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ABSTRACT
Recent studies in passively-isolated systems have

shown that mode coupling is desirable for best vibration
suppression, thus refuting the long-standing rule of mode
decoupling. However, these studies have ignored the non-
linearities in the isolators. In this work, we consider stiff-
ness nonlinearity from pneumatic isolators and study the
nonlinear free undamped vibrations of a passively-isolated
ultra-precision manufacturing (UPM) machine. Experi-
mental analysis is conducted to guide the mathematical
formulation. The system comprises linearly and nonlin-
early coupled in-plane horizontal and rotational motion of
the UPM machine with quadratic nonlinear stiffness from
the isolators. We present closed-form expressions using
the method of multiple scales for two cases viz. the non-
resonant case and the bounded internal resonance case.
We validate our theoretical findings through direct numer-
ical simulations. For the non-resonant case, we show that
the system behaves similar to a linear system. However,
for the nearly internal resonance case, we demonstrate
strong energy exchange between the modes stemming from
nonlinear mode coupling. We further study the effect of
nonlinear mode coupling on the vibration isolation perfor-
mance and demonstrate that mode coupling is not always
desirable.

INTRODUCTION
Over the last few years, use of machine parts with

micro-level patterns and nano-level surface finish has sig-
nificantly increased in the electronic, biomedical, and
communication industries [1–3]. To meet the stringent

∗Address all correspondence to this author.

requirements at the micro-scale, ultra-precision manu-
facturing (UPM) machines like ultra precision machine
tools, water steppers, and micro coordinate measuring
machine (CMM) are used to manufacture these parts. As
the tolerance and accuracy of these parts are very high,
even the smallest amplitude of vibrations can adversely
affect the accuracy and precision of the UPM machine.

Vibration isolation of UPM machines can be achieved

FIGURE 1: Experimental setup

by passive, active, or semi-active isolators [4–6]. How-
ever, passive isolators have been found more useful as
compared to active and semi-active because of the their
cost effectiveness, reliability and simple installation [7–9].
Good passive isolation from the surrounding vibrations
can be achieved when the stiffness of the isolator is very
low. However, low stiffness causes the residual vibrations
in the form of low frequency rocking motions due to inter-
nal or external excitation [10]. These residual vibrations
must be minimized because they can damage the accu-
racy of the machine [7, 8, 11, 12]. Another drawback of
passive isolators is the increased transmissiblity at fre-
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(a) (b)

FIGURE 2: Experimental Results Showing (a) Time Response; (b) Natural Frequencies

quencies greater than resonance with viscous damped os-
cillator [6, 7, 11]. These two drawbacks can be avoided
using pneumatic isolators (i.e. nonlinear vibration isola-
tors) [10,13–18].

A critical factor in designing these pneumatic iso-
lators is the selection of the isolator location such that
mode coupling can be avoided [8]. The decoupling be-
tween the modes can be achieved by aligning the isolator
mounting with the center of gravity of the UPM ma-
chine [11, 19, 20]. This decoupling of modes restricts the
transmission of vertical ground motion to the horizon-
tal axis and further prevents the rocking motion of the
UPM machine [8, 12]. Also, this decoupling avoids the
presence of other peaks in the transmissibility response
of the machine [21]. However, the proper selection of the
isolator mounting points is often ignored in the design
phase [7, 8].

A mathematical model to represent linear mode
coupling in UPM machine was first developed by Ok-
wudire [13,22]. It was shown that residual vibrations and
transmissibility can be reduced by selecting the proper
isolator location, motor, and work surface heights. Also,
it was demonstrated that mode coupling is desirable to
minimize the residual vibration and accordingly they ob-
tained the optimum value of the location of passive iso-
lator from the center of gravity of UPM [13]. It was ob-
served that with this optimum location of isolator, five-
fold reduction in the vibration amplitude can be achieved.
This observation is in contrary to the earlier observations
of aligning the isolator with the center of gravity of UPM
to avoid mode coupling and consequently to reduce the
transmitted vibration.

However, in Okwudire’s work [13, 22], the nonlinear
stiffness of the pneumatic isolators was not considered
and accordingly its effect on the location of the isolators
was not explored. The aim of this work is to investi-
gate whether the benefits demonstrated in linear mode
coupling can be extended to nonlinear mode coupling.
Towards realizing this aim, here we consider the nonlin-

earity in the stiffness of the pneumatic isolators and study
the nonlinear dynamic of the passively-isolated UPM ma-
chine. Experiments are carried out to guide the mathe-
matical formulation. The exact coupled nonlinear equa-
tions of motion of the isolated machine are presented, and
the analytical solutions are obtained using the method of
multiple scales. Direct numerical simulations are used
to validate the analytical results. Parametric studies are
performed to understand how nonlinear mode coupling
affects the performance of the pneumatic isolators.

Experimental results
Experiments are carried out using the reconfigurable

UPM machine based prototype depicted in Fig. 1. The
prototype consists of an 800 kg base of dimensions
749.3x749.3x495.3 mm. The machine is supported by
four pneumatic isolators (Bilz model BiAir 1-ED). The
UPM machine is disturbed with initial displacements in
the y-direction and the vibration of the system is mea-
sured using a tri-axial accelerometer (PCB Piezotron-
ics model Y356A63) with the sensitivity of 10.58 mV/g.
The experimental results show that the prototype ma-
chine can exhibit either stable or unstable motion de-
pending on the applied initial displacement. A very low
initial disturbance yields a stable vibration motion while
a relatively larger displacement exhibits an unstable mo-
tion. Figure 2a shows the experimental time response
of the vibrating UPM machine in all three directions.
The instability can be observed in all directions; how-
ever, higher vibration amplitudes occur in the y and z-
directions. This is expected as the system is disturbed
in the y-direction, resulting in coupling in the y-z plane.
A plot of the Fast Fourier Transform of the previously
discussed time response graph is shown in Fig. 2b. The
frequencies corresponding to the peaks in this plot are the
first six linear and nonlinear modes of the UPM machines
in 3D and are 1.56, 3.12, 3.5, 4.68, 6.24, 7.792 Hz. Note
that the fundamental frequency of the UPM is nearly half
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of the second mode, which corresponds to subharmonic
resonance. This observation suggests that the stiffness of
the pneumatic isolator is of a quadratic nonlinear type,
thus confirming the type of nonlinearity of the pneumatic
isolator mentioned in the literature [23].

MATHEMATICAL FORMULATION
In this section, we outline the mathematical model

for the UPM, followed by the linear and nonlinear anal-
yses. Note that the linear analysis of vibrations of UPM
machines is already established in the literature. How-
ever, the nonlinear analysis of these vibrations is not fully
resolved yet. For this purpose, we use one of the pertur-
bation methods viz. method of multiple scales and obtain
the closed-form solutions of the amplitude of vibrations.

Mathematical Model
A schematic of the 2D model of an isolated UPM has

been shown in Fig. 3. In this figure, m and I represent
the mass and centroid moment of inertia of the UPM
about the y−axis, respectively. ky and kz are the com-
bined linear stiffness of the isolators in y and z-directions,
respectively, qy and qz are the quadratic nonlinear stiff-
ness of the isolators in y and z−directions, respectively,
and b and h are the distance of the isolators from the
centroid (C.G.) in the horizontal and vertical directions,
respectively.

C.G.
m, I

b b

h θx
y

z0.5ky, 0.5qy 0.5ky, 0.5qy

Isolator
Isolator

0.5kz, 0.5qz 0.5kz, 0.5qz

UPM

FIGURE 3: Schematic of UPM with isolators with
quadratic nonlinearity

It should be noted that the current work only focuses
on the y−z plane motions. This assumption further im-
plies that we are considering 2-degree of freedom for the
current system viz. horizontal and rotational motion (y
and θx motion). Hence, if there is no damping in the sys-
tem the equations of motion for the UPM can be written
as

mÿ+ky(y−hsin(θx)) + qy(y−hsin(θx))2 = 0, (1a)
Iθ̈x+kzb(bsin(θx)) + qzb(bsin(θx))2

−kyh(y−hsin(θx))− qyh(y−hsin(θx))2 = 0.
(1b)

For small amplitude motion the above equation can
be rewritten as

mÿ+ky(y−hθx) + qy(y−hθx)2 = 0 , (2a)

Iθ̈x+kθθx+ qθθ
2
x− qyh(y−hθx)2

−kyh(y−hθx) = 0.
(2b)

where kθ = b2kz and qθ = b3qz. The above equations
describe the evolution of the two coupled modes with
time. The nonlinear analysis of the system is presented
in the next section.

Analysis
Our first interest in this work is to understand the

effect of h on the different modes of vibration in the UPM
machine. For this purpose we use the method of multiple
scales (MMS). We focus on small amplitude oscillations
by introducing a small parameter ε (i,e,. ε� 1) in the
governing equations of motion through rescaling

y(t) = ys+ εη(t) (3a)

θx(t) = θxs+ εϑ(t) (3b)
where ys and θxs are the equilibrium steady states of
the system and η(t) and ϑ(t) are the small perturbations
around ys and θxs, respectively. Since we are considering
the free undamped vibration of UPM, the steady states
ys and θxs will be zero. Accordingly, substitution of the
above rescaling in the equations of motion (Eq.2) leads
to

mη̈+ky(η−hϑ) + εqy(η−hϑ)2 = 0 , (4a)

Iϑ̈+kθϑ−kyh(η−hϑ) + εqθϑ
2

−εqyh(η−hϑ)2 = 0.
(4b)

Note that we have divided the equation after substi-
tution of re-scaling throughout ε to get the above equa-
tions. Since the nonlinear terms appears at O(ε), the sys-
tem becomes weakly nonlinear system. Before proceeding
further, we need the solution of the linear unperturbed
equation to build up the solution for the perturbed non-
linear equation. This is presented in the next section.

Linear Analysis In this section, linear analysis of
the system given by Eq. (4) is presented. Note that, it
is an important step to build up the solution for the per-
turbed nonlinear equation. The linearized coupled sys-
tem can be obtained by setting ε= 0 in Eq. (4) and will
be

mη̈+ky(η−hϑ) = 0 , (5a)

Iϑ̈+kθϑ−kyh(η−hϑ) = 0. (5b)

To obtain the characteristic equation, we set η(t) =
η0 exp(λt) and ϑ(t) = ϑ0 exp(λt) in Eq. 5 and obtain

mλ2η0 +ky(η0−hϑ0) = 0, (6a)

Iλ2ϑ0 +kθϑ0−kyh(η0−hϑ0) = 0. (6b)

For the nontrivial solutions of the η0 and ϑ0, the de-
terminant of the coefficient matrix of the above equation
must vanish. This solvability condition leads to
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ky I λ
2 +ky kθ +mλ4I+mλ2kθ +mλ2ky h

2 = 0. (7)

In order to obtain the natural frequency of the system
we set λ= iω in Eq. (7) and solve for ω. On solving the
resultant equation for ω, we get the natural frequency of

the system as ω1 =
√
A+B

2mI , ω2 =
√
A−B
2mI , where A =

mkθ +mkyh
2 + kyI and B =

√
A2−4mIkykθ. Ac-

cordingly, the solution of the linearized equation can be
expressed as

y(τ) =A1r1eiω1t+A2r2eiω2t+C.C , (8)

where y(τ) = [η(τ),ϑ(τ )]T , A1, A2 are arbitrary con-
stants and r1, r2 are the generalized right eigenvectors
corresponding to the eigenvalues λ = iω1 and λ = iω2,
respectively. For our system, r1 and r2 are

r1 =
[
Λ1
1

]
, r1 =

[
Λ2
1

]
(9)

with Λi = ky h

ky−mωi2
. In our subsequent analysis, we

need the generalized left eigen vectors corresponding to
eigen values λ= iω1 and λ= iω2.

L1 =
[
l1 1

]
, L2 =

[
l2 1

]
. (10)

Since the coefficient matrix of the linear system of
equation is symmetric in nature, l1 and l2 are the same
as Λ1 and Λ2 i.e.,li = kyh

ky−mω2
i

. These left eigenvectors

play a crucial role in the removal of the secular terms in
the nonlinear analysis which is presented next.

Nonlinear Analysis Using the Method of Multi-
ple Scales. We note that the evolution of modulately
large perturbation depends on the nature of nonlinear-
ity present in the system. For the nonlinear analysis
of Eq. (5), we have used the method of multiple scales
(MMS) in the current work. To apply MMS, we first
start with defining the multiple time scales as

T0 = t , T1 = εt (11)
with T0 and T1 are the fast and the slow time scales,

respectively. With these time scales, the derivative oper-
ator gets perturbed to

d
dt =D0 + εD1 , (12)

d2

dt2 =D0,0 + 2εD0,1 , (13)

where Dn = ∂

∂Tn
and Dm,n = ∂2

∂Tm∂Tn
. Following

the perturbation approach, the solution of perturbed
nonlinear equation can be expressed as a series in powers
of ε till O (ε) as

y(τ) = y0 (T0,T1) + εy1 (T0,T1) = y0 + εy1 , (14)

with y(τ) = [η(t), ϑ(t)]T , ym = ym(T0, T1). On substitu-
tion of the above perturbed solution in Eq. (4) followed
by a series expansion and equating the coefficient of sim-
ilar power of ε to zero, we obtain the following coupled
ODEs at different orders:
O(ε0):

mη̈0 +ky(η0−hϑ0) = 0 , (15a)

Iϑ̈0 +kθϑ0−kyh(η0−hϑ0) = 0. (15b)

O(ε):
mη̈1 +ky(η1−hϑ1) = 2qyhη0ϑ0−2mD1,0η0

−qyh2ϑ2
0− qyη2

0
(16a)

Iϑ̈1 +kθϑ1−kyh(η1−hϑ1) =−2qyh2η0ϑ0

−qθϑ2
0−2ID1,0ϑ0 + qyh

3ϑ2 + qyhϑ
2
0

(16b)

The equations at O(ε0) are identical to the linearized
equations (Eq. (5)). Accordingly, the solution of Eq. (15)
can be written in the form of

y(T0,T1) =A1 (T1)r1eiω1T0+
A2 (T1)r2eiω2T0 +C.C .

(17)

Note that A1 and A2 instead of being constants are
now complex valued functions of slow time T1. On sub-
stituting the assumed solution for the y0 in the O(ε)
equations we get

mη̈1 +ky(η1−hϑ1) =−A2
1qy(h−Λ1)2e2iω1T0

−A2
2qy(h−Λ2)2e2iω2T0 −2imω1Λ1D1A1eiω1T0

−2imω2Λ2D1A2eiω2T0

−2A1Ā2qy(h−Λ1)(h− Λ̄2)ei(ω1−ω2)T0

−2A1A2qy(h−Λ1)(h−Λ2)ei(ω1+ω2)T0

−2A1Ā1(qθ + qyh
2Λ1 + qyh

2Λ̄1−2qyhΛ1Λ̄1

−2qyh3)−2A2Ā2(qθ + qyh
2Λ2 + qyh

2Λ̄2

−2qyhΛ2Λ̄2−2qyh3) +C.C (18)

Iϑ̈1 +kθϑ1−kyh(η1−hϑ1) =−A2
1(qθ + 2qyh2Λ1

− qyh3− qyhΛ2
1)e2iω1T0 −A2

2(qθ + 2qyh2Λ2− qyh3

− qyhΛ2
2)e2iω2T0 −2iIω1D1A1eiω1T0

−2iIω2D1A2eiω2T0 −2A1Ā2(qθ + qyh
2Λ1

+ qyh
2Λ̄2− qyh3− qyhΛ1Λ̄2)ei(ω1−ω2)T0

−2A1A2(qθ + qyh
2Λ1 + qyh

2Λ2− qyh3

− qyhΛ1Λ2)ei(ω1+ω2)T0 −2A1Ā1(qθ + qyh
2Λ1

+ qyh
2Λ̄1−2qyhΛ1Λ̄1−2qyh3)

−2A2Ā2(qθ + qyh
2Λ2 + qyh

2Λ̄2−2qyhΛ2Λ̄2

−2qyh3) +C.C (19)
Note that substitution of y0 in Eq. (16) leads to the

appearance of resonant forcing terms eiω1T0 , eiω2T0 and
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their complex conjugate which further causes the un-
bounded growth in the solutions of the system. These
terms causing the unbounded growth in the solution are
known as secular terms and removal of these terms is nec-
essary to get bounded solutions. Removal of these secular
terms in the coupled ODE’s requires the dot product of
coefficient vectors of eiω1T0 and eiω2T0 to be zero [24].
But before proceeding further we present two situations
in the system viz. nonresonant case and internal reso-
nance case [25].

Non-Resonant Case In this case the natural fre-
quencies of the system i.e., ω1 and ω2 are not commensu-
rate. Then, for the bounded solution of y1, the solvability
condition leads to

l1 ·u1 = 0 and l2 ·u2 = 0. (20)
where u1 and u2 are the coefficient vectors for eiω1T0 and
eiω2T0 , respectively. This solvability condition further
leads to
D1An = 0 =⇒ An = anei$n for n= 1 and 2 (21)

where an and $n are constants and nonlinear frequency
becomes equal to linear frequency.

Resonant Case In this case, the natural frequen-
cies are proportionate or nearly commensurate. Accord-
ingly, we can introduce a detuning parameter σ in system
as

ω1 = 2ω2 + εσ (22)

or (ω1−ω2)T0 = (ω2 + εσ)T0 = ω1T0 +σT1 ,

2ω2T0 = (ω1− εσ)T0 = ω2T0 +σT1.

On substituting above transformation in Eqs. (18)
and (19) and removing the secular terms as discussed
above we get

R2n =−lnR1n (23)

where
R11 =−2imω1Λ1D1A1−A2

2qy(h−Λ2)2e−iσT1 (24)
R21 =−2iIω1D1A1 (25)
−A2

2(qθ− qyh3− qyhΛ2
2 + 2qyh2Λ2)e−iσT1

R12 =−2imω2Λ2D1A2 (26)
−2A1Ā2qy(h−Λ1)(h−Λ2)eiσT1

R22 =−2iIω2D1A2−2A1Ā2(qy− qyh3 + qyh
2Λ1 (27)

− qyhΛ1Λ̄2 + qyh
2Λ̄2)eiσT1 .

As it is convenient to put up a polar notation, we
express

An = an(T1)
2 eiβ(T1) for n= 1 and 2 (28)

and consequently the complex conjugate of An, i.e.,

Ān = an(T1)
2 e−iβ(T1) for n= 1 and 2 (29)

Note that an and βn are the real function of T1 in-
stead of being constants unlike the nonresonant case.
Substituting these transformation in Eq. (23) and sep-
arating real and imaginary parts and solving for D1an
and D1βn for n= 1, 2 we get the slow flow equations as

D1β1 = a2
2

a1
Γ1 cos(γ) (30)

D1a1 = a2
2Γ1 sin(γ) (31)

D1β2 = a1Γ2 cos(γ) (32)
D1a2 =−a1a2Γ2 sin(γ). (33)

where Γ1, Γ2 and γ are defined as

Γ1 =−1
4

2l1qyhΛ2 + qyh
3− qθ− l1qyh2− l1qyΛ2

2

(l1mΛ1 + I )ω1

−1
4
−2qyh2Λ2 + qyhΛ2

2

(l1mΛ1 + I )ω1

(34)

Γ2 =−1
2
l2 qy hΛ1− l2qyh2− l2qyΛ1Λ̄2 + l2qyhΛ̄2

ω2 (I + l2mΛ2)

−1
2
−qyh2Λ̄2− qθ + qyhΛ1 Λ̄2− qyh2Λ1 + qyh

3

ω2 (I + l2mΛ2)

(35)

and
γ = β1−2β2 +σT1 (36)

The exact solution of the above differential equation
can be expressed in terms of elliptic functions. Dividing
Eq. (31) to (33) we get

νa1a
′
1 +a2a

′
2 = 0 (37)

where ν = Γ2
Γ1

. On integrating the above equation we get

νa2
1 +a2

2 = E (38)
where E is the constant of integration proportional to the
initial energy in the system. From the above equation,
we can observe that a1 and a2 will have the bounded
solution if ν is positive i.e., Γ1 and Γ2 will always have
the same sign. Differentiating Eq. (36) with respect to
T1 and changing the independent variable from T1 to a1
using Eqs (30),(32) and (38) we get

a1a
2
2 cos(γ) + σa2

1
2Γ1

= L (39)

where L is the constant of integration. To get the single
equation for a2, we assume a2

2 = Eξ which leads to a2
1 =

E(1− ξ)
ν

. Using Eq. (33) to remove γ from Eq. (39) and
expressing a2

1 and a2
2 in terms of ξ, we obtain

ν

4EΓ2
2

(
dξ

dT1

)2
= (1− ξ)ξ2

− ν

E3

[
L− σE(1− ξ)

2νΓ1

]2
= F 2(ξ)−G2(ξ),

(40)

where F = ±ξ
√

1− ξ , G = ± ν

E3

1
2
[
L− σE(1− ξ)

2νΓ1

]
.

Note that for the real motion, F 2 ≥ G2. These points
can be found by determining the fixed points (ξ1, ξ2, ξ3)
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of the right side of Eq. (40). If ξ1 ≤ ξ2 ≤ ξ3, then the
ξ is periodic between ξ2 and ξ3 but the motion is not.
Based on this, ξ can be defined in terms of Jacobi elliptic
function. Therefore, we use the following transformation

ν

4EΓ2
2

(
dξ

dT1

)2
= (ξ3− ξ)(ξ− ξ2)(ξ− ξ1). (41)

Introducing the transformation

ξ3− ξ =
{

(ξ3− ξ2)sin2(χ), if σ > 0
(ξ3− ξ2)cos2(χ), if σ ≤ 0

(42)

in Eq. (41) and integrating we get

ξ =
{
ξ3− (ξ3− ξ2)sn2[κT1, ζ], if σ > 0
ξ3− (ξ3− ξ2)cn2[κT1, ζ], if σ ≤ 0

(43)

where sn and cn are Jacobi elliptic function and κ =

Γ1

√
E(ξ3− ξ1)

ν
and ζ =

√
ξ3− ξ2
ξ3− ξ1

. Using the definition

of a2
1 and a2

2 we get the analogical solution in the form of

a1 =


√

E
ν (1− (ξ3− (ξ3− ξ2)sn2[κT1, ζ])), if σ > 0√
E
ν (1− (ξ3− (ξ3− ξ2)cn2[κT1, ζ])), if σ ≤ 0

,

(44a)

a2 =
{√

E(ξ3− (ξ3− ξ2)sn2[κT1, ζ]), if σ > 0√
E(ξ3− (ξ3− ξ2)cn2[κT1, ζ]), if σ ≤ 0

. (44b)

Having obtained the analytical expressions for a1 and
a2, we can get the nonlinear frequency of the system
as follows. Using Eq. (33), cosγ can be removed from
Eqs. (30) and (32) to get

D1β1 = a2
2
a1

Γ1

√
1−
(
D1a2
a1a2Γ2

)2
, (45a)

D1β2 = a1Γ2

√
1−
(
D1a2
a1a2Γ2

)2
. (45b)

Accordingly, the nonlinear frequencies of the system
can be obtained as

ωnl1 = ω1 + εD1β1 ,ωnl2 = ω2 + εD1β2.

By substituting Eqs. (44) and (45) back in Eq. (17),
we get the analytical expression for y(t) and θ(t). De-
tailed results from these amplitude expressions are pre-
sented in the next section.

Results and Discussion

In this section, numerical simulations are considered
to examine the free vibrations of the UPM machine with
nonlinear isolators. The numerical simulations are based
on the parameters listed in Table 1.

TABLE 1: Key parameters of UPM machine used in the
simulations.

Parameter Value Units

m 1182 (kg)

Ix 96 (kg−m2)

ky 880 (kN/m)

kz 1200 (kN/m)

qy 100 (kN/m2)

qz 400 (kN/m2)

by 295 (mm)

The first part of the analysis is to validate the ob-
tained closed form expressions and determine the value
of ε (depends on the system parameters) that validates
our assumption of weakly nonlinear system. The com-
parison between the numerical simulations from Eq. (4)
and results from MMS (Eqs. (44) and (45)) are presented
for ε= 0.1, ε= 0.01 and ε= 0.001 with initial conditions
y(0) = 1, ẏ(0) = 0, θ(0) = 1, θ̇(0) = 0. The initial condi-
tions for a1 and a2 can be obtained accordingly using
Eqs. (17) and (28). Note that the employed initial con-
ditions can excite both modes and further cause the ex-
istence of quasiperiodic solutions in the system. For the
numerical simulation of Eq. (4), we have used the built-
in command ‘ode45’ in Matlab with very tight absolute
tolerance and relative tolerance (1e−10).

Also, we emphasize that we have used numerical in-
tegration technique to get β1 and β2 as it is difficult to
get the analytical expressions for β1 and β2 due to the
appearance of Jacobi elliptic function. From Fig. 4 we
can observe that there is an excellent agreement between
the numerical simulations and analytical solutions for all
values of ε. This agreement further improves by reducing
the value of epsilon. For instance, there is almost perfect
match with ε = 0.001. Since we are considering the ini-
tial conditions corresponding to the complex solutions in
the system for comparison, the value of ε= 0.001 will be
valid for the other initial conditions too. Therefore, in
the remainder of this work, we have chosen ε= 0.001 for
the analysis.

After deciding the value of ε, we present the effect of
isolator location on ν, which is proportional to the initial
energy of the system. On plotting ν for the different val-
ues of h, we can observe that ν always remains positive
as there are no regenerative elements present in the sys-
tem [25]. Note that the value of ν decreases to zero as h
approaches zero (as shown in the inset of Fig. 5a), which
is further evident from the fact that contribution of one
mode to another decreases as h decreases due to mode
coupling through h (Eq. (2)). Also, the peak value of
ν (νmax =2.418) at h= 0 represents discontinuous point
because there is no coupling between the modes and it
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(a) ε= 0.1 (b) ε= 0.1

(c) ε= 0.01 (d) ε= 0.01

(e) ε= 0.001 (f) ε= 0.001
FIGURE 4: A comparison between the numerical and analytical solutions for the given system parameters in
Table 1 (a), (c), (e) transnational motion, y(t) and (b), (d), (f) rotational motion, θ(t) with different values
of ε (ε= 0.1, 0.01 and 0.001) and h=−0.2 m.

becomes the ratio of higher natural frequency to lower
nature frequency (Eq. (34), (35)). To further explore
the effect of ν on the modal amplitudes a1 and a2, we
consider two different values of h viz. h = −0.2 m and
h = 0 m corresponding to finite and maximum values of
ν, respectively and the results are shown in Fig. 5. The
energy exchange between the two modal amplitudes can
be clearly observed in Fig. 5d. It can be observed that
the modal energy exchange significantly depends on the

location of the isolators, h. Now, we explore the effect
of isolator location on the detuning parameter and ac-
cordingly on the modal amplitudes. Fig. 6 depicts the
relationship between h and the value of detuning param-
eter (σε). From this figure, it can be observed that the
variation of the detuning parameter is symmetric about
h = 0 and attains a minimum value at h = 0. Also, for
the given values of system parameters in Table 1, the
detuning parameter changes sign i.e., it becomes zero at
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FIGURE 5: (a) Variation of ν with h. Slow time variation of the modal amplitudes (b) a1(T1), (c) a2(T1), and
(d) the energy exchange between two modes, for h=−0.2 m,and h= 0 m with initial conditions a1(0) = 1
and a2(0) = 1.

FIGURE 6: Variation of the detuning parameter with h
for the given system parameters.

h=±0.2134 m. This situation further represents the case
of internal resonance between the two modes (ω1 = 2ω2).
Note that the positive and negative values of h repre-
sent the location of isolator above and below the center
of gravity of UPM, respectively. To further explore the
effect of detuning parameter, via the height of isolator,
on the system dynamics we choose two values of h cor-
responding to negative and positive values of detuning
parameter for numerical simulation. In particular, we
have chosen h = ±0.116 m, as the optimum value of h
reported in the earlier work is h = −0.116 m [13]. Fig-

ure 7 shows the slow time variation of modal amplitudes,
a1 and a2 for h =±0.116 m. From this figure, it can be
observed that placing the isolators below the center of
gravity of UPM has more adverse effect on modal am-
plitudes as compared to placement of isolators above the
center of gravity. This observation is contrary to the re-
sults shown for the linear vibration of the UPM [13]. On
further exploring the dynamics of system for different val-
ues of h, we observe that amplitude of a1 and a2 increase
as the value of h approaches towards h= 0.2134 m (cor-
responding to internal resonance) and largest vibrations
occur at h= 0.2134 m (see Figs. 8a and b) due to internal
resonance between the two modes. This observations are
in consistency with negative values of h too (Figs 8 c and
d).

Conclusion
We studied the nonlinear vibration of a UPM ma-

chine analytically using the method of multiple scales.
Based on the experimental results, we assumed the stiff-
ness of the pneumatic isolators to be a combination of lin-
ear and quadratic stiffnesses. In our mathematical formu-
lation, the horizontal and torsional motions were also lin-
early and nonlinearly coupled through the location of the
vibration isolators, h. The closed form solution for the
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(a) (b)
FIGURE 7: Slow time variation of the modal amplitudes (a) a1 and (b) a2 for h=±0.116 and initial conditions
a1(0) = 1 and a2(0) = 1.
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FIGURE 8: Slow time variation of the modal amplitudes (a) a1 and (b) a2 for different values of h and initial
conditions a1(0) = 1 and a2(0) = 1.

modal amplitudes, corresponding to the nearly resonant
case, was obtained using MMS and expressed in terms of
Jacobi elliptic functions. The obtained analytical expres-
sions were validated using direct numerical simulations
and the results showed very good agreement. Numerical
simulations further suggested that small amplitude oscil-
lations occur at the value of h close to zero. Moreover, the
vibration amplitude increased as h approached the loca-
tion of the internal resonance (h= 0.2134 m). Also, it was
observed that placing isolator below the level of center

of gravity is less effective as compared to the placement
of isolator above the level of centre of gravity of UPM.
Furthermore, it was also demonstrated that modal en-
ergy exchange is significantly dependent on the location
of the pneumatic isolators relative to the center of grav-
ity of the UPM machine. Overall, the findings in this
paper contradict recent studies of passively-isolated sys-
tems and suggest that nonlinear mode coupling can yield
worst vibration isolation, especially, when the location of
the vibration isolators corresponds to the internal reso-
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nance case. In our future work, we will extend this work
by including damping and forcing terms and analyze the
isolated system under sub-harmonic and super-harmonic
resonances. We will also determine the optimum h for
which superior vibration isolation can be achieved.
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