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Abstract. Subcellular localization plays important roles in protein’s
functioning. In this paper, we developed a hidden Markov model to detect
de novo signals in protein sequences that target at a particular cellular
location: plasmodesmata. We also developed a support vector machine
to classify plasmodesmata located proteins (PDLPs) in Arabidopsis, and
devised a decision-tree approach to combine the SVM and HMM for bet-
ter classification performance. The methods achieved high performance
with ROC score 0.99 in cross-validation test on a set of 360 type I trans-
membrane proteins in Arabidopsis. The predicted PD targeting signals
in one PDLP have been experimentally verified.

Keywords: Cellular localization · Support Vector Machines · Hidden
Markov Models.

1 Introduction

It is well known that proteins after being synthesized have to be transported
to their designated cellular location in order to fulfill the biological functions.
However, much detail of the transporting mechanisms remain unknown, and
subcellular localization prediction is an active research area in bioinformatics [1,
10, 15].

Plasmodesmata (PD) are membrane-lined intercellular communication chan-
nels through which essential nutrients and signaling molecules move between
neighboring cells in the plant. This cell-to-cell exchange of molecules through
PD is fundamental to the physiology, development and immunity of the plant
and is a dynamically regulated cellular process. Several types of endogenous pro-
teins, including type-I transmembrane proteins, as well as numerous PD-targeted
proteins derived from plant viruses have been identified to associate with PD.
However, no universal or consensus PD-targeting signal has ever been discerned
nor molecular details are known as to how integral membrane proteins, including
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higher order k-mers, which have a dimension at 8000 and higher and require
significantly more training examples.

The dipeptide features are the occurrence frequencies of all 400 possible
amino acid pairs in a given protein sequence. Let xdipeptide denote the dipep-
tide feature, then xdipeptide(i, j) is the frequency of ith and jth amino acid as a
neighboring pair to appear in the protein sequence. It is calculated as following:

xdipeptide(i, j) =
count([aai, aaj ])∑20

i=1

∑20
j=1 count([aai, aaj ])

(1)

As a common practice, the dipeptide features are normalized as follows:

xdipeptide−norm =
xdipeptide − xdipeptide

std(xdipeptide)
(2)

Although SVM with dipeptide features can be a powerful classifier, as shown
in literature [9, 23, 24], it is worth noting that dipeptide occurrence frequency
captures global features of the sequence as a whole and is hence not suitable
for picking up subtle features from within short regions that are nevertheless
important to the protein’s functions. And this issue is exacerbated with insuf-
ficient amount of positive training data. In such cases, many dipeptide pairs
may have zero counts in Eq. 1 – are these zeros real or will they become non
zero should enough training examples be available? Consequently, SVM trained
on these dipeptide features can be susceptible to overfitting and thus does not
generalize well on unseen data.

In our case, we have only eight PDLPs and the JMe region that is known
to contain PD-targeting signal is a very short region (around 30 amino acids
long) as compared with the whole sequence (up to 700 amino acids long). As
such, special attention should be paid to alleviate the aforementioned issues of
training SVM with dipeptide features, for otherwise it may give rise to false
positive predictions for the sequences that have similar dipeptide features but
do not contain PD-targeting signals. Note that these issues are not unique only
for SVM but for any classifiers that rely on features from full length sequences.
For comparison, we also trained random forest classifier on dipeptide features,
and the performances between the two classifiers are comparable, with SVM
being slightly better.

2.2 3-States HMM on JMe

In contrast to the dipeptide approach of capturing more global information, the
hidden Markov model we designed is focused on JMe region in order to detect
PD-targeting signals that the web-lab mutagenesis experiments have suggested.

Based on the signature topology as shown in Figure 1, the JMe region of a
PDLP, or a potential PDLP such as type I transmembrane protein, can be easily
extracted by two step procedure: 1) finding protein’s transmembrane region via
various sophisticated tools such as TMDOCK [21] and TMMOD [20], and 2)
extracting 30 amino acids upstream of the transmembrane domtain in step 1.







membrane, Vacuole membrane, Vesicle membrane, and the PD membrane. Table
1 lists each cellular localizations and the number of proteins in that category.
In this work, for our purpose, the eight PDLPs are grouped into the other class
(PD) and the rest are lumped into one class (none-PD).

In order to train the HMM for the JMe region, a procedure described in the
Method section is applied to all sequences in the dataset to extract a valide JMe
region defined as 30 amino acids upstream of the transmembrane domain iden-
tified by TMMOD. This procedure eliminates Endosome and Golgi membrane
proteins from the dataset, as their JMe region is shorter than 30 amino acids.

Table 1. Different types of proteins in dataset A

protein localization endoplasmic reticulum Plasma PDLP Vacuole Vesicle

number of proteins 17 322 8 7 6

To test the robustness of SVM and HMM in handling false positives, as
described in the Method section, we add to the dataset eight synthetic sequences,
which are the 8 PDLP sequences but with the origin JMe region being replaced
with random residues. Since JMe region contains PD-targeting signal, it is highly
confident that randomly replacing JMe region will lead to none-PD proteins. In
other words, these eight synthetic sequences are negative data. Dataset A plus
these eight synthetic sequences give rise to dataset B. Note that these eight
synthetic sequences will be only used for testing.

As there are only 8 PDLP sequences, the leave-one-out (or equivalently 8-
fold) cross validation scheme is adopted to ensure the maximum possible number
of training examples to train the models. Specifically, each one of the 8 PDLP se-
quences is reserved as a positive test example once, and the remaining 7 PDLPs
are used as positive training examples. The 352 none-PD sequences, as the nega-
tive examples, are randomly split into 8 subsets of equal size (44 sequences). One
negative subset is picked to combine with the positive testing example to form
the test set (45 sequences); and the remaining 7 negative subsets are merged
together to form the negative training set. Note that, for the HMM, no nega-
tive training examples are needed. When dataset B is used, the whole process is
the same, except that the synthetic none-PD sequences are repeatedly used as
testing data for each fold.

3.2 Performance Metrics

To test the trained hidden Markov model M(θ), the test examples from the 8-fold
cross-validation are combined and ranked by their prediction score P (x|M(θ)),
which is the likelihood for sequence x to be emitted from the model, calculated
from the Forward algorithm. If a threshold is set for the prediction score, test
examples with score above the threshold are classified as positive – they are
true positive (TP) if their ground truth label is positive; they are false positive



(FP) if otherwise. Similarly, test examples with score below the threshold are
classified as negative – they are true negative (TN) if their ground truth label
is negative; they are false negative (FN) if otherwise. We use receiver operating
characteristic (ROC) curve and ROC score, which is the area under the ROC
curve, to evaluate the performance. The ROC curve plots the true positive rate
against the false positive rate at the threshold sliding down the ranked list of
test examples [18]. ROC curve starts (0,0) and goes to (1,1) in a monotically
manner. The perfect classifier has ROC score 1.0, and a random classifier has
ROC score 0.5. When a natural choice of threshold is available, like the distance
to the the separating hyperplane in SVM, we also use the precision and recall
associated with that threshold to evaluate the performance.

3.3 Evaluation: SVM Alone

In this experiment, we train and test a SVM with linear kernel on dipeptide
features extracted from full length sequences. The ROC score from 8-fold cross-
validation is 1.0 for dataset A but drops to 0.8837 for dataset B, because of
misclassifying the synthetic none-PD as PD, which confirms the our concern
that SVM alone can be susceptible to the overfitting issue. As comparison, the
performance from a RF classifier is: ROC score = 0.9984 for dataset A and ROC
score = 0.9177 for dataset B.

3.4 Evaluation: HMM Alone

In this experiment, we train the 3-state HMM as described in the method section.
The trained HMM is then tested with 8-fold cross validation the ROC score is
0.93 for dataset A and is 0.9408 for dataset B. Unlike SVM, HMM’s performance
remains about the same for both datasets, confirming that HMM is more robust
with false positives.

For the decoding task, the standard Viterbi algorithm [19] is used to scan
the sequence against the model, trained with PDLP5 and ten of its orthologues,
to annotate which residues belong to which of the three states, α, β or γ. So
far, there is no ground truth available yet to directly evaluate the triple state
annotation within JMe, except for PDLP5 and BAK1, the latter of which is
experimentally confirmed as non PD targeting, see Fig. 6. It is very encouraging
that the experiments for PDLP5 validated the existence of two PD targeting sig-
nals and their delineation is consistent with the annotation made by the model.
More web-lab experiments are planned to validate model annotation of other
PDLP paralogs.

3.5 Evaluation: Combination of SVM and HMM

From the experimental results in subsection 3.3 and 3.4, it is clear that SVM is
susceptiable to the pitfall of misclassifying the synthetic none-PD, whereas HMM
is not affected. Also, by comparing the ROC score of SVM and HMM in dataset





A, SVM has better performance and it naturally gives a clear decision boundary.
In this experiment, we only focus on dataset B to show that by combining SVM
with HMM via decision tree, performance can be improved, as compared to
either SVM or HMM alone.

Fig. 7 shows the ROC curve for the method of combining SVM with HMM
(red) and the comparison with HMM (green) and SVM (blue) alone. The ROC
score of combining SVM with HMM is 0.9997. Moreover, the precision/recall
and ROC score comparison for all the three method for dataset B are shown in
table 2. For comparison, when SVM is replaced with RF, ROC score = 0.9169.

Table 2. Comparison for all method in dataset B

Method ROC score precision recall

SVM with dipeptide feature 0.8837 0.1014 0.8750

HMM with JMe residues 0.9408 not applicable not applicable

Combining SVM with HMM 0.9997 1.0000 0.8750

4 Conclusion and Future Work

In paper we presented computational approaches based on machine learning
techniques to solve a very challenging biological problem: detecting plasmodes-
mata targeting signals and identifying novel PDLP sequences. The challenges
arise from lack of clear sequence patterns, insufficient amount data, and unbal-
anced dataset. Without addressing these challenges, a straightforward applica-
tion of standard machine learning techniques can lead to unreliable prediction, as
demonstrated with using SVM on dipeptide features. In order to overcome these
challenges, we closely incorporated domain specific knowledge into our hidden
Markov model design, and devised a pipeline to leverage the predictive power
of different models to reduce false positives. As a result, we are able to detect
de novo PD targeting signals, verified by wet-lab experiments, and to classify
PDLPs with remarkably high accuracy.

It is worth noting that, in this study, we adopted some common practices
to avoid overfitting, such as the multi-fold cross-validation scheme and use of a
simple linear kernel versus a more powerful kernel in SVM. While the perfor-
mance from cross-validation as compared with training error does not indicate
overfitting, given the small positive training examples in this study, it is difficult
to know how well the trained classifiers will generalize to a large data set or data
from different genomes, especially in detecting de novo PD proteins, which are
actually being investigated in the web-lab experiments and no results to report
yet. On the decoding task with our HMM, half of the predicted PD targeting sig-
nals have already been verified to be correct in the web-lab experiments, which
are ongoing to verify the remaining predicted signals.



An online server will be deployed based the methods in the paper to assist
biologists discovering new PDLP members. With new discovered PDLP mem-
bers, an improved classifier can be built, which leads a positive feedback cycle
of PDLP prediction and new PDLP members discovery. For the signal detection
task, as the future work, the focus will be finding PD-targeting key residues in
JMe region by extracting knowledge from the HMM to help with understanding
the PD-targeting mechanism.
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