finally, the scene flow predictor
predicts finer flow at the current level using features from the first point cloud, the cost
volume, and the upsampled flow. (Best viewed in color) (Color figure online)

2D deep optical flow networks to 3D to estimate scene flow from point clouds.
FlowNet3D [36] operates directly on points with PointNet++ [54], and proposes
a flow embedding which is computed in one layer to capture the correlation
between two point clouds, and then propagates it through finer layers to estimate
the scene flow. HPLFlowNet [20] computes the correlation jointly from multiple
scales utilizing the upsampling operation in bilateral convolutional layers.

An important piece in deep optical flow estimation networks is the cost vol-
ume [31,65,81], a 3D tensor that contains matching information between neigh-
boring pixel pairs from consecutive frames. In this paper, we propose a novel
learnable point-based cost volume where we discretize the cost volume to input
point pairs, avoiding the creation of a dense 4D tensor if we naively extend from
the image to point cloud. Then we apply the efficient PointConv layer [80] on
this irregularly discretized cost volume. We experimentally show that it outper-
forms previous approaches for associating point cloud correspondences, as well
as the cost volume used in 2D optical flow. We also propose efficient upsampling
and warping layers to implement a coarse-to-fine flow estimation framework.

As in optical flow, it is difficult and expensive to acquire accurate scene flow
labels for point clouds. Hence, beyond supervised scene flow estimation, we also
explore self-supervised scene flow which does not require human annotations.
We propose new self-supervised loss terms: Chamfer distance [14], smoothness
constraint and Laplacian regularization. These loss terms enable us to achieve
state-of-the-art performance without any supervision.

We conduct extensive experiments on FlyingThings3D [44] and KITTI Scene
Flow 2015 [46,47] datasets with both supervised loss and the proposed self-
supervised losses. Experiments show that the proposed PointPWC-Net outper-
forms all previous methods by a large margin. The self-supervised version is
comparable with some of the previous supervised methods on FlyingThings3D,
such as SPLATFlowNet [63]. On KITTI where supervision is not available, our
self-supervised version achieves better performance than the supervised version
trained on FlyingThings3D, far surpassing state-of-the-art. We also ablate each
critical component of PointPWC-Net to understand their contributions.
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The key contributions of our work are:

• We propose a novel learnable cost volume layer that performs convolution on
the cost volume without creating a dense 4D tensor.

• With the novel learnable cost volume layer, we present a novel model, called
PointPWC-Net, that estimates scene flow from two consecutive point clouds
in a coarse-to-fine fashion.

• We introduce self-supervised losses that can train PointPWC-Net without
any ground truth label. To our knowledge, we are among the first to propose
such an idea in 3D point cloud deep scene flow estimation.

• We achieve state-of-the-art performance on FlyingThing3D and KITTI Scene
Flow 2015, far surpassing previous state-of-the-art.

2 Related Work

Deep Learning on Point Clouds. Deep learning methods on 3D point
clouds have gained more attention in the past several years. Some latest
work [19,25,34,53,54,57,63,68,73] directly take raw point clouds as input.
[53,54,57] use a shared multi-layer perceptron (MLP) and max pooling layer
to obtain features of point clouds. Other work [22,30,61,78–80] propose to learn
continuous convolutional filter weights as a nonlinear function from 3D point
coordinates, approximated with MLP. [22,80] use a density estimation to com-
pensate the non-uniform sampling, and [80] significantly improves the memory
efficiency by a change of summation trick, allowing these networks to scale up
and achieving comparable capabilities with 2D convolution.

Optical Flow Estimation. Optical flow estimation is a core computer vision
problem and has many applications. Traditionally, top performing methods often
adopt the energy minimization approach [24] and a coarse-to-fine, warping-based
method [4,7,8]. Since FlowNet [13], there were many recent work using a deep
network to learn optical flow. [28] stacks several FlowNets into a larger one.
[56] develops a compact spatial pyramid network. [65] integrates the widely used
traditional pyramid, warping, and cost volume technique into CNNs for optical
flow, and outperform all the previous methods with high efficiency. We utilized
a basic structure similar to theirs but proposed novel cost volume, warping and
upsampling layers appropriate for point clouds.

Scene Flow Estimation. 3D scene flow is first introduced by [72]. Many
works [26,45,75] estimate scene flow using RGB data. [26] introduces a vari-
ational method to estimate scene flow from stereo sequences. [45] proposes an
object-level scene flow estimation approach and introduces a dataset for 3D scene
flow. [75] presents a piecewise rigid scene model for 3D scene flow estimation.

Recently, there are some works [12,70,71] that estimate scene flow directly
from point clouds using classical techniques. [12] introduces a method that for-
mulates the scene flow estimation problem as an energy minimization problem
with assumptions on local geometric constancy and regularization for motion
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smoothness. [71] proposes a real-time four-steps method of constructing occu-
pancy grids, filtering the background, solving an energy minimization problem,
and refining with a filtering framework. [70] further improves the method in [71]
by using an encoding network to learn features from an occupancy grid.

In some most recent work [20,36,78], researchers attempt to estimate scene
flow from point clouds using deep learning in a end-to-end fashion. [78] uses
PCNN to operate on LiDAR data to estimate LiDAR motion. [36] introduces
FlowNet3D based on PointNet++ [54]. FlowNet3D uses a flow embedding layer
to encode the motion of point clouds. However, it requires encoding a large neigh-
borhood in order to capture large motions. [20] presents HPLFlowNet to estimate
the scene flow using Bilateral Convolutional Layers (BCL), which projects the
point cloud onto a permutohedral lattice. [3] estimates scene flow with a net-
work that jointly predicts 3D bounding boxes and rigid motions of objects or
background in the scene. Different from [3], we do not require the rigid motion
assumption and segmentation level supervision to estimate scene flow.

Self-supervised Scene Flow. There are several recent works [27,32,35,82,87]
which jointly estimate multiple tasks, i.e. depth, optical flow, ego-motion and
camera pose without supervision. They take 2D images as input, which have
ambiguity when used in scene flow estimation. In this paper, we investigate
self-supervised learning of scene flow from 3D point clouds with our PointPWC-
Net. Concurrently, Mittal et al. [49] introduced Nearest Neighbor (NN) Loss
and Cycle Consistency Loss to self-supervised scene flow estimation from point
clouds. However, they does not take the local structure properties of 3D point
clouds into consideration. In our work, we propose to use smoothness and Lapla-
cian coordinates to preserve local structure for scene flow.

Traditional Point Cloud Registration. Point cloud registration has been
extensively studied well before deep learning [21,66]. Most of the work [10,18,23,
43,48,60,69,85] only works when most of the motion in the scene is globally rigid.
Many methods are based on the iterative closest point (ICP) [5] and its vari-
ants [52]. Several works [1,6,29,50] deal with non-rigid point cloud registration.
Coherent Point Drift (CPD) [50] introduces a probabilistic method for both rigid
and non-rigid point set registration. However, the computation overhead makes
it hard to apply on real world data in real-time. Many algorithms are proposed
to extend the CPD method [2,11,15–17,33,37–42,51,55,59,67,76,83,84,86].
Some algorithms require additional information for point set registration. The
work [11,59] takes the color information along with the spatial location into
account. [1] requires meshes for non-rigid registration. In [55], the regression
and clustering for point set registration in a Bayesian framework are presented.
All the aforementioned work require optimization at inference time, which has
significantly higher computation cost than our method which run in a fraction
of a second during inference.
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3 Approach

To compute optical flow with high accuracy, one of the most important com-
ponents is the cost volume. In 2D images, the cost volume can be computed
by aggregating the cost in a square neighborhood on a grid. However, comput-
ing cost volume across two point clouds is difficult since 3D point clouds are
unordered with a nonuniform sampling density. In this section, we introduce a
novel learnable cost volume layer, and use it to construct a deep network with
the help of other auxiliary layers that outputs high quality scene flow.

3.1 The Cost Volume Layer

As one of the key components of optical flow estimation, most state-of-the-
art algorithms, both traditional [58,64] and modern deep learning based ones
[9,65,81], use the cost volume to estimate optical flow. However, computing cost
volumes on point clouds is still an open problem. There are several works [20,36]
that compute some kind of flow embedding or correlation between point clouds.
[36] proposes a flow embedding layer to aggregate feature similarities and spatial
relationships to encode point motions. However, the motion information between
points can be lost due to the max pooling operation in the flow embedding
layering. [20] introduces a CorrBCL layer to compute the correlation between
two point clouds, which requires to transfer two point clouds onto the same
permutohedral lattice.

To address these issues, we present a novel learnable cost volume layer
directly on the features of two point clouds. Suppose fi ∈ R

c is the feature
for point pi ∈ P and gj ∈ R

c the feature for point qj ∈ Q, the matching cost
between pi and qj can be defined as:

Cost(pi, qj) = h(fi, gj , qj , pi) (1)
= MLP (concat(fi, gj , qj − pi)) (2)

where concat stands for concatenation. In our network, the feature fi and gj are
either the raw coordinates of the point clouds, or the convolution output from
previous layers. The intuition is that, as a universal approximator, MLP should
be able to learn the potentially nonlinear relationship between the two points.
Due to the flexibility of the point cloud, we also add a direction vector (qj − pi)
to the computation besides the point features fi and gj .

Once we have the matching costs, they can be aggregated as a cost volume for
predicting the movement between two point clouds. In 2D images, aggregating
the cost is simply by applying some convolutional layers as in PWC-Net [65].
However, traditional convolutional layers can not be applied directly on point
clouds due to their unorderness. [36] uses max-pooing to aggregate features in the
second point cloud. [20] uses CorrBCL to aggregate features on a permutohedral
lattice. However, their methods only aggregate costs in a point-to-point manner,
which is sensitive to outliers. To obtain robust and stable cost volumes, in this
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Fig. 2. (a) Grouping. For a point pc, we form its K-NN neighborhoods in each point
cloud as NP (pc) and NQ(pc) for cost volume aggregation. We first aggregate the cost
from the patch NQ(pc) in point cloud Q. Then, we aggregate the cost from patch NP (pc)
in the point cloud P . (b) Cost Volume Layer. The features of neighboring points in
NQ(pc) are concatenated with the direction vector (qi − pc) to learn a point-to-patch
cost between pc and Q with PointConv. Then the point-to-patch costs in NP (pc) are
further aggregated with PointConv to construct a patch-to-patch cost volume

work, we propose to aggregate costs in a patch-to-patch manner similar to the
cost volumes on 2D images [31,65].

For a point pc in P , we first find a neighborhood NP (pc) around pc in P . For
each point pi ∈ NP (pc), we find a neighborhood NQ(pi) around pi in Q. The
cost volume for pc is defined as:

CV (pc) =
∑

pi∈NP (pc)

WP (pi, pc)
∑

qj∈NQ(pi)

WQ(qj , pi) cost(qj , pi) (3)

WP (pi, pc) = MLP (pi − pc) (4)
WQ(qj , pi) = MLP (qj − pi) (5)

where WP (pi, pc) and WQ(qj , pi) are the convolutional weights w.r.t the direction
vectors that are used to aggregate the costs from the patches in P and Q. It is
learned as a continuous function of the directional vectors (qi − pc) ∈ R

3 and
(qj − pi) ∈ R

3, respectively with an MLP, as in [80] and PCNN [78]. The output
of the cost volume layer is a tensor with shape (n1,D), where n1 is the number
of points in P , and D is the dimension of the cost volume, which encodes all
the motion information for each point. The patch-to-patch idea used in the cost
volume is illustrated in Fig. 2.

There are two major differences between this cost volume for scene flow of 3D
point clouds and conventional 2D cost volumes for stereo and optical flow. The
first one is that we introduce a learnable function cost(·) that can dynamically
learn the cost or correlation within the point cloud structures. Ablation studies
in Sect. 5.3 show that this novel learnable design achieve better results than
traditional cost volume [65] in scene flow estimation. The second one is that
this cost volume is discretized irregularly on the two input point clouds and
their costs are aggregated with point-based convolution. Previously, in order to
compute the cost volume for optical flow in a d × d area on a W × H 2D image,
all the values in a d2 × W × H tensor needs to be populated, which is already
slow to compute in 2D, but would be prohibitively costly in the 3D space. With
(volumetric) 3D convolution, one needs to search a d3 area to obtain a cost
volume in 3D space. Our cost volume discretizes on input points and avoids
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this costly operation, while essentially creating the same capabilities to perform
convolutions on the cost volume. With the proposed cost volume layer, we only
need to find two neighborhoods NP (pc) and NQ(pi) of size K, which is much
cheaper and does not depend on the number of points in a point cloud. In
our experiments, we fix |NP (pc)| = |NQ(pi)| = 16. If a larger neighborhood is
needed, we could subsample the neighborhood which would bring it back to the
same speed. This subsampling operation is only applicable to the sparse point
cloud convolution and not possible for conventional volumetric convolutions. We
anticipate this novel cost volume layer to be widely useful beyond scene flow
estimation. Table 2 shows that it is better than [36]’s MLP+Maxpool strategy.

3.2 PointPWC-Net

Given the proposed learnable cost volume layer, we construct a deep network
for scene flow estimation. As demonstrated in 2D optical flow estimation, one
of the most effective methods for dense estimation is the coarse-to-fine struc-
ture. In this section, we introduce some novel auxiliary layers for point clouds
that construct a coarse-to-fine network for scene flow estimation along with the
proposed learnable cost volume layer. The network is called “PointPWC-Net”
following [65].

As shown in Fig. 1, PointPWC-Net predicts dense scene flow in a coarse-
to-fine fashion. The input to PointPWC-Net is two consecutive point clouds,
P = {pi ∈ R

3}n1
i=1 with n1 points, and Q = {qj ∈ R

3}n2
j=1 with n2 points. We

first construct a feature pyramid for each point cloud. Afterwards, we build a
cost volume using features from both point clouds at each layer. Then, we use
the feature from P , the cost volume, and the upsampled flow to estimate the
finer scene flow. We take the predicted scene flow as the coarse flow, upsample it
to a finer flow, and warp points from P onto Q. Note that both the upsampling
and the warping layers are efficient with no learnable parameters.

Feature Pyramid from Point Cloud. To estimate scene flow with high accu-
racy, we need to extract strong features from the input point clouds. We generate
an L-level pyramid of feature representations, with the top level being the input
point clouds, i.e., l0 = P/Q. For each level l, we use furthest point sampling [54]
to downsample the points by a factor of 4 from previous level l−1, and use Point-
Conv [80] to perform convolution on the features from level l−1. As a result, we
can generate a feature pyramid with L levels for each input point cloud. After
this, we enlarge the receptive field at level l of the pyramid by upsampling the
feature in level l + 1 and concatenate it to the feature at level l.

Upsampling Layer. The upsampling layer can propagate the scene flow esti-
mated from a coarse layer to a finer layer. We use a distance based interpolation
to upsample the coarse flow. Let P l be the point cloud at level l, SF l be the
estimated scene flow at level l, and pl−1 be the point cloud at level l−1. For each
point pl−1

i in the finer level point cloud P l−1, we can find its K nearest neighbors
N(pl−1

i ) in its coarser level point cloud P l. The interpolated scene flow of finer
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level SF l−1 is computed using inverse distance weighted interpolation:

SF l−1(pi) =

∑k
j=1 w(pl−1

i , pl
j)SF l(pl

j)∑k
j=1 w(pl−1

i , pl
j)

(6)

where w(pl−1
i , pl

j) = 1/d(pl−1
i , pl

j), pl−1
i ∈ P l−1, and pl

j ∈ N(pl−1
i ). d(pl−1

i , pl
j) is

a distance metric. We use Euclidean distance in this work.

Warping Layer. Warping would “apply” the computed flow so that only the
residual flow needs to be estimated afterwards, hence the search radius can be
smaller when constructing the cost volume. In our network, we first up-sample
the scene flow from the previous coarser level and then warp it before computing
the cost volume. Denote the upsampled scene flow as SF = {sfi ∈ R

3}n1
i=1,

and the warped point cloud as Pw = {pw,i ∈ R
3}n1

i=1. The warping layer is
simply an element-wise addition between the upsampled and computed scene
flow Pw = {pw,i = pi + sfi|pi ∈ P, sfi ∈ SF}n1

i=1. A similar warping operation
is used for visualization to compare the estimated flow with the ground truth
in [20,36], but not used in coarse-to-fine estimation. [20] uses an offset strategy
to reduce search radius which is specific to the permutohedral lattice.

Scene Flow Predictor. In order to obtain a flow estimate at each level, a
convolutional scene flow predictor is built as multiple layers of PointConv and
MLP. The inputs of the flow predictor are the cost volume, the feature of the
first point cloud, the up-sampled flow from previous layer and the up-sampled
feature of the second last layer from previous level’s scene flow predictor, which
we call the predictor feature. The output is the scene flow SF = {sfi ∈ R

3}n1
i=1

of the first point cloud P . The first several PointConv layers are used to merge
the feature locally, and the following MLP is used to estimate the scene flow on
each point. We keep the flow predictor structure at different levels the same, but
the parameters are not shared.

4 Training Loss Functions

In this section, we introduce two loss functions to train PointPWC-Net for scene
flow estimation. One is the standard multi-scale supervised training loss, which
has been explored in deep optical flow estimation [65] in 2D images. We use
this supervised loss to train the model for fair comparison with previous scene
flow estimation work, including FlowNet3D [36] and HPLFlowNet [20]. Due to
that acquiring densely labeled 3D scene flow dataset is extremely hard, we also
propose a novel self-supervised loss to train our PointPWC-Net without any
supervision.

4.1 Supervised Loss

We adopt the multi-scale loss function in FlowNet [13] and PWC-Net [65] as a
supervised learning loss to demonstrate the effectiveness of the network structure



96 W. Wu et al.

and the design choice. Let SF l
GT be the ground truth flow at the l-th level. The

multi-scale training loss �(Θ) =
∑L

l=l0
αl

∑
p∈P

∥∥SF l
Θ(p) − SF l

GT (p)
∥∥
2

is used
where ‖·‖2 computes the L2-norm, αl is the weight for each pyramid level l, and
Θ is the set of all the learnable parameters in our PointPWC-Net, including the
feature extractor, cost volume layer and scene flow predictor at different pyramid
levels. Note that the flow loss is not squared as in [65] for robustness.

4.2 Self-supervised Loss

Obtaining the ground truth scene flow for 3D point clouds is difficult and there
are not many publicly available datasets for scene flow learning from point clouds.
In this section, we propose a self-supervised learning objective function to learn
the scene flow in 3D point clouds without supervision. Our loss function contains
three parts: Chamfer distance, Smoothness constraint, and Laplacian regulariza-
tion [62,77]. To the best of our knowledge, we are the first to study self-supervised
deep learning of scene flow estimation from 3D point clouds, concurrent with [49].

Chamfer Loss. The goal of Chamfer loss is to estimate scene flow by moving
the first point cloud as close as the second one. Let SF l

Θ be the scene flow
predicted at level l. Let P l

w be the point cloud warped from the first point cloud
P l according to SF l

Θ in level l, Ql be the second point cloud at level l. Let pl
w

and ql be points in P l
w and Ql. The Chamfer loss �l

C can be written as:

P l
w = P l + SF l

Θ (7)

�l
C(P l

w, Ql) =
∑

pl
w∈P l

w

min
ql∈Ql

∥∥pl
w − ql

∥∥2

2
+

∑

ql∈Ql

min
pl
w∈P l

w

∥∥pl
w − ql

∥∥2

2

Smoothness Constraint. In order to enforce local spatial smoothness, we add
a smoothness constraint �l

S , which assumes that the predicted scene flow SF l
Θ(pl

j)
in a local region N(pl

i) of pl
i should be similar to the scene flow at pl

i:

�l
S(SF l) =

∑

pl
i∈P l

1
|N(pl

i)|
∑

pl
j∈N(pl

i)

∥∥SF l(pl
j) − SF l(pl

i)
∥∥2

2
(8)

where |N(pl
i)| is the number of points in the local region N(pl

i).

Laplacian Regularization. The Laplacian coordinate vector approximates the
local shape characteristics of the surface [62]. The Laplacian coordinate vector
δl(pl

i) is computed as:

δl(pl
i) =

1
|N(pl

i)|
∑

pl
j∈N(pl

i)

(pl
j − pl

i) (9)

For scene flow, the warped point cloud P l
w should have the same Laplacian

coordinate vector with the second point cloud Ql at the same position. Hence,
we firstly compute the Laplacian coordinates δl(pl

i) for each point in second



PointPWC-Net 97

Table 1. Evaluation Results on the FlyingThings3D and KITTI Datasets.
Self means self-supervised, Full means fully-supervised. All approaches are (at least)
trained on FlyingThings3D. On KITTI, Self and Full refer to the respective models
trained on FlyingThings3D that is directly evaluated on KITTI, while Self+Self means
the model is firstly trained on FlyingThings3D with self-supervision, then fine-tuned
on KITTI with self-supervision as well. Full+Self means the model is trained with
full supervision on FlyingThings3D, then fine-tuned on KITTI with self-supervision.
ICP [5], FGR [85], and CPD [50] are traditional method that does not require training.
Our model outperforms all baselines by a large margin on all metrics

Dataset Method Sup. EPE3D (m)↓Acc3DS↑Acc3DR↑Outliers3D↓EPE2D (px)↓Acc2D↑
Flyingthings3DICP (rigid) [5] Self 0.4062 0.1614 0.3038 0.8796 23.2280 0.2913

FGR (rigid) [85] Self 0.4016 0.1291 0.3461 0.8755 28.5165 0.3037

CPD (non-rigid) [50] Self 0.4887 0.0538 0.1694 0.9063 26.2015 0.0966

PointPWC-Net Self 0.1213 0.3239 0.6742 0.6878 6.5493 0.4756

FlowNet3D [36] Full 0.1136 0.4125 0.7706 0.6016 5.9740 0.5692

SPLATFlowNet [63] Full 0.1205 0.4197 0.7180 0.6187 6.9759 0.5512

original BCL [20] Full 0.1111 0.4279 0.7551 0.6054 6.3027 0.5669

HPLFlowNet [20] Full 0.0804 0.6144 0.8555 0.4287 4.6723 0.6764

PointPWC-Net Full 0.0588 0.7379 0.9276 0.3424 3.2390 0.7994

KITTI ICP (rigid) [5] Self 0.5181 0.0669 0.1667 0.8712 27.6752 0.1056

FGR (rigid) [85] Self 0.4835 0.1331 0.2851 0.7761 18.7464 0.2876

CPD (non-rigid) [50] Self 0.4144 0.2058 0.4001 0.7146 27.0583 0.1980

PointPWC-Net (w/o ft)Self 0.2549 0.2379 0.4957 0.6863 8.9439 0.3299

PointPWC-Net (w/ft) Self+Self 0.0461 0.7951 0.9538 0.2275 2.0417 0.8645

FlowNet3D [36] Full 0.1767 0.3738 0.6677 0.5271 7.2141 0.5093

SPLATFlowNet [63] Full 0.1988 0.2174 0.5391 0.6575 8.2306 0.4189

original BCL [20] Full 0.1729 0.2516 0.6011 0.6215 7.3476 0.4411

HPLFlowNet [20] Full 0.1169 0.4783 0.7776 0.4103 4.8055 0.5938

PointPWC-Net (w/o ft)Full 0.0694 0.7281 0.8884 0.2648 3.0062 0.7673

PointPWC-Net (w/ft) Full+Self 0.0430 0.8175 0.9680 0.2072 1.9022 0.8669

point cloud Ql. Then, we interpolate the Laplacian coordinate of Ql to obtain
the Laplacian coordinate on each point pl

w. We use an inverse distance-based
interpolation method similar to Eq. (6) to interpolate the Laplacian coordinate
δl. Let δl(pl

w) be the Laplacian coordinate of point pl
w at level l, δl(ql

inter) be
the interpolated Laplacian coordinate from Ql at the same position as pl

w.
The Laplacian regularization �l

L is defined as:

�l
L(δl(pl

w), δl(ql
inter)) =

∑

pl
w∈P l

w

∥∥δl(pl
w) − δl(ql

inter)
∥∥2

2
(10)

The overall loss is a weighted sum of all losses across all pyramid levels as:

�(Θ) =
L∑

l=l0

αl(β1�
l
C + β2�

l
S + β3�

l
L) (11)

where αl is the factor for pyramid level l, β1, β2, β3 are the scale factors for each
loss respectively. With the self-supervised loss, our model is able to learn the
scene flow from 3D point cloud pairs without any ground truth supervision.
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5 Experiments

In this section, we train and evaluate our PointPWC-Net on the FlyingThings3D
dataset [44] with the supervised loss and the self-supervised loss, respectively.
Then, we evaluate the generalization ability of our model by first applying the
model on the real-world KITTI Scene Flow dataset [46,47] without any fine-
tuning. Then, with the proposed self-supervised losses, we further fine-tune our
pre-trained model on the KITTI dataset to study the best performance we could
obtain without supervision. Besides, we also compare the runtime of our model
with previous work. Finally, we conduct ablation studies to analyze the contri-
bution of each part of the model and the loss function.
Implementation Details. We build a 4-level feature pyramid from the input
point cloud. The weights α are set to be α0 = 0.02, α1 = 0.04, α2 = 0.08,
and α3 = 0.16, with weight decay 0.0001. The scale factor β in self-supervised
learning are set to be β1 = 1.0, β2 = 1.0, and β3 = 0.3. We train our model
starting from a learning rate of 0.001 and reducing by half every 80 epochs. All
the hyperparameters are set using the validation set of FlyingThings3D with
8,192 points in each input point cloud.
Evaluation Metrics. For fair comparison, we adopt the evaluation metrics
that are used in [20]. Let SFΘ denote the predicted scene flow, and SFGT be
the ground truth scene flow. The evaluate metrics are computed as follows:

• EPE3D (m): ‖SFΘ − SFGT ‖2 averaged over each point in meters.
• Acc3DS : the percentage of points with EPE3D < 0.05 m or relative error

< 5%.
• Acc3DR: the percentage of points with EPE3D < 0.1 m or relative error

< 10%.
• Outliers3D : the percentage of points with EPE3D> 0.3 m or relative error

> 10%.
• EPE2D (px): 2D end point error obtained by projecting point clouds back to

the image plane.
• Acc2D : the percentage of points whose EPE2D < 3px or relative error < 5%.

5.1 Supervised Learning

First we conduct experiments with supervised loss. To our knowledge, there is no
publicly available large-scale real-world dataset that has scene flow ground truth
from point clouds (The input to the KITTI scene flow benchmark is 2D), thus we
train our PointPWC-Net on the synthetic Flyingthings3D dataset, following [20].
Then, the pre-trained model is directly evaluated on KITTI Scene Flow 2015
dataset without any fine-tuning.
Train and Evaluate on FlyingThings3D. The FlyingThings3D training
dataset includes 19,640 pairs of point clouds, and the evaluation dataset includes
3,824 pairs of point clouds. Our model takes n = 8, 192 points in each point
cloud. We first train the model with 1

4 of the training set (4,910 pairs), and then
fine-tune it on the whole training set, to speed up training.
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Fig. 3. Results on the FlyingThings3D Dataset. In (a), 2 point clouds PC1 and
PC2 are presented in Magenta and Green, respectively. In (b–f), PC1 is warped to
PC2 based on the (computed) scene flow. (b) shows the ground truth; (c) Results from
FGR (rigid) [85]; (d) Results from CPD (non-rigid) [50]; (e) Results from PointPWC-
Net (Full); (f) Results from PointPWC-Net (Self ). Red ellipses indicate locations with
significant non-rigid motion. Enlarge images for better view. (Best viewed in color)
(Color figure online)

Table 1 shows the quantitative evaluation results on the Flyingthings3D
dataset. Our method outperforms all the methods on all metrics by a large mar-
gin. Comparing to SPLATFlowNet, original BCL, and HPLFlowNet, our method
avoids the preprocessing step of building a permutohedral lattice from the input.
Besides, our method outperforms HPLFlowNet on EPE3D by 26 .9%. And, we
are the only method with EPE2D under 4px, which improves over HPLFlowNet
by 30 .7%. See Fig. 3(e) for example results.
Evaluate on KITTI w/o Fine-Tune. To study the generalization ability of
our PointPWC-Net, we directly take the model trained using FlyingThings3D
and evaluate it on KITTI Scene Flow 2015 [46,47] without any fine-tuning.
KITTI Scene Flow 2015 consists of 200 training scenes and 200 test scenes.
To evaluate our PointPWC-Net, we use ground truth labels and trace raw point
clouds associated with the frames, following [20,36]. Since no point clouds and
ground truth are provided on test set, we evaluate on all 142 scenes in the train-
ing set with available point clouds. We remove ground points with height < 0.3 m
following [20] for fair comparison with previous methods.

From Table 1, our PointPWC-Net outperforms all the state-of-the-art meth-
ods, which demonstrates the generalization ability of our model. For EPE3D, our
model is the only one below 10 cm, which improves over HPLFlowNet by 40 .6%.
For Acc3DS, our method outperforms both FlowNet3D and HPLFlowNet by
35 .4% and 25 .0% respectively. See Fig. 4(e) for example results.
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Table 2. Model Design. A learnable cost volume preforms much better than inner
product cost volume used in PWC-Net [65]. Using our cost volume instead of the
MLP+Maxpool used in FlowNet3D’s flow embedding layer improves performance by
20.6%. Compared to no warping, the warping layer improves the performance by 40.2%

Component Status EPE3D (m)↓
Cost volume PWC-Net [65] 0.0821

MLP+Maxpool (learnable) [36] 0.0741

Ours (learnable) 0.0588

Warping layer w/o 0.0984

w 0.0588

5.2 Self-supervised Learning

Acquiring or annotating dense scene flow from real-world 3D point clouds is
very expensive, so it would be interesting to evaluate the performance of our
self-supervised approach. We train our model using the same procedure as in
supervised learning, i.e. first train the model with one quarter of the training
dataset, then fine-tune with the whole training set. Table 1 gives the quanti-
tative results on PointPWC-Net with self-supervised learning. We compare our
method with ICP (rigid) [5], FGR (rigid) [85] and CPD (non-rigid) [50]. Because
traditional point registration methods are not trained with ground truth, we can
view them as self/un-supervised methods.
Train and Evaluate on FlyingThings3D. We can see that our PointPWC-
Net outperforms traditional methods on all the metrics with a large margin. See
Fig. 3(f) for example results.
Evaluate on KITTI w/o Fine-Tuning. Even only trained on FlyingTh-
ings3D without ground truth labels, our method can obtain 0 .2549 m on EPE3D
on KITTI, which improves over CPD (non-rigid) by 38 .5%, FGR (rigid) by
47 .3%, and ICP (rigid) by 50 .8%.
Fine-Tune on KITTI. With proposed self-supervised loss, we are able to fine-
tune the FlyingThings3D trained models on KITTI without using any ground
truth. In Table 1, the row PointPWC-Net (w/ft) Full+Self and PointPWC-
Net (w/ft) Self+Self show the results. Full+Self means the model is trained
with supervision on FlyingThings3D, then fine-tuned on KITTI without super-
vision. Self+Self means the model is firstly trained on FlyingThings3D, then
fine-tuned on KITTI both using self-supervised loss. With KITTI fine-tuning,
our PointPWC-Net can achieve EPE3D < 5 cm. Especially, our PointPWC-Net
(w/ft) Self+Self, which is fully trained without any ground truth information,
achieves similar performance on KITTI as the one that utilized FlyingThings3D
ground truth. See Fig. 4(f) for example results.
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Fig. 4. Results on the KITTI Scene Flow 2015 Dataset. In (a), 2 point clouds
PC1 and PC2 are presented in Magenta and Green, respectively. In (b–f), PC1 is
warped to PC2 based on the (computed) scene flow. (b) shows the ground truth; (c)
Results from FGR (rigid) [85]; (d) Results from CPD (non-rigid) [50]; (e) Results from
PointPWC-Net (w/o ft+Full) that is trained with supervision on FlyingThings3D,
and directly evaluate on KITTI without any fine-tuning; (f) Results from PointPWC-
Net (w/ft+Self + Self ) which is trained on FlyingThings3D and fine-tuned on KITTI
using the proposed self-supervised loss. Red ellipses indicate locations with significant
non-rigid motion. Enlarge images for better view. (Best viewed in color) (Color figure
online)

5.3 Ablation Study

We further conduct ablation studies on model design choices and the self-
supervised loss function. On model design, we evaluate the different choices
of cost volume layer and removing the warping layer. On the loss function, we
investigate removing the smoothness constraint and Laplacian regularization in
the self-supervised learning loss. All models in the ablation studies are trained
using FlyingThings3D, and tested on the FlyingThings3D evaluation dataset.

Table 3. Loss Functions. The Chamfer
loss is not enough to estimate a good scene
flow. With the smoothness constraint, the
scene flow result improves by 38.2%. Lapla-
cian regularization also improves slightly

Chamfer Smoothness Laplacian EPE3D (m)↓
� - - 0.2112

� � - 0.1304

� � � 0.1213

Table 4. Runtime. Average runtime
(ms) on Flyingthings3D. The runtime
for FlowNet3D and HPLFlowNet is
reported from [20] on a single Titan V.
The runtime for our PointPWC-Net is
reported on a single 1080Ti

Method Runtime (ms)↓
FlowNet3D [36] 130.8

HPLFlowNet [20] 98.4

PointPWC-Net 117.4



102 W. Wu et al.

Tables 2 and 3 show the results of the ablation studies. In Table 2 we can
see that our design of the cost volume obtains significantly better results than
the inner product-based cost volume in PWC-Net [65] and FlowNet3D [36], and
the warping layer is crucial for performance. In Table 3, we see that both the
smoothness constraint and Laplacian regularization improve the performance in
self-supervised learning. In Table 4, we report the runtime of our PointPWC-Net,
which is comparable with other deep learning based methods and much faster
than traditional ones.

6 Conclusion

To better estimate scene flow directly from 3D point clouds, we proposed a novel
learnable cost volume layer along with some auxiliary layers to build a coarse-
to-fine deep network, called PointPWC-Net. Because of the fact that real-world
ground truth scene flow is hard to acquire, we introduce a loss function that
train the PointPWC-Net without supervision. Experiments on the FlyingTh-
ings3D and KITTI datasets demonstrates the effectiveness of our PointPWC-
Net and the self-supervised loss function, obtaining state-of-the-art results that
outperform prior work by a large margin.
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