FPGA-Based Latency-Insensitive OFDM Pipeline for
Wireless Research

James Chacko, Cem Sahin, Danh Nguyen, Doug Pfeil, Nagarajan Kandasamy, and Kapil Dandekar
Drexel Wireless Systems Lab, Electrical and Computer Engineering
Drexel University, Philadelphia, PA 19104
Email:{jjc652, cs486, dnguyen, dsp36, kandasamy, dandekar} @drexel.edu

Abstract—This paper develops a programmable hardware
implementation of the physical layer for cognitive wireless com-
munication systems that use orthogonal frequency division mul-
tiplexing (OFDM) schemes. Data-flows within hardware imple-
mented baseband architectures for all communication standards
are quite regular in nature, thereby enabling the construction of
fast, synchronized and optimized baseband systems on FPGAs.
We designed an OFDM pipeline comprising codec, modulation,
interleaving, piloting, channel estimation, and IFFT stages in
which each stage can be configured at design time or at run
time to accommodate different communication standards as well
as different configuration settings for a single standard—a key
feature necessary for dynamic spectrum sensing and utilization.
This flexibility in hardware is achieved by designing each in-
dividual stage with room for scaling/modification and having
the overall pipeline be insensitive to the latencies incurred by
individual pipeline stages. This is done by using stallable stages
with centralized control through cross communication between
modules both directly and indirectly using code running on the
MicroBlaze processor. The OFDM pipeline is implemented on a
Xilinx Virtex-6 FPGA and its performance is characterized in
terms of functional correctness and FPGA implementation area
cost. Experimental results and preliminary simulations of our
FPGA based design can run at flexible coding rates of 1/2 and
3/4 with modulation schemes of 4QAM and 16QAM respectively.

Keywords—OFDM Pipeline, Experimentation, Algorithms,
Physical Layer, Software Defined Radio, Architecture Design

I. INTRODUCTION

Defining ‘software’ in software defined radio (SDR) is truly
a challenge, and in the extensive research done in this area,
there is no clear distinction in its implementation which can
either be more tuned to software over hardware. The core
ideology behind a research-oriented SDR is a system whose
communication modules/algorithms can be easily modified or
even completely re-engineered to test and prototype research
ideas with faster turnaround times. The benefits of using a
more software-oriented SDR for research is mainly the ease
of implementation, but this approach typically cannot achieve
real-time speeds compared to its hardware implementation.
Examples of such software-based systems are WARPLab [1]
and SORA [13] that allow the user to program the baseband
physical (PHY) layer in software, and use radio frontends
for transmission and reception. On the other hand, hardware
implementations are very time consuming to implement and
often are even more difficult to change or modify than a sim-
ilar software-based implementation. For instance, the Scalable
Communications Core baseband system on a chip (SoC) [8]
can be used to implement baseband systems of different

978-1-4799-6233-4/14/$31.00 ©2014 IEEE

SOFDM

Virtex-6 FPGA

—y

Conv Symbol
Encoder Mapping]

Piloting =] IFFT

OFDM TX Data Path

Channel
Model

Symbol
€] De- |&
mapping

OFDM RX Data Path

Viterbi
Decoder

De-

Piloting <] FFT

Register
Interface

Block
Controller

Functional Element | ——>

FIFO

Fig. 1. The above image shows the modular breakdown of the entire
system. The image only shows few of the implemented blocks and depicted
to elaborate the overall system flow

standards with a network on chip (NoC) architecture [9]
between functional modules implemented with coarse grained,
heterogeneous and programmable accelerators. Such a system
is purely aimed at achieving a scalable wireless baseband
but lacks the capability for flexibility, outside the preassigned
standards, for prototyping newer techniques involved with
research platforms.

Where do we draw the balance between software and
hardware implementation of the SDR? An ideal system would
have the software-based flexibility and hardware-based speeds.
The system must also be easily reconfigurable for research
needs and focus has to be put into deciding where to build
in this aspect of reconfigurability, either be on software side,
the hardware side, or both. More importantly, the introduction

Authorized licensed use limited to: Drexel University. Downloaded on May 11,2021 at 02:31:23 UTC from IEEE Xplore. Restrictions apply.

of reconfigurability comes at the price, in terms of added
complexity and area/time overhead, of engineering the com-
munication backbone necessary to control the overall system,
as is the case with the technique introduced in AIRBLUE [11]
for cross-layer communication.

This paper develops a programmable hardware implemen-
tation, called Scalable OFDM (SOFDM), of a generic digital
baseband system for wireless protocols in a latency insensitive
fashion that can be easily configured by a higher-level software
layer and aims to facilitate research into SDR development,
specifically cognitive communication systems based on orthog-
onal frequency division multiplexing (OFDM) schemes. Fig. 1
shows selected blocks comprising the overall system as well
as the corresponding data flow. Our full implementation has all
the relevant blocks needed to realize OFDM-based schemes,
including channel estimation, carrier frequency offset, cyclic
prefix, and packet detection blocks. The closest system to the
one described in this paper, to our knowledge, is SDCR [7]
which implements a baseband architecture on a smaller scale
with the aim of building cognitive radio using dedicated
hardware for the computationally intensive communication
cores. Our system is another approach to defining a flexible
radio where the hardware itself has room for flexibility through
a software/data driven interface and therefore enabling research
involving prototyping directly to hardware. The proposed hard-
ware architecture supports flexibility and ease in maintaining
its functional correctness even if the latencies of individual
pipeline stages are changed, either at design time or at run time.
We envision it to be used for rapid prototyping of different
standards as well as run-time adaptation in both new and
known OFDM schemes.

The paper is organized as follows. Section II discusses
related work while Section III describes the key processing
blocks needed for OFDM-based SDRs. We develop the la-
tency insensitive architecture in Section IV and Section V
presents some experimental results. We conclude the paper in
Section VI with a discussion on future work.

Standard Encoder Modulation IFFT
rates scheme size
802.16 1/2, 2/3, 3/4, BPSK, 4-QAM, 128, 512,
WIMAX 5/6 16-QAM, 64-QAM | 1024, 2048
ECMA 368 | 1/2, 2/3, 3/4, BPSK, DCM 128
802.11n 1/2,2/3, 3/4, BPSK, 4-QAM, 64
WLAN 5/6 16-QAM, 64-QAM
802.11a 1/2,2/3, 3/4 BPSK, 4-QAM, 64
WLAN 16-QAM
TABLE L POSSIBLE CONFIGURATION SETTINGS FOR THE VARIOUS

STANDARDS.

II. RELATED WORK AND RESEARCH

A SDR platform mainly consists of two major layers apart
from the applications itself, namely the media access control
(MAC) and the physical (PHY) layers. The MAC layer consists
of packing, unpacking, error checking and transporting data
in a timely fashion to and from the communication baseband
which resides on the PHY layer below with the application
layer above it. While the MAC layer is a predominantly
straightforward implementation, the PHY layer can be consid-
ered the holy grail for research. The PHY layer, better referred

to as the baseband layer, is mainly divided into two areas
in any SDR system: a hardware focused area and a software
focused area. The hardware side mainly consists of antennas,
A/Ds and D/As and the software side consists of three groups
consisting of the filter stage, modem stage and the codec stage.
The software side is highly volatile and therefore significantly
different with respect to the different radio standards imple-
mented as it works with code libraries customized specific to
the needs before downloading processed data onto the board.
The filter stage focuses on enforcing band limitation and is
placed right before and after the D/A and A/D respectively.
The modem stage is also called the inner transceiver. It is the
most diverse amongst different standards and key in signal
conditioning, which involves rake reception, correlation, syn-
chronization, detection, equalization, FFT, OFDM, mapping,
de-mapping, matrix multiplications, inversions, etc. This is the
most intensively researched stage of SDR since it has room for
algorithm evolution to improve throughput and performance
leading to better performance within power constraints. The
codec stage is called the outer transceiver and takes care
of data manipulation outside the immediate frame/symbols
of data which involves encoding, decoding, interleaving, de-
interleaving and a variety of established channel algorithms
like Turbo, Reed-Solomon and Viterbi. This stage, which is a
heavily computational implementation of these kernels, makes
it a good area to provide hardware support to take it off the
critical path while implementing SDR.

A wide range of SDR platforms are available off the shelf
but are limited in their use due to various bottlenecks involv-
ing host-platform interface speeds [2], insufficient processing
power, and memory capacity. Platforms such as HYDRA [10]
and Microsoft SORA [13], though popular for promoting SDR
research, tie their users to predefined standards and speeds that
do not ensure their longevity given the current nature and pace
of SDR research. In particular, signal/data processing along
with algorithm development for newer techniques inclusive
of spectrum sensing, adaptive learning, SVD [14], etc in
SDR research is gaining increasing importance. Implementing
these newer techniques, however, requires flexibility within the
hardware fabric, as well as increased processing power and
memory/interface bandwidth—requirements not supported by
existing platforms.

Researchers have developed platforms supporting OFDM-
based standards, including the Wireless Open-Access Research
Platform (WARP) [1], AirBlue [11], and Software-defined
Cognitive Radio (SDCR) [7]. Though quite useful as a research
platform, WARP supports the 802.11a/g standards whereas
our architecture can be easily configured and flexible over
a larger number of standards and variations within specific
standards because of its standard independence at the modular
level . Similar to our proposal, AirBlue introduces a latency-
insensitive design as well for the OFDM pipeline but lacks
the ability to configure the individual stages at run time, and
therefore, cannot support a real-time adaptive OFDM PHY.
The SDCR platform supports a limited form of an adaptive
OFDM PHY in that only the modulation and FFT/IFFT stages
are configurable at run time. Our SOFDM design allows
all pipeline stages to be configured, including coding and
interleaving.

Individual stages within our SOFDM pipeline have been

Authorized licensed use limited to: Drexel University. Downloaded on May 11,2021 at 02:31:23 UTC from IEEE Xplore. Restrictions apply.

designed to achieve different data rates based on the con-
figuration settings chosen from Table I [6] [5] [3] [4].
The overall pipeline, however, must remain insensitive to the
latencies incurred by individual stages. We accomplish this
goal by introducing buffers within each stage and designing
the stages themselves to be stallable. Considering neighboring
pipeline stages as producer and consumer, we define stallability
as follows, the producer waits for the consumer to signal
its readiness prior to transferring data; the consumer starts
processing as soon as data is available in its local buffer; and
the producer stalls when the consumer’s buffer is full, which
occurs if the production rate exceeds the consumption rate. We
show how to design the appropriate synchronization/signaling
scheme and implement the SOFDM pipeline on a Virtex-6
FPGA clocked at 100 MHz. The performance is characterized
in terms of functional correctness (using waveforms) and the
area cost. Our implementation currently supports coding rates
of 1/2 and 3/4, the BPSK, 4-QAM and 16-QAM modulation
schemes, and OFDM symbol sizes of 32, 64, 512 and 1024.

Our adaptive OFDM system follows the hierarchical struc-
ture shown in Fig. 1 consisting of the host PC connecting to
the baseband implementation on a Virtex-6 FPGA with a Mi-
croBlaze that functions as the central controller. Further down
the hierarchy, we can see the latency insensitive architecture
built into every module incorporating the baseband system.

III. OVERVIEW OF THE SCALABLE OFDM
ARCHITECTURE

This section familiarizes the reader with a typical OFDM
architecture [12]. The hardware components comprise of the
antennas, A/Ds and D/As, whereas the programmable com-
ponents can be categorized into three major groups: filters,
modems and codecs. Filters focus on generating a band-limited
signal and are placed right before and after the D/A and A/D
stages. Modem performs signal conditioning which involves
rake reception and correlation (to mitigate the effects of mul-
tipath fading), synchronization, detection, equalization, FFT,
and OFDM. Codec stage is responsible for encoding and/or
decoding the digital data using error-correction algorithms
such as Turbo codes, Reed-Solomon, and Viterbi, as well as
interleaving and deinterleaving. The key functional stages of
the OFDM pipeline are explained below.

Encoder/Decoder: Given a set of input data, the convolution
encoder computes the corresponding codeword using a specific
generator polynomial (realized as XOR functions) and a de-
coder, such as the Viterbi, uses the same polynomial to predict
the most likely sequence of bits received.

Interleaver/Deinterleaver: The interleaver permutes data
across a block to improve the correction of burst errors and
average power across the symbol. Interleaving can be done
either via inter-symbol or intra-symbol permutation of data,
that is either between data within a single frame or between
data in adjacent frames. Similarly, the deinterleaver permutes
the received data back in order, based on the vector used for
interleaving at the transmission site.

Modulation/Demodulation: Modulation maps the input data
to real and imaginary values for the IFFT block to be con-
volved in the time domain. Conversely demodulation maps
the data received from the FFT block at the receiver back

into its constituent bits using a decision matrix tailored to
the underlying modulation rate. It is important to note that
the modulation/demodulation stage works on blocks of data to
function and therefore alignment has to be strictly controlled
during scaling.

IFFT/FFT: The OFDM baseband uses IFFTs at the transmit-
ter to code the data into subcarriers and FFTs to decode the
data off subcarriers at the receiver site. The OFDM symbol
size varies based on the standard being implemented and so
does the IFFT size. Another stage closely tied to the IFFT/FFT
block is piloting—the process of reading OFDM frames and
inserting known values into them as place markers for the
receiver to use to align incoming frames. The piloting stage
must create well-aligned frames for the IFFT/FFT block to
process in a timely fashion.

Finally, as noted in the Introduction, a typical hardware
based physical layer is not flexible since the pipeline stages
and associated control logic are tailored for specific standards.
Any change in the latency incurred by a stage due an attempt
to modify a module affects the rate, which, in turn, results in
incorrect pipeline operation. Other significant components that
were built for this project are as follows.

Zero Padding: Tt is important to have the functionality
to fit the entire input data into OFDM symbols. Since the
working frame size or blocks of data that traverse our system
is reconfigurable, a dynamic zero padder is necessary, where
its parameter is set using a single register. It is vital to have
the same parameter on the receiving end to ensure a working
depadder, which can be achieved either by transferring or by
calculating the value on the receiver. Padding done before the
encoder is not advisable since encoding dummy data inserted
for padding purposes would be waste of resources.

PLCB Header: Different standards have different header
sizes. The header module has been flexibly built to be able
to send a variable set of data right before the data payload. In
order to have a scalable receiver, the time required to set the
receiver chain will be quantized and the received data would
also be delayed and buffered till the receiver chain is ready.
The PLCB header is often sent using BPSK to ensure the
lowest error rates at the receiver even at high noise levels.

Piloting: The system has configurable parameters correspond-
ing to the pilot position, the pilot value, and the symbol size.
The flexibility developed into the piloting controller is used
to allow the implementation of non-contiguous OFDM by
allowing specific subcarriers to be nulled during processing.

Non-Contiguous OFDM (NC-OFDM): The system was built
with provision for selective loading of the subcarriers and
thereby capable of implementing NC-OFDM. This module is
designed so that the mapping vector can be modified (with
any desired value or null) for intelligent loading of subcarriers
based off a spectrum sensing module connected to this model’s
controller in the future.

Packet Framing: This is a vital part of the scalability of our
system, where various encoding, modulation rates and IFFT
sizes are supported. The system was build to compute and
calculate the various parameters based on initial conditions set
by the user for the system and then set every corresponding
control logic upon the set conditions automatically. At the

Authorized licensed use limited to: Drexel University. Downloaded on May 11,2021 at 02:31:23 UTC from IEEE Xplore. Restrictions apply.

Pipeline stage Configurable parameters
Encoder Coding rate, polynomial
Interleaver Inter symbol and Intra symbol interleaving
Modulation Modulation scheme, data mapping value
Piloting Pilot position, pilot value, symbol size
IFFT Symbol size, guard prefix
TABLE 1L THE VARIOUS CONFIGURABLE PARAMETERS SUPPORTED

BY THE PROPOSED SOFDM SYSTEM.

transmitter the data being produced is held in memory until
either a significant chunk or complete data is available for
transmission. Buffer sizing for cases where the user chooses
to send huge payloads therefore would have limitations based
on resources available for that particular setting.

Packet Detection: Packet detection is a computationally
expensive procedure at the receiver. It can be based either
on received average power or cross correlation of received
data with a known packet detection sequence. In this model
we built a multi point tap correlator to detect packet start,
keeping in mind the strict synchronization requirements to
prevent missed detections. The detector was made with simple
arithmetic without up-sampling data in order to keep the entire
system’s clock rate high at the expense of logic utilization on
the FPGA.

IV. LATENCY-INSENSITIVE PIPELINE

The SOFDM pipeline accommodates design time and run
time changes to the configuration parameters for the codec,
modulation, piloting, and IFFT stages. Table II lists few of
the various parameters of interest specific to each stage.

To seamlessly support the parameters listed in Table II,
the pipeline is designed to be insensitive to the latencies
incurred by individual stages. This is achieved by designing
stages to be stallable as shown in Fig. 2. Here we choose a
simple scheme wherein data is propagated among stages along
with a valid signal and a control bit that differentiates the
header from the payload. Pipe stages are managed by a global
controller to initiate packet processing using the PKT Start
and Global Enable signals, and bypass the functional
processing path using the Bypass signal if necessary. The
bypass function enables faster debugging, allowing end-users
to skip the functional processing path and simply pass on the
input data to the following stage and pinpointing the errors
through isolation. Each stage uses the generic architecture
shown in Fig. 2 and a brief discussion on each of the pipeline
stages follows.

Input Buffer: This buffer is realized as a FIFO that latches data
from the previous pipeline stage on an active Data Valid
signal. This buffer eliminates the functional dependency be-
tween pipe stages; each stage processes the available data at
its input and passes it on to the next stage. Thus, the processing
latency of a stage is independent of other stages in the pipeline,
assuming that data is available in the input buffer. The buffer
size at any stage is set to twice the number of data items
required to form an OFDM symbol.

Register Interface: The interface allows the software layer to
configure the SOFDM system in response to the prevailing
channel condition and data rate requirements. The interface
is implemented as a shared register block and is currently

managed via an in-house MATLAB code and through code
running on the MicroBlaze. The register values are updated
upon a write request without any latency and the shadow copy
of the register inside Functional Element is updated as per the
chosen polling scheme.

Block Controller: It manages the read datapath of Input Buffer
and generates the data format required by Functional Element.
The processing path of Functional Element is disabled until
enough data points are available in the buffer and the “ready
for data” (or RED) signal is asserted by the next stage. This
block also monitors the buffer size and asserts the RFD to
the previous stage. So, the RED serves as a stall indicator to
the previous stage of the pipeline, thereby avoiding a buffer
overflow.

Functional Element: This block processes the input data
and its functionality changes with each stage of the SOFDM
pipeline. For example, Functional Element in the encoder
stage performs convolution encoding supporting the data rates
listed in Table II and similarly this element within the
modulation stage performs symbol mapping. The data path and
the control path within Functional Element are stand-alone and
can be replaced with new functionality as along as the signals
generated by the above components are respected.

Apart from the major components discussed above, another
relevant factor to take into account is the buffer sizing. As we
discussed earlier, the SOFDM system is highly configurable to
support multiple standards. Different standards have different
throughputs depending on supported data rates. This would
need a change in the processing logic as well as data buffering
logic of the OFDM pipeline. Buffer sizes, which could sustain
throughput of one configuration, might not be compatible
for another configuration, thus resulting in throughput losses
necessitating a methodology to choose accurate buffer sizes.
This would also allow us to reduce the area and power of
the generated hardware. The buffer sizes at each stage of the
OFDM pipeline are governed by buffer size equations shown
in Table III.

V. EXPERIMENTAL SETUP AND RESULTS

The SOFDM system was built using Xilinx System Gener-
ator; a plug-in for MATLAB’s Simulink framework. Addition-
ally, Verilog was used to create custom hardware controllers
and elements that were not readily available from System Gen-
erator. After development with System Generator, the SOFDM
model was synthesized for a Xilinx ML605 development board
for the Virtex-6 FPGA. In the co-simulation setting, the design
uses MATLAB’s point-to-point Ethernet flow to send data
from MATLAB running on the host PC to the board and
received data back into MATLAB’s workspace for running
statistical comparisons on bit error rates. The main drawback to
using MATLAB’s co-simulation framework is the fact that the
connection speed is significantly low. However, this method is
the easiest to implement on the fly as flashing the board with
the changes is taken care of by MATLAB tool chain. There
are two other methods to connect to the board that uses the
Gigabit Ethernet connection and the PCle connection on the
ML605. The latter two connectivity options are much faster
and involves the transfer of our generated design into Xilinx’s
EDK environment and run controlled through MicroBlaze.

Authorized licensed use limited to: Drexel University. Downloaded on May 11,2021 at 02:31:23 UTC from IEEE Xplore. Restrictions apply.

L g L g
N £ Global Enable PKT Start N £
o o & o o &
- Global Signal from TX controller -
N N
] n o
t |z t |z
v bbb
Block Register Block Register
Controller Interface Controller Interface
—Data Valid-> —_ —Data Valid—> | |-, —Data Valid>
——Data—> Buffer ‘j Data: > Buffer |¢ I ——Data—>
—Control—» FIFO Control—> FIFO +—Control—>
Functional Element Functional Element
=Block Enable} Functional Block A —Block Enable Functional Block B
RFD
&— from Block A Ready for Data(RFD) from Block B b RFD from Block G—

Fig. 2. The design of a stallable pipeline stage showing the data flow as well as the control signals exchanged between neighboring stages for synchronization
purposes. The configuration parameters within a stage are also set by these control signals.

Pipe stage Buffer Size Equation Par ter Description
_ ENCgs : Encoder/Decoder Buffer Size
Encoder/Decoder ENCgs = MODgg x CODEgrATE CODEgars - Encoder coding rate
. . o MODsgsgs : Modulation/Demodulation Buffer Size
Modulation/Demodulation MODgs = PILOTgs X MODgraTE MODpare - Mapping rate, bits per mapped data point
Pilot/De-pilot PILOTgs = (Nspp) X L PILOTgs : Pilot/De-pilot Buffer Size
IFFTgs : IFFT/FFT Buffer Size
_ Nspp : Number of Data Subcarriers
IFFT/FFT IFFTgs = (Nspp + Nso) x L Nso : Other Subcarriers (Pilots, Nulls)
L : Number of Symbols to be buffered
for sustained throughput
TABLE III. EQUATIONS FOR DETERMINING BUFFER SIZES WITHIN EACH OF THE PIPELINE STAGES.
Scatter Plot at Reciever, 4QAM Modulation Scheme Scatter Plot at Reciever, 16QAM Modulation Scheme

15 . . . : 15 .) : : .

o e
e . .

s Ny,
.
7l i’** ______ & ’W’ i
7
R, e i i

0&r

Quadrature Amplitude
o
Quadrature Armplitude

05 05

Fig. 3. Constellation mappings corresponding to the 4QAM and 16QAM modulation schemes as seen at the receiver through an AWGN channel built on the
Virtex-6 FPGA.

We have been using the co-simulation framework for quick flow involved the following steps:
simulation and the Gigabit ethernet for longer runs while the
PCle interface is still under development. The results in this
section are generated using the co-simulation flow to capture °
modular control data and verify our designs. This design
verification process shows the significance of our design as
a wireless research platform where modules and algorithms
can be added, tweaked or deleted with relative ease having

granular access to every working element. °

o Code Implementation using MATLAB scripts
Simulink Implementation, where the blueprints are laid

o System Generator Implementation, where the module
controllers in Verilog/VHDL are written and tested.
This step takes the longest time.

SOFDM Testbed is then created to run all the imple-

. mented modules together.
Each stage of the SOFDM system was separately built and

tested for its correctness and configurability before being inte-
grated into the final SOFDM system. The module development

For validating the data transmission process we send a
greyscale picture and numbers from a free running counter

Authorized licensed use limited to: Drexel University. Downloaded on May 11,2021 at 02:31:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Waveform showing how a stall caused by the piloting block propagates backwards through the various pipeline stages. The propagation is indicated by

a sequence of numbered arrows.

and crosschecked the results. SOFDM implementation also has
packet detection, channel estimation, frequency/phase correc-
tion, scrambler, equalizer, scaling blocks with other fine tuning
blocks integrated into the model. The programmable registers
are globally located in the design and are currently either
changed manually before running or populated through startup
scripts from MATLAB after which its controlled through
MicroBlaze based on user inputs either during initialization
or at runtime.

Resource Name | Count % Ultilization
LUT’s 18645 12
FF’s 15891 5
BRAM’s 37 8
Mult/DSP48 29 3

TABLE IV. RESOURCE UTILIZATION OF THE SOFDM SYSTEM ON THE

VIRTEX-6 LX240T FPGA.

Fig. 4 shows the synchronization signals exchanged be-
tween the various stages of the SOFDM pipeline in terms
of the RFD and Data Valid signals. The waveform shows
that when the piloting block pulls down the pilot_rfd
signal indicating that it can no longer accept input data,
the modulator block acknowledges this by pulling down the
modulator_data_valid signal, thereby not sending new
data. This stalling affect is propagated through the entire
pipeline. In order to capture control data on the host PC, the
design is clocked at 100 MHz, where the limitation is imposed
by the co-simulation interface. However, the place-and-route
timing analysis on just the SOFDM pipeline indicates that it is
capable of running at 150 MHz. This validates the functional
correctness of our design and also opens new realms where the
introduction of flexible hardware can be significantly used in
researching newer areas like bit-loading and cognitive radios.
Finally, Table V lists the logic utilization of the mapped design
on the Virtex-6 LX240T FPGA. The area is significant as it
only utilizes less than 25% of the FPGA leaving area on the
fabric for future research applications.

VI. CONCLUSIONS AND FUTURE WORK

We have developed an SOFDM pipeline capable of seam-
lessly accommodating different standards and different config-
uration settings for a single standard. The pipeline architecture
is designed to be insensitive to the latencies incurred by its
individual stages. We have developed and validated the syn-
chronization scheme and demonstrated an implementation of
the pipeline on a Virtex-6 LX240T FPGA. It currently supports
multiple coding rates, modulation schemes, and OFDM symbol

sizes, with the provision to scale further. Also, the system’s
flexibility in terms of selective loading of the subcarriers makes
it a suitable platform for research in adaptive spectrum sensing
and cognitive communication. In future work, we will further
reduce the end-to-end pipeline latency by optimizing the input
buffer sizes within each stage, and by accelerating the piloting
and decoder blocks.

ACKNOWLEDGMENT

This project is supported by the National Science Founda-
tion through grants CNS-0854946 and CNS-0923003.

REFERENCES

[11 ”"Rice University WARP - Wireless Open-Access Research Platform
(WARP).” http://warp.rice.edu.

[2] GNU Radio Overview. http://gnuradio.org/redmine/projects/gnuradio.

[3] "ECMA-368, Standard:High rate ultra wideband PHY and MAC stan-
dard, 3rd Edition, December 2008.”.

[4] ”MBOA standard, MultiBand OFDM Physical Layer Proposal for IEEE
802.15.3a, September 2004.” http://www.wimedia.org/imwp/idms/.

[5] 1IEEE 802.16-2009 standard for local & metropolitan area networks part
16: Air interface for broadband wireless access systems. 2009.

[6] IEEE 802.11 standard for wireless lan medium access control (mac) &
physical layer (phy) specifications, 2012.

[7]1 A. Dutta, D. Saha, D. Grunwald, and D. Sicker. An architecture for
software defined cognitive radio. In Symp. Architectures for Networking
& Communications Syst. (ANCS), pages 1-12, oct. 2010.

[8] J. Hoffman, D. Ilitzky, A. Chun, and A. Chapyzhenka. Architecture of
the scalable communications core. In Proc. Symp. Networks-on-Chip,
pages 40-52, may 2007.

[9] P Jing-wei and Y. Bo. A new fabric of dynamic noc for communication
in reconfigurable devices. In Proc. Conf. Computer Technology &
Development, pages 590-593, nov. 2009.

[10] K. Mandke et al. Early results on Hydra: A flexible MAC/PHY multihop
testbed. In Vehicular Technology Conference, 2007. VIC2007-Spring.
IEEE 65th, pages 1896-1900, 2007.

[11] M.-C. Ng et al. Airblue: A system for cross-layer wireless protocol
development. In Symp. Architectures for Networking & Communications
Syst. (ANCS), pages 1-11, oct. 2010.

[12] H. Schulze and C. Lueders. Theory and Applications of OFDM and
CDMA: Wideband Wireless Communications. Wiley, Hoboken, NJ,
2005.

[13] K. Tan et al. Sora: high performance software radio using general
purpose multi-core processors. In Proc. USENIX Symp. Networked
Systems Design & Implementation (NSDI), pages 75-90, 2009.

[14] Y. Wang, K. Cunningham, P. Nagvajara, and J. Johnson. Singular value
decomposition hardware for mimo: State of the art and custom design.
In Proc. Conf. Reconfigurable Computing & FPGAs, pages 400-405,
2010.

Authorized licensed use limited to: Drexel University. Downloaded on May 11,2021 at 02:31:23 UTC from IEEE Xplore. Restrictions apply.

