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The precision of lidar measurements is limited by noise associated with the optical detection process. Photon noise
also introduces biases in the second-order statistics of the data, such as the variances and fluxes of the measured
temperature, wind, and species variations, and establishes noise floors in the computed fluctuation spectra. When
the signal-to-noise ratio is low, these biases and noise floors can completely obscure the atmospheric processes
being observed. We describe a novel data processing technique for eliminating the biases and noise floors. The

technique involves acquiring two statistically independent datasets, covering the same altitude range and time

period, from which the various second-order statistics are computed. The efficacy of the technique is demonstrated
using Na Doppler lidar observations of temperature in the upper mesosphere and lower thermosphere acquired
recently at McMurdo Station, Antarctica. The results show that this new technique enables observations of key
atmospheric parameters in regions where the signal-to-noise ratio is far too low to apply conventional processing

approaches. © 2020 Optical Society of America

https://doi.org/10.1364/A0.400375

1. INTRODUCTION

Lidars are now widely employed to measure key atmospheric
parameters, such as temperature and winds, a wide variety of
atmospheric constituents and aerosols, and dynamical features,
like tides, gravity waves, and turbulence, from the troposphere
into the lower thermosphere [1]. Rayleigh and resonance fluo-
rescence lidars are providing considerable insight on the thermal
and wind structure of the mesosphere and lower thermosphere
(MLT), the morphology of the meteoric metal layers, and even
the influx of cosmic dust into the Earth’s upper atmosphere
[2-9]. Many of the key observations involve the derivation of
second-order statistics from the lidar measurements, including
the variances, fluxes (i.e., covariances), and spectra of the wave-
and turbulence-induced fluctuations in temperature, winds,
and minor species. These statistics are all affected by noise asso-
ciated with the optical detection process, which can be quite
significant under low signal-to-noise ratio (SNR) conditions.
Photon noise biases the calculated fluctuation variances and
fluxes and introduces noise floors into the computed spectra.
Over the years, numerous researchers have employed a variety
of techniques to compensate the data for the photon noise
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[10-12], but these approaches are less effective when the signal
levelsare low and the species concentrations are small.

In this paper, we demonstrate a novel technique for elimi-
nating the photon noise biases from the derived second-order
statistics of the lidar observations. The signal processing tech-
nique exploits the fact that the white photon noise fluctuations
contaminating the data samples from adjacent range and time
bins are statistically independent, while the red wave-driven
and turbulence-induced fluctuations are highly correlated. The
technique was originally proposed to measure turbulence in the
upper mesosphere with Na and Fe lidars [13], and its efficacy
was subsequently demonstrated using Na Doppler lidar data
acquired at Cerro Pachdn, Chile [14]. Turbulence observations
in the mesopause region represent an extreme case of low SNR
because the measurement range is large (80-100 km), and the
required resolutions are small (several seconds and several tens
of meters). Thus, the photon counts in each measurement
interval are very small, resulting in a very low SNR. Here, we
build upon this previous work by fully describing how to apply
the technique, analyzing its performance theoretically, and
demonstrating how it is adapted for measuring variances of
the temperature and lapse rate fluctuations caused by gravity
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waves and for measuring the vertical heat flux and temperature
fluctuation spectra.

We focus on wave-induced temperature variations because
recent work has shown that the variances of the temperature
and lapse rate fluctuations are directly related to wave transport
of important minor species in the upper atmosphere such as
atomic oxygen, NO,, and meteoric metals [15]. Furthermore,
the growth of the temperature variance with increasing altitude,
which is related to wave dissipation mechanisms, provides
important insight on vertical coupling from the lower to the
upper atmosphere [12] and on wave amplitudes in the thermo-
sphere that affect space weather [16]. Additional observations
of these key parameters, especially at higher altitudes where
signal levels are typically low, are needed from around the globe
to fully understand how gravity waves generated in the lower
atmosphere impact constituent concentrations in the Earth’s
upper atmosphere and drive the variability of space weather.
In addition to showing how temperature data can be processed
to minimize the impact of photon noise, we also show how the
results can be adapted in a straightforward manner to measure-
ments of the second-order statistics of wind, wind shear, species
concentration, and turbulence fluctuations.

2. ESTIMATING THE TEMPERATURE VARIANCE

We assume the raw photon count data are processed to derive
samples of the temperature (7) and wind (w = vertical,
# = zonal, v = meridional) at a vertical resolution Az and a
temporal resolution Az. The fluctuations induced by waves
(T, w', u, v') are derived by subtracting the temporal means or
linear trends in time from the data obtained during each obser-
vation period. The resulting datasamples (77 + AT, w’ + Aw,
#' + Au, v' + Av) include both the wave-driven fluctuations
plus noise associated with the photon counting process (A7,
Aw, Au, Av).

T, w', ', and v" are approximately Gaussian distributed,
zero-mean random variables [17]. AT, Aw, Au, and Av
are Poisson distributed, zero-mean random variables, but, in
most cases, when the signal levels are large enough to derive
scientifically useful temperature and wind measurements, the
Poison distribution can be approximated by a Gaussian distribu-
tion. The wave fluctuations are statistically independent of the
photon noise. Depending on the laser frequencies used to make
the temperature and wind observations and the strength of the
lidar signals, AT, Aw, Au, and Av may be weakly correlated
[17,18].

For simplicity, we focus on the statistics of the temperature
fluctuations, as the final results are easy to adapt to the wind
fluctuations. Normally, the temperature variance at each alti-
tude is estimated by computing the sample variance (square of
the fluctuations) averaged over the observation period, which is
given by

L
1
iar@= 7 Y [T e to+ 180 + AT (2, 1y + AR

=1
(1)
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The altitude z and time 7 are integer multiples of Azand Ar,
respectively, and L = t,ps/ At is the number of samples, where
Tobs 1s the observation period. T,ps varies from a few hours to
about 12 h for lidars restricted to just nighttime observations.
However, the observation time can be considerably longer
during polar winters. To simplify the subsequent notation, we
adopt the convention that time is always measured relative to
the beginning of the observation period so that #, = 0. Because
the wave-driven temperature fluctuations and the photon noise
uncertainties are statistically independent, the expected value
of the sample variance is just the sum of the variances of 7" and
AT. Specifically, if we neglect the small uncertainties in the
sample mean or linear trend used to compute the data samples
(T" + AT), thenitiseasy to show that

1
(Far@)=7 2 ([T 180 + AT ia0])

/=1
=Var [T'(2)] + Var [AT(2)], 2)

where the angle brackets denote expectation with respect to the

probability ensemble
Var [T'(2)] = <[T(z)]2> , 3)

and
Var [AT(2)] = ([AT(2)]). (4)

The right-hand side of Eq. (2) is obtained because we assume
that the wave-driven fluctuations are stationary, at least over the
observation period. We also assume that the fluctuations arise
from an ergodic random process, where the sample averages can
be used to approximate the corresponding ensemble averages.
Therefore, in the limit as the number of samples (L) goes to
infinity, the sample averages approach the ensemble averages.
For a finite number of samples, the uncertainty of the sample
variance, i.e., the mean-square difference between the sample
and ensemble variances, is related to observation period LA¢
and the 7 correlation time [see Eq. (15) below].

In many cases, when the lidar SNR is low, the photon noise
variance is a non-negligible fraction of the wave-induced fluc-
tuation variance, especially for metal lidars at the edges of the
MLT layers, where the metal densities are low, and, for Rayleigh
lidars in the upper stratosphere and mesosphere, where the
atmospheric density is low. In principle, estimates of the photon
noise variance can be calculated using the measured photon
counts [2,18] and then subtracted from the sample variance to
obtain an unbiased estimate of the wave variance:

Var [T’(z)] ~ SZT,+A (2) = Var [AT(2)] . (5)
Although Eq. (5) is valid provided 7" and A T are statistically

independent, the challenge is deriving an accurate estimate
of Var(A 7). For example, if the precise value of AT could be
determined for each measurement, which of course is not pos-
sible, the relative uncertainty of the calculated sample variance
of AT is \/2At]Tops. For Ar = 2.5 min and ,ps = 8 h, which
are typical values for resonance fluorescence lidars, the relative
uncertainty is still about 10%. In practice, A T is estimated from
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the measured signal count by linearizing the nonlinear system
equations. Under low SNR conditions, these nonlinearities can
significantly increase the uncertainties in the estimated values of
AT and, hence, the estimated value of Var(A 7). In addition,
variations in signal level caused by variations in atmospheric
transmittance and densities also introduce considerable uncer-
tainty into the photon noise calculations, especially when the
temperature error (A7) is comparable to the wave-induced
perturbations (7”). Consequently, in practice, it is difficult to
accurately compensate for the photon noise bias when the 77
variance is estimated according to Eq. (5) [10,12,18].

The photon noise bias can be eliminated if we compute the
variance using two statistically independent measurements
of the 77 4+ AT time series, such as employing two lidars to
probe the same volume of the atmosphere at the same time.
Obviously, this is not a cost-effective solution. Alternatively,
the 7" variance can also be estimated by recognizing that the
wave-induced fluctuations at adjacent time (and altitude) mea-
surement intervals are highly correlated because their temporal
frequency (w) and vertical wavenumber () spectra are red
(i.e., larger-scale waves dominate the energy spectra), while the
white photon noise is uncorrelated. The simplest approach for
acquiring two independent 77 + AT time series is to use the
odd numbered temperature measurements as one time series
and the even numbered measurements as the second. These
two time series are nearly identical but displaced in time by the
temporal resolution Az, where the odd series leads the even
series. Because the photon noise contaminating the odd samples
is statistically independent of 7" and also independent of the
noise contaminating the even samples, the average value of the
product of the two time series is approximately equal to the tem-
perature covariance function, Covy (At). For sufficiently small
At, the covariance is approximately equal to Var(7”). Similarly,
independent measurements of 77 + A 7 can also be acquired by
using the odd range bins for one set of time series and the even
bins for the second set. The average value of the product of the
time series from two adjacent altitudes is approximately equal to
Covy (Az).

However, there is a more elegant way to derive independent
estimates of the temperature versus time using measurements
made by a single lidar. Modern atmospheric lidars typically
acquire the raw photon count data at temporal (§7) and ver-
tical (82) resolutions that are much smaller than the required
resolutions of the processed scientific data (Az and Az). For
example, the University of Colorado lidar group acquired raw
photon count data with an Fe Boltzmann lidar at fundamen-
tal resolutions of 82 =1 min and 8z =48 m and with a Na
Doppler lidar at §# = 0.5 min and §z = 96 m, but they derived
temperature and Fe/Na density profiles at much lower resolu-
tions of Ar=15min and Az=960m [19]. Specifically, for
the Na lidar, these authors combined 30 consecutive photon
count samples, each acquired by integrating the Na signals over
0.5 min, to compute estimates of 7" every 15 min. If, instead,
suppose two estimates of 7 are derived, one using the 15 odd
photon count samples (7;44) and a second using the 15 even
samples (Ziyen), these two times series are statistically inde-
pendent of each other because they are derived from different
but interleaved photon count samples. The resolution of the
two temperature time series (Az — 8¢) is still approximately
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Atz =15 min, but the temperatures are offset by §z = 0.5 min,
where 744 leads Tiyen by 82. Of course, the integrated signal
counts drop by half so the temperature uncertainties for both
To4d and Toyen increase by /2. More importantly, the tem-
perature error caused by photon noise computed with the
odd samples is uncorrelated with the temperature error com-
puted using the even samples. This interleaved data processing
approach is also equivalent to having two independent lidars,
each probing the same volume of the atmosphere but at dif-
ferent, multiple, interleaved time periods, offset by 87. Thus,
the atmospheric temperatures measured by the “two lidars”
are highly correlated, but their uncertainties are statistically
independent. A temperature profile, with the required mea-
surement precision and resolution Az, can still be derived
by using the standard processing method or by computing
T = (Tad + Tiven)/2. However, the 77 variance is now esti-

mated by computing the covariance between 77, and 77 ,. In
this case the sample 77 covariance and its expected value are
| 2
priardt) = - Y [T A0 + AT (= [AD)]
/=1
X [T'(z, IAt) + AT(z, [AY)] .. (6)
and
1 &
(prr4aT(8t)) = - ; (T'(z, IAD T (2, [At + 81))
= Covy (81), (7)

where the temperature covariance function is related to its power
spectrum Fr (w):

Covy(8t) = % / Fr(w)exp (iwét) dw. (8)

Asbefore, Eq. (7) follows because we assume 7" isa stationary,
ergodic random process and because AT and 77 are uncorre-
lated. Therefore, in the limit as the number of samples (L) goes
to infinity, the sample temperature covariance given by Eq. (6)
approaches the ensemble temperature covariance given by the
right-hand side of Eq. (7).

Since the temperature w spectrum is roughly proportional to
@™ with p ~5/3 — 2 (see [20] and references therein), and &z
is typically small compared to the correlation time of the wave
fluctuations [see Eq. (16) below], Covz(8¢) is approximately
equal to the variance. This can be quantified by expanding the
covariance function given by Eq. (8) in a power series in terms of
8¢ whenever |wéz| < 1 for the important values of w and then
retaining just the first three terms in the series:

1 , (wd1)?
Covy(8t) ~ E / Fr(w) |1+ iwét — 5 dw

=Var[T'(2)] — 7var 5

512 |:3T/(z)i| ©)

where
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Va[1'@)] =5 [ Fr@do=Cor@).  (10)

and

Var[aT,(z)iI L / P Fp@do. (1)
dat 2

In evaluating the integral in Eq. (9), we note that the power
spectrum is an even function of w so that the odd term in @
integrates to zero. However, gravity wave spectra are typically
modeled as single-sided spectra, where the integrals are carried
out over just the positive wavenumbers and frequencies (see
Appendix A). By combining Egs. (6), (7), and (9), we obtain

812 [a T'(2)

Var [T'(2)] = proar(d0) + 7var % ] . (12
Notice that according to Eq. (12), the photon noise bias has
been eliminated from the 7" variance when it is computed using
the sample covariance, but it is replaced by another term, which
is related to the variance of 3 77/d¢. This term, which accounts
for the slightly smaller value of the sample covariance compared
to the variance, can be easily estimated from the data set by
calculating the sample variance of 3 77 /9¢ (see Section 4), or it
can be evaluated by using a model for the temperature spectrum
(see Appendix A). If the temperature spectrum is proportional
to w2, then the correction term is given by [see Eq. (A15) in

Appendix A]
572 [a T/(z)i| 522

7\131' 97 = Twmaxwminvar [’T,(Z)] ) (1 3)

where @ = min(N, w/Ar) is the highest observed
gravity wave frequency, and N=2m/t5 (r3~5min) is
the buoyancy frequency. @i, = max(f, 27/7,5,) is the
lowest observed gravity wave frequency, and f=2m/t;
(r; =12h/sinf, 6 =latitude) is the inertial frequency. By
substituting Eq. (13) intoEq. (12) and rearranging terms, we
obtain this final expression for the temperature variance:

) 2
Var [7'(2)] = 1748 701) + =~ Onactomia Var [ T'(2)]

_ p1+a1(82)
[1 - 6t2a)maxa)min/2] ' (14)

The correction term can be made arbitrarily small by acquir-
ing and processing the raw photon count data with a very
small fundamental resolution 8¢ so that the sample covariance
will be nearly equal to the temperature variance. For exam-
ple, the largest gravity wave frequency is N, so if we choose
At =1p/2=2.5min, acquire and process the data so that
8t=15s, and if T,ps =8h, the correction term given by
Eq. (13) is only 0.05% Var(7") and can be neglected. This
example illustrates the major advantage of interleaving the raw
photon counts. If we had simply used the odd and even temper-
ature measurements to compute the temperature covariance,
the correction term would be (A#/8¢)*> =100 times larger
and could not be neglected. As will be shown in Section 4, this
method for acquiring the raw data and computing the tempera-
ture covariance is especially useful for estimating the 7” variance
in high photon noise scenarios where the lidar SNR is small.
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The uncertainty (precision) of the estimated temperature
variance is dominated by the uncertainty of the sample covari-
ance not the uncertainty of the small correction term. The
uncertainty of the sample covariance can be computed by fol-
lowing the approach described in the appendix of Ref. [17]
and summarized here in Appendix B. The final result for the
uncertainty associated with estimating the temperature variance
from the sample covariance function is

Apriar(dt)

~ \/2”’ var (1) 4 2 [2Var (77) Var (AT) + Var® (A T)],

Tobs Tobs
(15)
where (see Appendix A)
Lofom g2 ()dw
oy =2 f“’mmz r ~ T (16)
Var® (T7) 3Wmin

The right-hand side of Eq. (16) was evaluated assuming
Fr () & @™ ? and @pin € Omax. T7 is the correlation time of
the measured temperature fluctuations, which varies between
about 1-2 h, depending on the gravity wave activity, resolu-
tion, and length of the observation period, which determines
what portion of the gravity wave spectrum is observed. Ty
could also be derived from the dataset using Eq. (16), the mea-
sured Var(7"), and the measured w spectrum of 7”. Because
At < T, the uncertainty in the 77 variance estimate is usually
dominated by the statistical noise associated with the calcula-
tion of the sample covariance not photon noise. In this case,
the uncertainty is simply /2/&Var(1"), where k= toh/T7
is the number of statistically independent observations of 7’
used to estimate the covariance. For typical values of Var(A T)
and Az, the effects of photon are negligible. However, when
observations are made in regions where the SNR is very low
so that Var(7") « Var(AT), the photon noise will increase
the uncertainty of the estimated temperature covariance (see
Section 4), even though the large noise bias has been eliminated.

For comparison, the uncertainty of the sample variance given

by Eq. (1) is (see Appendix B)

2
Aspiar

2At

[2Var (77) Var (AT) + Var® (AT)].
(17)

2T
~ \/ N (T +
Tol

bs Tobs

It is important to note that Var(A T) in Eq. (17) is half the
value of that in Eq. (15) because, for the conventional method,
T is estimated from the full dataset while, for the interleaved
method, 7544 and 7y, are each computed from half the data.
Notice also that the uncertainties in the estimated temperature
covariance and variance given by Eqs. (15) and (17), computed
during a single observation period of length T, ~ 8—12h, are
quite large. This is because the 77 correlation time (77) is fairly
long so that for a single observation period only a small number
of statistically independent samples of 7" are obtained. To derive
estimates of the temperature variance with uncertainties ~ 20%
Var(7") or less with either data processing approach, one must
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average the covariance or variance calculated using &= 50
statistically independent samples of 77, which, for a correlation
time of ~2 h, requires ~100 h of lidar measurements made over
8-12 different observation periods (see Section 5).

3. ESTIMATING THE LAPSE RATE VARIANCE

The fluctuations of the lapse rate (3 7"/9z) and vertical shear
of horizontal winds (9%'/dz and 9v'/9z) are very important
parameters because they are directly related to the stability of the
atmosphere [21-23]. They are also among the more difficult
parameters to measure, because applying the derivative, which
is typically computed as a finite difference, enhances the white
photon noise relative to the red temperature and wind fluctua-
tions. We assume the lapse rate is calculated from temperature
measurements derived at a vertical resolution of Az. By taking
into consideration the additive photon noise, the estimated
lapse rate fluctuation is

[T (z,t)+ AT (z )]
0z

N T (z+ Az, t)+ AT (z+ Az) — T (2, t) —

Az

AT (z,t)

(18)

As before, the conventional approach for computing the lapse
rate variance is to simply square the calculated lapse rate fluc-
tuations and average the squared samples over the observation
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described in the previous section. The lapse rate covariance
is computed by averaging the product of 977,,(z, )/dz and
0T ..(z, t)/dzover the observation period,

even

Pa(T+a7)/32(82)

= { [T'(z, IAD) + ATz, lAt)]}
N Z 0z
odd

5 {a [Tz, IAD) a+ AT(z, [AD)] } | 22)
Z

where

(Pd(T+An/az(5l‘)

~ \

1 i<a T'(z,IA8) AT (2, [Nt + a¢)>
0z

I=1
= Covyr/9.(81). (23)

The estimated lapse rate variance is

7T (2) 5t? 32T (2)
Var |: . ] X Py(1+a71)/0:(82) + TVar 3792

_ Pa(T+aT)/32(80)
B [1 - (Stwmax/z)z/ln (a)max/a)min)] ’

(24)

period, which yields

T (z+ Az, [IAt) + AT (z+ Az, [At) — T'(z, [At) — AT(z, [Ar)
d(T’JrAT)/dz(z) ya Z[ Az ]
/=1
= <S§(T’+A T)/az(z)> ) (19)
where
) T (z+ Az2) — T'(2)
<53(T’+”)/3Z(Z)>=VM[ Az ] where the right-hand side of Eq. (24) is obta
ght-hand side of Eq. (24) is obtained when the
lapse rate spectrum is proportional to w ™! (see Appendix A).
2Var (AT) |:3 T/(Z):I As before, the expected lapse rate variance does not include
+ ——>Var| ——— . . . . .

Az? 9 contributions from the photon noise, but it does include a
term related to higher-order derivatives of the temperature
2Var (AT) (20) fluctuations. This term accounts for the slightly smaller value
Az of the lapse rate covariance compared to the variance. It can be
derived directly from the dataset or evaluated using a model
so that for the temperature spectrum [see Eq. (A10) in Appendix A
AT (2) 5 2Var (AT) and Section 4]. However, like the estimated temperature
Var |:8—z:| = B(T’JrAT)/Bz(z) T A2 (21) variance, for sufficiently small 8z, the correction is negligible

The photon noise bias in Eq. (21) can be quite large. For
example, for a typical temperature measurement uncertainty
of AT=2—3K and vertical resolution Az=10.5km, the
photon noise bias (32—72 K?/km”) is comparable to the actual
lapse rate variance (~30 K2/ km?) in the mesopause region [24].

Alternatively, to eliminate the photon noise bias, we first
compute two, statistically independent, lapse rate estimates
using the derived temperatures, 7o4q(z, £) and Ziyen(z, 2),

regardless of the required resolution. For example, when
Tobs = 8h, At =2.5min, and 8¢ =15s, the correction term
is ~0.5%Var(d 7' /9z) and can be neglected. The uncertainty
in the lapse rate fluctuation variance is given by Eq. (15) with
T" replaced by d77/0z and AT replaced by dAT/dz. The
lapse rate correlation time Ty77/5, ~ 10—15 min is given in
Appendix A by Eq. (A11). Itis shorter than 777 because the lapse
rate fluctuations have more energy at the higher frequencies
than 7. Specifically, the lapse rate spectrum is proportional to
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w1 where p ~ 2, which is shallower than the 7" spectrum.
which is proportional to w™2.

4. EXAMPLES

The conventional and interleaved data processing methods
are illustrated using Na Doppler lidar measurements from
McMurdo (77.84°S, 166.67°E), Antarctica. The data were
acquired on 26-27 and 29-30 May 2020 by the University of
Colorado lidar group. The instrument employs the well-known
three-frequency technique to infer simultaneously the temper-
ature (7), vertical wind (w), and atomic Na density ([Na]) in
the MLT region [2]. The laser transmitter runs at a 50 Hz pulse
repetition rate with a single pulse energy of ~10—20 m]. The
telescope aperture area is 0.5 m?, so the power-aperture product
(PA) is between 0.25 and 0.5 Wm?, depending on the laser
power. This is comparable to the PA of many Na lidars currently
in operation around the globe. The quality of the data used
here, to demonstrate the new processing technique, is similar to
that being acquired by other lidar groups, who should be able
to obtain comparable results. However, as it will be shown, the
technique is effective even under low SNR conditions and can
also be applied to situations where the signal levels are quite low.
Raw photon counts were acquired at McMurdo with resolu-
tions of §# = 4.5 s and 8z = 24 m. The data acquisition system
saves the raw data in a convenient format designed for ease of
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data retrieval, which has also proven useful for interleaving the
photon count samples during post-processing. Each 4.5 s set
of three-frequency photon count data (1.5 s per frequency) is
stored in pairs. The first and second sets from each pair are then
integrated separately to yield two interleaved, statistically inde-
pendent, times series of three-frequency photon counts with the
desired resolution (A#=2.5min and Az=0.96km, in this
case). By storing the high-resolution raw data in pairs, we ensure
that the two lower-resolution, interleaved times series are offset
by exactly 4.5 s regardless of the data gaps. Two statistically inde-
pendent sets of temperature times series are then derived from
the interleaved photon counts, 7544(2, #) and Teen (2, £), along
with corresponding sets of w and [Na] measurements. Next, two
sets of temperature perturbations, 77, and 17, are derived
by subtracting the individual temporal means for each of the
observation periods. The sample covariances of the temperature
and lapse rate fluctuations are then computed using these two
interleaved datasets according to methods described in Sections
2 and 3. These calculations provide estimates of the wave-driven
fluctuation variances [Var(7”) and Var(d77/0z)]. The total
variances of the measured temperature [Var(7”) + Var(AT)]
and lapse rate [Var(d7"/9z) + Var(dAT7/dz)] fluctuations
are calculated using the conventional processing method. First,
the photon count pairs are added to form a single set of three-
frequency counts (to increase the signal levels by two). These
datasets are then summed to achieve the proper resolution and

Mean Temperature and Na Density1 ggl 26-30 May 2020 at McMurdo
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Fig. 1.

Na Density Error (cm'3)

(a) Mean temperature profile averaged over 26-27 and 29-30 May 2020 datasets taken at McMurdo, Antarctica with the University of

Colorado Na Doppler lidar. (b) Mean Na density profile observed over the same period. (c) Measurement uncertainty (precision) of the mean temper-
ature profile. (d) Measurement uncertainty (precision) of the mean Na density. Note that temperatures and Na densities were first retrieved at resolu-
tions of 30 min and 0.96 km and then averaged over the 40 h of observations.
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used to derive estimates of 7, w, and [Na] and their fluctuations.
Finally, the sample variances of the measured temperature and
lapse rate fluctuations are computed using the conventional
method, as described in Sections 2 and 3.

The two lidar datasets, acquired on 26-27 and 29-30 May
2020, include, respectively, ~22 and 18 h of continuous mea-
surements. Both observation periods exceed the inertial period
(~12.24h) at McMurdo. The mean temperature and Na
density profiles, averaged over the full 40 h of observations at
a vertical resolution of 0.96 km, are shown in Figs. 1(a) and
1(b), and the associated measurement uncertainties (precision)
are shown in Figs. 1(c) and 1(d). The mesopause temperature
is ~178 K at 102.5 km. Temperatures below the mesopause
gradually increase to ~220K at 79 km, while temperatures
above the mesopause quickly increase to ~368 K at 125 km in
the thermosphere. The precision of the mean temperature pro-
file varies from less than 0.1 K near the Na layer peak to 8-10 K
at 77 and 125 km. The Na densities range from ~6200 cm ™ at
88 km to ~2—3 cm™ at 76 and 130 km. The precision of the
mean Na profile varies from 1 cm 3 to less than 0.2 cm™3, but
the relative errors increase substantially near the layer top edge.

In Fig. 2(a), the wave-driven temperature variance (blue
curve), calculated using the interleaved data method at
At =2.5min and Az=0.96 km, is compared with the total
temperature variance (red curve), calculated using the conven-
tional method. The 2.5 min temporal resolution was chosen
to achieve sufficient SNR while also enabling the detection of
the shortest period gravity waves (3 ~ 5 min). The difference
between these two curves is the noise-induced temperature vari-
ance (yellow curve). Between 90 and 95 km, this photon noise
bias for the conventional processing method is small, ~4 K2.
But, near the bottom and top edges of the Na layer, the noise bias
increases considerably. In fact, it exceeds the wave-driven vari-
ance (blue curve) below 79 km and above 112 km. At 115 km,
the noise bias (~2100 K?) is triple the wave-driven tempera-
ture variance (~690 K?). It is obvious from Fig. 2(a) that the
total variance, calculated using the conventional method, is
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dominated by the photon noise bias at the extremes of the Na
layer where the SNR is very low. The precision (rms error) of
the high-resolution (Az=2.5 min, Az=1km) temperature
measurements is plotted on a linear scale in Fig. 3(a). This curve
is simply the square root of the photon noise variance plotted
in Fig. 2(a). The rms error is about £2 K near the Na layer peak
between 90 and 95 km, which is typical for well-designed Na
lidars operating at night with clear skies. However, at the highest
altitudes on the topside of the Na layer near 115 km, where
the mean Na density is only about 25 cm ™2, the temperature
error increases to about £46 K. In comparison, the rms value
of the wave-driven temperature fluctuations is much smaller
(v/690K? = 26.3 K). In spite of this large measurement error,
it is still possible to derive scientifically useful estimates of the
wave-driven temperature variance by using the interleaved data
processing technique. As shown by Eq. (12), the calculated
temperature covariance is smaller than the variance by the term

%Var[mgt(z) ], which can be calculated from the interleaved
temperature data. For the McMurdo data, Var(d77/9¢) aver-
ages ~4300 K> h™? between 80 and 100 km. The covariance
correction term for 8¢ = 4.5 s averages to ~0.003 K2, which is
considerably smaller than the estimated values of Var(7") over
thisaltitude range and can be neglected.

The uncertainties of the variance estimates, computed using
both the interleaved and conventional methods, are plotted
in Fig. 2(b) [see Egs. (15) and (17)]. The related parameters
and equations are listed in Table 1. The uncertainties of both
estimates are near 32% over the majority of the height range, but
they increase by a few percent at the top and bottom edges of the
Na layer where the photon noise makes small, but noticeable,
contributions to the measurement uncertainties. Nevertheless,
the accuracy of the estimated wave-driven temperature vari-
ance, calculated using the interleaved data method, has been
improved significantly, because the bias induced by photon
noise has been eliminated. The uncertainties for both methods
are largely determined by statistical noise, the length of the
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Table 1.
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RMS Uncertainties of the Estimated T’ and 4T'/dz Variances for McMurdo Observations’

‘Wave-Driven Temperature Variance: T & 2h, Az = 2.5 min, Tops &40 h

Interleaved Method: Ap7 44 7(82) >~ \/%Varz( )+ 9%

[2Var(7")Var(AT) + Var? (A T)]

Conventional Method: As %”+AT ~ \/%Varz(T’) + ﬁ

[2Var(7)ar(A T) + Var* (A T)]

Wave-Driven Lapse Rate Variance: 7575, & 15 min, At = 2.5 min, T, ¥ 40 h

Interleaved Method: Ay (7744 73 (82) ~ \/ LVaP (0T'/92) + 5

[2Var(d T'/dz)Var(d A T/dz) + Var*(dA T/3z)]

Conventional Method: Ayg(T,+AD/az ~ %Varz(a T'/3z) + ﬁ

[2Var(d 7" /3z)Var(d A T/3z) + Var* (OA T/dz)]

“Var(T") is obtained from the interleaved method, while Var(A 7)) for conventional processing is obtained from the difference between the total and wave-driven

variances. Var(A 7) for interleaved processing is two times the value for conventional processing. Same for the lapse rate.

total observation period, and the temperature correlation time,
which is about 2 h for the McMurdo dataset. If the variances
were recomputed using 160 h of lidar observations instead of
40 h, the uncertainties would be reduced by a factor of 2 to about
16-18%.

Similar profiles for the lapse rate fluctuations are plotted
in Figs. 4(a), 4(b), and 3(b), and the related parameters and
equations for calculating the uncertainties of the estimated
variances are listed in Table 1. The major differences are that the
photon noise bias is larger, relative to the lapse rate variance, and
the uncertainty of the lapse rate variance, computed using the
interleaved method, is smaller, exceptat the edges of the Na layer
where the SNR is low. Between 85 and 95 km, the uncertainty
of the lapse rate variance is about 11%. It increases substantially
above 105 km rising to about 25% at 110 km. In fact, ac 110 km
the photon noise variance (~750 K*/ km?) is about three times
the true lapse rate variance (~225 K?/ km?). These differences
between the temperature and lapse rate variances arise primarily
because the lapse rate correlation time in the MLT at McMurdo
is ~15 min, eight times smaller than the temperature correla-
tion time (~2 h). Consequently, statistical noise makes a much
smaller contribution to the lapse rate uncertainty than it does for

115

110}

1051

€100+

951 At=2.5min

Az =0.96 km

Altitude (km

90

85+

80

75

0 10 20 30 40
Temperature Error (K)

Fig. 3.

Altitude (km)

the temperature variance uncertainty. In regions of low SNR,
the uncertainty of the estimated lapse rate variance is dominated
by photon noise, which is £27.4 K/km at 110 km, as shown
in Fig. 3(b), compared to ~15 K/km for the rms value of the
wave-driven lapse rate fluctuations. Nevertheless, by employing
the interleaved data processing method, it is possible to derive
scientifically useful estimates of the lapse rate variance well into
the thermosphere to at least 110 km where the photon noise is
significantly larger, as this example demonstrates.

In summary, the interleaved data processing method provides
two statistically independent measurements of the temperature
perturbations and lapse rate fluctuations, thereby eliminat-
ing the photon-noise-induced biases in the computation of
the temperature and lapse rate variances. The measurement
accuracies are significantly improved by eliminating the biases,
allowing the measurements to be extended into the lower
thermosphere where the lidar SNR is low. The uncertainties
(precision) associated with the variance measurements can be
improved by increasing the total observation time to provide
more independent samples of the variances or by averaging in
altitude. Increasing the observation time by four times decreases
the uncertainty by two times. However, there is a limit to the
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ence between them (photon noise variance) using the two datasets on 26-27 and 29-30 May 2020 over McMurdo, Antarctica. (b) Uncertainties (pre-
cision) of wave-driven and total lapse rate variances in percentage. Note that temperatures were retrieved at resolutions of 2.5 min and 0.96 km, and

the lapse rate variances derived were averaged over the 40 h of observations.

amount of averaging since we are interested in observing the
geophysical variations of these parameters both in altitude
and time. The McMurdo data shown here have a temporal
resolution of 2.5 min, and the observational window lengths
exceed the inertial period. As a result, the temperature and lapse
rate variances include contributions from the entire gravity
wave spectrum that ranges from the inertial frequency (f)
up to the buoyancy frequency (N). Furthermore, because the
dataset was acquired with a fundamental resolution of 4.5 s,
the variance corrections associated with the interleaved data
processing method are negligible [~0.003%Var(7”) and
~0.045%Var(d 7' /9z)]. In contrast, if we had employed the
2.5 min resolution data, multiplied each 7" sample by the next
sample and then computed the average to estimate Covy (Az),
instead of estimating Covy(8¢), the covariance corrections
would be (Az/8¢)* = (1505 /4.5s)> = 1111 times larger, and,
at least for the lapse rate, the correction would be substantial
(~50%). This simple example demonstrates the significant
advantage of acquiring data at a high fundamental resolution
and then interleaving the samples to compute the second-
order statistics at lower resolutions that are consistent with the
processes being observed.

5. PRACTICAL CONSIDERATIONS AND OTHER
APPLICATIONS

When making observations of wave effects in the atmosphere,
the vertical resolution, altitude range of observations, tem-
poral resolution, and length of the observation period should
be chosen to enable the most energetic waves to be observed.
The smallest-scale waves have vertical wavelengths of ~1 km
with periods comparable to the buoyancy period 75 ~ 5 min
(smaller scales are turbulence). The most energetic large-scale
waves have vertical wavelengths comparable to A%, which is
15-20 km at mesopause heights, and periods comparable to
the inertial period 7; =12h/ sinf, where 0 is the latitude,
thus, to capture the most important waves in the spectrum
requires » ~ 10 — 20 km, Tops ~ 6 — 12 h, Az~ 0.25 — 1 km,

and Az~ 2.5— 10 min. Furthermore, when estimating the
7" and 97" /dz variances, we prefer the correction terms to
be small so that uncertainties in these corrections make only
small contributions to the overall uncertainties in the measured
parameters. Thus, the correction terms should be derived from
the dataset with 8# chosen to ensure that they are small com-
pared to the measured parameters. For example, if 7, =8 h,
At =2.5min~ 13/2, and 8¢ = 305, the correction term for
the 77 variance is ~0.2%Var(7") [see Egs. (13) and (A15)] and
for the 3 77 /dz variance is ~2%Var(d 77/ 9z) [see Egs. (24) and
(A10)], which meet the criteria. These correction terms are even
smallerif At > 75/2.

In practice, observations of the second-order statistics of
the wave-driven fluctuations of temperature and winds are
conducted to characterize the impact of wave sources in the
lower atmosphere and to assess the seasonal variations of wave
activity and its influence on the wind, thermal, and constituent
structure throughout the atmosphere. Because the temperature
and lapse rate correlation times are relatively long (~1-2h
and 10-15 min, respectively), the uncertainties in the esti-
mated variances of the temperature and lapse rate fluctuations,
that are derived from a single observation period are large.
Measurements from multiple observation periods (which are
statistically independent) are averaged to reduce the uncertain-
ties and thereby obrtain scientifically useful estimates of these
parameters. Decades of measurements made throughout the
atmosphere have shown that the @ and m spectra of the tem-
perature fluctuations are approximately proportional to @™?
and 773 [20,25-27], in which case the rms uncertainties in the
measured 7" and 9 77/ z variances are [see Egs. (15), (A5), and
(A11)]

AVar (T’)
2 7
- 27 Var® (T7) n At [2Var (T7) Var (AT) + Var’ (AD)],
3 7 Tobs ®min NTobs
(25)
and
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27 Var? (377/3z)

At

zZ

AVar < ) ~

d
where 7 is the number of observation periods employed, Tops
is their average duration, and 77, is the total observation
period. For n =12, Tohs =8 h, and n7,s =96 h, AVar(7") =~
20%Var(7") and AVar(d7'/0z) ~7%Var(d 1’ /0z), which
should be adequate to characterize the monthly variations in
wave activity.

The vertical fluxes of heat, horizontal momentum, and con-
stituents are also important second-order statistics that can be
biased by photon noise if the measurement errors are correlated.
For example, the vertical heat flux is defined as the covariance
between the vertical wind and temperature fluctuations. The
photon noise bias (AwAT) can be eliminated from the mea-
sured heat flux by deriving w from one set of measured photon
counts and 7 from another statistically independent set. This
can be accomplished by using the same technique of interleaving
the measured photon counts that we applied to temperature
measurements. The heat flux is then estimated as follows:

T)

where the overbar denotes the sample average. Similar
approaches can be adapted for estimating the momentum
and constituent fluxes that also eliminate the photon noise
biases.

When conventional spectral analysis techniques are used
to estimate the power spectra of the temperature, wind, and
constituent fluctuations, the white photon noise establishes a
noise floor equal to 2ArVar(AT) for the temporal frequency
spectrum and 2AzVar(A 7)) for the vertical wavenumber spec-
trum. These noise floors can be eliminated by computing the
spectra, again using two statistically independent datasets, such
as T, and 17, The approach involves deriving the spectra
from the discrete Fourier transforms (DFT). For example, the
estimated temporal frequency spectrum is

2
”Tobswminln (a)max/wmin)

odd “even + wf/:ven (27)

(w'T") ~ % (w’ Y

Fr (@) =|DFT, (T,) DFT;, (7.,

even

(28)

Of course, it is important to apply the best practices for com-
puting power spectra, which might include optimizing the data
window function, zero padding the data series, and implement-
ing pre-whitening/post-coloring processing.

Although we focused on temporally interleaving the raw pho-
ton counts to construct two statistically independent datasets,
it is obvious that independent datasets can also be constructed
by interleaving range bins. For some instruments and/or for
some observations, it may be advantageous to interleave the
range bins or employ a combination of interleaved range and
time bins. It is also possible to weight the interleaved samples
to effectively eliminate the offsets in time and altitude between
the two datasets. This approach is useful when the fundamental
resolutions of the acquired data (87 and éz) are rather large.
The key is to construct the two datasets so that the computed
variances, fluxes, and spectra closely approximate the underlying
statistics of the observed variable and do not require significant
correction. As we have shown here, temporal interleaving with
8¢ on the order of a few tens of seconds is certainly adequate

N Tobs

(26)

3AT) ) <
+ Var
z 0z

OAT
0z ’

for estimating the variances of the temperature and lapse rate

fluctuations induced by gravity waves in the upper atmosphere,
even in regions where the lidar SNR is so low that conventional
processing techniques cannot be employed.

6. CONCLUSIONS

We have shown how lidar observations of temperature can be
processed in a straightforward manner to completely eliminate
the photon noise biases and noise floors that normally occur in
the calculated second-order statistics of the measured temper-
ature fluctuations. To be most effective, the raw photon count
data should be acquired with temporal and vertical resolutions
(8¢ and 8z) that are smaller than the required resolutions of the
derived temperature data (A and Az). This allows statistically
independent measurements of the temperature time series and
profiles to be derived by interleaving the odd and even num-
bered time or range bin photon count data. In such cases, it is
possible to measure the fluctuation variances and spectra, even
in regions where the SNR is quite low, as was confirmed by the
Na Doppler lidar examples shown in Section 4.

Although the results were demonstrated specifically, by
analyzing wave-driven temperature fluctuations, the results
are directly applicable to wave-driven horizontal wind fluctu-
ations, because the horizontal wind spectra are approximately
proportional to the temperature spectra [20]. The results can
also be applied to vertical winds, but, in this case, it would be
necessary to rederive the statistical formulas in Appendix A
by using the appropriate spectral models for the vertical wind
fluctuations. Similarly, the results can be adapted to turbulence
measurements. Because turbulence occurs at much smaller
scales than waves, the raw photon count data must be acquired
at a temporal resolution of a few seconds and a vertical resolu-
tion of a few tens of meters. Furthermore, the derivation of the
temperature and wind fluctuations from the high-resolution,
low SNR photon count data is a more involved process [13]. Of
course, the key statistical formulas in Appendix A would also
need to be reevaluated by employing the spectral models for the
turbulence fluctuations.

Because the photon noise biases and noise floors are elim-
inated from the variance, flux, and spectrum estimates, these
second-order statistics can even be reliably estimated from
noisy high-resolution data to provide better characterizations
of the smaller-scale waves. The SNR of the raw data need only
be large enough to permit the derivation of the temperature
and wind fluctuations, which are typically nonlinear func-
tions of the measured photon counts. However, the system
equations can be readily linearized to avoid the data processing
problems associated with nonlinear inversions in low SNR
environments [13].
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APPENDIX A

To evaluate the correction factors, we employ the single-sided
two-dimensional (2D) gravity wave temperature fluctuation
spectrum model that was derived from diffusive filtering theory,
which is not separable in 7z and w [28]:

- QAT D (m\
rim @)= (1= (/N e <m_>

v
% (P;l) <£>P ’ (A1)

where 0§m§m*\/% and f<w<N. f=2n/t; is the

inertial frequency, 7; = 12 h/ sin6 is the inertial period, 0 is the
latitude, N =27 /75 is the buoyancy frequency, 75 ~ 5 min

is the buoyancy period, and (77 )2 represents the temperature
fluctuation variances associated with the full spectrum of waves.
The parameter s is related to the gravity wave source character-
istics. It is difficult to measure, but is not critical, and so most
researchers assume s = 1. The parameter p is also related to
the source charateristics. For this model, the one-dimensional
(1D) frequency spectrum is proportional to w™7, and the 1D
vertical wavenumber spectrum is proportional to 72~ 22~V for
my < m. A wide variety of observational studies have shown
that 1D spectra are approximately proportional to w2 and 722
([20] and references therein), so p =2 is a reasonable choice.
Fors =1 and p =2, the characteristic vertical wavenumber is
given by

5 <2n>2 2 (07/32)?
m, =\ — ~ —_—.
* Xl‘ In (N/f) (77)2

A% is the characteristic vertical wavelength. For the diffu-

(A2)

sive filtering model, none of the waves, for which A} <2,
are damped by diffusion. A} is 15-20 km at mesopause alti-
tudes, which is comparable to 4, the typical height range of
observations.

By taking into account the region of the gravity wave temper-
ature spectrum observed by the lidar, the 1D w spectrum is

N 27 Var (T’) (p — 1) [ Omin\?
FT/ (w) N [1 - (wmin/wma.x)P_I] @min ( @ ) ’
ffwminfwfwmaxSNa (A3)

where @ = min(N, w/A¢) is the highest observed gravity
wave frequency, and Wi, = max(f, 2w/ Tsps) is the lowest.

Var(7") < (T")* is the temperature fluctuation variance corre-
sponding to the region of the gravity wave spectrum observed by
thelidar. The 1D m spectrum is

FT/ (m) =~

27 Var (T’) 2(p—1) (mmin>21’—1

[1 - (mmin/mmax)Z(Pil)] M min m

X My < Mymin = M = Mmax,

(A4)
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where 7, ~ 7/ Az is the highest observed wavenumber, and
Mumin = 277 / b is the lowest. The temporal correlation time of the
temperature fluctuations is given by [17]

é fa(;:? F%,(a))da) _ [1 - (wmin/wmax)zpil]

T = Var? (7" [1 - (wmin/wmax)P_l]

Tp-1* _(p-1' 7
(2]) - 1) Wmin N (ZP - 1) wmin.

(A5)

Because the 2D lapse rate (3 77/ 0z) fluctuation spectrum is
Fyr 192 (m, w) =m*Fp (m, o), (A6)

it is easy to show that the 1D @ spectrum is proportional to
o~ 2% and the 1D m spectrum is proportional to 723 for
my < m.For p =2,the 1D spectraare

27t Var (8 T’/az)

ln(a) /Cl) <)a)’ Swminfwfwmafov
max min

(A7)

Fyp gz (w) =~

and
271 Var (8 T’/8z)

ln(m /m‘)msm*fmminfmfmmaxa
max min

(A8)

Fyr 5, (m) =

where

7 2 i
Var (£> = 213yl (mm“/mm;") Var (T)
0z [1 - (mmin/mmax) ]

~ 2mp In (Mo /mimin) Var (T7) . (A9)

min

82 T (wimx - wiin) or
Var = Var | —
00z 2In (@Wmax/®Omin) 0z

w2 o7
~ M Nar | — ).
2ln (Wmax/ Ormin) 0z

The temporal correlation time of 9 77 /3 z s

1 [®max 2
4 ./‘wmin F8 T'/0z

Var® (377/dz)

and

(A10)

(w)dw T

‘[8 T /0z = =
o lnz (wmax/wmin)

( 1 1 ) T
X — ~ 5 .
@min Wmax Wmin In (wmax/wmin)

(A11)
Similarly, because the 2D spectrum of d 77/ /9 is

Fyp s (m, 0) = 0* Fp (m, »), (A12)

the 1D  spectrum is proportional to @ 272, and the 1D
spectrum is proportional to 7”27 for m, < m. For p =2, the
1D spectraare

271 Var (3 T’/at)

[ < 0in <0 < Omax < N.
(wmax - wmin) ' ’

(A13)

Fya:(w) >~

and
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477 Var (8 T’/at) m

Fayra: (m) >~ s My < Mmin < 7 < Mimax,

(mrznax - mrznin)
(A14)
where
orT
Var ( » ) = WaxOpmin VAL (T) . (A15)
APPENDIX B

The derivation of the uncertainties of the estimated sample
variance and convariance follows the approach described in the
appendix of Ref. [17]. In our case, where we are only averaging
over time, we rewrite Eq. (A4) in [17] as

1 Tobs t
f dr (1 _ 1 )
Tobs oJ — obs Tobs
X [Cliianiray @+ Cepax (1) Cyray (0]

o / obs " (1 _ 2] ) {[ny (8) + Caxay (f)]z

Tobs obs Tobs

Var l(x + Ax) (y + Ay)J =

+ [Ce (1) + Cax D] [Cy (1) + Cay ]} (B1)

where the overbar denotes time averaging, C,(z) is the auto-
covariance of x, and Cy,(#) is the cross covariance between x
and y. Recall that x and y are statistically independent of the
measurement errors Ax and Ay. Notice that for convenience
we have expressed the discrete time averaging by the correspond-
ing continuous time average. For conventional processing,
x(#)=y@)=T(t) and Ax(t)=Ay(r)=AT(¢) so that
Cyy = Cp and Caxpy = Car,and Eq. (B1) reduces to

V. 5 B 1 Tobs e ||
ar (s3,07) = — t(1——
Tobs —Tobs Tobs

x [2C% (1) +4Cp (1) Car (1) +2C3, ()]
(B2)

For interleaved processing, x(z)=7'(¢) and y(z)=
T'(t+8t)~ T'(¢), while Ax(#)=AT() and Ay(z) =
AT(t) are the temperature errors for the respective inter-
leaved temperature estimates. But, Ax and Ay are statistically
independent so that Cayay(#) =0. In this case, Eq. (B1)

reduces to
Tobs
! / d¢ <1 — i )
Tobs —Tobs Tobs
x [2C2 (1) +2Cp (1) Car (1) + Co7 (1)].
(B3)

Var (o7 4a7) =

Equations (B2) and (B3) may be simplified by expressing the
auto-covariance functions in terms of the corresponding power
spectra, as was done in the appendix of [17]. This approach
permits an accurate calculation of the correlation times for 77
(viz. ) and AT (viz. Ar). Alternatively, we may approxi-
mate the integrals in Eqs. (B2) and (B3) by first assuming that
Tobs is larger than the correlation times of both 77 and AT.
Since the auto-covariance functions are approximately equal
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to the variances for small |#| less than the respective correlation
times and are approximately zero for large |¢| greater than the
respective correlation times, Eqs (B2) and (B3) can be evaluated
approximately as

2T 4A
Var (JZT/JrAT) ~ TTbT Var? (7) + . tiat (T’) Var (AT)
2At .,
+ == vat (AT, (B4)
Tobs
and
2T 2A¢
Var (p7r4a7) = ‘:bT Var? (T) + - Vat (T) Var (AT)
EUVENING
Tonn ar . (B5)
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