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ABSTRACT

Recent studies in passively-isolated systems have
shown that mode coupling is desirable for best vibration
suppression, thus refuting the long-standing rule of mode
decoupling. However, these studies have ignored the non-
linearities in the isolators. In this work, we consider stiff-
ness nonlinearity from pneumatic isolators and study the
nonlinear free undamped vibrations of a passively-isolated
ultra-precision manufacturing (UPM) machine. Experi-
mental analysis is conducted to guide the mathematical
formulation. The system comprises linearly and nonlin-
early coupled in-plane horizontal and rotational motion of
the UPM machine with quadratic nonlinear stiffness from
the isolators. We present closed-form expressions using
the method of multiple scales for two cases viz. the non-
resonant case and the bounded internal resonance case.
We validate our theoretical findings through direct numer-
ical simulations. For the non-resonant case, we show that
the system behaves similar to a linear system. However,
for the nearly internal resonance case, we demonstrate
strong energy exchange between the modes stemming from
nonlinear mode coupling. We further study the effect of
nonlinear mode coupling on the vibration isolation perfor-
mance and demonstrate that mode coupling is not always
desirable.

INTRODUCTION

Over the last few years, use of machine parts with
micro-level patterns and nano-level surface finish has sig-
nificantly increased in the electronic, biomedical, and
communication industries [1-3]. To meet the stringent
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requirements at the micro-scale, ultra-precision manu-
facturing (UPM) machines like ultra precision machine
tools, water steppers, and micro coordinate measuring
machine (CMM) are used to manufacture these parts. As
the tolerance and accuracy of these parts are very high,
even the smallest amplitude of vibrations can adversely
affect the accuracy and precision of the UPM machine.

Vibration isolation of UPM machines can be achieved

Isolators

Foundation

FIGURE 1: Experimental setup

by passive, active, or semi-active isolators [4-6]. How-
ever, passive isolators have been found more useful as
compared to active and semi-active because of the their
cost effectiveness, reliability and simple installation [7-9].
Good passive isolation from the surrounding vibrations
can be achieved when the stiffness of the isolator is very
low. However, low stiffness causes the residual vibrations
in the form of low frequency rocking motions due to inter-
nal or external excitation [10]. These residual vibrations
must be minimized because they can damage the accu-
racy of the machine [7,8,11,12]. Another drawback of
passive isolators is the increased transmissiblity at fre-
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FIGURE 2: Experimental Results Showing (a) Time Response; (b) Natural Frequencies

quencies greater than resonance with viscous damped os-
cillator [6,7,11]. These two drawbacks can be avoided
using pneumatic isolators (i.e. nonlinear vibration isola-
tors) [10,13-18].

A critical factor in designing these pneumatic iso-
lators is the selection of the isolator location such that
mode coupling can be avoided [8]. The decoupling be-
tween the modes can be achieved by aligning the isolator
mounting with the center of gravity of the UPM ma-
chine [11,19,20]. This decoupling of modes restricts the
transmission of vertical ground motion to the horizon-
tal axis and further prevents the rocking motion of the
UPM machine [8,12]. Also, this decoupling avoids the
presence of other peaks in the transmissibility response
of the machine [21]. However, the proper selection of the
isolator mounting points is often ignored in the design
phase [7,8].

A mathematical model to represent linear mode
coupling in UPM machine was first developed by Ok-
wudire [13,22]. It was shown that residual vibrations and
transmissibility can be reduced by selecting the proper
isolator location, motor, and work surface heights. Also,
it was demonstrated that mode coupling is desirable to
minimize the residual vibration and accordingly they ob-
tained the optimum value of the location of passive iso-
lator from the center of gravity of UPM [13]. It was ob-
served that with this optimum location of isolator, five-
fold reduction in the vibration amplitude can be achieved.
This observation is in contrary to the earlier observations
of aligning the isolator with the center of gravity of UPM
to avoid mode coupling and consequently to reduce the
transmitted vibration.

However, in Okwudire’s work [13,22], the nonlinear
stiffness of the pneumatic isolators was not considered
and accordingly its effect on the location of the isolators
was not explored. The aim of this work is to investi-
gate whether the benefits demonstrated in linear mode
coupling can be extended to nonlinear mode coupling.
Towards realizing this aim, here we consider the nonlin-
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earity in the stiffness of the pneumatic isolators and study
the nonlinear dynamic of the passively-isolated UPM ma-
chine. Experiments are carried out to guide the mathe-
matical formulation. The exact coupled nonlinear equa-
tions of motion of the isolated machine are presented, and
the analytical solutions are obtained using the method of
multiple scales. Direct numerical simulations are used
to validate the analytical results. Parametric studies are
performed to understand how nonlinear mode coupling
affects the performance of the pneumatic isolators.

Experimental results

Experiments are carried out using the reconfigurable
UPM machine based prototype depicted in Fig. 1. The
prototype consists of an 800 kg base of dimensions
749.3x749.3x495.3 mm. The machine is supported by
four pneumatic isolators (Bilz model BiAir 1-ED). The
UPM machine is disturbed with initial displacements in
the y-direction and the vibration of the system is mea-
sured using a tri-axial accelerometer (PCB Piezotron-
ics model Y356A63) with the sensitivity of 10.58 mV/g.
The experimental results show that the prototype ma-
chine can exhibit either stable or unstable motion de-
pending on the applied initial displacement. A very low
initial disturbance yields a stable vibration motion while
a relatively larger displacement exhibits an unstable mo-
tion. Figure 2a shows the experimental time response
of the vibrating UPM machine in all three directions.
The instability can be observed in all directions; how-
ever, higher vibration amplitudes occur in the y and z-
directions. This is expected as the system is disturbed
in the y-direction, resulting in coupling in the y-z plane.
A plot of the Fast Fourier Transform of the previously
discussed time response graph is shown in Fig. 2b. The
frequencies corresponding to the peaks in this plot are the
first six linear and nonlinear modes of the UPM machines
in 3D and are 1.56, 3.12, 3.5, 4.68, 6.24, 7.792 Hz. Note
that the fundamental frequency of the UPM is nearly half
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of the second mode, which corresponds to subharmonic
resonance. This observation suggests that the stiffness of
the pneumatic isolator is of a quadratic nonlinear type,
thus confirming the type of nonlinearity of the pneumatic
isolator mentioned in the literature [23].

MATHEMATICAL FORMULATION

In this section, we outline the mathematical model
for the UPM, followed by the linear and nonlinear anal-
yses. Note that the linear analysis of vibrations of UPM
machines is already established in the literature. How-
ever, the nonlinear analysis of these vibrations is not fully
resolved yet. For this purpose, we use one of the pertur-
bation methods viz. method of multiple scales and obtain
the closed-form solutions of the amplitude of vibrations.

Mathematical Model

A schematic of the 2D model of an isolated UPM has
been shown in Fig. 3. In this figure, m and I represent
the mass and centroid moment of inertia of the UPM
about the y—axis, respectively. ky and k. are the com-
bined linear stiffness of the isolators in y and z-directions,
respectively, g, and ¢, are the quadratic nonlinear stiff-
ness of the isolators in y and z—directions, respectively,
and b and h are the distance of the isolators from the
centroid (C.G.) in the horizontal and vertical directions,
respectively.

Isolator Isol
UPM solator

0.5k, 0.5q, 0.5k, 0.5q,

[

0.5k., 0.5¢.

T

FIGURE 3: Schematic of UPM with isolators with
quadratic nonlinearity

It should be noted that the current work only focuses
on the y — z plane motions. This assumption further im-
plies that we are considering 2-degree of freedom for the
current system viz. horizontal and rotational motion (y
and 6, motion). Hence, if there is no damping in the sys-
tem the equations of motion for the UPM can be written
as

mij+ky(y — hsin(0z)) +ay (y — hsin(6))* =0, (1a)
16, + k. b(bsin(6,)) 4 ¢-b(bsin(6,,))? (1b)
—kyh(y —hsin(0z)) — qyh(y — hsin(6;))* = 0.
For small amplitude motion the above equation can

be rewritten as

my+ky(y7h0m)+qy(y7hﬂz)2 =0, (2a)
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10 + ko0 + qp02 — qyh(y — ho,)?

—kyh(y—ht,) =0, (20)

where kg = b%k, and gy = b3¢q.. The above equations
describe the evolution of the two coupled modes with
time. The nonlinear analysis of the system is presented
in the next section.

Analysis

Our first interest in this work is to understand the
effect of h on the different modes of vibration in the UPM
machine. For this purpose we use the method of multiple
scales (MMS). We focus on small amplitude oscillations
by introducing a small parameter € (i,e,. € < 1) in the
governing equations of motion through rescaling

y(t) = ys +en(t) (3a)

0 (t) =0z + 6"9(t) (Sb)
where ys and 0,s are the equilibrium steady states of
the system and 7n(t) and ¥(t) are the small perturbations
around ys and 0,4, respectively. Since we are considering
the free undamped vibration of UPM, the steady states
ys and 0,5 will be zero. Accordingly, substitution of the
above rescaling in the equations of motion (Eq.2) leads
to

miy’—l—ky(n—hz?)—i—eqy(n—hﬁ)Q =0, (4a)
I9 + kgt — kyh(n — b)) + eqpd?

—eqyh(n—hv)? =0. (4b)

Note that we have divided the equation after substi-
tution of re-scaling throughout € to get the above equa-
tions. Since the nonlinear terms appears at O(e), the sys-
tem becomes weakly nonlinear system. Before proceeding
further, we need the solution of the linear unperturbed
equation to build up the solution for the perturbed non-
linear equation. This is presented in the next section.

Linear Analysis In this section, linear analysis of
the system given by Eq. (4) is presented. Note that, it
is an important step to build up the solution for the per-
turbed nonlinear equation. The linearized coupled sys-
tem can be obtained by setting e =0 in Eq. (4) and will
be

mij+ ky (n —h) = 0, (5a)

I+ kgt — kyh(n — hd)) = 0. (5b)

To obtain the characteristic equation, we set 7(t) =
noexp(At) and 9(t) = Jpexp(At) in Eq. 5 and obtain

mA*no + ky(no — htdg) = 0, (6a)
IN29¢ + ko — kyh(no — o) = 0. (6b)

For the nontrivial solutions of the 7y and ¢, the de-
terminant of the coefficient matrix of the above equation
must vanish. This solvability condition leads to

Copyright © 2020 ASME

020z 19quianoN 01 uo Buepp ulwelr ‘AjisioAlun ajels pue ajnsul oluyoalhlod elulbiin Aq ypd'geezz-0202019P-020€ L01.00M/68€9859/020V 0L L00A/696€8/0202310-013al/pd-sBuipeesoid/310-013l/610 awse: uonos)|oole)bipawuse)/:diy wouy papeojumoq



key IN? +ky kg +mA*T +mA?kg +mA2ky h? =0.  (7)

In order to obtain the natural frequency of the system
we set A = 4w in Eq. (7) and solve for w. On solving the
resultant equation for w, we get the natural frequency of

|A+ B |A—B
the system as wj ol , W2 ol , where

mke + mkyh? + kyI and B = \/A%Z—4mIkykg. Ac-

cordingly, the solution of the linearized equation can be
expressed as

y(r) = Ajr1e™tt 4 Aorqae2t 4 C.C, (8)

where y(7) = [n(7),9(7)]*, A1, Ag are arbitrary con-
stants and rj, ro are the generalized right eigenvectors
corresponding to the eigenvalues A = iw; and A = iws,
respectively. For our system, r1 and ro are

_ M _ (A
r1—|:1:|7 r1—|:1:| (9)
kyh
ky —muw;
need the generalized left eigen vectors corresponding to
eigen values A =iw; and \ = iws.

with A; =

5. In our subsequent analysis, we

Li=[h 1], La=][lr 1]. (10)

Since the coefficient matrix of the linear system of
equation is symmetric in nature, /1 and ls are the same
as A1 and As ie.l; = &

ky — mw?
play a crucial role in the removal of the secular terms in
the nonlinear analysis which is presented next.

. These left eigenvectors

Nonlinear Analysis Using the Method of Multi-
ple Scales. We note that the evolution of modulately
large perturbation depends on the nature of nonlinear-
ity present in the system. For the nonlinear analysis
of Eq. (5), we have used the method of multiple scales
(MMS) in the current work. To apply MMS, we first
start with defining the multiple time scales as

To=t, Ti=¢t (11)
with Ty and T3 are the fast and the slow time scales,

respectively. With these time scales, the derivative oper-
ator gets perturbed to

d
—=D D 12
dt o+eli, ( )
2
@ = D0,0 + 26D071 R (13)
0 0? .
where D,, = T and Dy, ,, = T aT. Following
m

n n
the perturbation approach, the solution of perturbed
nonlinear equation can be expressed as a series in powers
of € till O (e) as

yv(7) =yo (To,T1) +ey1 (To,T1) = yo +€y1, (14)
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with y(7) = [n(t), 9#)]T, ¥ = ym(To, T1). On substitu-
tion of the above perturbed solution in Eq. (4) followed
by a series expansion and equating the coefficient of sim-
ilar power of € to zero, we obtain the following coupled
ODEs at different orders:

O(e):

mijo + ky (no —hido) =0, (15a)

o + ko — kyh(ng — hidg) = 0. (15b)

Ofe):
mij + ky(m — 1) = 2qyhnodo — 2mD1 gno (162)
a
_thQﬁg - Qyn(Q)
I91 + kg9 — kyh(m — h1) = —2g,h*nod0o (16b)
—qg¥3 — 21 D1 000 + gy h39? + g, ho3

The equations at O(e®) are identical to the linearized
equations (Eq. (5)). Accordingly, the solution of Eq. (15)
can be written in the form of

y (To,T1) = Ay (Ty) rierTo4
Ay (Ty)rge™2T0 4 C.C.

Note that A; and As instead of being constants are
now complex valued functions of slow time T7. On sub-
stituting the assumed solution for the yo in the O(e)
equations we get

iy +ky (m — hy) = —Afgy (h— Ay)?e?er o
- A%qy(h - A2)262iw2T0 — 2imw Ay Dy AjetrTo
— 2imwa Ay Dy Age’w2To
— 241 Asgy(h— A1) (h— Ag)elw1—«2)To
— 241 Aagy(h— A1) (h — Ag)ei@itw2)To
—241 A1 (g0 + qyh® A1 + gyh* Ay — 20, h A1 Ay
—2g,h%) — 242 A5(qp + qyh* Az + th2/_\2
—2gyhA2Ay —2¢,h*)+C.C (18)

(17)

Iy + ko1 — kyh(m — hd1) = —A3(qp +2q,h% Ay
— qyh® — qyhA7)e* 170 — A3 (qg +2q,h* A2 — gy
— qyhA3)e?™2T0 —2iJwy Dy AyeirTo
— 2ilwa D1 Age®2T0 241 As(gp + g h% Ay
+ thQZXg — th3 — thAlA/ng)ei(wrw)TO
—2A1A2(qp + qyh? A1+ qyh? Ao — gy b
— gyhA1 Ag)e 1T To — 2.4y A)(gp+ qyh® Ay
+qyh* A1 —2qyh A1 Ag — 2g,h®)
— 24545 (g0 + th2A2 +qy h2Ao — 2¢q, hAsAs
—2g,h*)+C.C (19)

Note that substitution of yo in Eq. (16) leads to the
appearance of resonant forcing terms e®170, ¢iw27T0 and
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their complex conjugate which further causes the un-
bounded growth in the solutions of the system. These
terms causing the unbounded growth in the solution are
known as secular terms and removal of these terms is nec-
essary to get bounded solutions. Removal of these secular
terms in the coupled ODE’s requires the dot product of
coefficient vectors of e™170 and €270 to be zero [24].
But before proceeding further we present two situations
in the system viz. nonresonant case and internal reso-
nance case [25].

Non-Resonant Case In this case the natural fre-
quencies of the system i.e., wy; and wy are not commensu-
rate. Then, for the bounded solution of y1, the solvability
condition leads to

11'111:0 and 12-112:0. (20)
where uy and ug are the coefficient vectors for e?“170 and
ew2To - respectively. This solvability condition further
leads to

DA, =0 = A, =an,e’®™" for n=1 and 2 (21)

where a,, and w,, are constants and nonlinear frequency
becomes equal to linear frequency.

Resonant Case In this case, the natural frequen-
cies are proportionate or nearly commensurate. Accord-
ingly, we can introduce a detuning parameter ¢ in system
as

w1 = 2wy + €0 (22)

or (wl—wg)Tg = (w2+60)T0 =widp+oTy,
2woly = (w1 — EO')T() =woTy+oT;.

On substituting above transformation in Eqs. (18)
and (19) and removing the secular terms as discussed
above we get

Ron = —IlpRin (23)
where
Rll = 721‘mW1A1D1A1 — A%qy(h — A2)2e_igT1 (24)
R21 = —QinlD1A1 (25)
— A3(q9 — gyh® — gyhA3 +2g,h*Ag)e ™71
R12 = —QimLUQAQDlAQ (26)

—2A1 Aaqy (h— A1) (h— Ag)e' Tt
R = —2ilwa Dy Ay — 241 Ag(qy — gyh® +q,h° A1 (27)
- thAll_\g + th2/_\2)ewT1 )
As it is convenient to put up a polar notation, we
express

A, = <2T1) $IB(T1)

for n=1 and 2 (28)

and consequently the complex conjugate of Ay, i.e.,

i () ipery)

n= o for n=1 and 2 (29)
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Note that a, and (3, are the real function of T} in-
stead of being constants unlike the nonresonant case.
Substituting these transformation in Eq. (23) and sep-
arating real and imaginary parts and solving for Djay,
and D15, for n =1, 2 we get the slow flow equations as

2

D11 = airl cos(y)
ai

(
Diaj = as’Ty sin(y)
D12 = aiTacos(7)
Dias = —ajaslysin(y).
where I'1, 'y and vy are defined as
~ 12lgyhAs + ayh® — qo — ligyh? — ligyA2”

F =
! 4 (ll mA; +I)w1 (34)
1 —2¢,h?Ag + gyhAy”
4 (11 mAq + I) w1
r_ Llayhhi— lagyh? — lagyA1 A +12gyhAs
2 2 wa (I +12mAs) (35)
1 —qyh®Ag —gp+qyhAy Ay — gy h® Ay + gy h®
2 w9y ([ + 19 mAQ)
and
v=p01—2B2+0Th (36)

The exact solution of the above differential equation
can be expressed in terms of elliptic functions. Dividing
Eq. (31) to (33) we get

vaial +azah =0 (37)
where v = F—f On integrating the above equation we get
vai+a3=FE (38)

where E is the constant of integration proportional to the
initial energy in the system. From the above equation,
we can observe that a; and ag will have the bounded
solution if v is positive i.e., I'1 and I's will always have
the same sign. Differentiating Eq. (36) with respect to
Ty and changing the independent variable from 77 to a;
using Egs (30),(32) and (38) we get
2
ara3cos(y) + oL (39)
2T
where L is the constant of integration. To get the single
equation for as, we assume a3 = E¢ which leads to a% =
w. Using Eq. (33) to remove 7 from Eq. (39) and

expressing a? and a3 in terms of ¢, we obtain

: <d§)2<1§>§2

4ET3 \ dTy o)
v OE(l_g) 2_ 2 2
5 |- — e -,
where F = £6/T=€, G = £ 1-otue)]
1

Note that for the real motion, F2 > G2. These points
can be found by determining the fixed points (&1, &2, &3)
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of the right side of Eq. (40). If & < & < &3, then the
¢ is periodic between & and &3 but the motion is not.
Based on this, £ can be defined in terms of Jacobi elliptic
function. Therefore, we use the following transformation

2
v (dg) S (GO —a)E-&). (1)

AET2 \ dTy
Introducing the transformation

—&)sin?(y), ifo>0
£y — &= (53 52) Q(X) ' (42)

(€3 —&2)cos?(x), ifo<0

in Eq. (41) and integrating we get
fz 537(53762)5712[5711,@, ifo>0 (43)
E3— (&3 —&)en?[kT1,¢], if 0 <0

where sn and cn are Jacobi elliptic function and k =

r, /E(§3V—§1) and ¢ = 2:2

of a? and a2 we get the analogical solution in the form of

Using the definition

ifo>0

VE( - (&~ (& — &)sn?sT3, (),

T WEOC- G- G-k, ite<o]
(44a)

. {\/E(fs—(63-52)8%2[@1,4])7 fo>0 0

VE(& — (& —&)en?[kT1,(]), ifo<0’

Having obtained the analytical expressions for a; and
az, we can get the nonlinear frequency of the system
as follows. Using Eq. (33), cos7y can be removed from
Egs. (30) and (32) to get

2 D 2
Dif1 = 2T [1— ( 122 ) ) (45a)
ay ajazl’s
D 2
Dlﬁg = CL1F2 1— ( 192 ) . (45b)
alaQI‘g

Accordingly, the nonlinear frequencies of the system
can be obtained as

Wil = w1 +eD1B81,wpi2 =wa +eD1Ba.

By substituting Egs. (44) and (45) back in Eq. (17),
we get the analytical expression for y(t) and 0(t). De-
tailed results from these amplitude expressions are pre-
sented in the next section.

Results and Discussion

In this section, numerical simulations are considered
to examine the free vibrations of the UPM machine with
nonlinear isolators. The numerical simulations are based
on the parameters listed in Table 1.

V007T07A020-6

TABLE 1: Key parameters of UPM machine used in the
simulations.

Parameter | Value Units
m 1182 (kg)
I, 96 (kg —m?)
ky 880 (kN/m)
k. 1200 (kN/m)
qy 100 | (kN/m?)
gz 400 | (kN/m?)
by 295 (mm)

The first part of the analysis is to validate the ob-
tained closed form expressions and determine the value
of € (depends on the system parameters) that validates
our assumption of weakly nonlinear system. The com-
parison between the numerical simulations from Eq. (4)
and results from MMS (Egs. (44) and (45)) are presented
for e =0.1, ¢ =0.01 and € = 0.001 with initial conditions
y(0) = 1,%(0) = 0,6(0) = 1,0(0) = 0. The initial condi-
tions for a; and ag can be obtained accordingly using
Egs. (17) and (28). Note that the employed initial con-
ditions can excite both modes and further cause the ex-
istence of quasiperiodic solutions in the system. For the
numerical simulation of Eq. (4), we have used the built-
in command ‘ode45’ in Matlab with very tight absolute
tolerance and relative tolerance (1e~10).

Also, we emphasize that we have used numerical in-
tegration technique to get 81 and By as it is difficult to
get the analytical expressions for 81 and (2 due to the
appearance of Jacobi elliptic function. From Fig. 4 we
can observe that there is an excellent agreement between
the numerical simulations and analytical solutions for all
values of €. This agreement further improves by reducing
the value of epsilon. For instance, there is almost perfect
match with e =0.001. Since we are considering the ini-
tial conditions corresponding to the complex solutions in
the system for comparison, the value of ¢ =0.001 will be
valid for the other initial conditions too. Therefore, in
the remainder of this work, we have chosen € = 0.001 for
the analysis.

After deciding the value of ¢, we present the effect of
isolator location on v, which is proportional to the initial
energy of the system. On plotting v for the different val-
ues of h, we can observe that v always remains positive
as there are no regenerative elements present in the sys-
tem [25]. Note that the value of v decreases to zero as h
approaches zero (as shown in the inset of Fig. 5a), which
is further evident from the fact that contribution of one
mode to another decreases as h decreases due to mode
coupling through h (Eq. (2)). Also, the peak value of
V (Vmaa =2.418) at h = 0 represents discontinuous point
because there is no coupling between the modes and it
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FIGURE 4: A comparison between the numerical and analytical solutions for the given system parameters in
Table 1 (a), (c), (e) transnational motion, y(¢) and (b), (d), (f) rotational motion, 6(t) with different values

of € (¢=0.1, 0.01 and 0.001) and h = —0.2 m.

becomes the ratio of higher natural frequency to lower
nature frequency (Eq. (34), (35)). To further explore
the effect of v on the modal amplitudes a; and a9, we
consider two different values of h viz. h = —0.2 m and
h =0 m corresponding to finite and maximum values of
v, respectively and the results are shown in Fig. 5. The
energy exchange between the two modal amplitudes can
be clearly observed in Fig. 5d. It can be observed that
the modal energy exchange significantly depends on the

V007T07A020-7

location of the isolators, h. Now, we explore the effect
of isolator location on the detuning parameter and ac-
cordingly on the modal amplitudes. Fig. 6 depicts the
relationship between h and the value of detuning param-
eter (oe). From this figure, it can be observed that the
variation of the detuning parameter is symmetric about
h =0 and attains a minimum value at h = 0. Also, for
the given values of system parameters in Table 1, the
detuning parameter changes sign i.e., it becomes zero at
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40
501 ure 7 shows the slow time variation of modal amplitudes,
a1 and ag for h =40.116 m. From this figure, it can be
20+ observed that placing the isolators below the center of
ol gravity of UPM has more adverse effect on modal am-
5 plitudes as compared to placement of isolators above the
o center of gravity. This observation is contrary to the re-
10} sults shown for the linear vibration of the UPM [13]. On
20l further exploring the dynamics of system for different val-
ues of h, we observe that amplitude of a1 and as increase
=30t ‘ - as the value of h approaches towards h = 0.2134 m (cor-
-0.5 0 0.5 . . . .
L responding to internal resonance) and largest vibrations

FIGURE 6: Variation of the detuning parameter with h
for the given system parameters.

h =+£0.2134 m. This situation further represents the case
of internal resonance between the two modes (w1 = 2ws).
Note that the positive and negative values of h repre-
sent the location of isolator above and below the center
of gravity of UPM, respectively. To further explore the
effect of detuning parameter, via the height of isolator,
on the system dynamics we choose two values of h cor-
responding to negative and positive values of detuning
parameter for numerical simulation. In particular, we
have chosen h = £0.116 m, as the optimum value of h
reported in the earlier work is h = —0.116 m [13]. Fig-

V007T07A020-8

occur at h=0.2134 m (see Figs. 8a and b) due to internal
resonance between the two modes. This observations are
in consistency with negative values of h too (Figs 8 ¢ and
d).

Conclusion

We studied the nonlinear vibration of a UPM ma-
chine analytically using the method of multiple scales.
Based on the experimental results, we assumed the stiff-
ness of the pneumatic isolators to be a combination of lin-
ear and quadratic stiffnesses. In our mathematical formu-
lation, the horizontal and torsional motions were also lin-
early and nonlinearly coupled through the location of the
vibration isolators, h. The closed form solution for the
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modal amplitudes, corresponding to the nearly resonant of gravity is less effective as compared to the placement
case, was obtained using MMS and expressed in terms of of isolator above the level of centre of gravity of UPM.
Jacobi elliptic functions. The obtained analytical expres- Furthermore, it was also demonstrated that modal en-
sions were validated using direct numerical simulations ergy exchange is significantly dependent on the location
and the results showed very good agreement. Numerical of the pneumatic isolators relative to the center of grav-
simulations further suggested that small amplitude oscil- ity of the UPM machine. Overall, the findings in this
lations occur at the value of h close to zero. Moreover, the paper contradict recent studies of passively-isolated sys-
vibration amplitude increased as h approached the loca- tems and suggest that nonlinear mode coupling can yield
tion of the internal resonance (h =0.2134 m). Also, it was worst vibration isolation, especially, when the location of

observed that placing isolator below the level of center the vibration isolators corresponds to the internal reso-
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nance case. In our future work, we will extend this work
by including damping and forcing terms and analyze the
isolated system under sub-harmonic and super-harmonic
resonances. We will also determine the optimum A for
which superior vibration isolation can be achieved.
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