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• Drought in the Horn of Africa threatens
access to water for millions.

• Telemetry-connected sensors installed
on 480 electrical groundwater pumps.

• Expert and machine learning systems
designed to identify the functionality of
pumps.

• Pump status sensitivity of 84% for the
machine learner, 82% for expert classi-
fier.

• In practice, could result in a 40% reduc-
tion in the relative risk of pump
downtime.
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The prevalence of drought in the Horn of Africa has continued to threaten access to safe and affordable water for
millions of people. In order to improve monitoring of water pump functionality, telemetry-connected sensors
have been installed on 480 electrical groundwater pumps in arid regions of Kenya and Ethiopia, designed to im-
provemonitoring and support operation andmaintenance of these water supplies. In this paper, we describe the
development and validation of two classification systems designed to identify the functionality and non-
functionality of these electrical pumps, one an expert-informed conditional classifier and the other leveraging
machine learning. Given a known relationship between surface water availability and groundwater pump use,
the classifiers combine in-situ sensor data with remote sensing indicators for rainfall and surface water. Our val-
idation indicates a overall pump status sensitivity (true positive rate) of 82% for the expert classifier and 84% for
the machine learner. When the pump is being used, both classifiers have a 100% true positive rate performance.
When a pump is not being used, the specificity (true negative rate) is about 50% for the expert classifier and over
65% for the machine learner. If these detection capabilities were integrated into a repair service, the typical up-
time of pumps during drought periods in this region could potentially, if budget resources and institutional incen-
tives for pump repairs were provided, result in a drought-period uptime improvement from 60% to nearly of 85%
- a 40% reduction in the relative risk of pump downtime.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
as), daniel.wilson@sweetsensors.com (D. Wilson), styvers.kathuni@sweetsensors.com (S. Kathuni), anna.libey@colorado.edu
ati), jeremyrcoyle@gmail.com (J. Coyle).

.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2021.146486&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.scitotenv.2021.146486
mailto:evan.thomas@colorado.edu
mailto:daniel.wilson@sweetsensors.com
mailto:styvers.kathuni@sweetsensors.com
mailto:anna.libey@colorado.edu
mailto:pranav.chintalapati@colorado.edu
mailto:jeremyrcoyle@gmail.com
https://doi.org/10.1016/j.scitotenv.2021.146486
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


E. Thomas, D. Wilson, S. Kathuni et al. Science of the Total Environment 780 (2021) 146486
1. Introduction

The prevalence of drought in the Horn of Africa has continued to
threaten access to safe and affordable water for millions of people. Cli-
mate change has exacerbated water insecurity, increasing both the fre-
quency and severity of droughts in this region, resulting in millions of
people experiencing food insecurity (Funk et al., 2015a; Nicholson,
2014; Shabelle, 2011; Uhe et al., 2017). The economic and public health
effects of droughts are further intensified by limited community capac-
ity and institutional failures that affect the management of water infra-
structure, leading to crop failures, displacement of people and
disruption of migratory patterns (MacAllister et al., 2020;
Knippenberg and Hoddinott, n.d.; Lolemtum et al., 2017; Nthambi and
Ijioma, 2020; Bahru et al., 2019; Liou and Mulualem, 2019).

Historical drought support in the Horn of Africa has involved reac-
tive response through emergency aid from international donors and
multilateral organizations. However, proactive and preventive mea-
sures are estimated to save hundreds of millions of dollars when com-
pared to emergency relief efforts (Venton, 2018; Godfrey and
Hailemichael, 2017). Ensuring the availability of groundwater in strate-
gic locations ahead of drought conditions can help prevent the need for
emergency response while reducing some of the household and eco-
nomic water stress (MacAllister et al., 2020; Thomas et al., 2020a;
Macdonald et al., 2019; Tucker et al., 2014; Calow et al., 2010). Localized
monitoring is imperative to ensuring prioritized and expedited actions
are taken ahead of droughts in order to improve water security.

In a recent paper in this journal, we examined patterns in use of
groundwater boreholes in northern Kenya and Afar Ethiopia, and com-
pared these patterns to rainfall trends in the region.We observed in sta-
tistical models containing rainfall as a binary variable, a overall 23%
increase in borehole runtime following weeks with no rainfall com-
pared to weeks preceded by some rainfall. Further, a 1 mm increase in
rainfall was associated with a 1% decrease in borehole use the following
week. These trends reflect behavioral choices to use surface water
sourceswhen available, and do not, generally, reflect an intrinsic hydro-
logic relationship between rainfall and aquifer recharge (Thomas et al.,
2019). Another recent study in this journalwhich investigated the influ-
ence of rainfall on handpump use in Kenya had similar observations,
finding thatwet seasonhandpumpusewas 1/3rd lower than dry season
use (Thomson et al., 2019).

Across sub-Saharan Africa, groundwater resources and recharge are
considerable, and a significant source of future water security for the
continent (MacDonald et al., 2021; Banks et al., 2020). In Afar,
Ethiopia, the volcanic aquifers are recharged through annual runoff
and therefore susceptible to drought conditions, though many are lo-
cated 60-160m below the surface andmay not run dry even during pe-
riods of drought (Borgomeo et al., 2018; Kebede et al., 2008). In Kenya,
several examinations suggest the groundwater is fossil in nature, lo-
cated 100 m or more beneath the surface, and not as susceptible to
drought as shallow aquifers. While the use of fossil aquifers pose
water quality and sustainability challenges, estimates have suggested
that there is enough water to supply all of Kenya for 70 years
(Gramling, 2013). These pumps are powered either through the electri-
cal grid, diesel generators, or solar power. The average yield of these
pumps in both Ethiopia and Kenya are about 18–19 m3/h, with a stan-
dard deviation of 20–21 m3/h (Thomas et al., 2019).

The Drought Resilience Impact Platform (DRIP) integrates early de-
tection and planning with proactive groundwater management to en-
sure water availability. Our previous work in Rwanda has shown that
localized monitoring from sensor-equipped hand pumps enabled local
service providers to increase functionality rates from 56% to 91%
(Nagel et al., 2015). Furthermore, we determined that machine learning
algorithms could be used to predict failures and achieve 99% uptime
(Wilson et al., 2017). We have also examined the institutional frame-
works supporting groundwater management as a means toward
drought resilience (Turman-Bryant et al., 2019), and determined that
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for real-time data to effectively improve water delivery, this
information must be integrated into local water management policies
and practices. In a recent publication, we describe the motivation,
stakeholders, theory of change, web-based decision support tool, and
operations of DRIP (Thomas et al., 2020b). This work builds on comple-
mentary efforts in this sector to use mobile technologies to improve
monitoring of rural water points (Thomson and Koehler, 2016;
Thomson et al., 2012; Thomson, 2020; Koehler et al., 2015; Koehler,
2018).

In this paper, we build on the observed relationship between rainfall
and borehole use, and describe the design and validation of several clas-
sification algorithms designed to identify a functional water pump (ca-
pable of delivering water on demand) from a non-functional pump
(broken, distinct from a pump not being used deliberately). As the hy-
drologic context and water use practices in this region are complex,
we demonstrate an approach to leverage statistical models instead of
mechanistic relationships to achieve this capability.

The expert classifier relies on explainable and consistent logic state-
ments establishing the relationship betweenmeasured parameters and
the classificationprovided,while themachine learner derives a complex
statistical model that, while potentially more accurate, has the
disadvantage of not being immediately comprehensible to a typical
user, a known limitation in machine learning (Roscher et al., 2020).
We further examine the potential to use these classifiers to support
condition-based maintenance. Condition-based maintenance has sev-
eral advantages over time based maintenance, especially the ability to
allocate limited maintenance resources where they are needed, instead
of spreading maintenance resources evenly, including where they may
not be needed (Ahmad and Kamaruddin, 2012).

2. Methods

Our operating context are electrical groundwater pumps in arid re-
gions of Kenya and Ethiopia, and a motivation to ensure a higher rate
ofwater pump functionality than the status-quo, recently observed dur-
ing the 2016–2017 drought as 55% in Kenya (UNICEF, 2017) and 60% in
Ethiopia (MacAllister et al., 2020).

At 480 of these pumps, we have installed electrical current sensors.
These sensors, which measure the runtime of the pumps by logging
the electrical current (amperage) delivered to the pump over time, are
Pressac brand wireless current transformers (CTs). The CTs transmit
their data to on-site cellular or satellite gateways, and then telemetry
is relayed to a central database and web application. Fig. 1 illustrates a
typical groundwater pump in northern Kenya (center) with an electri-
cal current transformer being installed on the control panel (left) and
the satellite or cellular telemetry gateway (right).

As of February 2021, 480 groundwater pumps are being monitored,
with over 830 pump-years of data combined, since the first installation
in January 2016. On average, each pump has 1.8 years of sensor col-
lected hourly runtime data. In total, thewater supplies of approximately
3 million people are being monitored on a daily basis.

The predictive algorithms described in this paperwere developed by
leveraging a combination of this in-situ and remotely sensed data, vali-
dated withmanually-collected ground-truth. The flowchart in Fig. 2 de-
scribes the operating conditions of the groundwater pump system. Each
pump has two primary real-world conditions - it is either “Functional”
and capable of delivering water, or it is “Broken” and cannot deliver
water without a repair or management intervention.

As a first-order approximation to distinguish functional versus bro-
ken conditions, our electrical runtime sensors indicate if the pump is
switched on or off. However, by itself this approximation is insufficient
to reflect the operating environment for these pumps. Namely, we have
observed thatmany pumpsmay not be used, even if they are functional,
during the rainy seasons in these regions where people are otherwise
able to secure surface water for themselves and their livestock
(Thomas et al., 2019).



Fig. 1. A typical groundwater borehole in Turkana, Kenya (center). Electrical monitoring sensors are installed at the pump controller (left), and wireless transmit data to a self-powered
satellite or cellular transmitter (www.sweetsensors.com).
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Therefore, a more sophisticated classification system is required to
better distinguish between “Broken,” a true-negative condition, and
“Not-Running on Purpose,” a true-positive condition. Indeed, consider-
ing this nuance in classifying functionality of groundwater pumps is
consistent with recent literature that identifying the importance of in-
cluding seasonality (Carter and Ross, 2016) and water point reliability
(Bonsor et al., 2018) beyond the simple measure of active use when
classifying water pump functionality. In the following sections, we
Fig. 2. Data system flowchart showing the operating conditions of the groundwater pum
instrumentation, the flow of data, and the predictions outputted by each of the classification s
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describe the data collection and interpretation methods we applied to
improve on this distinction between use and functionality in our
context.

Our work is motivated toward supporting data-enabled responsive
maintenance, and better still, preventive maintenance. Although it is
useful to know when a pump is broken, it equally valuable to know
that a pump is functional, with an aim toward effective resource
allocation.
p system including the three primary functional classification, the attached sensor
ystems.

http://www.sweetsensors.com
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2.1. Ground-truth data

In order to build and then validate our classification algorithms, we
required a training set that reflects a ground-truth of pump conditions.
Therefore, in collaboration with government and implementing part-
ners we collected pump reports of water system status (functional,
partly functional, or broken) using themWater digital survey form plat-
form (www.mwater.co). The partly functional status usually indicated
that some repairs are required, but that the pumpwas capable of deliv-
ering water. Therefore, in our analysis we group partly functional and
functional together to reflect conditions wherein water is delivered to
users.

Pump reports were submitted during field visits and reviewed by
program staff for data completeness. These reports provided details on
ground-truth the status of both the pumps and the sensors. Pump re-
ports were also used to identify false negatives (sensors reporting that
a pump is not being used, when in reality it is) caused by accidental or
deliberate disconnection of the sensor from the electrical power line.
Sensor disconnections were identified via phone calls, site visits and
documentation review. Sensor disconnections were validated based
on interviewing of regional technicians who last serviced or inspected
the scheme in question and recorded in the training data. An iterative
process of pump report reviews, sensor data comparisons and verifica-
tion through routine communication with field teams has led to a set
of ground-truth training data for algorithm validation.

Table 1 describes the complete ground-truth data set, which in-
cludes a total of 1133 survey reports. About 73% of these surveys reflect
a working water pump, about 15% indicate a broken water pump, and
about 11% indicate that the sensor has been disconnected from
the pump.

2.2. In-situ instrumentation and data cleaning

The principle of our pumpmonitoring system is to use pumpmotor
operating current as a proxy for pump operation. A wireless current
sensor is placed between the motor controller and pump. The presence
of non-zero alternating current in the the conductors between the
motor controller and the pump is used as a proxy for water pumping
activity.

The current sensor used in this study is a Pressac brand split-core
current transformer. This is an energy-harvesting sensor that uses en-
ergy scavenged from magnetic fields around current-carrying conduc-
tors to power a small microcontroller and 900 MHz radio. EnOcean is
a proprietary ultra-low-power wireless harvesting and networking
technology. If conductors are carrying enough current, the Pressac sen-
sor is able to acquire a root mean square (RMS) current roughly once
every 30 s and broadcast that data via the EnOcean protocol to a
receiver.

The EnOcean receiver is a SweetSense-brand EnOcean gateway. The
gateway receives the RMS current data from the Pressac sensor, com-
presses the data, caches it, and transmits it to the Internet once per
day regardless of if any pump function has been observed, enabling a
“heartbeat” from the sensor system to help identify broken sensor sys-
tems apart from non-used pumps. Depending on the local availability
of cellular networks, the transmission is accomplished using either
GSM cellular networks or the Iridium satellite network. We used
Table 1
Ground-truth training data collected through surveys. About 73% of these surveys reflect a
working water pump, about 15% indicate a broken water pump, and about 11% indicate
that the sensor has been disconnected from the pump.

Training data Kenya Ethiopia Total

Total pump reports 333 800 1133
Functional water pump reports 221 610 831
Broken water pump reports 67 106 173
Sensor disconnection reports 45 84 129
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Iridium's 9602 Short Burst Data Modem to transmit data. The 9602
SBD Modem can only transmit 340 bytes of data per transmission. Be-
cause of prohibitively expensive data rates, we limited transmissions
to one per day. If a pump operated 24 h in a day, the Pressac sensor
would transmit 2880 individual 13-bit floating point readings. Even
when compressed, this is typically far too much data to fit into a single
340-byte SBD transmission. Therefore, we compress the data to a sam-
pling rate of once every 40-minutes. When combined with additional
meta and telemetry data, this constrains an average days-worth of
data to one SBD transmission.

There are four primary limitations to this approach to data collection
from these pumps:

1. To fit data into SBDpackets, datawere sampled on a 40-minute basis,
for a total of 36 possible observation of water pump runtime per day.
In each 40-minute period, if runtime was observed, this status was
applied to that window. This approach yields a possible measure-
ment error in reported runtime of at least plus 40 min for each
block of real-world pump runtime.

2. Electrical runtime does not explicitly reflect functionality or water
demand, as pumps may be functional but deliberately not being
used, often because surface water alternatives are available. Relat-
edly, given the variability in pump size, runtime does not equate to
yield as smaller pumps will produce less water in the same period
of time. Further, we do not consider population density in our
model, despite the real-world variability in water demand based on
population. Therefore, the simplemeasure of runtime is an imperfect
proxy for yield and demand. This limitation motivates the contribu-
tions of this paper - we developed the classification systems de-
scribed herein to enable more accurate classification of pump
functionality and use given these limitations.

3. Occasionally, we observe only single data points in a day, corre-
sponding to local midnight when our sensors transmit their data at
a pump that otherwise had no operation that day and often had no
observed operations within days. These data are unlikely to be real,
given known periodic electrical noise in our system. Therefore, in
our analysis we consider any reports of one data point corresponding
to local midnight to be zero usage for that pump-day.

4. A challenging aspect of working with energy-harvesting sensors is
that broken or disconnected sensors and a lack of energy to harvest
result in the same sensor behavior. For example, if the Pressac sensor
does not transmit data for onemonth, it can be difficult to determine
if the lack of transmission is due to (1) a lack of current in thewire for
the sensor to harvest (ie the pump is off), or (2) a broken energy-
harvesting sensor. We have observedmany instances of either delib-
erate or accidental damage or removal of the Pressac clamp (see
Table 1, which yields false-negatives (false indications of pump
non-use, or implied non-functionality). In our analysis, we do not
discard this data, which therefore contributes to a greater false-
negative performance. However, improved management of the sen-
sor network would likely improve system performance.

In all cases of both these known sources of measurement error, as
well as unknown sources of error, the validity and utility of the mea-
surement and classification systems is reflected as performance metrics
compared to the ground truth data.

To associate the site report ground-truth data with the daily sensor
readings, the site report data needed to be extended to adjacent days
when the apparent state was unchanged. Furthermore, in order to
allow a direct comparison of the performance of both the expert classi-
fier and machine learner models (described below) the ground-truth
data must be formatted using assumptions that incorporate some of
the subjective rules applied by the expert classifier.

To accomplish this, the sensor data was segmented into “blocks” of
use or no use. Pump days were categorized as either usage (at least
two sensor readings of activity) or non usage (zero or one sensor read-
ings of activities). Contiguous runs of greater than 7-days of usage or

http://www.mwater.co
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non-usage were treated as a “block” of unchanging state. Intermittent
periods of non-use less than 7-days was smoothed through grouping
with the adjacent period. 7-day smoothing periods was selected consis-
tent with the 7-day window used by the expert classifier, described
below.

Finally, contiguous blocks were truncated at plus or minus 30 days
from the ground-truth site report and a new block started, to minimize
the risk of disparate conditions being grouped together. 30-days was
chosen as an approximation of the Nyquist rate for sampling at twice
the frequency of the signal measured (Candes and Wakin, 2008). In
this case, the signal is rainfall seasonality and the responding change
in borehole pump use. We truncate at 30 days plus or minus the report
date to minimize the change that a block captures both rainy and dry
seasons (in other words, periods in which the pump may be more or
less likely to be in demand, regardless of function).

Any site report dated within a block was then assumed to reflect the
true status of the pump for the entirety of the block. This approach is illus-
trated in Fig. 4wherein ground-truth reports are shown as vertical bars (a
verified broken pump in red, a verified working pump in green) and the
associated blocks of sensor data affiliated with these site reports.

2.3. Remotely sensed data

Our work has previously used remotely sensed rainfall estimates
from the Monthly Climate Hazards Group InfraRed Precipitation with
Station (CHIRPS) data (Funk et al., 2015b) to show that pump usage is
inversely related to local rainfall, and that groundwater demand in-
creases when absence of rainfall limits the availability of surface water
alternatives (Thomas et al., 2019).

Further, when exploring available data, we observed a statistically
significant correlation between surface water availability estimates de-
rived from satellite observations, accessible through the Famine Early
Warning System Surface Water Point Viewer (Senay et al., 2013) and
borehole runtime. As these data are for specific water points that were
surveyed in 2013 and do not capture our entire region of interest or
any new water points constructed after 2013, we collect the “scaled
depth” reported parameter and apply a inverse distanceweighting algo-
rithm (Thomson et al., 2008) to impute a normalized estimate of surface
water availability at the local pump site. This normalized estimate is
conceptualized as a percent from 0 to 100 of potential surface water re-
tention proximate to the borehole. This estimate was available only for
the Kenya data.

Therefore, in the predictive classifiers described in this paper, we in-
corporate remotely estimated data for:

1. Daily rainfall estimates using the CHIRPS system. To get rainfall data
as soon as possible, we used the “preliminary” readings dataset. In
this dataset, new daily rainfall data is available every five days with
a two day lag. Each data point corresponds to a 0.05° area, or roughly
31 km2.

2. Normalized daily surface water availability derived from an interpo-
lation of the FEWS Water Point Viewer (Kenya only).
Similar to the discussion above regarding sensor measurement

error, the validity and utility of these selections is reflected in the perfor-
mance characteristics described in Results and Discussion.

2.4. Expert classification system

The sensor network leveraged for this work was first deployed in
2016. Tomake use of the data collected to supportwater pump operation
andmaintenance, we initially deployed an operational version of thema-
chine learning (ML) based classification system described in this paper.
However, while this approach has the advantage of continuous improve-
ment as new data was incorporated, it was a “black box”, and explaining
the rules applied to classify a givenpumpwas impossible. The term “black
box” is commonly used when describing the limitations of machine
5

learning. Because a machine learning statistical model is by definition
non-mechanistic and deterministic, and instead relies on the relative
weight of inputted predictors in determining an outcome, a machine
learning basedmodel cannot be reverse-engineered into clear logic state-
ments. This approach has the well known limitation of reducing the con-
fidence of regional level watermanagers using in the system as it was not
easily understood or explained (Rudin, 2019).

An “expert classification” systemwas then developed to predict pump
status using mapped out logic statements that could be more easily
followed (Fig. 3). As implied in the term, such an expert classifier relies
on domain knowledge expertise which, while informed, is still subjective
and expert decisions may not be a consensus view (Valizadegan et al.,
2013). In this case, we selected aggregation and threshold criteria based
on discussions between and among users of our system, including local
water system managers. The decisions made were subjective and non-
systematic, however they reflect our best judgement on the balance be-
tween utility and interpretability of our method.

Daily pump status classification options are “Normal Use”when the
preceding 7-day average runtime for a pump is consistent with the his-
torical norm for the site; “Low Use” when the preceding 7-day average
runtime is below the 20th percentile of use for the site; “No Use”when
there is no observed pumping in the preceding 7 days, and “Seasonal
Disuse” when the preceding 7-day period with no observed pumping
coincides with CHIRPS rainfall data showing more than 10 mm within
a 5 km radius of the site (the resolution of the CHIRPS data) during
the previous week (i.e. 7–14 days prior to day of the status). There is
also a “Repair” status applied when users complete electronic site re-
ports indicating that a site is under repair, and an “Offline” status
when sensors do not report data for more than 7 days. The pump status
classifications occur on rolling 7-day increments to reduce over-
sensitivity to daily variation in pump use. Classifications are made on
a site-to-site basis as local characteristics largely determine pump use.

In all cases, we chose a 7-day averaging period to reflect the typical
7-day work week in both Ethiopia and Kenya, allowing an update to
each pump classification to reflect a comprehensible weekly period.
We selected 10 mm of rainfall as a common threshold for “moderate
rainfall” using CHIRPS data (Bai et al., 2018).

We selected a rainfall period of 7–14 days prior to the current pump
status classification consistent with our previous findings that borehole
use increased in weeks following periods of no rainfall (Thomas et al.,
2019). This is only one of many possible aggregations and lag periods
possible. We selected one that was consistent with previous findings
and easily explainable to users.

2.5. Machine learning supported prediction system

We sought to improve classification performance relative to the ex-
pert system by employingmachine learning (ML) to better differentiate
between the two “No Use” conditions: “Seasonal Disuse” and “Broken”.
To distinguish between “Use” and “No Use”, we used the same rule
employed in the expert classifier, as this was observed to match the
ground truth data excellently. The ML was therefore only trained on
blocks of time where no use occurred.

Supervised ML is a framework where a set of computerized models
that can be thought of as black boxes are trained to data, in an attempt
to generate predictions that closely match outcomes in a training
dataset (Breiman, 2001a). These models can then be used to generate
predictions for new observations. In this case, the outcome is borehole
status “seasonal disuse” vs “broken”, which is predicted from a number
of “features” (covariates) which are described below. Features are other
variables that aremeasured andwhichwe believemayplausibly be pre-
dictive of the outcome. This is consistent with standard machine learn-
ing practices, where a large set of features thought to be plausible
predictive of the outcome are provided to the ML algorithms, which
often have an element of “feature selection” in which features that are
actually predictive of the outcome are selected from among a large set



Fig. 3. Sensor data expert classification system flowchart.
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of potential features.MostML algorithms have somemethod of “feature
selection” in which features that are not predictive of the outcome are
ignored (Friedman, 2001). In the Results section we describe the out-
come of the weighting of each of our selected features.

We hypothesized that ML would improve performance over the ex-
pert classifier system, as it is “trained” to the data, and therefore seeks to
generate predictions that bestmatch the training data. In contrast, the ex-
pert system was generated by human experts, and optimized not for
agreement with the training set but for parsimoniousness (as few rules
as possible), and face validity (the rules make sense to human experts).

We used ensembleML,which combines predictions from a library of
underlying candidate ML models (“learners”). We then used cross-
validation to evaluate the performance of these learners and combine
them. This approach allowed us to identify an optimal convex combina-
tion (weighted average) of an ensemble of candidate prediction algo-
rithms (i.e. model stacking/Super Learning) (Zou et al., 2007; van der
Laan et al., 2007). Our library consisted of 4 XGBoost learners (Chen
and Guestrin, 2016) with different hyperparameter selections, LASSO,
Ridge Regression (Friedman et al., 2010), Random Forests (Breiman,
2001b), and a null model. For each block, this yields a predicted proba-
bility that a pump is “broken”. In practice, a threshold is then selected
based on operational considerations to establish a binary classification
of “broken” vs “no use”. The threshold selected in our analysis is de-
scribed in the Results section.

2.6. Features

In addition to determining an outcome for each pump-day in a block
with a site report, we defined a number of features derived from both
in-situ and remotely sensed data, as well as invariant attributes of the
6

pump sites (such as administrative and geographic location). To the ex-
tent that these features capture relevant physical properties of the in-
situ environment, our model reflects real-world relationships. During
themodel design, we explored datawe collected and thatwhich is pub-
licly available to input into the model and examined the performance
improvements associated with each feature selected. These features in-
clude the following:

1. Block Length - The length of a block of “use” or “no use” in days, rang-
ing from1 to 30. This continuous data featurewas hypothesized to be
relevant based on the assumption that long periods of no-use during
periods of low surface water availability plausibly could indicate a
broken pump.

2. Country - Kenya or Ethiopia. There are known differences between
the two contexts in which we have sensor-instrumented pumps, in-
cludingmanagement approaches, budget constraints, hydrology and
meteorology. By including the country location for each pump, we
allow the classifier to benefit from any aggregate real-world average
differences between these regions.

3. Rainfall - Derived from CHIRPS and justified as a possibly relevant
feature as described above. Aggregated at 1 and 2 week intervals as
separate features.

4. SurfaceWater - Derived from FEWSWater Point Viewer and justified
as a possibly relevant feature as described above.

5. Relative Usage - Sensor-measured u of an electrical pump compared
to its neighbors, using two definitions:

• Geographic Neighbor - Usage at a pump compared to geographi-
cally nearby pumps. We hypothesize that nearby pumps may be
used similarly to one another, given geographic and population
density similarities.



Fig. 5. The receiver operator characteristic (ROC) for the machine learning algorithm. The
ROC represents the range of possible trade-offs between the classifiers' true positive (truly
working pump classified asworking, the sensitivity or truepositive rate) and truenegative
(truly broken pump classified as broken, the specificity or true negative rate) rates when
choosing a threshold to operationalize the classifier. The threshold of 0.72 selected in our
analysis is shown as the red dot, while the total area under the curve (AUC) is specified as
0.718. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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• Correlated Neighbor - Usage at a pump compared to pumps similar
in usage behavior.We hypothesized that pumps that behave similar
to one another, regardless of if they are nearby geographically, may
reflect other non-defined characteristics, such as urban/rural, popu-
lation densities, migratory routes, political boundaries, and other
features we do not provide the learner.

These two definitions yielded similar results, therefore in this paper
we present correlated neighbor only.

2.7. Example data

Fig. 4 presents an example data set from one pump, to illustrate the
features used by the expert classification and machine learning algo-
rithms. In this example, the top panel shows sensor-measured pump use
per day. While some pump use is observed during the period, the three
highlighted blocks that indicate a ground-truth report all show zero
runtime. This is a good example of the challenge inherent in our approach
- how to distingush between these periods. The second panel shows
CHIRPS detected rainfall in the previous 7 days. The third panel shows a
comparison of the current pump of interest's behavior relative to statisti-
cally correlated neighbors. In this case, this pump is running less often
than similar pumps during this period. In the final panel is an estimate
of surface water availability derived from an interpolation of the FEWS
Water Point Viewer. The vertical lines are ground-truth reports shown
as a verified broken pump in red (true negative) and a verified working
pump ingreen (truepositive). Thedata are colored showing the functional
/ non-functional prediction concurrent with these site reports.

3. Results

3.1. Model validation and performance

We present the performance of both the expert classifier and the
machine learning algorithm, validated against the ground-truth pump
reports. First, the receiver operator characteristic (ROC) is presented
Fig. 4. Example sensor and remote sensing data with ground-truth pump reports and
machine-learning predicted status. In this example, the top panel shows sensor-
detected usage as a proportion of a 24 h day (i.e., 0.5 is 12 h of runtime). The second
panel shows total rainfall in the previous 7-days, as indicated using the CHIRPS 5 km res-
olution remotely sensed rainfall product. The third panel shows a metric of the relative
runtime of this pump compared to its neighbors. A negative value indicates lower than av-
erage runtime. The bottom panel is a measure of surface water depth, estimated as an in-
terpolation of the FEWS Water Point Viewer. The colored sections correspond to ground-
truth pump reports collected. In red, a pump report indicates the pump is actually broken.
In green, the pump report indicates the pump is actually functional. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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for the machine learning algorithm in Fig. 5. A ROC curve is a plot that
illustrates the performance of a binary classifer system (in this case, a
working or broken pump) based on a trade-off between specificity
and sensitivity. Operationally, a threshold is chosen as a point on the
curve meeting desired design criteria. A rule of thumb is that the most
upper-left point on the curve is a threshold that optimizes sensitivity
and specificity for a generic case (Hanley and McNeil, 1982). In this
case, the ROC represents the range of possible trade-offs between the
classifiers' true positive (truly working pump classified as working,
the sensitivity or true positive rate) and true negative (truly broken
pump classified as broken, the specificity or true negative rate) rates
when choosing a threshold to operationalize the classifier.

Fig. 6 shows the relative importance of variables for the predictive
performance of the model. Using a squared error loss, each variable is
plotted against the increase in risk (decrease in predictive performance)
associated with scrambling the values of that variable (Breiman,
2001b). This produces a ranking of variables, from most to least impor-
tant.We note that Block Length is themost important variable weighed
in themodel. As a continuous variable between1 and 30 days (with lon-
ger blocks truncated as previously described), the intuitive interpreta-
tion is simply that the longer a pump is not running, the more likely it
is to be truly broken. Truncated blocks do not affect this interpretation,
but instead provide additional data for the algorithm to re-estimate a
pump's condition based on all available data.

In order to effectively compare these two classifiers performance in
identifying functional and broken pumps,wemust select a classification
threshold for the machine learner that generates the same number of
broken predictions as the expert classifier. A classification threshold of
0.72 was used to yield the same number of predicted broken periods
as the expert classifier (149periods). Using this,we compare the perfor-
mance of the two classifier approaches.

Table 2 presents performance characteristics for the expert classifier
and machine learning algorithm. We present three performance speci-
fications including a.) All of the available data corresponding to



Table 3
Modeled potential impact on pump functionality using training data.

Units Ethiopia Kenya Overall

Total observations Pump-years 60.3 29.4 89.8
Uptime observed % 88.2 77.6 84.6
Broken pump events observed #/Pump/year 0.76 1.56 1.06
Expert classification algorithm
Repairs attempted (negative
prediction)

#/Pump/Year 1.35 2.28 1.66

Repairs made (true negative) #/Pump/Year 0.40 0.68 0.49
Potential uptime (2 week repair lag) % 92.9 84.7 90.1
Potential uptime change % 5.3 9.1 6.5
Machine learning algorithm
Repairs attempted (negative
prediction)

#/Pump/Year 1.29 2.4 1.66

Repairs made (true negative) #/Pump/Year 0.51 0.92 0.65
Potential uptime (2 week repair lag) % 94.7 89.1 92.6
Potential uptime change % 7.4 14.8 9.5

Fig. 6. The relative importance of each variable included in the machine learning model.
The risk difference indicates the change in the mean squared error to the performance
of the classifier. Conceptually, this plot can be interpreted as indicating that Block
Length is approximately three times as important to the model's performance as
Relative Usage.
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ground-truth observations for both running and non-running pumps,
b.) the performance when applied only to periods of time where some
runtime is observed by the sensors, and c.) the performance when ap-
plied only to periods when no runtime is observed.

The machine learning algorithm out-performs the expert classifer
across almost everymetric. Our validation indicates anoverall functioning
pump detection sensitivity (true positive rate) of 82% for the expert clas-
sifier and 84% for the machine learner. When a pump is being used, both
the expert classifier and the machine learner have a sensitivity of identi-
fying these as functional pumps (true positive rate) 100% of the time.

When a pump is not beingused, sensitivity tTrue Positive rate) drops
to about 50% for the expert classifier and about 65% for the machine
learner. These results indicate that for a pump that is not running, the
expert classifier is nobetter than chance at identifying thedifference be-
tween the broken and not-working-on-purpose conditions, while the
machine learner exceeds this performance.

3.2. Implications for pump functionality

We then apply both the expert classifier andmachine learning algo-
rithm both to our training data (nearly 90 pump-years). Table 3 pre-
sents the impact on uptime for the training set if either the expert
classifier or machine learning algorithm were used to trigger pump
visits and, when appropriate, pump repairs. In all cases, we assume a
Table 2
Classifier Performance for Expert Classifier andMachine Learnerwherein a True Positive is
a functional pump capable of delivering water regardless of actual current use, and a True
Negative is a broken pump incapable of delivering water without a repair.

Performance metric Expert classifier Machine learner

All data (running and non-running pumps)
True positive rate (sensitivity) 82.1% 84.5%
True negative rate (specificity) 47.8% 63.0%
Positive predictive value 90.9% 93.6%
Negative predictive value 29.5% 38.9%
Usage observed (running pumps)
True positive rate (sensitivity) 100.0% 100.0%
True negative rate (specificity) 0.0% 0.0%
Positive predictive value 99.1% 99.1%
Negative predictive value NA NA
No usage observed
True positive rate (sensitivity) 56.2% 62.1%
True negative rate (specificity) 49.4% 65.2%
Positive predictive value 75.0% 82.8%
Negative predictive value 29.5% 38.9%
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2-week lag between an identified potential failure and a visit or repair.
This lag avoids the unreasonable implication that a pump identified as
broken could immediately be returned to service. A 2-week period
from identification to repair is approximately consistentwith best prac-
tices observed of some of our stakeholder users.

4. Discussion

4.1. Deployment

The expert classification systemevaluated in this paper has been oper-
ationally deployed in both the Kenya and Ethiopia contexts since 2017.
Our validation indicates that this system accurately classifies functioning
pumps (including those currently not being used, but otherwise func-
tional), with a sensitivity (true positive rate) of over 82% of the time.
When a pump is being used, both statistical models accurately identify
these as functional pumps (true positives) 100% of the time. When a
pump is not being used, the expert classifier accurately identifies that
such a pump is brokenwith a specificity of about 50%. Themachine learn-
ingmodel improves on this performancewith a overall functioning pump
sensitivity (true positive rate) of nearly 85%, and a specificity when a
pump is not running of over 65%. These performance differences highlight
the improved capacity of the machine learner to identify the difference
between a broken pump and a pump not running on purpose, despite
the same raw data characteristics of no-runtime provided by the sensors,
better addressing this nuance of pump functionality by incorporating sea-
sonality and other features described previously.

4.2. Potential impact

The training set collected in this study indicated high uptime aver-
ages of over 88% in Ethiopia and over 77% in Kenya. This training set is
likely biased toward higher functionality than the broader pump popu-
lation, as functional pump reports were more readily collected with
phone calls, in contrast to typically requiring site-visits to confirm the
nature of non-functionality.

In contrast, recent reports reviewing borehole pump functionality
during the 2016–2017 drought in East Africa indicated 55% in Kenya
(UNICEF, 2017) and 60% in Ethiopia (MacAllister et al., 2020). These
low levels of pump functionality are the underlying motivation for the
work described in this paper.

Therefore, if we assume an average drought-period uptime of 60% in
the region, repair efforts triggered through the sensor and machine
learning system could detect and repair 62.1% of broken pumps (sensi-
tivity), with a potential false-alarm rate (false negative rate) of 34.8% (1-
specificity). While this may at first appear to be a nuisance high false
alarm rate, in absence of such a sensor network indicating both running
and non-running pumps, the alternative to visiting the occasional
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functional pump that does not require a repair is visiting all pumps on a
regular schedule. Furthermore, we note that the status-quo approach
wherein operators and community members report on pump break-
downs is presently effecting the 55% - 60% functionality rates reported.
By visiting only those sites where the machine learner reports a break-
down, this could, in practice, result in a drought-period uptime of 84.8%
- a 40% reduction in the relative risk of pump downtime.

Next, we discuss the potential cost and cost-effectiveness of such a
repair model. While precise estimates are challenging to establish, for
the purpose of illustration we estimate that each pump serves approxi-
mately 5000 people per week (Thomas et al., 2019; Thomas et al.,
2020b), and costs on average $4.5 per person. This estimate is based
on the average per capita cost of water supply in comparable contexts
in Ethiopia ($3) and Kenya ($6) (Libey et al., 2020). Therefore an illus-
trative annual cost per pump is at least $20,000. If we assume that
only 60% of demand for pump function is met during the dry and
drought seasons (4 months per year), the effective cost of water supply
per person increases to about $6.

We estimate the annual cost per pump adding telemetry-connected
sensors at $250 (A cost of $1000 per sensor over a 4 year lifetime), the
cost of a false-alarm visit at $500 (a rate of 1.66 visits per pump per
year based on our model this adds $830 per pump per year), and the
cost of a major pump repair at $1800 per year (a rate of 0.65 repairs
per pump per year, this adds $1170 per pump per year). These cost es-
timates are the median responses of community informant interviews
we conducted in both our Ethiopia and Kenya context.We acknowledge
that actual site visits and pump repair costs are highly variable and dif-
ficult to capture in this simplified illustrative example.

Using these simplified assumptions, a plausible revised cost
per-pump cost of $23,000 attributable to both false-alarm and pump-
repair visits increases budgetary requirements by 15%. However, the in-
crease in functionality during the drought season from 60% to nearly
85% has the potential to offset this cost by decreasing the effective annual
cost per capita to about $5.25, amarginal but perhapsmeaningful cost ef-
fectiveness improvement of over 12%. We acknowledge that these are il-
lustrative numbers only,with sensitive assumptions. However, in practice
we observe that the increased costs of monitoring and repairs of rural
water supplies should be readily offset by the cost-effectiveness of higher
pump functionality, water access, and water security. Indeed, a 2018
study by USAID estimated that each $1 invested in resilience in drought
prone areas of Kenya, Ethiopia and Somalia results in $3 in savings in
averted losses and humanitarian need (USAID, 2018).

4.3. Limitations and future work

The classification systems we developed and present in this paper
include various assumptions that impact the performance and subse-
quent utility of each model. As our work was motivated by improving
the utility of the real-world deployment of this pump sensor network,
in contrast to designing an optimal statistical model, we were function-
ally constrained in the number of additional features or sensitivity anal-
yses we conducted for each assumption or selection. In the case of the
machine learning model presented herein, we selected data features
that were available to us ex post. The machine learning model's perfor-
mance may be further improved through the identification and inclu-
sion of additional data features especially those that may require
additional in-situ data collection. These may include, for example, im-
proved estimates on water yield or groundwater depth at each pump
site, or improved estimates of population and livestock density.

A common question raisedwhenweighing the potential benefit ver-
sus cost of an instrumentation system to support pump repairs is, sim-
ply, could a sensor be replaced with a pump operator or other
community authority calling a service provider? We remind the reader
that this approach effectively reflects the status-quo, and the intent of
the sensor-triggered system is to increase transparency, accountability,
responsiveness and ultimately improvewater services. Therefore, in our
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indicative cost estimates, we assume that management and cost struc-
tures can be shifted toward responding regularly to the identified po-
tential pump failures.

Work by ourselves and others has demonstrated significant im-
provements to water delivery when service providers have access to
real-time information (MacAllister et al., 2020; Nagel et al., 2015;
Thomson, 2020). However, there is a need for better understanding of
the enabling and hindering factors that affect the utilization of real-
time data and effective adoption of sensor-based technologies to im-
prove water service delivery in low-income settings. In both our
Ethiopia and Kenya project settings, adoption of these systems has
been limited by the nearly non-existent budgetary allocations for bore-
hole pump repairs.While these types of technologies have been demon-
strated to support improved water pump functionality, it is also a clear
prerequisite that direct budget and institutional incentives are required
tomake use of these tools (Thomas and Brown, 2020). In absence of di-
rect budgetary support to act on pump breakdowns, we have also ob-
served the value of the sensor-data network in supporting higher level
decision making including through collaborations with the Kenya
National Drought Management Authority, The Nairobi based Regional
Centre for Mapping of Resources for Development, and the USAID and
NASA supported Famine Early Warning Systems Network (Thomas
et al., 2020b). However, it is clear that if any cost-effective is to be
derived from these technologies on a local level, donors, governments
and communitiesmust allocate resources to enable direct action toward
improved water system functionality.
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