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The search for good outcomes—be it government policies, technological breakthroughs, or a

lasting purchase—takes time and effort. At times, the decision process is unconstrained: an indi-

vidual seeking a well-priced product determines her search scope and time as she wishes. Often,

search is constrained, either through institutions or through cognitive limitations. For instance,

product-development teams often face a design freeze, a date at which the set of product features

is locked and the first phase of research and development terminates, see Eger, Eckert, and Clark-

son (2005). Furthermore, various grants and funding entities provide timelines that constrain the

length of research. Similarly, in academia, graduate students and young faculty face research dead-

lines through various milestones such as early-stage paper requirements, dissertation prospectus,

job-market applications, or tenure. Such limitations can also be hard-wired: going back to Si-

mon (1956), the literature has often considered simple heuristics that govern individuals’ search

procedures.

We consider retrospective search in such settings: a decision maker (DM) chooses the search

scope and time, selecting the best observed outcome upon stopping. We analyze the impacts of

constraints when observed samples are independent and correlated.

The search literature has, by and large, focused on environments in which observed samples

are independent. Constraints in such settings have been analyzed in the celebrated work of Stigler
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(1961), who considered a DM choosing the volume of samples at the outset. We show that cor-

relation between samples yields dramatically different implications, in terms of search scope and

extent, as well as outcomes.

We consider a DM sampling from a normal distribution. The variance, or search scope, is

chosen at the outset. We examine both independent samples as well as correlated samples, governed

by a Brownian motion.

With independent samples, and no constraints, satisficing is optimal. When the DM selects the

sample volume at the outset, the scope of search changes, and outcomes can be arbitrarily worse

than those generated by search absent constraints. In contrast, when observations are correlated,

optimal search entails a drawdown stopping boundary. In fact, any non-trivial satisficing generates

worse outcomes than no search at all. Furthermore, the impact of constraints differs. A commitment

to a search time generates a fraction of 2/π of the payoffs absent constraints, regardless of search

costs.

1 Independent Samples

We start with the benchmark of independent samples. We consider discrete draws. Indeed, in con-

tinuous time, with independent draws, the DM would reach any value supported by the underlying

distribution within an infinitesimal period of time.

Formally, the DM selects a search scope σ ∈ [σ, σ] at the outset. A search scope σ is associated

with a cost per sample of c(σ), with c twice continuously differentiable, increasing, and weakly

convex. At each period t in which the DM is searching, she observes an i.i.d sample Xσ
t ∼ N(0, σ),

with density ϕσ and cumulative distribution function Φσ. We let ϕ and Φ denote the density and

cumulative distribution functions of the standard normal, with standard deviation of 1, respectively.

The DM has perfect recall, so keeps track of the maximum value observed, Mt = max
0≤s≤t

Xσ
s . For

simplicity, we assume that Xσ
0 = Mσ

0 = 0.
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The DM’s problem is then:

sup
τ,σ

E(Mτ − τc(σ)). (1)

Importantly, we assume no drift. We do so since, in most search applications, the mere passage

of time does not affect discoveries’ quality.

1.1 Unconstrained Search with Independent Samples

The stationarity of our environment suggests that whenever the DM continues searching with Mt,

she continues searching with anyM′
t ≥ Mt. It follows that recall plays no role—the DM stops only

when drawing a sufficiently high project value. The DM optimally follows a satisficing threshold

à la Simon (1956). In particular, using Robbins and Chow (1961), one can show the following:

Proposition 1 (optimal i.i.d. stopping) For a given search scope σ, it is optimal to stop once the

satisficing threshold S(σ) is reached, where S(σ) solves

c(σ) =
∫ ∞

S(σ)
(x− S(σ))ϕσ(x)dx.

Furthermore, the expected payoff Viid(σ) from using the optimal satisficing threshold S(σ)

is Viid(σ) = S(σ).

Intuitively, optimality of the threshold requires that it coincide with the continuation value of

search. The continuation value is constant over time and, hence, Viid(σ) = S(σ). The characteri-

zation of the optimal threshold is then a translation of this restriction. The left hand side corresponds

to the cost of an additional sample, while the right hand side corresponds to the marginal value from

another draw beyond the stopping threshold.

Let ψ(v) = ϕ(v)− v× (1− Φ(v)). The function ψ can be numerically tabulated, and some

analytical properties are well known: it is positive, strictly decreasing, convex, and symmetric, with

a well-defined inverse. From DeGroot (1968), the value of sampling optimally at a given search
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scope σ is given by

Viid(σ) = ψ−1

(
c(σ)

σ

)
σ.

The optimal search scope can be readily calculated as the maximizer:

Corollary 1 (optimal i.i.d. search scope) The optimal search scope σ maximizes ψ−1
(
c(σ)

σ

)
σ.

As it turns out, even if the DM could select a search scope freely at any period, the constant

search identified in Corollary 1 would be optimal. Intuitively, as recall plays no role, the DM faces

an identical optimization problem in each period while she searches.

When costs are sufficiently convex, say log-convex, the optimal search scope is extremal, either

σ or σ.

1.2 Pre-Committed Time with Independent Samples

Consider now the case in which the DM simultaneously commits to the search scope and her search

duration. For a fixed search scope, this case resembles that studied by Stigler (1961).1

Suppose the DM selects a search scope of σ and T observations. The resulting payoff would

then be the highest order statistic from a sample of T normal variables censored at 0, net of the

overall costs:

σ
∫ ∞

−∞
max(x, 0)Tϕ(x)ΦT−1(x)dx− c(σ)T

The integral term is just the expected maximum of T draws from a censored normal distribution

with σ = 1.2 We denote the random variable corresponding to the highest order statistic of T

normal samples censored at 0 with σ = 1 by Y(T). Its expectation can be tabulated numerically,

but analytical formulations are challenging for T > 3. Nontheless, it can be shown that it is

increasing and concave in T.
1Stigler (1961) did not consider an outside option for the DM, essentially assuming she selects a non-trivial sample

and potentially accepts arbitrarily bad outcomes. Our restriction that X0 = M0 = 0 therefore changes somewhat the
caculus underlying the characterization of the optimal policy, if not its description.

2The distribution of a normal variable censored at 0 is still scale-invariant, see the Online Appendix.
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Proposition 2 (optimal i.i.d. constrained search) For any search scope σ, the optimal search du-

ration Tσ solves:

E(Y(Tσ+1))− E(Y(Tσ)) <
c(σ)

σ
< E(Y(Tσ))− E(Y(Tσ−1)).

For any duration T, the optimal search scope, if interior, solves E(Y(T)) = c′(σ)T.

The first restriction corresponds to the analysis of Stigler (1961). The DM selects the maximal

number of periods T such that the marginal benefit of the T’th observation exceeds its cost, while

the marginal benefit of the (T + 1)’th observation does not.

The second restriction corresponds to a first-order condition with respect to the search scope.

Importantly, the optimal search scope in the optimal dynamic search, characterized in Corollary 1

differs from that selected by a DM constrained to a pre-committed number of samples.

2 Correlated Samples

In many applications, innovation begets innovation. In research and development, one new tech-

nique or idea builds on previous ones. In geological surveys, one plot’s mineral returns are in-

dicative of the returns from an adjacent plot. In online shopping, suggested items by commerce

platforms are often associated with prior considered items. As we show, the correlation of samples

yields very different conclusions than those gleaned from the i.i.d. case.

We model correlation over time using a Brownian motion governing the path of values, similar

to Callander (2011). For any search scope σ, the DM observes at time t the value Xσ
t satisfying

dXσ
t = σdBt,

where Bt is the standard Brownian motion with standard deviation of 1. As before, the DM selects

the search scope σ ∈ [σ, σ] at the outset, with the cost c(σ) defined as before. The DM has perfect
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recall so records the maximum value observed at any time t, namely Mt = max
0≤s≤t

Xσ
s . We continue

assuming that Xσ
0 = Mσ

0 = 0. The DM then faces the same problem as specified in (1), namely

supτ,σ E(Mτ − τc(σ)).

We continue assuming no drift both to match most search applications and to maintain com-

parability with the independent-sample case. We note, however, that in this setting, the maxi-

mum value itself exhibits a form of drift. Namely, with search scope σ, at any time t, we have

E(Mt) = σ
√
2t/π.

2.1 Unconstrained Search with Correlated Samples

The analysis of the optimal search policy when observations are correlated follows that of Urgun

and Yariv (2020). Perfect recall is now important. With any observed value, the DM assesses

the time it would take to reach a value exceeding the maximum value observed, which she can

collect immediately. With correlated samples, a current low observed value relative to the historical

maximum suggests a long time, entailing high search costs, for search to pay off. In particular,

the optimal stopping policy is now identified by a stopping boundary, which may depend on the

recorded maximum.

The following proposition characterizes the optimal stopping boundary, which turns out to be

a drawdown stopping boundary. That is, the DM stops searching whenever the observed value is

a fixed distance below the recorded maximum. That fixed distance is referred to as the drawdown

size.

Proposition 3 (Urgun and Yariv, 2020) For any search scope σ, the DM stops searching as soon

as Xσ
t ≤ Mσ

t − dσ at any time t, where the dradown size dσ is identified by dσ = σ2

2c(σ) . The

expected payoff is given by Vcorr(σ) = dσ

2 = σ2

4c(σ) .

The optimal search scope then maximizes σ2/c(σ), so that we have:

Corollary 3 (optimal correlated search scope) The optimal search scope, if interior, solves 2c(σ)
c′(σ) =

σ.
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In fact, Urgun and Yariv (2020) show that such a constant search scope is optimal even when

scope can be adjusted dynamically. When costs are log-convex, an interior solution is unique and

exhibits natural comparative statics: as costs become more log-convex, the optimal search scope

declines. Importantly, the optimal search scope in the correlated case differs from the optimal

search scope in the independent case.

2.2 Pre-Committed Time with Correlated Samples

Suppose search is to take place over a period of time T, analogous to the pre-committed search

horizon considered in the independent-sample case. If the DM uses a search scope σ, the expected

payoff is:

V̄corr(σ; T) = E(MT)− c(σ)T.

Following standard arguments, the record-high level Mt at time t has the same distribution

as that of |Xt|.The time-T realization of BT is normally distributed with mean 0 and variance T.

Therefore, E(|Bt|) =
√
2T/π. Since Xt = σBt, we have that:

V̄corr(σ; T) = σ
√
2T/π − c(σ)T.

In particular, we can solve for the optimal search horizon and scope:

Proposition 4 (optimal correlated constrained search) For any search scope σ, the optimal fixed

search time is Tσ = σ2

2π(c(σ))
2 . The resulting expected payoff is V̄corr(σ; Tσ) = σ2

2πc(σ) . The

optimal search scope, if interior, solves 2c(σ)
c′(σ) = σ.

Unlike the independent-sample case, the optimal search scope is the same, whether or not the

DM is constrained in her search.
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2.3 Satisficing with Correlated Samples

When samples are independent, we showed that an unconstrained DM uses a satisficing threshold

to govern her stopping policy. How would satisficing perform when samples are correlated? We

now show that, when observations are correlated, the DM would prefer to stop immediately rather

than search following any positive satisficing threshold.

Indeed, suppose the DM stops whenever she reaches a satisficing level S ≥ 0. That is, the

DM stops only when hitting a new maximum of S, which is then her payoff. Let τsat
S = inf{t ≥

0 : Xt = S}. That is, τsat
S is the random time at which a satisficing retrospective searcher stops.

Since the underlying process generating outcomes Xt has no drift, we have that for any S > X0,

P(τsat
b < ∞) = 1, but E(τsat

b ) = ∞. Namely, the expected time it takes a driftless Brownian

motion to hit a certain threshold above its starting point is infinite. The DM’s expected payoff is

then negative for any bounded S > 0. In particular, the optimal satisficing level is S = X0 = 0,

indicating that a satisficing DM stops immediately.3

Why is satisficing so inefficient for a retrospective searcher? While the DM may get a high

level of utility upon stopping, determined by her satisficing level, she may also continue her search

when low values are observed, ones that would ideally induce her to cease search. That possibility

is prohitively costly in expectation. A natural extension to the satisficing heuristic would then allow

for a threshold below which the DM stops.4

3Similar extreme predictions occur with drift. Indeed, suppose values exhibit a drift of µ and that the search scope
σ comes at a flow cost of c. The expected payoff from a satisficing threshod S would be S− Sc/µ. Thus, for low
costs such that c < µ, the optimal satisficing level would be infinite, while for high costs such that c > µ, optimal
satisficing would dictate immediate stopping.

4With scope σ, expected payoffs from satisficing threshold S ≥ 0 and departure threshold D ≤ 0 are:

ΠD,S(σ) =
|D|S

|D|+ S

 |D|
|D|+ S

+ ln

(
|D|

|D|+ S

)− |D|S
σ2 c(σ).

One can show that, optimally, |D| = S.
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3 Impacts of Constraints

Search with independent samples generates different behavior than search with correlated samples.

While satisficing is optimal with independent samples, it does poorly with correlated samples, when

a drawdown stopping boundary is optimal. The optimal search scope also responds differently to

features of the cost. With independent samples, unconstrained search leads to the use of the last

value observed, while constrained search leads to the last value being used with some probability,

which vanishes as the number of samples grows. In contrast, with correlated samples, the last value

observed is never used.5

The impacts of constraints also differ across the two settings. With independent samples, the

optimal search scope changes when search time is chosen at the outset; with correlated samples,

the optimal search scope is the same with and without constraints.

Certainly, in both settings, constraints reduce the value of search. When samples are correlated,

committing to a search time entails the loss of a fixed fraction of the search value. In contrast, as

we now show, with independent samples, ex-ante commitment to a search time may have severe

consequences, depending on search costs.

For simplicity, consider a linear cost function: c(σ) = aσ with a > 0. In this case, it is

easy to verify that, in both settings, with or without constraints, the optimal search scope is σ.

Denote the corresponding expected payoff from the optimal policy in the independent setting for

the unconstrained and constrained search by Viid(a) and V̄iid(a), and for the correlated setting by

Vcorr(a) and V̄corr(a), respectively. An application of our results thus far is then the following:

Corollary 4 (constraints and costs) For the independent-sample setting, lim
a→0

Viid(a)/V̄iid(a) =

∞. For any a > 0, in the correlated-sample setting, Vcorr(a)/V̄corr(a) = 2
π .

Taken together, our results illustrate the dramatically different behaviors independence and
5For the constrained case, this is an artifact of our continuous-time setting: even when search is constrained to

horizon T > 0, the event that the maximal value occurs at T has zero probability.
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correlation across samples generate. In particular, the impacts of constraints can differ drastically

across the two environments.
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