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Abstract Recent studies in passively isolated systems
have shown that mode coupling is desirable for better
vibration suppression, thus refuting the long-standing
rule of modal decoupling. However, these studies have
ignored the nonlinearities in the isolators. In this work,
we consider stiffness nonlinearity from pneumatic iso-
lators and study the nonlinear forced damped vibrations
of a passively isolated ultra-precision manufacturing
(UPM)machine. Experimental analysis is conducted to
guide the mathematical formulation. The system com-
prises linearly and nonlinearly coupled in-plane hori-
zontal and rotational motion of the UPMmachine with
quadratic nonlinear stiffness from the isolators. We
present an analytical study using themethodofmultiple
scales and themethod of harmonic balance for different
cases of external resonances, viz., the primary and the
secondary resonances (superharmonic and combined
resonances) with 1 : 2 internal resonance between the
modes.We further validate our analytical findings using
direct numerical integration and observe an excellent
match. On extending our analysis, we observe the exis-
tence of subcritical, supercritical, and s-shaped bifur-
cation depending on the location of the isolators and
the case of external resonance. Also, the saturation and
quasi-saturation phenomenon are observed for the case
of resonances close to the higher natural frequency and
combined resonance, respectively. A parametric study
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is conducted to examine the effect of different parame-
ters on the dynamics of the system, and consecutively
the critical parameters of the system are identified for
different cases of external resonance.

Keywords Ultra-precision manufacturing machine ·
Mode-coupling · saturation · Quasi-saturation ·
s-shaped bifurcation · Subcritical and supercritical
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1 Introduction

Over the last few years, the use of machine parts
with micro-level patterns and nano-level surface fin-
ish has been significantly increased in the electronic,
biomedical, and communication industries [1–3]. To
meet the stringent requirements at themicroscale, ultra-
precision manufacturing (UPM) machines like ultra-
precision machine tools, water scanners, and micro-
coordinate measuring machine (CMM) are used to
manufacture or measure these parts. As the tolerance
and accuracy of these parts are very high, even the
smallest amplitude of vibrations can adversely affect
the accuracy and precision of theUPMmachine. There-
fore, it is required to understand the dynamics of such
precision equipment under the influence of external
excitations. This is the focus of the current work.

Vibration isolation of a mechanical system from its
surroundings can be achieved by interposing an isola-
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tion mount between the source of the excitation and the
system. These isolation mounts can be passive, active,
or semi-active [4–9]. However, the use of passive iso-
lators in engineering applications is more popular as
compared to active, and semi-active because of their
cost-effectiveness, reliability, and simple installation
[10–12]. The basic principle of efficient passive iso-
lation relies on making the foundation of the system
so flexible that the natural frequencies of the system
become small (sufficiently far from the external exci-
tation frequencies) to avoid resonance [13–15]. Then,
based on the linear theory of vibration isolation [16–
18], the system is considered to be adequately iso-
lated. On the other hand, the use of low stiffness pas-
sive isolators in UPM machines causes the emergence
of residual vibrations in the form of low-frequency
rocking motions due to an internal or external excita-
tion [19]. Therefore, to maintain the accuracy of these
systems, these residual vibrations must be minimized
[10,11,20,21]. Another drawback of passive isolators
with the viscously damped oscillators is the increased
transmissibility at frequencies higher than resonance
frequencies [6,10,20]. These two drawbacks of passive
isolators can be avoided using pneumatic isolators (i.e.,
nonlinear vibration isolators) [19,22–27]. We empha-
size that inclusion of nonlinearity in practical isola-
tors has been well-established in the literature [28–30].
However, the inclusion of these nonlinearities in isola-
tors causes the emergence of primary and secondary
resonance, complex motions, and coupling between
different modes. Another critical factor in designing
these pneumatic isolators is the selection of the iso-
lator location in such a way that mode coupling can
be avoided [11]. It was observed that the decoupling
between the modes could be achieved by aligning the
isolator location with the center of gravity (C.G.) of
theUPMmachine [20,31,32]. The decoupling between
the modes restricts the transmission of vertical ground
motion to the horizontal axis and hence rockingmotion
of UPM [11,21]. Also, the decoupling between modes
avoids the presence of other peaks in the transmissibil-
ity response of the machine [33].

In an attempt to explore the dynamics of UPM
with coupled modes, a mathematical model with linear
mode coupling between the translational and rocking
motion (via the location of isolators) was first devel-
oped by Okwudire [22,34,35]. It was shown that cou-
pling between the translational and rocking motion is
desirable tominimize residual vibrations. Accordingly,

the optimumvalue of the isolator location from theC.G.
of the UPM machine is obtained [22]. Furthermore, it
was observed that with this optimum value of isolator
location, fivefold reduction in the vibration amplitude
could be achieved with proportional damping. Later
on, Lee and Okwudire [35] investigated the effect of
mode coupling on the residual vibration with non-
proportional damping in the system and observed that
though non-proportional damping changes the behav-
ior of the system. it still provides a significant reduc-
tion in the vibration amplitude. These findings refuted
the long-standing rule of thumb that modal decoupling,
rather thanmode coupling, was preferable for vibration
reduction in UPM machines. However, we emphasize
that inOkwudire’swork [22,34,35], the nonlinear stiff-
ness of the pneumatic isolators was not considered—
which is more realistic than linear stiffness. There-
fore, the effect of nonlinear pneumatic isolators on the
dynamics of UPM machines was not explored.

Note that the nonlinear vibration analysis of dynam-
ical systems with coupled modes is well studied in the
literature [36–40]. For instance, the effect of nonlinear
mode coupling in multiple-degree-of-freedom system
was studied through nonlinear damping [41] or non-
linear stiffness [40] or the combination of both [39]. It
was observed that in the presence of internal resonance
(depending on the nature of nonlinearity in the system)
[39,40], the nonlinear mode coupling enhances energy
dissipation and hence effective reduction in vibration.
We emphasize that although the benefits of nonlinear
mode coupling on the energy dissipation arewell estab-
lished, to the best of our knowledge, the effect of non-
linearmode coupling on the vibration isolation ofUPM
has not been explored yet.We also emphasize that there
is no study that examines the interplay between nonlin-
ear mode coupling, isolator location, and bifurcation in
an isolated mechanical system. The present study aims
to address this knowledge gap. Unlike in Okwudire’s
work [22,34], here we consider the nonlinearity in the
stiffness of the pneumatic isolators and study the non-
linear dynamics of a passively isolated UPM machine
under primary and secondary resonances. Experiments
are carried out to guide the mathematical formulation.
The exact coupled nonlinear equations of motion of the
isolatedmachine are presented, and the analytical solu-
tions are obtained using the method of multiple scales.
The analytical results are verified against the numeri-
cal simulations for different cases of external resonance
with 1 : 2 internal resonance. The existence and stabil-
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Fig. 1 Experimental setup [35]

ity of all possible steady states for the different cases
of resonance are presented. Also, a parametric study
is conducted to identify the critical system parameters.
The rest of the paper is organized as follows. Some
experimental results are presented in Sect. 2 decides
the nature of nonlinearity in the system. In Sect. 3, we
outline the mathematical model of the UPM machine
employed for the analysis. The nonlinear analysis of
this model using the method of multiple scales (MMS)
for primary and secondary resonance is presented in
Sect. 4. In Sect. 5, we validate the analytical results
from MMS with numerical simulations and further
present the nonlinear characteristic of the system. In
an attempt to find key system parameters, the effect of
different system parameters on the system dynamics
is presented in Sect. 6. Finally, some conclusions are
drawn in Sect. 7.

2 Experimental results

Experiments are carried out using the reconfigurable
UPM machine prototype depicted in Fig. 1 [35]. The
prototype consists of an 800kg base of dimensions
749.3×749.3×495.3mm.Themachine is supported by
four pneumatic isolators (Bilz model BiAir 1-ED). The
UPMmachine is disturbedwith initial displacements in
the y-direction, and the vibration of the system is mea-
sured using a triaxial accelerometer (PCB Piezotronics
model Y356A63) with sensitivity of 10.58mV/g. The
experimental results show that the prototype machine
can exhibit either stable or unstable motion depending
on the applied initial displacement. A very low ini-
tial disturbance yields a stable vibration motion, while
a relatively larger displacement exhibits an unstable
motion.

Figure 2a shows the experimental time response of
the vibrating UPMmachine in all three directions. The
instability can be observed in all directions; however,
higher vibration amplitudes occur in the y- and z-
directions. This is expected as the system is disturbed in
the y-direction, resulting in coupling in the y–z plane.
The zoomed windows indicate the existence of multi-
ple frequency components in each measured direction.
These components represent the natural frequencies
of the system along with nonlinear frequency compo-
nents. For results in the x-direction (i.e., the systemwas
not excited in this direction), we observe high noise-
to-signal ratio. Therefore, we apply low-pass filter to
keep the lowest dominant frequency components and
eliminate noise associated with high frequency. The fil-
tered signal is shown in the solid black curve. To further
analyze the system and response frequency content, we
plot the fast Fourier transform of the time responses in
all measured directions as shown in Figs. 2b–2d. In
Fig. 2b, it is observed that the signal in the y-direction
has three dominant frequency components 1.56, 3.12,
and 4.68Hz. The first one has the highest amplitude and
represents the frequency in this direction. Note that the
fundamental frequency of the UPM machine is nearly
half of the second mode, which corresponds to sub-
harmonic resonance. This observation suggests that the
stiffness of the pneumatic isolator is of a quadratic non-
linear type, thus confirming the type of nonlinearity
of the pneumatic isolator mentioned in the literature
[42]. The observed secondary resonance can further
be demonstrated by plotting the response in the other
coupled direction as shown in Fig. 2c. The results in
z-direction indicate that the system has two coupled
modes 1.56, 4.68Hz with other smaller components
representing the secondary resonances. Finally, the fre-
quency response for the x-direction is shown in Fig. 2d.
The results indicate that themagnitude of the frequency
components is much lower as compared to other direc-
tions. This is not surprising since the system was not
excited in this direction. Indeed, the appearance of this
component in this direction might be caused by non-
linear interaction. In addition, we observe a frequency
component at 3.5Hz. This component corresponds to
the unexcited mode of the machine. Indeed, this mode
is also shown in Figs. 2b–2c with much smaller com-
ponents.

123



S. K. Gupta et al.

(a) (b)

(c) (d)

Fig. 2 Experimental results showing a time response; b frequency content of measurement in y-direction; c frequency content of
measurement in z-direction; and d frequency content of measurement in x-direction

3 Mathematical model

In this section, we briefly outline the mathematical
model for the UPMmachine considered in this work. A
schematic of the 2D-model of a UPM with pneumatic
isolators is shown in Fig. 3 [35]. It consists of UPM as
a rigid body with a mass m and moment of inertia I ,
which can translate in the y-direction and rotate in the
y-z plane. Further, UPM rests on two identical pneu-
matic isolators. These isolators are modeled as spring-
damper systems with ky , qy , and Cy as combined lin-
ear stiffness, quadratic stiffness, and damping coeffi-
cient, respectively, in the y-direction. kz , qz , and Cz

are combined linear stiffness, quadratic stiffness, and
damping coefficient, respectively, in the z-direction. h
and b represent the distance of the isolators from the
centroid (C.G.) in vertical and horizontal directions,

respectively. In the currentwork, disturbances fromsur-
roundings are modeled as a harmonic excitation with
amplitude F0 and frequencyω0. For the sake of simplic-
ity, we assume that the force is acting in the y-direction
at the location of the horizontal (y-direction) isolator. If
y and θx represent the translational and rocking motion
of the UPM machine, then the governing equations of
motions are

mÿ + Cy
(
ẏ − h cos θx θ̇x

) + ky (y − h sin θx )

+ qy (y − h sin θx )
2 = F0 cos (ω0 t) , (1a)

I θ̈x + Czb
2 cos θx θ̇x − Cyh

(
ẏ − h cos θx θ̇x

)

+ b2kz sin θx + b3qz sin θ2x − qy h (y − h sin θx )
2

− ky h (y − h sin θx ) = −F0 cos (ω0t) h . (1b)

For small amplitudes of y and θx , the above equations
of motion can be rewritten as
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Fig. 3 Schematic of UPM
with isolators with quadratic
nonlinearity

mÿ + Cy
(
ẏ − hθ̇x

) + ky(y − hθx )

+qy(y − hθx )
2 = F0 cos(ω0t) , (2a)

I θ̈x + Czb
2θ̇x − Cyh

(
ẏ − hθ̇x

)

+kθ θx + qθ θ
2
x − qyh(y − hθx )

2

−kyh(y − hθx ) = −F0 cos(ω0t)h. (2b)

with kθ = b2kz and qθ = b3qz . The above equations
describe the evolution of the two coupled modes, i.e., y
and θx with time under the effect of external harmonic
excitation. It is to be noted here that both modes of
UPM are linearly and nonlinearly coupled through the
location of isolator in the y-direction and will be com-
pletely independent to each other if isolators are aligned
with the C.G. of the UPM. We nondimensionalize the
equations of motion to reduce the effective number of
parameters to further ease the analysis. For this pur-
pose, we use the following nondimensional scales and
parameters:

t̃ = t

√
kθ

I
, ζ̂ = Cy

2
√
kym

,

κ̂ = Czb2

2
√
I kθ

,

β =
√

ky
m√
kθ

I

, α1 = qyb3

kθ

,

mr = I

mb2
, α = h

b
,

f̄0 = F0
bkz

, ωr = ω0√
kθ

I

,

qzr = qθ

kθ

, kr = kyb2

kθ

,

ỹ = y

b
. (3)

Using the aforementioned nondimensional scales and
parameters, equations ofmotion (Eq. (2)) can be nondi-
mensionalized as
¨̃y + 2ζ̂ β

( ˙̃y − αθ̇x

)
+ β2 (ỹ − αθx )

+α1mr (ỹ − αθx )
2 = f̄0mr cos

(
ωr t̃

)
, (4a)

θ̈x + 2κ̂ θ̇x − 2ζ̂

√
kr
mr

α
( ˙̃y − αθ̇x

)

+ θx + qzrθ
2
x − α1α (ỹ − αθx )

2 − krα (ỹ − αθx )

= − f̄0α cos
(
ωr t̃

)
, (4b)

where (˙) represents the derivative with respect to t̃ ,
ζ̂ and κ̂ are the damping ratio in the translational and
rocking directions, respectively,β is the ratio of the nat-
ural frequencies corresponding to the uncoupled trans-
lational and rocking motions, mr is the inertia ratio,
α1 and qzr are the nondimensional quadratic stiffness
in translational and rocking directions, respectively, kr
is the ratio of linear stiffnesses of equivalent isolators
in translational and rocking directions, α is the nondi-
mensional location of the isolators, f0 is the nondi-
mensional excitation amplitude, and ωr is the nondi-
mensional excitation frequency. For notational conve-
nience, we drop the tilde and subscript x and rewrite
Eq. (4) as

ÿ + 2 ζ̂ β
(
ẏ − α θ̇

) + β2 (y − α θ)

+α1 mr (y − α θ)2 = f̄0 mr cos (ωr t) , (5a)

θ̈ + 2κ̂ θ̇ + θ + qzrθ
2
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− 2ζ̂

√
kr
mr

α
(
ẏ − αθ̇

) − α1 α (y − α θ)2

− kr α (y − α θ) = − f̄0 α cos (ωr t) . (5b)

Equations (5a) and (5b) represent the nondimensional
equations of motion in translational and rocking direc-
tions, respectively.

4 Perturbation analysis

As mentioned earlier, our prime interest in this work is
to understand the effect of mode coupling on the non-
linear dynamics of the system, which further requires
the exact solution of the system of equations (Eq. (5)).
Note that the equations ofmotiongoverning the dynam-
ics of the system (Eq. (5)) involve nonlinear quadratic
terms, and it is difficult to obtain the exact solution for
such systems. However, for small values of nonlinear
quadratic stiffness, the approximate solution may be
obtained using existing perturbation methods.With the
same motivation, we use the method of multiple scales
(MMS) in particular to obtain the approximate solution
of the system. For this purpose, we follow the proce-
dure outlined in [43] and introduce a small dimension-
less parameter ε (ε � 1) in the governing equations
through rescaling

y(t) = εη(t) , θ(t) = εϑ(t) . (6)

We also rescale the damping coefficients such that the
effect of damping and nonlinearity appears in the same
order of ε. Therefore, we let ζ̂ = εζ and κ̂ = εκ .
Substitution of these scalings in Eq. (5) leads to

η̈ + 2εζβ
(
η̇ − αϑ̇

) + β2 (η − αϑ)

+ εα1mr (η − αϑ)2 = f̄0
ε
mr cos (ωr t) , (7a)

ϑ̈ + 2εκϑ̇ − 2εζ

√
kr
mr

α
(
ẏ − αϑ̇

) + ϑ

+ εqzrϑ
2 − εα1α (y − αϑ)2

− krα (y − αϑ) = − f̄0
ε

α cos (ωr t) . (7b)

It is noteworthy here that after substitution of scal-
ings, we have already divided the equations throughout
ε to get the above equation (Eq. (7)). Since the non-
linear and damping terms appear at O(ε), the system
becomes a weakly nonlinear system and can be solved

using MMS. Having obtained the perturbed equations,
now we present the linear and nonlinear analysis of the
system in the subsequent sections.

4.1 Linear analysis

In this section, the linear analysis of the nonlinear sys-
tem given by Eq. (7) is presented. This linear analysis
provides the solution to the unperturbed linear equa-
tion without forcing, which will be further used to
build up a solution for the perturbed nonlinear equa-
tion (Eq. (7)). The linearized coupled system of equa-
tion without forcing can be obtained by setting ε = 0
and f0 = 0 in Eq. (7) to obtain

η̈ + β2 (η − α ϑ) = 0 , (8a)

ϑ̈ + ϑ − kr α (y − α ϑ) = 0 . (8b)

To obtain the characteristic equation, we substitute
η(t) = η0eλt and ϑ = ϑ0eλt in Eq. (8) to obtain

λ2η0 + β2 (η0 − α ϑ0) = 0 , (9a)

λ2ϑ0 + ϑ0 − kr α (η0 − α ϑ0) = 0 . (9b)

Note that, for the nontrivial solutions of η0 and ϑ0,
the determinant of the coefficient matrix of the above
system must vanish. This solvability condition further
leads to the characteristic equation as

λ4 +
(
1 + krα

2 + β2
)

λ2 + β2 = 0 . (10)

Further, to obtain the natural frequencies of the sys-
tem, we set λ = iω in Eq. (10) and solve for ω to

get ω1 =
√
A + B

2
, ω2 =

√
A − B

2
, where A =

2+2 kr α2+2 β2 and B = √
A2 − 16β2 which further

implies ω1 > ω2. Accordingly, the solution of the cou-
pled linearized system without forcing can be written
as

y(t) = A1r1eiω1t + A2r2eiω2t + C.C. , (11)

where y(t) = [η(t), ϑ(t)]T , A1, A2 are arbitrary con-
stants with r1 and r2 as the generalized right eigen-
vectors corresponding to the eigenvalues λ = iω1 and
λ = iω2, respectively. For our system, r1 and r2 are

r1 =
[
Λ1

1

]
, r2 =

[
Λ2

1

]
(12)

with Λi = β2α

−ωi
2 + β2 . We emphasize that in our sub-

sequent nonlinear analysis, we require the left eigen-
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vectors corresponding to eigenvalues λ = iω1 and
λ = iω2 and these are

l1 = [
L1 1

]
, l2 = [

L2 1
]

, (13)

with Li = kr α

−ωi
2 + β2 . These left eigenvectors play a

vital role in the elimination of secular terms to obtain
a convergence slow-flow equations in MMS. The non-
linear analysis of the system using MMS is presented
next.

4.2 Nonlinear analysis using method of multiple
scales

In this section, we use MMS to determine the approxi-
mate solution of Eq. (7) and later investigate the stabil-
ity of different steady states.We first start with defining
multiple time scales as

T0 = t , T1 = εt , (14)

with T0 and T1 as the fast and slow time scales, respec-
tively. With the introduction of these time scales, the
derivative operators get perturbed and can be expressed
in new time scales as

d

dt
= D0 + εD1 ,

d2

dt2
= D0,0 + 2εD0,1 , (15)

where Dn = ∂

∂Tn
and Dm,n = ∂2

∂Tm∂Tn
. Following

this, the solution of perturbed nonlinear equation
(Eq. (7)) can be expressed as a series in powers of ε

till O (ε) as

y(τ ) = y0 (T0, T1) + εy1 (T0, T1) = y0 + εy1 , (16)

with y(τ ) = [η(t), ϑ(t)]T , ym = ym(T0, T1). Having
defined the approximate solution, next we first present
the case of primary resonance.

4.3 Primary resonance near ω1

To analyze primary resonances, we rescale the forcing
term such that it appears in the same perturbation equa-
tion as the nonlinear terms and damping. Thus, we let
f̄0 = ε2 f0 withωr = ω1+εσ1 inEq. (7) (whereσ1 is an
external detuning parameter in the forcing frequency)
in the perturbed nonlinear equations. On substituting
Eqs. (15)–(16) in Eq. (7) and collecting different orders
of ε, we get

O(ε0) : D0,0η0 + β2 (η0 − α ϑ0) = 0 , (17a)

D0,0ϑ0 + ϑ0 − kr α (η0 − αϑ0) = 0. (17b)

O(ε) : D0,0η1 + β2(η1 − αϑ1)

= −2ζβ (D0η0 − αD0ϑ0)

− α1mr (η0 − αϑ0)
2 − 2D0,1η0

+ f0mr cos(ω1T0 + σ1T1), (18a)

D0,0ϑ1 + ϑ1 − krα (η1 − αϑ1)

= 2ζ

√
kr
mr

α (D0η0 − αD0ϑ0) − 2D0,1ϑ0

+ α1α(η0 − αϑ0)
2 − qzrϑ

2
0

− 2κD0ϑ0 − f0α cos (ω1 T0 + σ1T1) . (18b)

Note that equations atO(ε0) for primary resonance are
identical to the linearized unperturbed Eq. (8). There-
fore, the solution of Eq. (17) can be written in vector
form as

y0(T0, T1) = A1(T1)r1eiω1T1

+ A2(T1)r2eiω2T1 + C.C. , (19)

where unlike the previous case A1 and A2 instead of
being constants are the complex-valued functions of
slow time T1. On substituting the assumed solution
for y0 in equations at O(ε), i.e., Eq. (18) leads to the
appearance of resonant forcing terms eiω1T0 , eiω2T0 , and
consequentially their complex conjugate (the resulting
equations are reported in Appendix-A). These resonant
forcing terms cause the unbounded growth in the solu-
tion for y1 and are known as secular terms. Therefore,
to obtain bounded solutions, it is required to eliminate
these secular terms from the equations. The removal of
secular terms from coupled ODEs further requires the
dot product of the coefficient vectors corresponding to
eiω1T0 and eiω2T0 with respect to left eigenvectors to
be zero [44]. Furthermore, for the current analysis we
can have two cases, (1) 1 : 2 internal resonance, i.e.,
ω1 ≈ 2ω2 and (2) nonresonance case (ω1 is far away
from ω2). However, it is a well-established fact that,
for the latter case, nonlinear terms do not contribute
in any secular terms and hence do not affect the solu-
tion till the first order of approximation [37,43]. Hence,
for the sake of brevity, we only present the first case,
i.e., 1 : 2 internal resonance. In this case, the natu-
ral frequencies of the system are nearly commensurate
and accordingly, we can introduce an internal detuning
parameter, σ2, in the system as ω1 = 2ω2−εσ2, which
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further leads to the following transformations

(ω1 − ω2)T0 = (ω2 − εσ2)T0 = ω2T0 − σ2T1,

2ω2T0 = (ω1 + εσ2)T0 = ω1T0 + σ2T1 .

On substituting the above transformations in result-
ing equations (Appendix-A) and using the solvability
condition of l1 · u1 = 0 and l2 · u2 = 0 , where u1
and u2 are the coefficient vectors for eiω1T0 and eiω2T0 ,
we get

Rn2 = −ln Rn1, (20)

where

R11 = 2iω1Λ1D1A1 + eiσ2 T1 A2
2α1mr (α − Λ2)

2

− f0
2
mre

iσ1 T1 − 2 i A1ζ (α − Λ1) β ω1 ,

R12 = 2iω1D1A1 − A2
2α1α (α − Λ2)

2 eiσ2 T1

+ f0
2

αeiσ1 T1 + qzr A2
2eiσ2 T1

+ 2 i A1

√
kr
mr

ζ (α − Λ1) ω1 + 2iκA1ω1,

R21 = 2iω2Λ2D1A2 + 2A1 Ā2α1mr

(α − Λ1)
(
α − Λ̄2

)
e−iσ2 T1

− 2i A2ζβω2 (α − Λ2) ,

R22 = 2iω2D1A2 − 2A1 Ā2α1α

(α − Λ1)
(
α − Λ̄2

)
e−iσ2 T1

+ 2e−iσ2 T1qzr A1 Ā2

+ 2i A2

√
kr
mr

ζαω2 (α − Λ2) + 2iκω2A2 .

As it is convenient to express An and Ān (for n =
1, 2) in polar notation for further analysis, we put

An = an(T1)

2
eiβ(T1) Ān = an(T1)

2
e−iβ(T1) for n = 1, 2

(21)

and consequently their complex conjugate in Eq. (20).
Note that an and βn (for n = 1, 2) are real function of
T1 instead of being constants unlike the nonresonant
case [43].

Substituting this transformation inEq. (20) and solv-
ing for D1an and D1βn (for n = 1, 2), we get the slow-
flow equations as

D1a1 = Γ1a1 + Γ2 sin(γ1)a
2
2 + f0Γ3 sin(γ2) , (22a)

D1γ1 = σ2 + 2D1β2 − D1β1 = σ2 + 2Γ4a1 cos(γ1)

+Γ2 cos(γ1)
a22
a1

+ f0Γ3 cos(γ2)
1

a1
, (22b)

D1a2 = Γ4 sin(γ1)a2a1 + Γ5a2 , (22c)

D1γ2 = σ1 − D1β1 = σ1 + Γ2 cos(γ1)
a22
a1

+ f0Γ3 cos(γ2)
1

a1
, (22d)

where Γn (for n=1,2,..5) are defined in Appendix-A.
For the steady-state response D1an = D1γn = 0,
which further leads to

sin(γ ∗
1 ) = − Γ5

Γ4 a∗
1
, cos(γ ∗

1 ) = − σ2 − σ1

2Γ4 a∗
1

. (23a)

sin(γ ∗
2 ) = −Γ4 a∗

1
2Γ1 − Γ2 a∗

2
2Γ5

Γ4 a∗
1 f0 Γ3

,

cos(γ ∗
2 ) = − 2Γ4 σ1 a∗

1
2 − σ2a∗

2
2Γ2 + σ1 a∗

2
2Γ2

2Γ4 a∗
1 f0 Γ3

.

(23b)

In the above and subsequent expressions for steady
states, superscript (∗) corresponds to steady-state quan-
tities. Next, by using trigonometric identity, the above
expressions can be solved for the steady states, a∗

1 and
a∗
2 , to obtain

a∗
1 =

√
4Γ5

2 + σ12 − 2 σ1 σ2 + σ22

2Γ4
, (24a)

a∗
2 =

√√
√
√σ1 σ2 + 2Γ5 Γ1 − σ12 ±

√
4Γ4

2 f02Γ3
2 − (Γ1 σ2 − 2Γ5 σ1 − Γ1 σ1)

2

2Γ2Γ4
. (24b)
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However, from Eq. (22c) we observe that a2 = 0
is also a solution which further leads to another set of
steady states as

a∗
1 = ± f0Γ3√

σ 2
1 + Γ 2

1

, a∗
2 = 0, sin(γ ∗

2 )

= −Γ1a∗
1

f0Γ3
, cos(γ ∗

2 ) = −σ1a∗
1

f0Γ3
. (25)

Note that there is no effect of nonlinearity on steady
states for the latter set of steady states (Eq. (25)). There-
fore, it essentially forms a solution of the linear prob-
lem unlike the previous set (Eq (24)) of steady states.
Furthermore, we observe that for steady states given
by Eq. (24), the mode corresponding to ω1 is indepen-
dent of excitation amplitude, f0, although the excita-
tion frequency is close to ω1, while the other mode a2
is getting excited directly from f0. Having obtained the
steady states, the first-order solution of the system can
be written using Eqs. (16)–(19)–(21)–(19)–(23)–(24)
and is

η(t) = Λ1a
∗
1 cos(ωr t − γ2)

+Λ2a
∗
2 cos

(
1

2
(ωr t + γ1 − γ2)

)
+ O(ε) ,

(26a)

ϑ(t) = a∗
1 cos(ωr t − γ2)

+ a∗
2 cos

(
1

2
(ωr t + γ1 − γ2)

)
+ O(ε) . (26b)

Next we present the case of primary resonance near
lower natural frequency, i.e., ω2.

4.4 Primary resonance near ω2

In this case, we let ωr = ω2 + εσ1 along with f̄0 =
ε2 f0, Eqs. (15)–(16) in Eq. (7) and collect different
orders of ε to get equations governing the evolution
of ηn , and ϑn (reported in Appendix-B). Following the
procedure as in the case of primary resonance near ω1,
we get the slow-flow equations as

D1a1 = Γ1a1 + Γ2 sin(γ1)a
2
2 , (27a)

D1γ1 = σ2 + 2D1β2 − D1β1

= σ2 − 2 f0Γ3 cos(γ2)
1

a2
+ 2Γ4a1 cos(γ1)

+Γ2 cos(γ1)
a22
a1

, (27b)

D1a2 = f0Γ3 sin(γ2)

+Γ4 sin(γ1)a2a1 + Γ5a2 , (27c)

D1γ2 = σ1 − D1β2 = σ1 − Γ4 cos(γ1)a1

+ f0Γ3 cos(γ2)
1

a2
, (27d)

where Γn (for n = 1, 2, · · ·, 5) are defined in Eq. 23.
For the steady-state response, we let D1an = D1γn =
0 in Eq. (27) and accordingly get

sin(γ ∗
1 ) = − Γ1 a∗

1

Γ2 a∗
2
2 ,

cos(γ ∗
1 ) = −Γ2 a∗

2
2Γ5 + Γ4 a∗

1
2Γ1

Γ2 a∗
2 Γ3 f0

, (28a)

sin(γ ∗
2 ) = −a∗

1 (σ2 + 2 σ1)

Γ2 a∗
2
2 ,

cos(γ ∗
2 ) = −σ1 a∗

2
2Γ2 + Γ4 a∗

1
2σ2 + 2Γ4 a∗

1
2σ1

Γ2 a∗
2 Γ3 f0

,

(28b)

which further leads us to the equations governing a∗
1

and a∗
2 as

a∗
1 = Γ2 a∗

2
2

√
Γ1

2 + σ22 + 4 σ2 σ1 + 4 σ12
, (29a)

Γ2
4Γ4

2a2
6 + Γ2

2 (−2Γ2 Γ5 Γ4 Γ1

+2 σ1 Γ2 Γ4 σ2 + 4 σ1
2Γ2 Γ4

)

a2
4 + Γ2

2
(
σ2

2σ1
2 + 4 σ1

4

+γ1
2Γ5

2

+4Γ5
2σ1

2 + Γ1
2σ1

2 + 4 σ2 σ1
3 + 4Γ5

2σ2 σ1

+Γ5
2σ2

2
)
a2

2

+Γ2
2
(
−4Γ3

2 f0
2σ2 σ1 − Γ1

2Γ3
2 f0

2

−Γ3
2 f0

2σ2
2 − 4Γ3

2 f0
2σ1

2
)

= 0 (29b)

From Eq. (29), it can be observed that unlike the case
of primary resonance near ω1, both steady states of
both modes, i.e., a∗

1 and a∗
2 , are excited by the external

forcing. Using these steady-state quantities, the first-
order solution of the system in this case can be written
as

η(t) = Λ1a
∗
1 cos(2ωr t − 2γ2 − γ1)

+Λ2a
∗
2 cos (ωr t − γ2)) + O(ε), (30a)

ϑ(t) = a∗
1 cos(2ωr t − 2γ2 − γ1)

+ a∗
2 cos (ωr t − γ2) + O(ε). (30b)
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Having established the first-order solution for both
cases of primary resonance, next, we present the case
of secondary resonance.

4.5 Secondary resonance

For secondary resonance, the excitation frequencyωr is
not close to the natural frequencies ω1 and ω2, and the
effect of external forcing will be not captured unless
f̄0 is a O(1) quantity. Therefore, we substitute f̄0 =
ε f0 along with Eqs. (15)–(16) in Eq. (7) and collect
different orders of ε to get

O(ε0) : D0,0η0

+β2 (η0 − α ϑ0) = f0mr cos(ω1T0) , (31a)

D0,0ϑ0 + ϑ0

− kr α (η0 − αϑ0) = − f0α cos (ωr T0) . (31b)

O(ε) : D0,0η1 + β2(η1 − αϑ1)

= −2ζβ (D0η0 − αD0ϑ0)

− α1mr (η0 − αϑ0)
2 − 2D0,1η0, (32a)

D0,0ϑ1 + ϑ1 − krα (η1 − αϑ1)

= 2ζ

√
kr
mr

α (D0η0 − αD0ϑ0)

− 2D0,1ϑ0 + α1α(η0 − αϑ0)
2

− qzrϑ
2
0 − 2κD0ϑ0. (32b)

The solution of Eq. (31) can be expressed in the form
of

y0(T0, T1) = A1(T1)r1eiω1T1 + A2(T1)r2eiω2T1

+ f0Φ cos(ωr T0) + C.C. , (33)

where Φ is a vector with coefficients corresponding
to the forced response of the system (obtained by the
harmonic balance method) and is

Φ =
[
Φ1

Φ2

]
(34)

where

Φ1 =
(
β2α2 − mr + ωr

2mr − kr α2mr
)

(ω2
r − 1)(β2 − ω2

r ) + krα2ω2
r

and

Φ2 = α
(
β2 − ωr

2 − kr mr
)

(ω2
r − 1)(β2 − ω2

r ) + krα2ω2
r

. (35)

The resulting equations, after the substitution of the
assumed formof the solution, are reported inAppendix-
C. In the resulting equations, CV F1 and CV F2 rep-
resent the complex-valued functions and do not con-
tribute to secular terms. It can be observed from these
equations that in addition to the terms proportional to
eiωnT0 , secular terms can originate when ωr = ωn/2,
ωr = 2ωn , and ωr = ω1 ± ω2 due to the appear-
ance of e2iωr T0 , eiωr±ω1 and eiωr±ω2 . These cases of
resonance are referred as secondary resonance. In this
work, we are particularly considering two special cases
(1) 2ωr ≈ ωi , and (2) ωr ≈ ω1 + ω2 also referred
as superharmonic resonance and combined resonance,
respectively. We start with the case of superharmonic
resonance near ω1.

4.5.1 Superharmonic resonance near ω1

For the superharmonic resonance near ω1, we again
introduce an external and internal detuning parameter,
i.e., σ1 and σ2, in the system as 2ω2 = ω1 + εσ2. On
substituting this transformation in the resulting equa-
tions (Appendix-C) and following the procedure for the
removal of secular terms, we get the slow-flow equa-
tions as

D1a1 = Γ1a1 + Γ2 sin(γ1)a
2
2 + f 20 Γ3 sin(γ2), (36a)

D1γ1 = σ2 + 2D1β2 − D1β1 = σ2 + 2Γ4 cos(γ1)a1

+Γ2 cos(γ1)
a22
a1

+ f 20
Γ3 cos(γ2)

a1
, (36b)

D1a2 = Γ4 sin(γ1)a2a1 + Γ5a2, (36c)

D1γ2 = σ1 − D1β1 = σ1

+Γ2 cos(γ1)
a22
a1

+ f 20
Γ3 cos(γ2)

a1
, (36d)

where Γn (for n=1,2,..5) are defined in Appendix-D.
The condition for steady-state response (i.e., D1an =
D1γn = 0) in Eq. (36) leads to

sin(γ ∗
1 ) = − Γ5

Γ4 a∗
1
, cos(γ ∗

1 ) = − σ2 − σ1

2Γ4 a∗
1

(37a)

sin(γ ∗
2 ) = −Γ4 a∗

1
2Γ1 − Γ2 a∗

2
2Γ5

Γ4 a∗
1 f 20 Γ3

,

cos(γ ∗
2 ) = − 2Γ4 σ1 a∗

1
2 − σ2a∗

2
2Γ2 + σ1 a∗

2
2Γ2

2Γ4 a∗
1 f 20 Γ3

.

(37b)
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Using the above expressions and trigonometric identity,
we further obtain a∗

1 and a∗
2 as

a∗
1 =

√
4Γ5

2 + σ12 − 2 σ1 σ2 + σ22

2Γ4
, (38a)

a∗
2 =

√√√√σ1 σ2 + 2Γ5 Γ1 − σ12 ±
√
4Γ4

2 f04Γ3
2 − (Γ1 σ2 − 2Γ5 σ1 − Γ1 σ1)

2

2Γ2Γ4
. (38b)

Again, another set of steady-state solution exists for the
system similar to the primary resonance case near ω1

and is

a∗
1 = ± f 20 Γ3√

σ 2
1 + Γ 2

1

, a∗
2 = 0, sin(γ ∗

1 ) = − Γ1a∗
1

f 20 Γ3
,

cos(γ ∗
2 ) = − σ1a∗

1

f 20 Γ3
. (39)

Using these steady-state quantities, the first-order
approximate solution of the system can be obtained
as

η(t) = Λ1a
∗
1 cos(2ωr t − γ2)

+Λ2a
∗
2 cos

(
1

2
(2ωr t + γ1 − γ2)

)

+ f0Φ1 cos(ωr t) + O(ε) , (40a)

ϑ(t) = a∗
1 cos(2ωr t − γ2) + a∗

2

× cos

(
1

2
(2ωr t + γ1 − γ2)

)

+ f0Φ2 cos(ωr t) + O(ε) . (40b)

After getting the first-order solution for the case of
superharmonic resonance near ω1, next we present the
case of superharmonic resonance near ω2.

4.5.2 Superharmonic resonance near ω2

Similar to the case of superharmonic resonancenearω1,
for the case of superharmonic resonance near ω2, we
introduce an external and internal detuning parameter
in the system as

2ωr = ω2 + εσ1 and 2ω2 = ω1 + εσ2. (41)

Again, substituting back these transformations in the
resulting equations (Appendix-C) and removing secu-
lar terms from equations lead to slow-flow equations
as

D1a1 = Γ1a1 + Γ2 sin(γ1)a
2
2 (42a)

D1γ1 = σ2 + 2D1β2 − D1β1 = σ2 − f 20
2Γ3 cos(γ2)

a2

+ 2Γ4 cos(γ1)a1 + Γ2 cos(γ1)
a22
a1

(42b)

D1a2 = Γ3 f
2
0 sin(γ2) + Γ4 sin(γ1)a1a2 + Γ5a2

(42c)

D1γ2 = σ1 − D1β2 = σ1

+ f 20
Γ3 cos(γ2)

a2
− Γ4 cos(γ1)a1 (42d)

where Γn (for n = 1, 2, · · ·, 5) are defined
in Appendix-D. For the steady-state response, i.e.,
D1an = D1γn = 0, Eq. (42) can be solved for steady
states as

sin(γ ∗
1 ) = − Γ1 a∗

1

Γ2 a∗
2
2 ,

cos(γ ∗
1 ) = −a∗

1 (σ2 + 2 σ1)

Γ2 a∗
2
2 (43a)

sin(γ ∗
2 ) = −Γ2 a∗

2
2Γ5 + Γ4 a∗

1
2Γ1

Γ2 a∗
2 Γ3 f 20

,

cos(γ ∗
2 ) = −σ1 a∗

2
2Γ2 + Γ4 a∗

1
2σ2 + 2Γ4 a∗

1
2σ1

Γ2 a∗
2 Γ3 f 20

.

(43b)

Again, by using trigonometric identitywe get the equa-
tions governing a∗

1 and a∗
2 as

a∗
1 = Γ2 a∗

2
2

√
Γ1

2 + σ22 + 4 σ2 σ1 + 4 σ12
, (44a)

Γ2
4Γ4

2a2
6 + Γ2

2
(
− 2Γ2 Γ5 Γ4 Γ1 + 2 σ1 Γ2 Γ4

σ2 + 4 σ1
2Γ2 Γ4

)
a2

4

+Γ2
2
(
σ2

2σ1
2 + 4 σ1

4 + γ1
2Γ5

2

+4Γ5
2σ1

2 + Γ1
2σ1

2

+4 σ2 σ1
3 + 4Γ5

2σ2 σ1 + Γ5
2σ2

2
)
a2

2

+Γ2
2
(
−4Γ3

2 f0
4σ2 σ1 − Γ1

2Γ3
2 f0

4

−Γ3
2 f0

4σ2
2 − 4Γ3

2 f0
4σ1

2
)

= 0 (44b)
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From Eq. (44), it can be observed that unlike the previ-
ous case of superharmonic resonance, both modes, i.e.,
a1 and a2, are excited by the external forcing. Using
these steady-state quantities, the first-order solution of
the system in this case will be

η(t) = Λ1a
∗
1 cos(4ωr t − 2γ2 − γ1)

+Λ2a
∗
2 cos (2ωr t − γ2))

+ f0Φ1 cos(ωr t)O(ε) (45a)

ϑ(t) = a∗
1 cos(4ωr t − 2γ2 − γ1)

+ a∗
2 cos (2ωr t − γ2)

+ f0Φ2 cos(ωr t) + O(ε) (45b)

Having established the first-order solution for super-
harmonic resonance near ω2, next we present the case
of combined resonance.

4.5.3 Combined resonance

For the case of combined resonance, the excitation fre-
quency is close to the sum of the natural frequencies
of the system, i.e., ωr ≈ ω1 + ω2, and accordingly, we
introduce an external detuning parameter in the system
as

ωr = ω1 + ω2 + εσ1 . (46)

Substitution of the above transformation along with the
internal detuning parameter for the case of internal res-
onance in the resulting equations in Appendix-D and
removal of secular terms leads to the slow-flow equa-
tions as

D1a1 = Γ1a1 + Γ2 sin(γ1)a
2
2 + Γ3 sin(γ2) f0a2 ,

(47a)

D1γ1 = σ2 + 2D1β2 − D1β1

= σ2 + 2Γ4 cos (γ1) a1

− 2
f0 Γ5 cos (γ2) a1

a2
+ Γ2 cos (γ1) a22

a1

+Γ3 cos (γ2) f0 a2
a1

, (47b)

D1a2 = Γ4 sin(γ1)a2a1 + f0Γ5 sin(γ2)

+Γ4 sin(γ1)a1a2 + Γ5a2 , (47c)

D1γ2 = σ1 − D1β1 − D1β2 = σ1 + Γ2 cos (γ1) a22

a1

+Γ3 cos (γ2) f0 a2
a1

− Γ4 cos (γ1) a1

+ f0Γ5 cos(γ2)a1
a2

(47d)

where Γn (for n = 1, 2, . . . , 5) are defined in
Appendix-E. Again, for the steady-state condition, i.e.,
D1an = D1γn = 0, in Eq. (47) leads to

sin(γ ∗
1 ) = − Γ1 a∗

1
2Γ5 − Γ3 a∗

2
2Γ6

a∗
1 (Γ2 Γ5 − Γ4 Γ3) a∗

2
2 ,

cos(γ ∗
1 ) = −2 a∗

1
2Γ5 σ1 + a∗

1
2Γ5 σ2 − Γ3 a∗

2
2σ1 + Γ3 a∗

2
2σ2

3 (Γ4 Γ3 + Γ2 Γ5) a∗
1 a

∗
2
2

(48a)

sin(γ ∗
2 ) = −Γ2 a∗

2
2Γ6 + Γ4 a∗

1
2Γ1

a∗
2 f0 a∗

1 (Γ2 Γ5 − Γ4 Γ3)
,

cos(γ ∗
2 ) = −2 a∗

1
2Γ4 σ1 + a∗

1
2Γ4 σ2 − a∗

2
2Γ2 σ2 + a∗

2
2Γ2 σ1

3a∗
2 f0 a∗

1 (Γ4 Γ3 + Γ2 Γ5)

(48b)

From the above expressions, we can get the equations
governing a∗

1 and a∗
2 as

(
Γ1 a∗

1
2Γ5 − Γ3 a∗

2
2Γ6

a∗
1 (Γ2 Γ5 − Γ4 Γ3) a∗

2
2

)2

+
(
2 a∗

1
2Γ5 σ1 + a∗

1
2Γ5 σ2 − Γ3 a∗

2
2σ1 + Γ3 a∗

2
2σ2

3 (Γ4 Γ3 + Γ2 Γ5) a∗
1 a

∗
2
2

)2

= 1

(49a)
(

−Γ2 a∗
2
2Γ6 + Γ4 a∗

1
2Γ1

a∗
2 f0 a∗

1 (Γ2 Γ5 − Γ4 Γ3)

)2

+
(
2 a∗

1
2Γ4 σ1 + a∗

1
2Γ4 σ2 − a∗

2
2Γ2 σ2 + a∗

2
2Γ2 σ1

3a∗
2 f0 a∗

1 (Γ4 Γ3 + Γ2 Γ5)

)2

= 1

(49b)

From Eq. (49), we get the steady states a∗
1 and a∗

2 and
accordingly, the first-order solution of the system for
the case of combined resonance will be

η(t) = Λ1a
∗
1 cos

(
2

3
ωr t − 1

3
γ1 − 2

3
γ2

)

+Λ2a
∗
2 cos

(
1

3
ωr t + 1

3
γ1 − 1

3
γ2

)

+ f0Φ1 cos(ωr t) + O(ε) (50a)

ϑ(t) = a∗
1 cos

(
2

3
ωr t − 1

3
γ1 − 2

3
γ2

)

cos

(
1

3
ωr t + 1

3
γ1 − 1

3
γ2

)

+ f0Φ2 cos(ωr t) + O(ε) (50b)

Having established the first-order solution for primary
and secondary resonance, now we present the linear
stability analysis of the steady states.
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4.6 Linear stability of steady states

To determine stability of different steady states, we per-
turb the amplitude and phase from the steady-state val-
ues and substitute

a1(T1) = a∗
1 + εa1(T1), (51)

a2(T1) = a∗
2 + εa2(T1), (52)

γ1(T1) = γ ∗
1 + εγ 1(T1), (53)

γ2(T1) = γ ∗
2 + εγ 2(T1), (54)

in the slow-flow equations corresponding to primary
and secondary resonances. On neglecting the higher
order of ε, we get the set of four linear equations for
each case of resonance, which can be further written in
a compact form as

ẋ = Jx (55)

where ẋ is [a1, a2, γ 1, γ 2]T and J is the Jacobian
matrix. The Jacobian matrices for the case of the pri-
mary and secondary resonance, i.e.,JP1, JS1, JP2, JS2,
and JC , are defined in Appendix-F. Note that in the
these matrices, subscript Pi and Si represent pri-
mary and superharmonic resonance near frequency ωi ,
respectively, subscript C corresponds to combined res-
onance, and (∗) represent the quantities corresponding
to steady states. The eigenvalues of JPi , JSi , and JC
govern the stability of steady states for primary , super-
harmonic, and combined resonance, respectively. If all
four eigenvalues have negative real part, then the steady
states are considered to be stable, otherwise unstable.
Next, we present a detailed analysis of these steady
states with numerical validation.

5 Result and discussion

In this section, a detailed analysis of the forced vibra-
tions of the UPM machine with nonlinear isolators is
presented. We have used the parameter values listed in
Table 1 for numerical and analytical simulations.

The first part of the analysis is to validate the derived
analytical closed-form expressions and determine the
value of ε (depends on the system parameters) that val-
idates our assumption of a weakly nonlinear system.
For this purpose, we compare the analytical solutions,
obtained using MMS, with numerical solution of the
system given by Eq. (5). The initial condition for the
numerical simulation is chosen corresponding to steady
states.

Table 1 Nondimensional parameters of UPM machine used in
the analysis

Parameter Value

ζ 0.001

κ 0.001

β 0.83

α1 0.0246

mr 0.9333

qzr 0.0983

kr 0.7333

For the numerical simulations, we have used MAT-
LAB routine ‘ode45’ with high relative and abso-
lute tolerance (1e−10). The comparisons between the
numerical simulation of the system given by Eq. (5)
and the analytical results from MMS for primary res-
onance near ω1 (Eq. (25)) are shown in Fig. 4, with
1 : 2 complete internal resonance, i.e., σ2 = 0. From
Fig. 4, we can observe that there is an excellent agree-
ment between the numerical simulations and analyti-
cal solutions for the value of ε = 0.0001. This agree-
ment between the analytical and numerical simulation
can be further observed for the other cases of reso-
nances considered in this work (shown in Figs. 5, 6, 7
and 8) for ε = 0.0001. To further verify the analyt-
ical solutions obtained using MMS, we compare the
analytical force response curve of the system with that
obtained numerically. For this, we solve the governing
equations of motion for different cases of resonance
using MATLAB routine ‘ode45’ with high values of
relative and absolute tolerance (1e−10) and decreasing
values of f0. Figures 9, 10, and 11 show the extrema
of y(τ ), obtained numerically and analytically, for the
steady- state responsewith ε = 0.0001. From these fig-
ures, we can observe an excellent match between both
approaches for the given value of ε. This observation
further validates our analytical approach. Therefore, in
the remaining analysis we have chosen the value of
ε = 0.0001.

Having established the agreement between the ana-
lytical and numerical simulations, now we present the
force and frequency responses of the system for the
different cases of resonances. At first, we present the
resonance cases when the primary and secondary res-
onances (superharmonic resonance) are close to the
higher natural frequency of the system, i.e., ω1. The
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Fig. 4 Comparison
between the numerical and
analytical solutions for the
system parameters given in
Table 1 (a), (c), translational
motion, y(t) and (b), (d),
rocking motion, θ(t) with
different values of ε

(ε = 0.001, 0.0001) for
primary resonance near ω1,
i.e., ωr = ω1 + 0.1ε, and
f0 = 1 with 1 : 2 complete
internal resonance, i.e.,
σ2 = 0

(a) (b)

(c) (d)

Fig. 5 Comparison
between the numerical and
analytical solutions for the
system parameters given in
Table 1 (a) translational
motion, y(t), and (b)
rocking motion, θ(t) for
primary resonance near ω2,
i.e., ωr ≈ ω2 + 0.1ε,
ε = 0.0001 and f0 = 1 with
1 : 2 complete internal
resonance, i.e., σ2 = 0

(a) (b)
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Fig. 6 Comparison
between the numerical and
analytical solutions for the
system parameters given in
Table 1 (a) translational
motion, y(t), and (b)
rocking motion, θ(t) for
superharmonic resonance
near ω1, i.e.,
2ωr ≈ ω1 + 0.1ε,
ε = 0.0001 and f0 = 1 with
1 : 2 internal resonance, i.e.,
σ2 = 0

(a) (b)

Fig. 7 Comparison
between the numerical and
analytical solutions for the
system parameters given in
Table 1 (a) translational
motion, y(t), and (b)
rocking motion, θ(t) for
superharmonic resonance
near ω2, i.e.,
2ωr ≈ ω2 + 0.1ε,
ε = 0.0001 and f0 = 4 with
1 : 2 internal resonance, i.e.,
σ2 = 0

(a) (b)

Fig. 8 Comparison
between the analytical and
numerical simulations for
the given system parameters
in Table 1 (a), translational
motion, y(t) and (b)
rocking motion, θ(t) for
combined resonance, i.e.,
ωr ≈ ω1 + ω2 + 0.1ε,
ε = 0.0001 and f0 = 1 with
1 : 2 internal resonance, i.e.,
σ2 = 0

(a) (b)
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Fig. 9 comparison between
numerical and analytical
force response curves for
the case of primary
resonance near (a) ω1
(ωr = ω1 + 0.1ε), and (b)
ω2 (ωr = ω2 + 0.1ε) with
1 : 2 internal resonance, i.e.,
σ2 = 0

(a) (b)

Fig. 10 Comparison
between numerical and
analytical force response
curves for the case of
superharmonic resonance
near (a) ω1
(2ωr = ω1 + 0.1ε), and (b)
ω2 (2ωr = ω2 + 0.1ε) with
1 : 2 internal resonance, i.e.,
σ2 = 0

(a) (b)

force response curves of the first and secondmodes cor-
responding to primary resonance are shown in Fig. 12
for different values of external detuning parameter σ1.
From Fig. 12a, we can observe that for the case of a
small value of detuning in the external excitation and
perfectly internal tuned system, there are different solu-
tions in different regions of the excitation amplitude.
From Fig 12a, it can be observed that in the region
f01 < f0 < f02, three simultaneous solutions exist
for mode a2 (Eqs. (24) and (25)). The stability of these
steady-state solutions can be accessed by calculating
the eigenvalues of the Jacobian matrix corresponding
to primary resonance near ω1. The unstable and sta-
ble branches of the solution are shown by dashed and
solid lines, respectively. It is noted that two out of three
solutions are stable, and one branch of steady solution
(a∗

2 = 0) becomes unstable as the excitation amplitude
increases beyond f02. Further, from Fig. 12a, it can

be observed that two unstable branches of the solution
merge with one stable branch of the solution at f02 and
produce one unstable branch for mode a2. This obser-
vation leads to a subcritical mode bifurcation in the
system formode a2. Accordingly, the initial conditions,
close to the stable solutions, determine the response of
the system in this region,which further implies the local
stability of the dynamical system for f01 < f0 < f02.
However, for the case of zero detuning in the external
excitation and perfectly tuned internal resonance sys-
tem, only one solution of the steady state, i.e., a2 = 0,
exists for f0 < f02 and two solutions of steady state
exist for f0 > f02. On accessing the stability of these
steady states, it can be observed that a2 = 0 becomes
unstable as f0 increases after f02. This observation fur-
ther implies that two stable and one unstable branches
of the solution emerge at f0 = f01, leading to a super-
critical mode bifurcation in the system.
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Fig. 11 Comparison between numerical and analytical force
response curves for the case of combined resonance ωr =
ω1 + ω2 + 0.1ε) with 1 : 2 internal resonance, i.e., σ2 = 0

Further, the saturation phenomenon in mode a1
can be observed for both cases of external detuning.
From Figs. 12a and 12b, it can be observed that as
f0 increases, a1 increases while a2 remains unexcited
regardless of the value of detuning parameter. How-
ever, as the value of external excitation, f0, reaches a
critical value of f02, there is no further increment in the
value of a1, and it gets saturated. After this value of f0,
increment in the external excitation only causes growth
in a2. This observation further suggests that there is no
energy exchange between the modes for the case of
primary resonance near ω1.

On analyzing the case of superharmonic resonance
near ω1, we notice that observations similar to the pri-
mary resonance case can also be drawn for this case.
These qualitative similarities between the primary and
superharmonic resonance near ω1 exist because of the
similar form for the steady-state values in both of the

Fig. 12 Force response
curve of the first and second
modes, i.e., a1 and a2 for
primary resonance near ω1
with (a) ωr = ω1 + 0.1ε,
ε = 0.0001; (b) ωr = ω1
and 1 : 2 internal resonance,
i.e., σ2 = 0

(a) (b)

Fig. 13 Force response
curve of the first and second
modes, i.e., a1 and a2 for
superharmonic resonance
with (a) 2ωr = ω1 + 0.1ε,
ε = 0.0001; (b) 2ωr = ω1
and 1 : 2 internal resonance,
i.e., σ2 = 0

(a) (b)
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Fig. 14 Variation in internal detuningparameterwith nondimen-
sional location of the isolator for the values of system parameters
given in Table 1

cases. However, it can be noticed from Fig. 13b that
for the case of zero detuning in external excitation, the
response of the system is governed by the mode a2
only and attains a very high value for the given excita-
tion. The latter indicates that nonlinear interaction can
be employed in transferring the energy to one of the
modes (i.e., the translation or rocking) with isolating
other unwanted motions that affect the performance of
UPM machines.

Next, we present the effect of isolator location on the
nature of bifurcation through internal detuning param-
eter σ2. For this, it is required to know the variation
in internal detuning parameter with isolator location
(α) and hence is shown in Fig 14. It can be observed
from this figure that perfect internal resonance (i.e.,
σ2 = 0) occurs when α = αcr1 (-0.725) or α = αcr2

(0.725). Negative detuning occurs when α < αcr1 or
α > αcr2, whereas positive detuning occurs when
αcr1 < α < αcr2. The system is uncoupled when
α = 0 and this corresponds to positive detuning (i.e.,
σ2 ≈ 0.65). The role of the isolator location on the
bifurcation of the system is demonstrated in Figs. 15
and 16 for the primary and superharmonic resonance,
respectively.

From Fig. 15, it can be noted that for the case of pri-
mary resonance, there is a change in the nature of bifur-
cation from supercritical to subcritical as the internal
detuning parameter becomes negative from positive.

Since the internal detuning parameter is related to the
location of isolators through the natural frequencies,
the nature of bifurcation and hence the stable global
region dependon the location of isolators. Further, from
Fig. 14 we can observe that for α = 0 (i.e., for com-
pletely decoupled system) internal detuning parameter
remains positive which signifies the existence of super-
critical bifurcation and global stable region. This obser-
vation is in contrary to the findings in [34] where it was
shown that mode coupling is always desirable for bet-
ter vibration suppression. However, from Fig. 16 it can
be noted that the above observations do not hold any
longer for the case of superharmonic resonance near
ω1. We observe that for both cases of internal detuning
parameter σ2 (σ2 > 0 and σ2 < 0), there is no change
in the nature of bifurcation as it remains subcritical.
Further, for the case of superharmonic resonance with
the positive value of internal detuning parameter, i.e.,
σ2 > 0, the local stable region is smaller as compared to
the negative value of σ2. Although we can observe that
for the same value of external excitation, the ampli-
tude of both modes (a1 and a2) are much larger for
the negative value of σ2 for both cases of resonances.
This observation further suggests the isolator locations,
which correspond to the negative value of the internal
detuning parameter should be avoided for both cases
of resonance near ω1.

Now, we present the resonance cases close to the
lower natural frequency of the system, i.e., ω2. The
force response curves of the first and secondmodes cor-
responding to primary and superharmonic resonance
near ω2 are shown in Figs. 17 and 18, respectively,
for different values of external detuning parameter σ1.
From Figs. 17a and 18a, it can be observed that with the
small value of detuning in the external excitation fre-
quency and perfectly internal tuned system, there are
different solutions in the different regions of the excita-
tion amplitude. From Figs. 17a and 18a, we observe the
existence of S-shaped bifurcation [45] with two turning
points and three simultaneous solutions for both modes
a1 and a2 in the region of f01 < f0 < f02. The sta-
bility of these steady- state solutions can be accessed
by calculating the eigenvalues of the Jacobian matrix
corresponding to the primary and superharmonic reso-
nance near ω2. Again, the unstable and stable branches
of the solution are shown by dashed and solid lines,
respectively. It is noted that two out of three solutions in
the region f01 < f0 < f02 are stable. Further, we note
that for smaller excitation amplitude f0 ∈ (0, f02), the
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Fig. 15 Force response
curve for the case of primary
resonance with σ1 = 0.1 ,
ε = 0.0001 (a) σ2 = 0.11,
and (b) σ2 = −0.11

(a) (b)

Fig. 16 Force response
curve for the case of
superharmonic resonance
with σ1 = 0.1 , ε = 0.0001
(a) σ2 = 0.11, and (b)
σ2 = −0.11

(a) (b)

Fig. 17 Force response
curve of the first and second
modes, i.e., a1 and a2 for
primary resonance near ω2
with (a) ωr = ω2 + 0.1ε,
ε = 0.0001; (b) ωr = ω2
and 1 : 2 internal resonance,
i.e., σ2 = 0

(a) (b)

amplitude of both modes a1 and a2 attains very small
values, irrespective of the initial conditions. However,

between f02 and f01, the stability of the steady states
results in conditional persistence.
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Fig. 18 Force response
curve of the first and second
modes, i.e., a1 and a2 for
superharmonic resonance
near ω2 with (a)
2ωr = ω2 + 0.1ε,
ε = 0.0001; (b) 2ωr = ω2
and 1 : 2 internal resonance,
i.e., σ2 = 0

(a) (b)

Fig. 19 Force response
curve for the case of
primary resonance near ω2
with σ1 = 0.1 , ε = 1e − 4
(a) σ2 = 0.11, and (b)
σ2 = −0.11

(a) (b)

In this range, the top and bottom branches are stable
solutionswhile themiddle branch is unstable. Thus, the
amplitude of both modes is highly dependent on initial
conditions. For example, if the initial conditions
corresponds to the values on the lower side of the mid-
dle branch, the amplitude will decrease until it reaches
the stability at the lower branch, whereas, with ini-
tial conditions corresponding to upper side of middle
branch, amplitude will increase until obtaining stabil-
ity at the top branch. For f0 > f01, the amplitude of
both modes will unconditionally persist. It implies that
with any combination of initial conditions, the ampli-
tude will increase or decrease until stabilizing at the
top branch. However, for the case of exact external res-
onance, i.e., σ1 = 0, there is only one stable solution
(Figs. 17b and 18b) for both cases of resonance, irre-
spective of the value of f0. This further implies that both
modes achieve the steady state irrespective of the ini-

tial conditions. Further, from Figs. 17b and 18b we can
observe that for the case of exact external resonance,
mode a1 dominates the dynamics of system unlike the
case of resonance near ω1 where a2 was the dominant
mode. Also, we observe that there is no saturation phe-
nomenon of any of the modes unlike the resonance
cases nearω1. This observation further implies the con-
tinuous energy exchange between both modes a1 and
a2.

Now, we present the effect of isolator location on the
force response of the system through internal detuning
parameter σ2. From Fig. 19 we can observe that for the
case of primary resonance near ω2, there is change in
the nature of force response curve with the change in
the sign of internal detuning parameter σ2. However,
from Fig. 20 we again note that the above observation
does not hold any longer for the case of superharmonic
resonance near ω2 like the case of resonances near ω1.
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Fig. 20 Force response
curve for the case of
superharmonic resonance
near ω2 with σ1 = 0.1 ,
ε = 1e − 4 (a) σ2 = 0.11,
and (b) σ2 = −0.11

(a) (b)

Fig. 21 Force response
curve of the first and second
modes, i.e., a1 and a2 for
combined resonance with
(a) ωr = ω1 + ω2 + 0.1ε,
ε = 0.0001; (b)
ωr = ω1 + ω2 and 1 : 2
internal resonance, i.e.,
σ2 = 0

(a) (b)

Fig. 22 Force response
curve for the case of
combined resonance with
σ1 = 0.1 , ε = 1e − 4 (a)
σ2 = 0.11, and (b)
σ2 = −0.11

(a) (b)

Also, for the case of superharmonic resonance nearω2,
with positive value of internal detuning parameter, i.e.,
σ2 > 0, the unstable branch of solution is larger as
compared to negative value of σ2. Note that this obser-
vation is in contrast with the case of resonance nearω1,

where positive value of external detuning causes small
local stable region. Furthermore, we observe that for
the same value of excitation, amplitude of modes, a1
and a2 are much larger for positive value of σ2 unlike
the case of resonance near ω1. This observation fur-
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ther suggests the isolator location which corresponds
to the positive value of internal detuning parameter, σ2,
should be avoided for the case of resonances near ω2.

The force response curves for the case of combined
resonance are shown in Figs. 21 and 22 for the differ-
ent values of σ1 and σ2. From these figures, it can be
observed that f0 should be greater than the critical value
f01 to change the steady states fromzero to nonzero val-
ues. After this value of excitation, amplitudes a1 = 0
and a2 = 0 become unstable. The unstable and stable
branches of the solutions are shown using the solid and
dashed lines, respectively.We note that for the different
combination of σ1 and σ2, the amplitude of first mode
changes very slowly after a certain value of excitation
amplitude as compared to the second mode. This sat-
uration phenomenon of mode a1 can be referred to as
quasi-saturation and happens at high value of excita-
tion amplitude. Finally, we also observe that for larger
f0, all the steady states become unstable.
Next we present the frequency response of the sys-

tem for different cases of resonance. The frequency
response curves for modes a1 and a2 corresponding
to primary and superharmonic resonance near ω1 are
shown in Figs. 23 and 24. The dotted curves for a1 with
peaks at σ1 = 0 correspond to steady state a∗

2 = 0 and
essentially are the solution of the corresponding linear
problem. It can be observed that unstable region for the
linear solution depends on the value of σ1 and the solu-
tion corresponding to the nonlinear system. Also, from
these figures, it can be observed that for both cases,
primary and secondary resonance, nonlinearity in the
system is primarily depicted by mode a2. Therefore,
for the remainder of the analysis we consider mode a2
only.

The frequency response curves for primary and
superharmonic resonance nearω2 are shown in Figs. 25
and 26. We observe that near the value of zero exter-
nal detuning parameter, the amplitude of mode a2 is
smaller than a1. However, as the value of σ1 increases,
the amplitude of mode a2 becomes dominant and
attains a higher value as compared to a1 for the given
σ2. Further, we observe the jump phenomenon like the
earlier cases of resonance.

The frequency response for the combined resonance
is shown in Fig. 27. We observed that for the values of
σ1 close to 0, both trivial and nontrivial steady states are
unstable. To further analyze the system, we present the
effect of different parameters on the system dynamics.

6 Effect of parameters on the system dynamics

In this section, we present the effect of different sys-
tem parameters on the dynamics of the system in
order to identify the key design parameters. As dis-
cussed earlier, the effect of nonlinearity in the system
ismore prominent inmodea2.Weplotted the frequency
response curve for mode a2 for different values of sys-
temparameters corresponding to primary and superhar-
monic resonance. In Fig. 28a, the effect of β, ratio of
natural frequency corresponding to uncoupled transla-
tional and rocking motion, on the frequency response
is shown. From these frequency response curves, we
can observe that with the increase in β, the maxi-
mum amplitude of a2 and the effect of nonlinearity
increases significantly . Also, the unstable region cor-
responding to a2 = 0 increases with increasing β.
However, it should be noted here that parameter β is
not associated directly with any nonlinear terms in the
system of equations (Eq. (5)). This observation fur-
ther motivates the importance of linear and nonlinear
mode coupling in the system. Figure 28b depicts the
effect of kr on the system dynamics. It is demonstrated
that with the increase in the value of kr , ratio of lin-
ear stiffnesses corresponding to equivalent isolator in
translational and rocking direction has little effect on
the dynamics of modal amplitude. Moreover, one can
observe that the rate of change of the backbone curve
and amplitudewith respect to kr is very lowand ahigher
value of kr is required to decrease the amplitude. The
effect of variation in qzr , representing the nonlinear
quadratic stiffness for rocking motion, on the system
dynamics is depicted in Fig 28c. It can be noted that
with the increase in qzr , the maximum amplitude of a2
remains the same; however, the nonlinearity in the sys-
tem increases. Also, increase in qzr increases the unsta-
ble region near σ1 = 0. Figure 28d shows the effect of
α1, representing the nondimensional quadratic stiffness
for the translationalmotion, on the frequency amplitude
characteristic. We observe that with the increase in α1,
the nonlinearity decreases while the maximum ampli-
tude remains almost the same, unlike the other system
parameters and similarly to qzr . From these observa-
tions, we can easily conclude that lower value of β

causes low amplitude of a2 and further low amplitude
of vibrations in the system for primary resonance.

The effect of variation of system parameters on the
dynamics of the isolated UPM machine for the case
of superharmonic resonance is plotted in Fig. 29. The
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Fig. 23 Frequency
response curve for primary
resonance (a) first mode; (b)
second mode with f0 = 0.1,
ε = 0.0001, and 1 : 2
perfect internal resonance,
i.e., σ2 = 0

(a) (b)

Fig. 24 Frequency
response curve for
superharmonic resonance
(a) first mode; (b) second
mode with f0 = 6e − 4,
ε = 0.0001 and 1 : 2 perfect
internal resonance, i.e.,
σ2 = 0

(a) (b)

Fig. 25 Frequency
response curve for primary
resonance near ω2 (a) first
mode; (b) second mode
with f0 = 3, ε = 0.0001
and 1 : 2 perfect internal
resonance, i.e., σ2 = 0

(a) (b)

results show that with increasing β, there is an increase
in the nonlinearity in the system similar to the case of
primary resonance. However, the maximum amplitude
for a2 decreases significantly with small increase in

β. The effect of variation in kr is shown in Fig. 29b.
From this figure, it can be easily observed that kr does
not significantly influence the nonlinearity of the sys-
tem, like in the case of primary resonance. Figure 29c
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Fig. 26 Frequency
response curve for
superharmonic resonance
(a) first mode; (b) second
mode with f0 = 6,
ε = 0.0001 and 1 : 2 perfect
internal resonance, i.e.,
σ2 = 0

(a) (b)

Fig. 27 Frequency
response curve for
superharmonic resonance
(a) first mode; (b) second
mode with f0 = 6,
ε = 0.0001 and 1 : 2 perfect
internal resonance, i.e.,
σ2 = 0

(a) (b)

shows the variation in frequency response curves with
qzr . Increasing qzr does not only decrease the maxi-
mum amplitude, but also increases the nonlinearity in
the system. Contrary to other parameters, nonlinearity
in the system decreases with increasing α1. However,
this increment further increases the maximum ampli-
tude. Therefore, to limit the maximum value of modal
amplitude a2 for the case of superharmonic resonance,
larger value of β and qzr and lower values of α1 are
required.

Next, we present the effect of variation in system
parameters on the system dynamics for the cases of
resonance (primary and superharmonic) near ω2. The
results are shown in Figs. 30 and 31. For the case of pri-
mary resonance near ω2, we note that with an increase
in β, the maximum amplitude decreases with increase
in nonlinearity. However, increase in kr increases the
maximum amplitude and has very marginal effect on
the nonlinearity. We observe that both of the above

observations for β and kr are valid for the case of
superharmonic resonance near ω2. Further, we observe
that increase in qzr increases the nonlinearity in the
system but has no effect on the maximum amplitude.
We observe that qzr has similar effect for the case of
superharmonic resonance near ω1. However, contrary
to other system parameters, increase in α1 decreases
the nonlinearity in the system.

Now, we present the effect of system parameters
on the system dynamics for the case of combined res-
onance in Fig. 32. We observe that the nonlinearity
increases and the stable region near sigma1 decreases
with increasing any of the dimensionless parameters,
except α1.

For a better illustration of these results, we present
the effect of increase in parameters values on the maxi-
mum amplitude and nonlinearity of system in Tables 2
and 3, respectively. From Table 2, we can observe
that the effect of the parameter values on the maxi-

123



Nonlinear mode coupling in a passively isolated mechanical system

Fig. 28 Effect of variation
in a β, b kr , c qzr , and d α1
on the frequency response
curves for primary
resonance with f0 = 0.1,
σ2 = 0 and ε = 0.0001

(a) (b)

(c)
(d)

mum amplitude of the system is not monotonous and
changes fromone case of external resonance to another.
However, in contrary to these, these parameters have a
consistent effect on the nonlinearity of the system, as
depicted in Table 3. With these observations, we can
conclude that it is not possible to decide global key
design parameters which are valid for all cases of exter-
nal resonance.

7 Conclusion

We studied the nonlinear vibration of a UPM machine
analytically using the method of multiple scales and
harmonic balance. Based on the experimental results,
we assumed the stiffness of the pneumatic isolators to
be a combination of linear and quadratic stiffnesses. In
our mathematical formulation, the horizontal and tor-
sional motions were also linearly and nonlinearly cou-
pled through the location of the vibration isolators. The

closed form solution for the modal amplitudes, corre-
sponding to the different cases of external resonance
with internal resonant, was obtained using MMS. The
obtained analytical expressions were validated using
direct numerical simulations, and the results showed
very good agreement. Further analysis revealed the
existence of subcritical and supercritical bifurcation
for the cases of external resonance near higher natural
frequencies. The results showed existence of S-shaped
bifurcation for the cases of external resonance close
to lower natural frequency. We also observed depen-
dence of energy exchange between the modes for the
case of external resonances. Further analysis revealed
the sensitivity of the nature of bifurcation toward inter-
nal detuning parameter and hence the location of iso-
lator. Numerical examples demonstrated that negative
detuning, which corresponded to the isolator location
α < αcr1 or α > αcr2, can degrade the performance
of the isolator. Furthermore, we observed that mode

123



S. K. Gupta et al.

Fig. 29 Effect of variation
in a β, b kr , c qzr , and d α1
on the frequency response
curves for superharmonic
resonance with f0 = 0.1,
σ2 = 0 and ε = 0.0001

(a) (b)

(c) (d)

decoupling leads to global stable regions and hence
desirable in practice in contrary to earlier studies which
refuted the advantages ofmodedecoupling.Thenumer-
ical results also showed more complicated dynamics
such as quasi-saturation phenomenon for the case of
combined resonance. At last, we performed the para-
metric study to identify key system parameters. The
results showed that the effect of different parameters
on the system dynamics is not monotonous and varies
fromone case of external resonance to another. Overall,
the findings in this paper contradicted recent studies of
passively isolated systems and suggested that nonlin-
ear mode coupling can yield worst vibration isolation,
especially, when the location of the vibration isolators
corresponds to the internal resonance case.
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Appendix A: primary resonance near ω1

D0,0η1 + β2(η1 − αϑ1)

= −2i (D1A1Λ1 + A1ζβΛ1 − A1ζ β α) ω1e
iω1T0

− 2i (D1A2Λ2 + A2ζβ Λ2

−A2ζβα) ω2e
iω2T0

− A1
2α1mr (α − Λ1)

2 e2iω1T0

− A2
2α1mr (α − Λ2)

2 e2iω2T0

− 2A1 Ā2α1mr (α − Λ1)
(
α − Λ̄2

)
ei(ω1−ω2)T0

+ 2 A1A2α1mr (α − Λ1) (α − Λ2) e
i(ω1+ω2)T0

+ 2 A1 Ā1α1mr (α − Λ1)
(
α − Λ̄1

)

+ 2A2 Ā4α1mr (α − Λ2)
(
α − Λ̄2

)

+ f0
2
mre

i(ω1T0+σ1T1) + C.C. , (56a)
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Fig. 30 Effect of variation
in a β, b kr , c qzr , and d α1
on the frequency response
curves for primary
resonance near ω2 with
f0 = 3, σ2 = 0 and
ε = 0.0001

(a) (b)

(c) (d)

Table 2 Effect of increase in parameter values on the maximum amplitude for the different cases of resonance and a given value of
excitation amplitude

Parameters
Cases β kr qzr α1

Primary resonance near ω1 Increase Decrease No significant change No significant change

Superharmonic resonance near ω1 Decrease Increase Decrease Increase

Primary resonance near ω2 Decrease Increase No significant change No significant change

Superharmonic resonance near ω2 Decrease Increase No significant change Decrease

Combined resonance No effect No effect No effect No effect

D0,0ϑ1 + ϑ1 − krα (η1 − αϑ1)

= −2iω1

(

D1A1 +
√

kr
mr

ζα2A1

+κA1 −
√

kr
mr

ζαA1Λ1

)

eiω1T0

− 2iω2

(

D1A2 +
√

kr
mr

ζα2A2

+κA2 −
√

kr
mr

ζαA2Λ2

)

eiω2T0

+ A1
2 (

α1α(α − Λ1)
2 − qzr

)
e2iω1T0

123



S. K. Gupta et al.

Fig. 31 Effect of variation
in a β, b kr , c qzr , and d α1
on the frequency response
curves for superharmonic
resonance near ω2 with
f0 = 6, σ2 = 0 and
ε = 0.0001

(a) (b)

(c) (d)

Table 3 Effect of increase
in parameter values on the
nonlinearity of the system
for the different cases of
resonance and a given value
of excitation amplitude

Parameters
Cases β kr qzr α1

Primary resonance near ω1 Increase Increase Increase Decrease

Superharmonic resonance near ω1 Increase Increase Increase Decrease

Primary resonance near ω2 Increase Increase Increase Decrease

Superharmonic resonance near ω2 Increase Increase Increase Decrease

Combined resonance Increase Increase Increase Decrease

+ A2
2 (

α1α(α − Λ2)
2 − qzr

)
e2iω2T0

+ 2A1 Ā2
(
α1α(α − Λ1)(α − Λ̄2) − qzr

)
ei(ω1−ω2)T0

+ 2A1A2 (α1α(α − Λ1)(α − Λ2) − qzr ) e
i(ω1+ω2)T0

+ 2 A1 Ā1
(
α1α(α − Λ1)(α − Λ̄1) − qzr

)

+ 2 A2 Ā2
(
α1α(α − Λ2)(α − Λ̄2) − qzr

)

+ f0
2

αei(ω1T0+σ1T1) + C.C. , Γ1

=
4ω1ζ

(
l1β − α

√
kr
mr

)
(α − Λ1) − 4κω1

4ω1(1 + l1Λ1)

Γ2 = α1 (α − l1mr ) (α − Λ2)
2 − qzr

4ω1(1 + l1Λ1)

Γ3 = 2(l1mr − α)

4ω1(1 + l1Λ1)
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Fig. 32 Effect of variation
in a β, b kr , c qzr , and d α1
on the frequency response
curves for combined
resonance with f0 = 2,
σ2 = 0 and ε = 0.0001

(a) (b)

(c) (d)

Γ4 = α1(l2mr − α)(α − Λ̄2)(α − Λ1) + qzr
2ω2(1 + l2Λ2)

Γ5 =
2ζω2

(
l2β − α

√
kr
mr

)
(α − Λ2) − 2κω2

4ω2(1 + l2Λ2)
(56b)

Appendix B: primary resonance near ω2

O(ε0) : D0,0η0 + β2 (η0 − α ϑ0) = 0 , (57a)

D0,0ϑ0 + ϑ0 − kr α (η0 − αϑ0) = 0 (57b)

O(ε) : D0,0η1 + β2(η1 − αϑ1)

= −2ζβ (D0η0 − αD0ϑ0)

− α1mr (η0 − αϑ0)
2 − 2D0,1η0

+ f0mr cos(ω2T0 + σ1T1) (58a)

D0,0ϑ1 + ϑ1 − krα (η1 − αϑ1)

= 2ζ

√
kr
mr

α (D0η0 − αD0ϑ0) − 2D0,1ϑ0

+ α1α(η0 − αϑ0)
2 − qzrϑ

2
0

− 2κD0ϑ0 − f0α cos (ω2 T0 + σ1T1) . (58b)

Appendix C: secondary resonance

D0,0η1 + β2(η1 − αϑ1)

= −2i (D1A1Λ1 + A1ζβΛ1 − A1ζ β α) ω1e
iω1T0

− 2i (D1A2Λ2 + A2ζβ Λ2 − A2ζβα) ω2e
iω2T0

− A1
2α1mr (α − Λ1)

2 e2iω1T0 − A2
2α1mr

(α − Λ2)
2 e2iω2T0

− 2A1 Ā2α1mr (α − Λ1)
(
α − Λ̄2

)
ei(ω1−ω2)T0

+ 2 A1A2α1mr (α − Λ1) (α − Λ2) e
i(ω1+ω2)T0

+ A1α1mr f0 (α − Λ1) (Φ1 − αΦ2) e
i(ω1−ωr )T0

+ A1α1mr f0 (α − Λ1) (Φ1 − αΦ2) e
i(ω1+ωr )T0

+ A2α1mr f0 (α − Λ2) (Φ1 − αΦ2) e
i(ω2−ωr )T0
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+ A2α1mr f0 (α − Λ2) (Φ1 − αΦ2) e
i(ω2+ωr )T0

− 1

4
f 20 α1mr (Φ1 − αΦ2)

2e2iωr T0

− i (Φ1 − Φ2 α) β f0ωr ζeiωr T0

+ C.C. + CV F1 (59)

D0,0ϑ1 + ϑ1 − krα (η1 − αϑ1)

= −2iω1

(

D1A1 +
√

kr
mr

ζα2A1

+κA1 −
√

kr
mr

ζαA1Λ1

)

eiω1T0

− 2iω2

(

D1A2 +
√

kr
mr

ζα2A2

+κA2 −
√

kr
mr

ζαA2Λ2

)

eiω2T0

+ A1
2
(
α1α(α − Λ1)

2 − qzr
)
e2iω1T0

+ A2
2
(
α1α(α − Λ2)

2 − qzr
)

e2iω2T0

+ 2A1 Ā2
(
α1α(α − Λ1)(α − Λ̄2) − qzr

)

ei(ω1−ω2)T0

+ 2A1A2 (α1α(α − Λ1)(α − Λ2) − qzr )

ei(ω1+ω2)T0

− A1 f0 (α1α (α − Λ1) (Φ1 − Φ2 α) + Φ2qzr )

ei(ω1−ωr )T0

− A1 f0 (α1α (α − Λ1) (Φ1 − Φ2 α) + Φ2qzr )

ei(ω1+ωr )T0

− A2 f0 (α1α (α − Λ2) (Φ1 − Φ2 α) + Φ2qzr )

ei(ω2−ωr )T0

− A2 f0 (α1α (α − Λ2) (Φ1 − Φ2 α) + Φ2qzr )

ei(ω2+ωr )T0

+ 1

4
f 20

(
α1α(Φ1 − αΦ2)

2 − qzrΦ
2
2

)
e2iωr T0

+ i

(

−Φ2κ − Φ2α
2ζ

√
kr
mr

+αζ

√
kr
mr

Φ1

)

f0 ωr e
iωr T0 + C.C. + CV F2

(60)

Appendix D: superharmonic resonance near ω1

Γ1 =
4ζ l1βω1(α − Λ1) − 4α

√
kr
mr

ζω1(α − Λ1) − 4κω1

4ω1(1 + l1Λ1)
,

Γ2 = −α1(α − Λ2)
2(l1mr − α) − qzr

4ω1(1 + l1Λ1)
,

Γ3 = −α1(Φ1 − αΦ2)
2(l1mr − α) − qzrΦ2

2

4ω1(1 + l1Λ1)
,

Γ4 = α1(α − Λ̄2)(α − Λ1)(l2mr − α) + qzr
2ω2(1 + l2Λ2)

,

Γ5 =
2ζ l2βω2(α − Λ2) − 2α

√
kr
mr

ζω2(α − Λ2) − 2κω2

2ω1(1 + l2Λ2)
.

(61)

Appendix E: combined resonance

Γ1 =
−4 κ ω1 − 4α ζ

√
kr
mr

ω1 (α − Λ1) + 4ζ l1 β ω1 (α − Λ1)

4ω1 l1 Λ1 + 4ω1

Γ2 = −α1(α − Λ2)
2(l1mr − α) − qzr

4ω1(1 + l1Λ1)

Γ3 = −2 α1
(
α − Λ̄2

)
(α − l1 mr ) (Φ1 − Φ2 α) − 2 qzr Φ2

4ω1(1 + l1Λ1)

Γ4 = α1(α − Λ̄2)(α − Λ1)(l2mr − α) + qzr
2ω2(1 + l2Λ2)

Γ5 = −α1
(
α − Λ̄1

)
(α − l2 mr ) (Φ1 − Φ2 α) − qzr Φ2

2ω1(1 + l2Λ2)

Γ6 =
−2 α ζ

√
kr
mr

ω2 (α − Λ2) + 2 ζ Λ2 β ω2 (α − Λ2) − 2 κ ω2

2ω2 + 2ω2 l2 Λ2
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Appendix F: linear stability of steady states

JP1 =

⎡

⎢⎢
⎢⎢
⎣

Γ1 2Γ2 sin(γ ∗
1 ) a∗

2 Γ2 cos(γ ∗
1 ) a∗

2
2 f0 Γ3 cos(γ ∗

2 )

Γ4 sin(γ ∗
1 ) a∗

2 Γ4 sin(γ ∗
1 ) a∗

1 + Γ5 Γ4 cos(γ ∗
1 ) a∗

2 a
∗
1 0

4Γ4 cos(γ ∗
1 ) a∗

1+σ2
a∗
1

2Γ2 cos(γ ∗
1 ) a∗

2
a∗
1

−Γ2 sin(γ ∗
1 ) a∗

2
2−2Γ4 sin(γ ∗

1 ) a∗
1
2

a∗
1

− f0 Γ3 sin(γ ∗
2

a∗
1

σ1
a∗
1

2Γ2 cos(γ ∗
1 ) a∗

2
a∗
1

−Γ2 sin(γ ∗
1 a∗

2
2

a∗
1

− f0 Γ3 sin(γ ∗
1 )

a∗
1

⎤

⎥⎥
⎥⎥
⎦

, (62)

JS1 =

⎡

⎢
⎢⎢
⎢
⎣

Γ1 2Γ2 sin(γ ∗
1 ) a∗

2 Γ2 cos(γ ∗
1 ) a∗

2
2 f 20 Γ3 cos(γ ∗

2 )

Γ4 sin(γ ∗
1 ) a∗

2 Γ4 sin(γ ∗
1 ) a∗

1 + Γ5 Γ4 cos(γ ∗
1 ) a∗

2 a
∗
1 0

4Γ4 cos(γ ∗
1 ) a∗

1+σ2
a∗
1

2Γ2 cos(γ ∗
1 ) a∗

2
a∗
1

−Γ2 sin(γ ∗
1 ) a∗

2
2−2Γ4 sin(γ ∗

1 ) a∗
1
2

a∗
1

− f 20 Γ3 sin(γ ∗
2

a∗
1

σ1
a∗
1

2Γ2 cos(γ ∗
1 ) a∗

2
a∗
1

−Γ2 sin(γ ∗
1 a∗

2
2

a∗
1

− f 20 Γ3 sin(γ ∗
1 )

a∗
1

⎤

⎥
⎥⎥
⎥
⎦

. (63)

JP2 = (64)
⎡

⎢
⎢⎢
⎢
⎣

Γ1 2Γ2sin(γ ∗
1 )a∗

2 Γ2cos(γ ∗
1 )a∗

2
2 0

Γ4sin(γ ∗
1 )a∗

2 Γ5 + Γ4a∗
1 sin(γ

∗
1 ) Γ4a∗

1cos(γ
∗
1 )a∗

2 + f0Γ3cos(γ ∗
1 ) 0

−2 f0Γ3cos(γ ∗
2 )+4Γ4a∗

1 cos(γ
∗
1 )a∗

2+σ2a∗
2

a∗
2a

∗
1

3Γ2cos(γ ∗
1 )a∗

2
2+σ2a∗

1+2Γ4a∗
1
2cos(γ ∗

1 )

a∗
2a

∗
1

−2Γ4a∗
1
2sin(γ ∗

1 )a∗
2−Γ2sin(γ ∗

1 )a∗
2
3

a∗
2a

∗
1

2
f0Γ3sin(γ ∗

2 )

a∗
2

−Γ4cos(γ ∗
1 ) −−σ1+Γ4a∗

1 cos(γ
∗
1 )

a∗
2

Γ4a∗
1 sin(γ

∗
1 ) − f0Γ3sin(γ ∗

2 )

a∗
2

⎤

⎥
⎥⎥
⎥
⎦

(65)

JS2 = (66)
⎡

⎢⎢⎢⎢
⎣

Γ1 2Γ2sin(γ ∗
1 )a∗

2 Γ2cos(γ ∗
1 )a∗

2
2 0

Γ4sin(γ ∗
1 )a∗

2 Γ5 + Γ4a∗
1 sin(γ

∗
1 ) Γ4a∗

1cos(γ
∗
1 )a∗

2 + f02Γ3cos(γ ∗
1 ) 0

σ2a∗
2−2 f02Γ3cos(γ ∗

2 )+4Γ4a∗
1 cos(γ

∗
1 )a∗

2
a∗
2a

∗
1

2Γ4a∗
1
2cos(γ ∗

1 )+3Γ2cos(γ ∗
1 )a∗

2
2+σ2a∗

1
a∗
2a

∗
1

−Γ2sin(γ ∗
1 )a∗

2
3−2Γ4a∗

1
2sin(γ ∗

1 )a∗
2

a∗
2a

∗
1

2
f02Γ3sin(γ ∗

2 )

a12

−Γ4cos(γ ∗
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1 cos(γ
∗
1 )
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2
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1 sin(γ

∗
1 ) − f02Γ3sin(γ ∗
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2

⎤

⎥⎥⎥⎥
⎦

(67)

JC =

⎡

⎢⎢
⎣

C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44

⎤

⎥⎥
⎦ (68)

with

C11 = Γ1, C12 = Γ3 f0sin(γ
∗
2 ) + 2Γ2sin(γ

∗
1 )a∗

2 ,

C13 = Γ2cos(γ
∗
1 )a∗

2
2
, C14 = Γ3 f0cos(γ

∗
2 )a∗

2 ,

C21 = Γ4sin(γ
∗
1 )a∗

2 + f0Γ5sin(γ
∗
2 ),

C22 = Γ6 + Γ4sin(γ
∗
1 )a∗

1 ,

C23 = Γ4cos(γ
∗
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2a
∗
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∗
2 )a∗

1 ,

C31 = 4Γ4cos(γ ∗
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∗
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2
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2a

∗
1

,

C32 = 3Γ2cos(γ ∗
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2
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1
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2
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∗
1

,

C33 = −2Γ4sin(γ ∗
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1
2a∗

2 − Γ2sin(γ ∗
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2
3
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2a

∗
1

,

C34 = 2 f0Γ5sin(γ ∗
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1
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2
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2a

∗
1
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∗
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∗
1

,
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1
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2
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∗
1
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