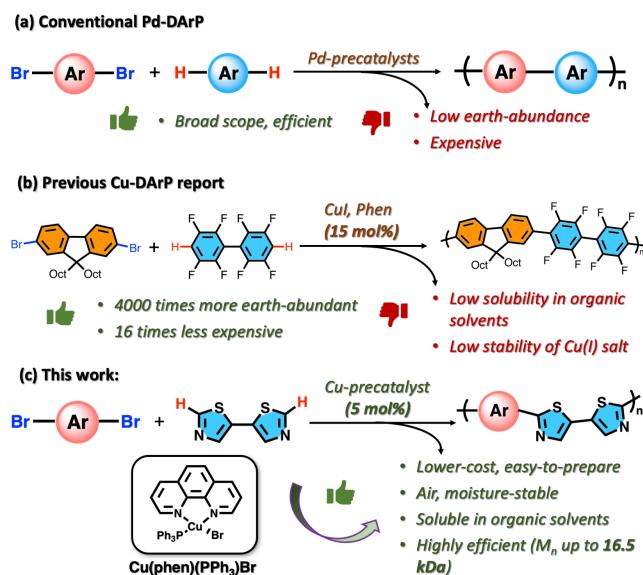


An Efficient Precatalyst Approach for the Synthesis of Thiazole-Containing Conjugated Polymers via Cu-Catalyzed Direct Arylation Polymerization (Cu-DArP)

Liwei Ye, Alexander Schmitt, Robert M. Pankow, Barry C. Thompson*


Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661.

ABSTRACT: Over the past decade, direct arylation polymerization (DArP) has emerged as a facile and sustainable methodology for the synthesis of conjugated polymers. Recently, we developed Cu-catalyzed DArP (Cu-DArP) as a low-cost, Pd-free synthetic pathway, which enables conjugated polymers to be synthesized with high molecular weights and minimization of defects. However, the lack of study on the use of Cu-precatalysts in small-molecule direct arylation poses significant limitations for Cu-DArP to potentially overtake conventional Pd-catalyzed methodology, such as the low solubility and stability of the previously employed CuI. Therefore, in this report, we decide to explore the utility of a well-defined, easy-to-prepare, highly-soluble and stable precatalyst, Cu(phen)(PPh₃)Br, as an alternative to the CuI, 1,10-phenanthroline catalytic system previously used for Cu-DArP. Herein, we report a drastic improvement of Cu-DArP methodology for the synthesis of 5,5'-bithiazole (5-BTz)-based conjugated polymers enabled by an efficient precatalyst approach, affording polymers with good M_n (up to 16.5 kDa) and excellent yields (up to 79%). ¹H NMR studies reveal the exclusion of homo-coupling defects, which further verifies the excellent stability of Cu(phen)(PPh₃)Br compared to CuI. Furthermore, we were able to decrease the catalyst loading from 15 mol% to only 5 mol% (M_n of 11.8 kDa, 64% yield), which is unprecedented when aryl-bromides are employed for Cu-DArP. Significantly, 5-BTz was shown to be inactive under various of Pd-DArP conditions, which demonstrates the high compatibility of Cu-DArP as the only pathway for the C-H activation of the 5-BTz unit and a clear case demonstrating an advantage of Cu-DArP relative to Pd-DArP.

For decades, conjugated polymers have been explored as an effective class of materials for a wide-range of applications such as organic photovoltaics (OPVs), organic light-emitting diodes (OLEDs), organic field effect transistors (OFETs), chemical sensors, and bioelectronics.¹⁻⁵ In recent years, Direct arylation Polymerization (DArP) has been found to provide a facile and environmentally-benign pathway for conjugated polymer synthesis by eliminating the need for toxic tin- or boron-functionalized monomers.⁶⁻¹¹ However, current DArP methodologies are reliant on catalysis by Pd, which is 4000 times less earth-abundant and 16 times more expensive in comparison to Cu.¹² To address this important issue of sustainability in DArP, we developed the first Cu-catalyzed DArP (Cu-DArP) conditions that allowed conjugated polymers to be prepared with high molecular weights (M_n up to 24.5 kDa) and minimized homocouplings or branching defects.¹³⁻¹⁵ Through careful optimization of reaction conditions, we were able to lower the Cu-catalyst loading and successfully employ aryl-bromides in place of the less stable and more expensive aryl-iodides, significantly improving and practicality of Cu-DArP towards the replacement of Pd-catalysts.¹⁵

However, unlike Pd-catalyzed protocols, which have been extensively studied to employ stable, efficient Pd-complexes as precatalysts such as $\text{Pd}_2(\text{dba})_3$, $\text{PdCl}_2(\text{PPh}_3)_2$, and Pd-(Herann-Beller) (Figure 1a),¹⁶ the use of Cu-precatalysts in Cu-catalyzed small molecule direct arylation has not been

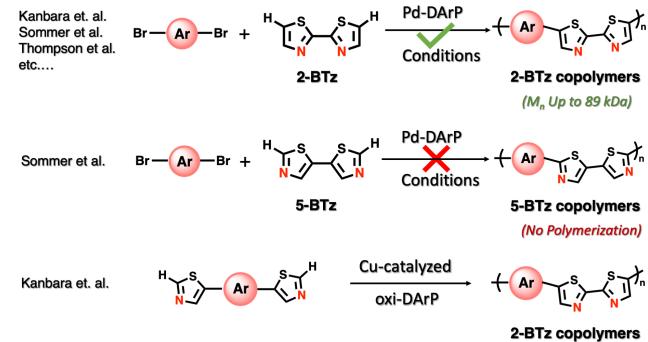
reported to the best of our knowledge.¹⁷ Pioneering studies in the field led by Daugulis et al., Miura et al., and You et al. utilized CuI as catalyst and phenanthroline or PPh_3 as ligand without any use of Cu -precatalysts.¹⁸⁻²¹ When transcribing

Figure 1. Summary of Pd-DArP and Cu-DArP development.

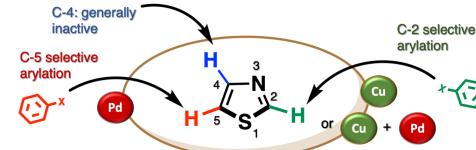
such conditions to polymerization methodology, the nature

of CuI as an inorganic salt exhibits certain drawbacks, which hinder Cu-DArP from potentially overtaking conventional Pd-catalyzed methodologies (Figure 1b). First, Cu(I) salts display low solubility in organic solvents,¹⁷ which likely leads to the need for polar amide solvents (such as N, N-dimethylacetamide, i.e. DMA) in our previous reports.¹³⁻¹⁵ Another drawback is the low stability of Cu(I) salts under the harsh conditions required for Cu-DArP (140 °C),¹⁷ which agrees with our experimental observations that green inorganic salts were formed after polymerizations in our previous studies (likely Cu(II) salts).¹³⁻¹⁵ These major drawbacks of Cu(I) salts previously adapted for Cu-DArP may have resulted in undesired side reactions and the need for higher Cu-catalyst loadings in our reports, especially when aryl-bromides were employed (15-50 mol%).¹⁵ Considering that the employment of Pd-precatalysts in Pd-catalyzed DArP has contributed considerably the development of the field, we envisioned the use of a well-defined, soluble, and stable Cu-precatalyst could enable us to access a more effective and versatile Cu-DArP methodology.

Cu(phen)(PPh₃)Br, is a chemically well-defined Cu(I) complex (Figure 1c), that was first synthesized and employed by Venkataraman et al. as a highly efficient Cu-precatalyst for the formation of aryl-nitrogen, aryl-oxygen, and aryl-carbon bonds.²² However, the use of Cu(phen)(PPh₃)Br in biaryl coupling reactions has not been reported to the best of our knowledge. It can be readily prepared simply by the addition of 1,10-phenanthroline (phen) ligand to a solution of tris(triphenylphosphine) copper (I) bromide. This Cu-precatalyst has been shown to display excellent stability in air and moisture, and is highly soluble in common organic solvents.²² Additionally, Cu(phen)(PPh₃)Br exhibits high structural resemblance to our previous Cu-DArP catalytic system (CuI, phen). Therefore, we identified Cu(phen)(PPh₃)Br as an ideal candidate for the further pursuit of our Cu-DArP studies.


While our previous Cu-DArP studies focused on fluorinated monomers such as 2,2',3,3',5,5',6,6'-octafluoro-4,4'-diphenylene,^{14,15} we turned our attention to thiazole-containing conjugated polymers due to their prevalence in organic electronics.²³ Specifically, electron-deficient bithiazole (BTz)-based conjugated polymers display improved charge-transport properties and stability in a variety of applications owing to their low highest occupied molecular orbital (HOMO) levels.²⁴ Furthermore, due to the reduced steric hindrance between repeating units and strong intermolecular S-N interactions, BTz units afford Donor-Acceptor (D-A) copolymers with more planar backbones and higher degrees of crystallinity.²⁵ Therefore, BTz units such as 2,2'-bithiazole (2-BTz) and 5,5'-bithiazole (5-BTz) have been proven to be attractive building blocks for materials applied in OPVs and OFETs.^{23,25,26}

However, while numerous reports have demonstrated highly effective Pd-DArP conditions for the synthesis of 2-BTz copolymers,²⁷⁻²⁹ the regio-isomeric 5-BTz unit is reported to be surprisingly inactive under a variety of Pd-DArP protocols by Sommer et al. (Figure 2a).²⁹ Although Kanbara et al. successfully activated the C-H bonds at the C-2 position of the thiazole unit via Cu-catalyzed oxidative direct arylation polymerization (oxi-DArP), the resulting polymeric outcomes are identical to 2-BTz copolymers synthesized via Pd-DArP (Figure 2a).³⁰ To the best of our


knowledge, the 5-BTz monomer has not been polymerized via DArP, presumably due to the lack of catalytic activity of Pd towards the C-H bond at the C-2 position.

Our research in the literature of small-molecule direct arylation studies reveals a similar reactivity pattern of the thiazole unit (Figure 2b). While Pd-catalysts are highly regio-selective towards C-5 arylation due to a lower activation en-

(a) Syntheses of 2-BTz and 5-BTz copolymers

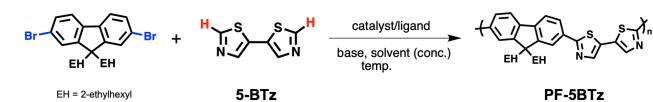

(b) Small-molecule direct arylation studies on thiazole

Figure 2. (a) Summary of different polymerization methods for BTz-containing conjugated polymers; (b) Summary of small-molecule selective direct arylation on thiazole unit.

ergy barrier (23.7 kcal mol⁻¹ vs. 26.3 kcal mol⁻¹ (C-2), respectively),^{31,32} C-2 arylation is selectively preferred when Cu(I) catalysts or Pd/Cu(I) co-catalytic systems are applied.^{18,33} This behavior can be explained by the strong Cu(I)-coordination from the N-3 site, which increases the acidity of the C-H bond at the C-2 position.³¹ Operating under this hypothesis, we were emboldened to pursue Cu-DArP as potentially the only methodology to access the C-H activation of the 5-BTz monomer (Scheme 1). Herein, we present the first 5-BTz copolymer, poly[(9,9-bis(2-ethylhexyl)fluorene-2,7-diyl)-alt-(5,5'-bithiazole)] (PF-5BTz), synthesized with high M_n and yields via Cu-DArP using a robust Cu-precatalyst approach.

As shown in Scheme 1, 2,7-dibromo-9,9-bis(2-ethylhexyl)-9H-fluorene was selected as a coupling partner to 5-BTz for our model study. Detailed description for the synthesis of Cu-precatalysts, monomers, and polymers can be found in the Supporting Information (SI). A DMA/m-xylene (1:1) co-solvent system was used based on our previous report, which demonstrated that it is critical for Cu-DArP to proceed using aryl-bromides.¹⁵ Daugulis et al. reported that the C-2 position of thiazole can be arylated with high yields using CuI, phen as the catalytic system and K₃PO₄

Scheme 1. Synthesis of PF-5BTz using 2,7-dibromo-9,9-bis(2-ethylhexyl)fluorene and 5-BTz (Conditions listed in Table 1).

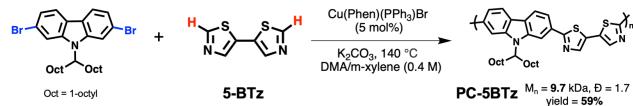
Table 1. Cu-DArP conditions for the synthesis of PF-SBTz and polymerization results.

entry	catalyst/liganda	cat. mol %	Base ^b	solvent ^c (conc.)	temp. (°C)	time (hr.)	M _n (kDa) ^d , Đ ^d	yield ^d (%)
1 ^e	CuI/phen	15	K ₃ PO ₄	DMA/m-xylene (0.4 M)	140	72	-	0
2 ^e	CuI/phen	15	tBuOLi	DMA/m-xylene (0.4 M)	140	72	-	0
3 ^e	CuI/phen	15	K ₂ CO ₃	DMA/m-xylene (0.4 M)	140	72	3.8, 1.5	36
4	Cu(phen)(PPh ₃)Br	15	K ₂ CO ₃	DMA/m-xylene (0.4 M)	140	16	16.5, 1.6	79
5	Cu(phen)(PPh ₃)Br	15	K ₂ CO ₃	DMA/m-xylene (0.2 M)	140	72	13.1, 1.7	65
6	Cu(neocup)(PPh ₃)Br	15	K ₂ CO ₃	DMA/m-xylene (0.4 M)	140	16	-	0
7	Cu(bipy)(PPh ₃)Br	15	K ₂ CO ₃	DMA/m-xylene (0.4 M)	140	16	-	0
8	Cu(phen)(PPh ₃)I	15	K ₂ CO ₃	DMA/m-xylene (0.4 M)	140	16	3.2, 1.7	29
9	Cu(phen)(PPh ₃)Br	5	K ₂ CO ₃	DMA/m-xylene (0.4 M)	140	16	11.8, 1.8	64
10	Cu(phen)(PPh ₃)Br	5	K ₂ CO ₃	m-xylene (0.4 M)	140	16	-	0
11 ^f	Cu(phen)(PPh ₃)Br	5	K ₂ CO ₃	DMA/m-xylene (0.4 M)	140	16	-	0
12 ^g	Pd(OAc) ₂	2	K ₂ CO ₃	DMA (0.04 M)	70	16	-	0
13 ^h	Pd ₂ (dba) ₃ /P(o-anisyl) ₃	1	Cs ₂ CO ₃	THF (0.2 M)	120	16	-	0
14 ^h	PdCl ₂ (PPh ₃) ₂ /P(o-anisyl) ₃	2	Cs ₂ CO ₃	CPME (0.2 M)	110	16	-	0

^aFor CuI, 99.999%-Puratrem Cu(I) iodide was used. phen = 1,10-Phenanthroline. neocup = Neocuproine. bipy = 2,2'-Bipyridine. ^bAll Cu-DArP (entries 1-10) were conducted using 4 equivalence of base. All Pd-DArP (entries 11-13) were conducted using 3 equivalence of base. ^cDMA = N,N-dimethylacetamide. THF = Tetrahydrofuran. CPME = Cyclopentyl methyl ether. ^dDetermined for polymer products after purification. ^eLigand loadings were 1:1 ratio to Cu(I) iodide. ^f2-BTz was used instead of 5-BTz. ^g0.3 equiv. of neodecanoic acid was used as an additive. ^hLigand loadings were 2:1 ratio to Pd-catalysts. 0.5 equiv. of neodecanoic acid was used as an additive.

or tBuOLi as base.^{18,19} However, desired polymerizations did not proceed under either conditions (Table 1, entry 1, 2), contrasting our previous reports in which K₃PO₄ provides the optimal conditions for Cu-DArP.^{14,15} After changing the base to a milder base, K₂CO₃, while keeping the same catalytic system (15 mol% CuI, phen), PF-5BTz was afforded with M_n of 3.8 kDa and a low yield (36%) (entry 3). ¹HNMR reveals a significant amount of acceptor-acceptor homocoupling (α) (detailed discussion is provided below), potentially due to the oxidative thiazole (C-H)/thiazole (C-H) coupling catalyzed by Cu(II), as reported by Kanbara et al.³⁰ This illustrates the instability of the CuI, phen catalytic system, which is prone to oxidation to form Cu(II).¹⁷ Remarkably, switching the Cu-catalyst to the aforementioned bench-stable, soluble Cu-precatalyst, Cu(phen)(PPh₃)Br, drastically improved the efficiency of the polymerization while keeping the same catalyst loading (15 mol%), affording PF-5BTz with an excellent M_n (16.5 kDa) and a good yield (79%) in only 16 hours (entry 4). ¹HNMR confirms no sign of α homocoupling, which is likely a result of an improved stability of Cu(phen)(PPh₃)Br, providing a stable Cu(I) source. By comparison with entry 3, this result further verifies reports by Venkataraman et al. that Cu(phen)(PPh₃)Br is a highly efficient, stable and soluble Cu-precatalyst for Pd-free cross-coupling chemistry.²² Decreasing the concentration of the polymerization while prolonging the reaction time to 72 hours did not improve the M_n or yield (13.1 kDa, 65%, respectively) (entry 5).

Venkataraman et al. also reported two analogous Cu-precatalysts, Cu(neocup)(PPh₃)Br and Cu(bipy)(PPh₃)Br, which can be prepared in the same fashion as Cu(phen)(PPh₃)Br (see SI for detailed synthesis of Cu-

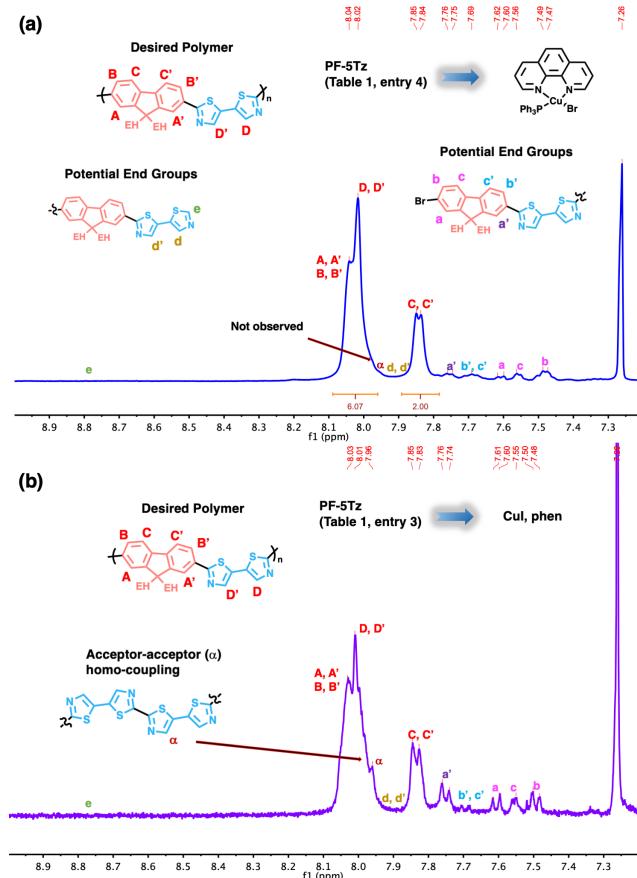

precatalysts).²² These species were also found to be robust in catalyzing cross-coupling reactions such as the formation of aryl-nitrogen and aryl-oxygen bonds.²² Despite the suppression of the desired polymerization found utilizing these two Cu-precatalysts (entry 6, 7), the ease of structural modification of Cu(phen)(PPh₃)Br can potentially impact the future development of Cu-DArP. This is in agreement with report by You et al. that phen is the most effective bidentate pyridinic ligand for Cu-catalyzed direct arylation.²¹ Additionally, we synthesized the iodo-counterpart of the Cu-precatalyst, Cu(phen)(PPh₃)I, which afforded PF-5BTz with a much lower M_n (3.2 kDa) and yield (29%), accompanied by the visible decomposition of the precatalyst (entry 8). By comparison, this demonstrates the thermal stability of Cu(phen)(PPh₃)Br, even under relatively harsh condition (140 °C).

Subsequently, with the optimal condition (entry 4) in hand for 15 mol% catalyst loading, we decided to probe a lower catalyst loading of 5 mol%, which afforded PF-5BTz with a good M_n of 11.8 kDa and a yield of 64% (entry 9). This result marks the first conjugated polymer synthesized by DArP using only 5 mol% of Cu-catalyst when an aryl-bromide is used as the coupling partner, which has significantly improved upon our previously disclosed Cu-DArP report.¹⁵ Next, we were interested to investigate the potential of using non-polar solvents such as m-xylene for the newly-developed Cu-DArP protocol without the use of an amide solvent (DMA), since Cu(phen)(PPh₃)Br was found to be soluble in common organic solvents, such as toluene.²² However, no polymer product was obtained, although oligomers likely formed based on an observed color change (entry 10). This result indicates that the role of DMA in Cu-DArP may not be

limited to the improvement of the solubility of Cu-catalysts. DMA has been demonstrated to form Pd-complexes and serve as a critical component of the Pd catalytic system.³⁴ Similarly, DMA also likely facilitates Cu-DArP by playing a similar role as a ligand to form DMA-Cu(I)-complexes during the catalytic cycle. A control experiment was then performed by replacing the 5-BTz unit with a 2-BTz monomer, which completely inhibited the polymerization (entry 11). By comparison, a conclusion can be drawn that Cu-DArP conditions preferably activate the C-2 positions of the 5-BTz unit, as opposed to their inability to activate the C-5 positions of the 2-BTz unit, which is in agreement with small-molecule studies (Figure 2b).^{18,31}

Having achieved an unprecedented 5-BTz copolymer synthesis via DArP using a Cu-precatalyst strategy, we were intrigued to further confirm the inactivity of the 5-BTz monomer under Pd-DArP protocols, as reported by Sommer et al.²⁹ Three different Pd-DArP conditions were attempted for the synthesis of PF-5BTz (entry 12-14). The selected conditions have been proven to be versatile to afford a variety of conjugated polymer structures, including homo-polymers and D-A copolymers with minimal homo-couplings or defects using different Pd-catalysts.^{10,12} Interestingly, no polymer product was obtained when these Pd-DArP conditions were employed (entry 12-14). These results verify our assumption that the C-H activation of the 5-BTz monomer unit can only be achieved by Cu-catalysts, which is a significant step forward for Cu-DArP to potentially rival Pd-catalyzed methodology.

Finally, to probe the scope of the developed Cu-DArP method, we turned our focus to the synthesis of a carbazole-containing conjugated polymer, poly[(N-9'-heptadecanyl-2,7-carbazole)-alt-(5,5'-bithiazole)] (PC-5BTz) (Scheme 2). By using only 5 mol% of Cu(phen)(PPh₃)Br, PC-5BTz was afforded with a moderate M_n of 9.7 kDa and yield of 59%. Taking into account that a 9-heptadecyl side-chain was used instead of the more soluble bis(2-ethylhexyl) side-chain in PF-5BTz, we presumed a lower solubility of PC-5BTz was the main reason for a slightly lower M_n and yield.



Scheme 2. Synthesis of PC-5BTz.

¹HNMR spectroscopy studies were performed to characterize and confirm the proposed polymer structures. All recorded ¹HNMR data for Table 1 and Scheme 2 is available in the SI. Figure 3 shows detailed peak-assignments, including end-group and defect analyses of two representative polymers (PF-5BTz) synthesized using Cu(phen)(PPh₃)Br (Table 1, entry 4) and CuI, phen employed in our previous reports (Table 1, entry 3).¹³⁻¹⁵ The major resonances of PF-5BTz match with that previously synthesized via Pd-catalyzed oxi-DArP with resonances centered at 88.02 and 87.84 (ppm).³⁵ The integration ratio of these major resonances can be accurately assigned to protons of PF-5BTz repeat unit (see Figure S8-S11 in the SI). This indicates the absence of branching and cross-linking defects embedding in the polymer structure, according to a report by Kanbara et al.³⁰ The assignments of end groups were performed by

comparing the collected PF-5BTz spectra to those of model compounds with similar structures.³⁵ α homo-coupling was assigned by comparing the ¹HNMR spectra of PF-5BTz to a BTz-based homo-polymer.^{36,37} A detailed discussion regarding these assignments can also be found in the SI (see section 8 of SI and Figure S13).

Importantly, as shown in Figure 3a, PF-5BTz synthesized via the newly-developed Cu-precatalyst approach (entry 4) display the absence of an α homo-coupling signal, which would be expected if a Cu(II) species were generated during the reaction based on the report by Kanbara et al.³⁰ This result suggest Cu(phen)(PPh₃)Br as a highly robust precatalyst to provide a stable Cu(I) source, preventing oxidation to

Figure 3. ¹HNMR analyses of representative polymers: (a) PF-5BTz (Table 1, entry 4) synthesized using Cu(phen)(PPh₃)Br and (b) PF-5BTz (Table 1, entry 3) synthesized using CuI, phen. Potential resonances for end groups and defects are denoted. α = acceptor-acceptor homocoupling (δ 7.96). Collected in CDCl₃ at 25 °C and 500 MHz.

Cu(II) from occurring. The addition of a PPh₃ ligand to the Cu-catalyst structure likely improves the oxidative stability of Cu(I), since similar behavior of phosphine ligands has been reported to stabilize Pd(0)/Pd(II) species in cross coupling reactions.³⁸ By comparison, PF-5BTz prepared using the previous Cu-DArP methodology (entry 3) exhibits a significant amount of α homo-coupling defect (δ 7.96) (Figure 3b). Furthermore, the absence of the terminal 5-BTz end-groups (d, d', e), a low M_n (3.8 kDa), and a significant amount of the fluorene end-groups (a-c') indicate the presence of the thiazole (C-H)-thiazole (C-H) oxidative coupling, likely

catalyzed by Cu(II) generated from an unstable Cu(I) source (CuI).³⁰

In summary, a novel precatalyst approach for Cu-DArP methodology has been presented, which allows for a drastic improvement for the synthesis of PF-5BTz. By replacing our previously reported CuI, phen catalytic system with an easy-to-prepare, soluble, and stable Cu-precatalyst, Cu(phen)(PPh₃)Br, the M_n of PF-5BTz was substantially improved from 3.8 kDa to 16.5 kDa with a yield increased from 36% to 79%. Structural analysis using ¹H NMR spectroscopy reveals the absence of α homo-coupling when Cu(phen)(PPh₃)Br was used, suggesting it as a highly stable Cu(I) source compared to CuI. This newly-developed Cu-DArP condition allows a decrease of Cu-catalyst loading from 15 mol% to 5 mol% to afford PF-5BTz with a good M_n of 11.8 kDa and a yield of 64%, which is the lowest when aryl-bromides were employed. Impressively, Cu-DArP was demonstrated as the only methodology to achieve the C-H activation of the 5-BTz unit, since the synthesis of PF-5BTz under various of Pd-DArP conditions were proven unsuccessful, which is in agreement with literature reports including polymer syntheses as well as small molecule studies. These results also demonstrate a clear example of a case where Cu-DArP proves more effective than Pd-DArP. Future work will focus on designing new Cu-precatalysts and further optimizing polymerization conditions to seek a broader substrate scope.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures including the synthesis and characterization for all monomers, polymers and Cu-precatalysts are included in the supporting information (SI). This material is available free of charge via the internet at <http://pubs.acs.org>.

AUTHOR INFORMATION

Corresponding Author

barrycth@usc.edu

ACKNOWLEDGMENT

This work was supported by the National Science Foundation (MSN under award number CHE1904650. Liwei Ye acknowledges the Dornsife/Graduate School Fellowship. We thank Professor Megan E. Fieser and Professor Rachel Segalman for their assistance with GPC measurements.

REFERENCES

- (1) Thompson, B. C.; Fréchet, J. M. J. Polymer–Fullerene Composite Solar Cells. *Angewandte Chemie International Edition*. **2008**, *47* (1), 58–77.
- (2) Veinot, J. G. C.; Marks, T. J. Toward the Ideal Organic Light-Emitting Diode. The Versatility and Utility of Interfacial Tailoring by Cross-Linked Siloxane Interlayers. *Acc. Chem. Res.* **2005**, *38* (8), 632–643.
- (3) Holliday, S.; Donaghey, J. E.; McCulloch, I. Advances in Charge Carrier Mobilities of Semiconducting Polymers Used in Organic Transistors. *Chem. Mater.* **2014**, *26* (1), 647–663.
- (4) McQuade, D. T.; Pullen, A. E.; Swager, T. M. Conjugated Polymer-Based Chemical Sensors. *Chem. Rev.* **2000**, *100* (7), 2537–2574.
- (5) Inal, S.; Rivnay, J.; Suiu, A.-O.; Malliaras, G. G.; McCulloch, I. Conjugated Polymers in Bioelectronics. *Acc. Chem. Res.* **2018**, *51* (6), 1368–1376.
- (6) Blaskovits, J. T.; Leclerc, M. C-H Activation as a Shortcut to Conjugated Polymer Synthesis. *Macromolecular Rapid Communications*. **2019**, *40* (1), 1800512.
- (7) Bohra, H.; Wang, M. Direct C-H Arylation: A “Greener” Approach towards Facile Synthesis of Organic Semiconducting Molecules and Polymers. *J. Mater. Chem. A*. **2017**, *5* (23), 11550–11571.
- (8) Wakioka, M.; Ozawa, F. Highly Efficient Catalysts for Direct Arylation Polymerization (DArP). *Asian Journal of Organic Chemistry*. **2018**, *7* (7), 1206–1216.
- (9) Dudnik, A. S.; Aldrich, T. J.; Eastham, N. D.; Chang, R. P. H.; Facchetti, A.; Marks, T. J. Tin-Free Direct C-H Arylation Polymerization for High Photovoltaic Efficiency Conjugated Copolymers. *J. Am. Chem. Soc.* **2016**, *138* (48), 15699–15709.
- (10) Gobalasingham, N. S.; Thompson, B. C. Direct Arylation Polymerization: A Guide to Optimal Conditions for Effective Conjugated Polymers. *Progress in Polymer Science*. **2018**, *83*, 135–201.
- (11) Ye, L.; Pankow, R. M.; Horikawa, M.; Melenbrink, E. L.; Liu, K.; Thompson, B. C. Green-Solvent-Processed Amide-Functionalized Conjugated Polymers Prepared via Direct Arylation Polymerization (DArP). *Macromolecules*. **2019**, *52* (23), 9383–9388.
- (12) Pankow, R. M.; Thompson, B. C. Approaches for Improving the Sustainability of Conjugated Polymer Synthesis Using Direct Arylation Polymerization (DArP). *Polym. Chem.* **2020**, *11* (3), 630–640.
- (13) Pankow, R. M.; Ye, L.; Thompson, B. C. Copper Catalyzed Synthesis of Conjugated Copolymers Using Direct Arylation Polymerization. *Polym. Chem.* **2018**, *9* (30), 4120–4124.
- (14) Pankow, R. M.; Ye, L.; Thompson, B. C. Sustainable Synthesis of a Fluorinated Arylene Conjugated Polymer via Cu-Catalyzed Direct Arylation Polymerization (DArP). *ACS Macro Lett.* **2018**, *7* (10), 1232–1236.
- (15) Ye, L.; Pankow, R. M.; Schmitt, A.; Thompson, B. C. Synthesis of Conjugated Polymers Using Aryl-Bromides via Cu-Catalyzed Direct Arylation Polymerization (Cu-DArP). *Polym. Chem.* **2019**, *10* (48), 6545–6550.
- (16) Hazari, N.; Melvin, P. R.; Beromi, M. M. Well-Defined Nickel and Palladium Precatalysts for Cross-Coupling. *Nature Reviews Chemistry*. **2017**, *1* (3), 0025.
- (17) Beletskaya, I. P.; Cheprakov, A. V. Copper in Cross-Coupling Reactions: The Post-Ullmann Chemistry. *Coordination Chemistry Reviews*. **2004**, *248* (21), 2337–2364.
- (18) Do, H.-Q.; Daugulis, O. Copper-Catalyzed Arylation of Heterocycle C-H Bonds. *J. Am. Chem. Soc.* **2007**, *129* (41), 12404–12405.
- (19) Do, H.-Q.; Khan, R. M. K.; Daugulis, O. A General Method for Copper-Catalyzed Arylation of Arene C-H Bonds. *J. Am. Chem. Soc.* **2008**, *130* (45), 15185–15192.

(20) Yoshizumi, T.; Tsurugi, H.; Satoh, T.; Miura, M. Copper-Mediated Direct Arylation of Benzoazoles with Aryl Iodides. *Tetrahedron Letters*. **2008**, *49* (10), 1598–1600.

(21) Zhao, D.; Wang, W.; Yang, F.; Lan, J.; Yang, L.; Gao, G.; You, J. Copper-Catalyzed Direct C Arylation of Heterocycles with Aryl Bromides: Discovery of Fluorescent Core Frameworks. *Angewandte Chemie*. **2009**, *121* (18), 3346–3350.

(22) Gujadhur, R. K.; Bates, C. G.; Venkataraman, D. Formation of Aryl–Nitrogen, Aryl–Oxygen, and Aryl–Carbon Bonds Using Well-Defined Copper(I)-Based Catalysts. *Org. Lett.* **2001**, *3* (26), 4315–4317.

(23) Lin, Y.; Fan, H.; Li, Y.; Zhan, X. Thiazole-Based Organic Semiconductors for Organic Electronics. *Advanced Materials*. **2012**, *24* (23), 3087–3106.

(24) Osaka, I.; Takimiya, K.; McCullough, R. D. Benzobisthiazole-Based Semiconducting Copolymers Showing Excellent Environmental Stability in High-Humidity Air. *Advanced Materials*. **2010**, *22* (44), 4993–4997.

(25) Kim, D. H.; Lee, B.-L.; Moon, H.; Kang, H. M.; Jeong, E. J.; Park, J.-I.; Han, K.-M.; Lee, S.; Yoo, B. W.; Koo, B. W.; Kim, J. Y.; Lee, W. H.; Cho, K.; Becerril, H. A.; Bao, Z. Liquid-Crystalline Semiconducting Copolymers with Intramolecular Donor–Acceptor Building Blocks for High-Stability Polymer Transistors. *Journal of the American Chemical Society*. **2009**, *131* (17), 6124–6132.

(26) Guo, X.; Quinn, J.; Chen, Z.; Usta, H.; Zheng, Y.; Xia, Y.; Hennek, J. W.; Ortiz, R. P.; Marks, T. J.; Facchetti, A. Dialkoxybithiazole: A New Building Block for Head-to-Head Polymer Semiconductors. *Journal of the American Chemical Society*. **2013**, *135* (5), 1986–1996.

(27) Pankow, R. M.; Ye, L.; Thompson, B. C. Influence of an Ester Directing-Group on Defect Formation in the Synthesis of Conjugated Polymers via Direct Arylation Polymerization (DAP) Using Sustainable Solvents. *Polymer Chemistry*. **2019**, *10* (33), 4561–4572.

(28) Lu, W.; Kuwabara, J.; Kanbara, T. Synthesis of 4,4'-Dinonyl-2,2'-Bithiazole-Based Copolymers via Pd-Catalyzed Direct C–H Arylation. *Polymer Chemistry*. **2012**, *3* (12), 3217.

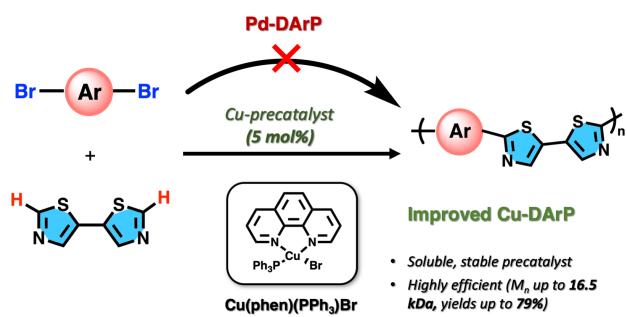
(29) Matsidik, R.; Giorgio, M.; Luzio, A.; Caironi, M.; Komber, H.; Sommer, M. A Defect-Free Naphthalene Diimide Bithiazole Copolymer via Regioselective Direct Arylation Polycondensation: A Defect-Free Naphthalene Diimide Bithiazole Copolymer via Regioselective Direct Arylation Polycondensation. *European Journal of Organic Chemistry*. **2018**, *2018* (44), 6121–6126.

(30) Faradhiyani, A.; Zhang, Q.; Maruyama, K.; Kuwabara, J.; Yasuda, T.; Kanbara, T. Synthesis of Bithiazole-Based Semiconducting Polymers via Cu-Catalysed Aerobic Oxidative Coupling. *Materials Chemistry Frontiers*. **2018**, *2* (7), 1306–1309.

(31) Gorelsky, S. I. Origins of Regioselectivity of the Palladium-Catalyzed (Aromatic)CH Bond Metalation–Deprotonation. *Coordination Chemistry Reviews*. **2013**, *257* (1), 153–164.

(32) Liu, X.-W.; Shi, J.-L.; Yan, J.-X.; Wei, J.-B.; Peng, K.; Dai, L.; Li, C.-G.; Wang, B.-Q.; Shi, Z.-J. Regioselective Arylation of Thiazole Derivatives at 5-Position via Pd Catalysis under Ligand-Free Conditions. *Organic Letters*. **2013**, *15* (22), 5774–5777.

(33) Huang, J.; Chan, J.; Chen, Y.; Borths, C. J.; Baucom, K. D.; Larsen, R. D.; Faul, M. M. A Highly Efficient Palladium/Copper Cocatalytic System for Direct Arylation of Heteroarenes: An Unexpected Effect of Cu(Xantphos)I. *Journal of the American Chemical Society*. **2010**, *132* (11), 3674–3675.


(34) Tan, Y.; Hartwig, J. F. Assessment of the Intermediacy of Arylpalladium Carboxylate Complexes in the Direct Arylation of Benzene: Evidence for C–H Bond Cleavage by “Ligandless” Species. *Journal of the American Chemical Society*. **2011**, *133* (10), 3308–3311.

(35) Guo, Q.; Wu, D.; Jingsong, Y. Oxidative Direct Arylation Polymerization Using Oxygen as the Sole Oxidant: Facile, Green Access to Bithiazole-Based Polymers. *ChemSusChem*. **2016**, *9*, 2765–2768.

(36) Kuwabara, J.; Kuramochi, M.; Liu, S.; Yasuda, T.; Kanbara, T. Direct Arylation Polycondensation for the Synthesis of Bithiazole-Based Conjugated Polymers and Their Physical Properties. *Polymer Journal*. **2017**, *49* (1), 123–131.

(37) Lombeck, F.; Komber, H.; Gorelsky, S. I.; Sommer, M. Identifying Homocouplings as Critical Side Reactions in Direct Arylation Polycondensation. *ACS Macro Lett.* **2014**, *3* (8), 819–823.

(38) Xue, L.; Lin, Z. Theoretical Aspects of Palladium-Catalysed Carbon–Carbon Cross-Coupling Reactions. *Chem. Soc. Rev.* **2010**, *39* (5), 1692–1705.

