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Abstract. Subcellular localization plays important roles in protein’s
functioning. In this paper, we developed a hidden Markov model to detect
de novo signals in protein sequences that target at a particular cellular
location: plasmodesmata. We also developed a support vector machine
to classify plasmodesmata located proteins (PDLPs) in Arabidopsis, and
devised a decision-tree approach to combine the SVM and HMM for bet-
ter classification performance. The methods achieved high performance
with ROC score 0.99 in cross-validation test on a set of 360 type I trans-
membrane proteins in Arabidopsis. The predicted PD targeting signals
in one PDLP have been experimentally verified.

Keywords: Cellular localization - Support Vector Machines - Hidden
Markov Models.

1 Introduction

It is well known that proteins after being synthesized have to be transported
to their designated cellular location in order to fulfill the biological functions.
However, much detail of the transporting mechanisms remain unknown, and
subcellular localization prediction is an active research area in bioinformatics [1,
10, 15].

Plasmodesmata (PD) are membrane-lined intercellular communication chan-
nels through which essential nutrients and signaling molecules move between
neighboring cells in the plant. This cell-to-cell exchange of molecules through
PD is fundamental to the physiology, development and immunity of the plant
and is a dynamically regulated cellular process. Several types of endogenous pro-
teins, including type-I transmembrane proteins, as well as numerous PD-targeted
proteins derived from plant viruses have been identified to associate with PD.
However, no universal or consensus PD-targeting signal has ever been discerned
nor molecular details are known as to how integral membrane proteins, including
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the best characterized PD-located proteins (PDLPs), are targeted to PD-specific
membrane domains. As such, the current computational tools for cellular local-
ization prediction do not even have PD categorized as a target location [1,9].

So far, only eight PDLPs have been experimentally verified in Arabidopsis
thaliana, and these proteins share a signature topology, as depicted in Fig. 1.
Further experiments (unpublished) have narrowed PD targeting signal(s) down
to a region, called extracellular juxtamembrane domain (JMe), which is between
the DUF26 extracellular domain and the transmembrane domain (TMD). This
region spanned about 20-amino acid residues, 9 AA downstream of the last con-
served Cys residue of the DUF26 domain. Our experimental data (unpublished)
pinpointed that the JMe region of PDLP5 contained a sufficient primary struc-
ture for its targeting to PD. Intriguingly, the data also implicated the presence of
a second signal outside of the JMe region. However, the multiple sequence align-
ments of the eight Arabidopsis PDLP paralogs reveals no hints at the conserved
amino acid residues or recognizable patterns shown in Fig. 2.
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Fig. 1. Structure of PDLP

In this work, we set out to develop computational approaches to: i) detect
subtle patterns that are associated with PD targeting, and ii) identify unknown
PDLPs in Arabidopsis and other species. The second task can be considered
as a classification problem, like other subcellular localization prediction prob-
lems. We adopted Support Vector Machine (SVM) [13] as a classifier and with
dipeptide features to characterize proteins sequences. The performance of this
straightforward approach is surprisingly good.

The first task of detecting PD targeting signal(s) turns out to be more chal-
lenging. Using the TMMOD tool [20] with customized training and feature se-
lection, we detected some signals at the vicinity of the last conserved Cys of
the DUF in addition to the initially defined JMe region. As for PDLP5, this
prediction was consistent with the presence of a second signal. Further phylo-
genetic analysis of orthologues of PDLPs from other plant species and MEME
motif finding [2] also identified similar but slightly stronger patterns in the same
location for a subset of PDLPs (consisting of PDLP1 to PDLP4), as shown in
Fig. 3.

These findings from the computational analyses together with the prelimi-
nary experimental data for PDLP5 prompted us to hypothesize that: there is
the second PD-targeting signal outside of the JMe region might reside at the C-
terminal end of the DUF domain. Unlike TMD, which has a clear-cut boundary



at both ends from computational predictions, the C-terminal end of the DUF
domain is not experimentally defined. This is why the previous experiments lim-
ited JMe as 20 AA adjacent to the N-terminal side of TMD, excluding 9 AA
to avoid overstepping into the DUF domain. Based on the new hypothesis that
this region likely contains a secondary signal for PD targeting, we newly define
the JMe as the 30-AA region located between the rightmost conserved Cys at
the very C-terminal end of the DUF domain and the N-terminal end of TMD.

Based on the aforementioned hypothesis, we then built a hidden Markov
model (HMM) [3-7] to capture the functional structure of the JMe. The model
has three states: state « for the left PD signal, state 8 for the right signal, and
state v for the non-functioning linkers. Using the trained hidden Markov model,
we decoded the JMe region of the eight PDLPs, and the following-up experiments
have verified the two PD signals and their relative positions in PDLP1, PDLP3,
PDLP5 and PDLPS, as predicted by the model. Ongoing experiments are being
conducted to verify predicted PD targeting signals for the remaining four PDLP
proteins. Furthermore, the model was tested with predicting potential PDLPs in
a dataset containing 360 type I transmembrane proteins, and showed remarkable
performance as measured as ROC score in cross-validation.

Given the fact that PD targeting signals reside in JMe, we incidentally dis-
covered a pitfall with the SVM classifier, when testing with randomized JMe
to establish a baseline. SVM mistakenly classified these synthetic sequences —
which are the same of the real PDLPs except for the JMe being randomized.
To mitigate this issue, we propose a way to combine SVM and HMM to further
improve the classification performance.

The paper is organized as follows. In section 2, we describe in details the
structure of the HMM, its training, and integration with SVM. In section 3, we
present the results on testing the hidden Markov model and SVM alone and the
two methods in tandem. Conclusions are presented in the last section.
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Fig. 2. Alignment of PDLP JMe, TMD, and JMc regions
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Fig. 3. MEME motifs discovered for PDLP JMe regions. The red region and green
region are a state, J state in our HMM correspondingly.

2 Methods

As mentioned in Introduction, we are tasked with detecting PD targing signals
in the sequence of PDLPs and identifying potential novel PDLPs in Arabidopsis
and other plant species. In this section, we describe in details the computational
methods we developed for these two tasks. Our methods are based on two pow-
erful machine learning methods — SVM and HMM. With the understanding the
issues of using either SVM or HMM alone, we describe a way of combinating
these two learning algorithms for better classification performance.

2.1 SVM with Dipepetide Features

SVM are a type of classifiers that take vectorized inputs and find the optimal
separating hyperplane in the vector space with the positive training examples on
one side of the hyperplane and negative training examples on the other side [14].
The optimization is to 1) maximize the margin between the hyperplane to the
support vectors, namely, these training examples that are closest to the hyper-
plane, and 2) minimize the penalty incurred from misclassification. For data
that are not linearly separable, the kernel technique can be used, which maps
the input to a higher dimension space (called feature space), where the data
become linearly separable. Once trained, an unseen data point can be mapped
to the input space or the feature space, and based on its relative position to
the hyperplane, its classification can be correspondingly made: positive if on the
positive example side; negative if otherwise.

SVM have been successfully applied to many classification tasks in bioinfor-
matics, including cellular localization prediction, such as MultiLoc2 [9], SlocX [23],
APSLAP [24]. For our task, we adopted SVM with a linear kernel. Since the
multiple sequence alignment (see Fig. 2) does not show clear high conservation
patterns, we chose to use the alignment-free features to characterize the proteins
for classification, specifically the dipeptide features [8]. In our case, the choice of
dipeptide feature is a result of balancing the number of features and the number
of training examples: dipeptide features capture more information than single
amino acid composition and require less examples than tripeptide features and



higher order k-mers, which have a dimension at 8000 and higher and require
significantly more training examples.

The dipeptide features are the occurrence frequencies of all 400 possible
amino acid pairs in a given protein sequence. Let ZTgipeptide denote the dipep-
tide feature, then Zgipeptiae (4, j) is the frequency of ith and jth amino acid as a
neighboring pair to appear in the protein sequence. It is calculated as following:

count([aa;, aa;])
20 <20
> izt Zj:l count([aa;, aa;])

As a common practice, the dipeptide features are normalized as follows:

(1)

mdipeptide(i7 j) =

) Tdipeptide — Tdipeptide (2)
dipeptide— =
tpeptrae—norm Std(mdipeptid(i)

Although SVM with dipeptide features can be a powerful classifier, as shown
in literature [9,23,24], it is worth noting that dipeptide occurrence frequency
captures global features of the sequence as a whole and is hence not suitable
for picking up subtle features from within short regions that are nevertheless
important to the protein’s functions. And this issue is exacerbated with insuf-
ficient amount of positive training data. In such cases, many dipeptide pairs
may have zero counts in Eq. 1 — are these zeros real or will they become non
zero should enough training examples be available? Consequently, SVM trained
on these dipeptide features can be susceptible to overfitting and thus does not
generalize well on unseen data.

In our case, we have only eight PDLPs and the JMe region that is known
to contain PD-targeting signal is a very short region (around 30 amino acids
long) as compared with the whole sequence (up to 700 amino acids long). As
such, special attention should be paid to alleviate the aforementioned issues of
training SVM with dipeptide features, for otherwise it may give rise to false
positive predictions for the sequences that have similar dipeptide features but
do not contain PD-targeting signals. Note that these issues are not unique only
for SVM but for any classifiers that rely on features from full length sequences.
For comparison, we also trained random forest classifier on dipeptide features,
and the performances between the two classifiers are comparable, with SVM
being slightly better.

2.2 3-States HMM on JMe

In contrast to the dipeptide approach of capturing more global information, the
hidden Markov model we designed is focused on JMe region in order to detect
PD-targeting signals that the web-lab mutagenesis experiments have suggested.
Based on the signature topology as shown in Figure 1, the JMe region of a
PDLP, or a potential PDLP such as type I transmembrane protein, can be easily
extracted by two step procedure: 1) finding protein’s transmembrane region via
various sophisticated tools such as TMDOCK [21] and TMMOD [20], and 2)
extracting 30 amino acids upstream of the transmembrane domtain in step 1.



Our hidden Markov model has the 3 states, denoted as «, £, and . State «
stands for PD-targeting signal A, and state  stands for PD-targeting signal B.
State v stands for everything else in the JMe region but the PD-targeting signals.
The hidden states transition connections of these 3 states are shown in Fig. 4.
The direct edge between state o and state [ is to allow the case in which there
are no linker residues between the two PD signals. Since we do not known for any
given residue, which of the three states it is — in other words, the training data
are unlabeled — we cannot train the HMM with counting as in a typical maximum
likelihood approach, or with a multiple sequence alignment as in typical profile
hidden Markov models for protein family classification. Instead, we adopted
Baum-Welch algorithm, which is an expectation maximization approach and
does not require the hidden states to be labeled in the training data [6].

After the model is trained, it is used for two tasks: 1) classifying PDLPs from
a set of 360 type I proteins in Arabidopsis thaliana; 2) decoding the JMe region,
i.e., marking out each residue as «, 8 or 7y state.

Fig. 4. 3-state HMM hidden states connections

It is worth to note that, because our 3-state HMM focuses on modeling
with JMe, the model loses the global picture of PDLP sequences. For example,
not every protein sequence with valid JMe region can be considered as PDLP.
Furthermore, because HMM is not a discriminative model, the boundary between
predicted positive and predicted negative is not readily given by the model and
hence can be fuzzy. In the next subsection, we proposed a way to combine SVM
and HMM, where we devised a mechanism to impose a threshold on HMM
prediction score.

2.3 Combination of SVM with HMM

From the two previous subsections, we can see that SVM is good at capturing
characteristic amino acid composition for full length sequences with dipeptide
features, but less effective for short sequences like JMe region. This can poten-
tially lead to false positive in predicting some protein sequences as PD targeting
even though these proteins do not contain PD-JMe region. The issue becomes
more apparent when testing the trained SVM to make de novo prediction of
PDLPs in large dataset, in which more proteins may contain dipeptide features
or even overall topology similar to that of the real PDLPs. On the other hand,
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Fig. 5. Pipeline to combine SVM and HMM.

because the HMM focuses on the JMe region exclusively, it loses other features
of PDLPs, e.g., it is found experimentally that a mutant without a proper JMi
can not even be synthesized.

As such, the shortcomings of SVM and HMM both can give false positive
predictions, but for different situations. The SVM tends to give false positive
predictions for the sequences with none-PD JMe and PD like dipeptide feature,
whereas HMM tends to give false positive predictions for the sequences with PD-
JMe but none-PD’s other domains because HMM only focuses on JMe region.
Therefore, it is sensible to combine SVM and HMM in a complementary way
that can overcome their shortcomings with their advantages. An option is to use
decision tree on the predictions from SVM and HMM alone to choose a better
one. However, due to the limited number of data samples, training decision tree
by traditional method did not work. Fortunately, with the understanding of SVM
and HMM in this particular task, we proposed a simple decision tree and the
decision boundary for each node can be calculated properly, without use of a
large training set.

The structure of combining SVM and HMM through decision tree to make
final prediction is shown in Fig. 5. The node of SVM’s decision boundary is natu-
rally defined by the support vectors in the trained SVM. The decision boundary
of HMM node is slightly tricky to define. Since we have the trained HMM model,
synthetic JMe sequences can be generated. Given a large number of synthetic
JMe sequences, their log-likelihoods follow a Gaussian distribution. By tradi-
tional statistic convention, 95% confidence interval is used, and we pick the
lower bound of the interval as the decision boundary of HMM node.

3 Results

3.1 Datasets

Dataset A contains 360 type I membrane proteins in Arabidopsis thaliana, in-
cluding the 8 PDLP sequences, all retrieved from Uniport [12]. From Uniport,
labels of protein cellular localizations and their transmembrane domain are ex-
tracted, which account for 7 different types of membrane proteins, including en-
doplasmic reticulum membrane, Endosome membrane, Golgi membrane, Plasma



membrane, Vacuole membrane, Vesicle membrane, and the PD membrane. Table
1 lists each cellular localizations and the number of proteins in that category.
In this work, for our purpose, the eight PDLPs are grouped into the other class
(PD) and the rest are lumped into one class (none-PD).

In order to train the HMM for the JMe region, a procedure described in the
Method section is applied to all sequences in the dataset to extract a valide JMe
region defined as 30 amino acids upstream of the transmembrane domain iden-
tified by TMMOD. This procedure eliminates Endosome and Golgi membrane
proteins from the dataset, as their JMe region is shorter than 30 amino acids.

Table 1. Different types of proteins in dataset A

protein localization|endoplasmic reticulum|Plasma|PDLP|Vacuole|Vesicle
number of proteins 17 322 8 7 6

To test the robustness of SVM and HMM in handling false positives, as
described in the Method section, we add to the dataset eight synthetic sequences,
which are the 8 PDLP sequences but with the origin JMe region being replaced
with random residues. Since JMe region contains PD-targeting signal, it is highly
confident that randomly replacing JMe region will lead to none-PD proteins. In
other words, these eight synthetic sequences are negative data. Dataset A plus
these eight synthetic sequences give rise to dataset B. Note that these eight
synthetic sequences will be only used for testing.

As there are only 8 PDLP sequences, the leave-one-out (or equivalently 8-
fold) cross validation scheme is adopted to ensure the maximum possible number
of training examples to train the models. Specifically, each one of the 8 PDLP se-
quences is reserved as a positive test example once, and the remaining 7 PDLPs
are used as positive training examples. The 352 none-PD sequences, as the nega-
tive examples, are randomly split into 8 subsets of equal size (44 sequences). One
negative subset is picked to combine with the positive testing example to form
the test set (45 sequences); and the remaining 7 negative subsets are merged
together to form the negative training set. Note that, for the HMM, no nega-
tive training examples are needed. When dataset B is used, the whole process is
the same, except that the synthetic none-PD sequences are repeatedly used as
testing data for each fold.

3.2 Performance Metrics

To test the trained hidden Markov model M (), the test examples from the 8-fold
cross-validation are combined and ranked by their prediction score P(xz|M(0)),
which is the likelihood for sequence z to be emitted from the model, calculated
from the Forward algorithm. If a threshold is set for the prediction score, test
examples with score above the threshold are classified as positive — they are
true positive (TP) if their ground truth label is positive; they are false positive



(FP) if otherwise. Similarly, test examples with score below the threshold are
classified as negative — they are true negative (TN) if their ground truth label
is negative; they are false negative (FN) if otherwise. We use receiver operating
characteristic (ROC) curve and ROC score, which is the area under the ROC
curve, to evaluate the performance. The ROC curve plots the true positive rate
against the false positive rate at the threshold sliding down the ranked list of
test examples [18]. ROC curve starts (0,0) and goes to (1,1) in a monotically
manner. The perfect classifier has ROC score 1.0, and a random classifier has
ROC score 0.5. When a natural choice of threshold is available, like the distance
to the the separating hyperplane in SVM, we also use the precision and recall
associated with that threshold to evaluate the performance.

3.3 Evaluation: SVM Alone

In this experiment, we train and test a SVM with linear kernel on dipeptide
features extracted from full length sequences. The ROC score from 8-fold cross-
validation is 1.0 for dataset A but drops to 0.8837 for dataset B, because of
misclassifying the synthetic none-PD as PD, which confirms the our concern
that SVM alone can be susceptible to the overfitting issue. As comparison, the
performance from a RF classifier is: ROC score = 0.9984 for dataset A and ROC
score = 0.9177 for dataset B.

3.4 Evaluation: HMM Alone

In this experiment, we train the 3-state HMM as described in the method section.
The trained HMM is then tested with 8-fold cross validation the ROC score is
0.93 for dataset A and is 0.9408 for dataset B. Unlike SVM, HMM’s performance
remains about the same for both datasets, confirming that HMM is more robust
with false positives.

For the decoding task, the standard Viterbi algorithm [19] is used to scan
the sequence against the model, trained with PDLP5 and ten of its orthologues,
to annotate which residues belong to which of the three states, o, 8 or «y. So
far, there is no ground truth available yet to directly evaluate the triple state
annotation within JMe, except for PDLP5 and BAK1, the latter of which is
experimentally confirmed as non PD targeting, see Fig. 6. It is very encouraging
that the experiments for PDLP5 validated the existence of two PD targeting sig-
nals and their delineation is consistent with the annotation made by the model.
More web-lab experiments are planned to validate model annotation of other
PDLP paralogs.

3.5 Evaluation: Combination of SVM and HMM

From the experimental results in subsection 3.3 and 3.4, it is clear that SVM is
susceptiable to the pitfall of misclassifying the synthetic none-PD, whereas HMM
is not affected. Also, by comparing the ROC score of SVM and HMM in dataset
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0.9997, and comparing with using HMM alone (green), SVM alone (blue)



A, SVM has better performance and it naturally gives a clear decision boundary.
In this experiment, we only focus on dataset B to show that by combining SVM
with HMM via decision tree, performance can be improved, as compared to
either SVM or HMM alone.

Fig. 7 shows the ROC curve for the method of combining SVM with HMM
(red) and the comparison with HMM (green) and SVM (blue) alone. The ROC
score of combining SVM with HMM is 0.9997. Moreover, the precision/recall
and ROC score comparison for all the three method for dataset B are shown in
table 2. For comparison, when SVM is replaced with RF, ROC score = 0.9169.

Table 2. Comparison for all method in dataset B

Method ROC score| precision recall

SVM with dipeptide feature 0.8837 0.1014 0.8750
HMM with JMe residues 0.9408 |not applicable/not applicable

Combining SVM with HMM|  0.9997 1.0000 0.8750

4 Conclusion and Future Work

In paper we presented computational approaches based on machine learning
techniques to solve a very challenging biological problem: detecting plasmodes-
mata targeting signals and identifying novel PDLP sequences. The challenges
arise from lack of clear sequence patterns, insufficient amount data, and unbal-
anced dataset. Without addressing these challenges, a straightforward applica-
tion of standard machine learning techniques can lead to unreliable prediction, as
demonstrated with using SVM on dipeptide features. In order to overcome these
challenges, we closely incorporated domain specific knowledge into our hidden
Markov model design, and devised a pipeline to leverage the predictive power
of different models to reduce false positives. As a result, we are able to detect
de novo PD targeting signals, verified by wet-lab experiments, and to classify
PDLPs with remarkably high accuracy.

It is worth noting that, in this study, we adopted some common practices
to avoid overfitting, such as the multi-fold cross-validation scheme and use of a
simple linear kernel versus a more powerful kernel in SVM. While the perfor-
mance from cross-validation as compared with training error does not indicate
overfitting, given the small positive training examples in this study, it is difficult
to know how well the trained classifiers will generalize to a large data set or data
from different genomes, especially in detecting de novo PD proteins, which are
actually being investigated in the web-lab experiments and no results to report
yet. On the decoding task with our HMM, half of the predicted PD targeting sig-
nals have already been verified to be correct in the web-lab experiments, which
are ongoing to verify the remaining predicted signals.



An online server will be deployed based the methods in the paper to assist
biologists discovering new PDLP members. With new discovered PDLP mem-
bers, an improved classifier can be built, which leads a positive feedback cycle
of PDLP prediction and new PDLP members discovery. For the signal detection
task, as the future work, the focus will be finding PD-targeting key residues in
JMe region by extracting knowledge from the HMM to help with understanding
the PD-targeting mechanism.
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