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We consider the three-loop scattering amplitudes for the production of a pair of photons in quark-
antiquark annihilation in QCD. We use suitably defined projectors to efficiently calculate all helicity
amplitudes. We obtain relatively compact analytic results that we write in terms of harmonic
polylogarithms or, alternatively, multiple polylogarithms of up to depth three. This is the first calculation
of a three-loop four-point scattering amplitude in full QCD.

DOI: 10.1103/PhysRevLett.126.112004

Multiloop scattering amplitudes in quantum chromo-
dynamics (QCD) are a crucial ingredient for the precision
physics program carried out at particle colliders such as the
Large Hadron Collider at CERN. When combined with the
corresponding real radiation, multiloop scattering ampli-
tudes make it possible to compute high-precision predic-
tions for a multitude of key processes. In the recent past,
such calculations played a fundamental role for the Higgs
characterization [1], for the extraction of fundamental
parameters of the standard model (SM) [2,3], and for the
study of electroweak bosons [4–6] and the top quark [7], to
mention a few examples. These investigations allow for a
deep scrutiny of the SM, which is essential for establishing
its validity and for revealing possible tensions pointing
toward new physics.
Together with their importance for particle collider

phenomenology, scattering amplitudes in QCD also
provide us with an important laboratory to investigate
formal properties of the perturbative expansion of realistic
quantum field theories (QFTs). With the increase of the
perturbative order, one faces the computation of increas-
ingly complicated multiloop Feynman diagrams that can
depend on multiple scales according to the number of
particles involved in the collision. This translates into
increasingly involved analytic properties of the special
functions required to express the corresponding scattering
amplitudes in closed analytic form. The calculation of
multiloop scattering amplitudes have helped reveal intricate
and fascinating mathematical structures, whose further

investigation has the potential to improve our understand-
ing of perturbative QFT.
For these reasons, in the last two decades a considerable

effort has been devoted to push SM calculations further.
As a result, an impressive set of techniques have been
developed that have made it possible to compute most
2 → 2 scattering amplitudes up to two loops in massless
QCD for many processes relevant at hadron colliders
[8–21] and also to include massive effects approximately
and exactly [22–30]. Recently, also the first results for two-
loop amplitudes for 2 → 3 scattering processes in QCD
have been obtained [31–41], opening the way to the first
2 → 3 next-to-next-to-leading-order (NNLO) studies at the
Large Hadron Collider [42,43].

In parallel to the effort to overcome the barrier of two-
loop scattering amplitudes for 2 → 3 processes, similar
work is required to push the calculation of 2 → 2 QCD
processes up to three loops. Indeed, while the first 2 → 2
three-loop results have appeared in N ¼ 4 Super Yang-
Mills [44] and in N ¼ 8 Super Gravity [45], three-loop
calculations in realistic QFTs have only been performed for
simple 2 → 1 processes [46–48]. Only recently have some
of the ingredients for obtaining three-loop 2 → 2 ampli-
tudes in massless QCD started to appear [49,50].
In this Letter, we document the calculation of three-loop

QCD corrections to the scattering amplitude for diphoton
production in quark-antiquark annihilations. This is the first
three-loop amplitude for a 2 → 2 scattering process in full-
color QCD. The qq̄ → γγ process is arguably a very natural
place to start the investigation of three-loop corrections to
2 → 2 scattering in a realistic QFT. Indeed, these ampli-
tudes involve only massless external and virtual particles
and, moreover, have a much simpler color structure than the
corresponding amplitudes for the production of colored
partons. The relevant one-loop and two-loop amplitudes
have been known for a long time [10,12] and followed by a
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multitude of phenomenological studies up to NNLO in
QCD [51–53]. However, we would like to stress that
despite the aforementioned simplifications, this process
still contains all of the analytic complexity of a generic
massless 2 → 2 scattering process. Hence, we expect that
the results obtained here can be extended to compute all
three-loop scattering amplitudes for the production of two
massless partons in hadronic collisions.
We now describe our calculation. We consider the

process

qðp1Þ þ q̄ðp2Þ þ γðp3Þ þ γðp4Þ → 0 ð1Þ

and obtain its physical equivalent qq̄ → γγ via crossing
symmetry p3;4 → −p3;4. We parameterize the kinematics of
Eq. (1) by defining the usual Mandelstam invariants:

s¼ ðp1 þp2Þ2; t¼ ðp1 þp3Þ2; u¼ ðp2 þp3Þ2;
p2
1 ¼ p2

2 ¼ p2
3 ¼ p2

4 ¼ 0; and sþ tþ u¼ 0: ð2Þ

We also introduce the dimensionless variable x ¼ −t=s
such that, in the physical scattering region, one has

s > 0; t < 0; and u < 0 ⇒ 0 < x < 1: ð3Þ

We use the helicity of the incoming quark λq and of the
incoming photons λ3;4 to label the scattering amplitude of
the process. We denote the scattering amplitude between
well-defined helicity states byAλqλ3λ4. Using parity, charge-
conjugation, and symmetry relations, it is easy to see that
there are only two independent helicity configurations
[10,12]. In what follows, for clarity we will compute
the overcomplete set of four helicity configurations
fλqλ3λ4g ¼ fL − −g; fL −þg; fLþ −g; fLþþg, which
allows us to obtain the remaining ones for right-handed
quarks by a simple charge-conjugation transformation, as
we discuss below.
In order to compute the helicity amplitudes, we regulate

the infrared and ultraviolet divergences using dimensional
regularization, i.e., we work in d ¼ 4 − 2ϵ dimensions. By
choosing a gauge such that

ϵi · pi ¼ 0; i ¼ 3; 4; and ϵ3 · p2 ¼ ϵ4 · p1 ¼ 0; ð4Þ

it is easy to see that, at any order in QCD perturbation
theory, the Lorentz covariance dictates that the amplitude
can be parameterized as

Aðs; tÞ ¼
X5
i¼1

F iðs; tÞūðp2ÞΓμν
i uðp1Þϵ3;μϵ4;ν; ð5Þ

where u and ū are the spinors for the incoming quark and
antiquark, respectively, and the five Lorentz tensors Γμν

i are
defined as

Γμν
1 ¼ γμpν

2; Γμν
2 ¼ γνpμ

1;

Γμν
3 ¼ =p3p

μ
1p

ν
2; Γμν

4 ¼ =p3gμν;

and Γμν
5 ¼ γμ=p3γ

ν: ð6Þ
The functions F iðs; tÞ are scalar form factors that only
depend on the Mandelstam invariants and on the number of
dimensions d. Since the color structure is straightforward,
we keep color indices implicit here. For ease of typing, we
define the five independent structures as

Ti ¼ ūðp2ÞΓμν
i uðp1Þϵ3;μϵ4;ν ð7Þ

and from now on, with a slight abuse of language, we refer
to the Ti as the independent “tensors” for the problem
at hand.
At first sight, it may seem puzzling that we find five

independent tensor structures when we have only four
helicity amplitudes (not considering charge conjugation).
This mismatch is easy to explain, however: the decom-
position Eq. (5) is valid for arbitrary dimension d. For four-
dimensional external states, the five tensor structures Ti are
no longer independent, and four of them are enough to span
the whole space [54,55]. Since eventually we are only
interested in the d → 4 limit, it is convenient to reorganize
the tensors Ti and choose for T5 a linear combination that is
identically zero when four-dimensional external states are
considered. This can be achieved by choosing

T̄i ¼ Ti; i ¼ 1;…; 4; and

T̄5 ¼ T5 −
u
s
T1 þ

u
s
T2 −

2

s
T3 þ T4: ð8Þ

We then write the scattering amplitude as

Aðs; tÞ ¼
X5
i¼1

F̄ iðs; tÞT̄i; ð9Þ

where the form factors F̄ i are suitable linear combinations
of the original F i, whose explicit form will be irrelevant in
the following. All the nontrivial information for the process
Eq. (1) is encoded in the form factors F̄ i. We stress once
more that, while all five form factors are in general required
for the result in conventional dimensional regularization,
only the first four are enough to compute the helicity
amplitudes in the ’t Hooft-Veltman scheme (see the
Supplemental Material [56] for more details).
Equation (9) can be inverted to select individual form

factors. This is done by introducing suitable projector
operators defined such that

X
pol

PiAðs; tÞ ¼ F̄ iðs; tÞ; ð10Þ

where we use d dimensional polarization sums. {Note that
the individual form factors are not gauge invariant [see
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Eq. (4)], and the reference vector q3ð4Þ ¼ p2ð1Þ should be
used in the polarization sums.} Since the five T̄i form a
basis for our space, we can write the projectors as

Pi ¼
X5
k¼1

cikT̄
†
k: ð11Þ

A straightforward calculation, reported in the Supplement
Material [56], shows that the matrix cik is block diagonal:

cik ¼
�
C4×4 0

0 c55

�
: ð12Þ

As a consequence, the fifth tensor T̄5 decouples from the
other four. This, combined with the fact that the fifth tensor
always evaluates to zero for four-dimensional external
states, shows that the helicity amplitudes receive contribu-
tions only from the first four form factors in Eq. (9). In
other words, there is a one-to-one correspondence between
helicity amplitudes and form factors in the ’t Hooft-
Veltman scheme [57]. This statement is quite general,
and it is always possible to construct a basis where the
decoupling of tensors leading to vanishing results in d ¼ 4
is manifest. Details of how to achieve this in general will be
presented elsewhere [55].
In order to compute the form factors, we generate the

relevant tree-level and one-, two-, and three-loop Feynman
diagrams with QGRAF [58] and apply to each of them the
projectors defined in Eqs. (11) and (12). We perform all
required color and Dirac algebra with FORM [59]. There are
two diagrams at tree level, 10 at one loop, 143 at two loops,
and 2922 at three loops. At a given number of loops, each
Feynman diagram can be identified with a graph, which is
specified by the permutation of the external legs and by the
number and topology of the internal lines. In particular, at
three loops, where the number of Feynman diagrams
becomes rather large, it is convenient to sum together
those diagrams that are associated with the same graph and
manipulate them together to avoid as much as possible
performing the same operation multiple times. Adopting
these steps allows us to express the three-loop form factors
in terms of a large number of scalar integrals of the form

I fam
n1���n15 ¼ e3ϵγE

Z Y3
i¼1

ddki
iπd=2

1

Dn1
1 � � �Dn15

15

; ð13Þ

with γE ≈ 0.5772 the Euler constant. [Note that ni ∈ Z,
i.e., the integrals in Eq. (13) can have irreducible numerator
structures.] The propagators Dj can be drawn from three
different families of integrals—fam ¼ fPL;NPL1;NPL2g—
and their crossings. The definition of the three families is
provided in the Supplemental Material [56]. A key feature of
integrals of the form Eq. (13) is that they are not
all independent. Instead, through a now-standard use of

integration-by-parts identities, most of them can be expressed
in terms of a much smaller set of so-called master integrals
[60,61]. This can be done in principle algorithmically for any
process [62] for integrals of the form of Eq. (13). Despite
being well-understood in principle [62], this reduction step is
computationally highly nontrivial for the problem at hand
because it requires the symbolic solution of large systems of
linear equations. We have achieved it through a combined use
of the public code REDUZE2 [63,64] and an in-house imple-
mentation, FINRED, that employs finite field sampling [65–68]
and syzygy techniques [69–74]. In this way, the three-loop
form factors F̄ ð3Þ

j ðs; tÞ can be expressed as linear combina-
tions of a total of 486 (132) independent master integrals,
including (excluding) integrals related by crossings of the
external legs.
A basis of master integrals, excluding integrals obtained

from them by crossings of the external legs, has been
computed for the first time in Ref. [50] using the method of
differential equations [75–79] augmented by the choice of a
canonical basis [80,81]. There it was shown that all these
integrals can be expressed in terms of a particularly simple
and well understood class of functions, harmonic poly-
logarithms [82–86]. The present calculation requires results
through to transcendental weight six [87]. We have
rederived the differential equations fulfilled by the master
integrals, including all their nontrivial crossings required
for the calculation of the actual scattering amplitudes. We
have verified that the results of Ref. [50] fulfill the differ-
ential equations. As a check, we also have recomputed
various boundary constants for the integrals of Ref. [50]
independently. For manipulating the harmonic polylogar-
ithms, we used in-house routines and PolyLogTools [88].
Extra care has to be taken in computing the boundary

conditions and in analytically continuing the integrals to the
physical scattering region in Eq. (3). Indeed, it is well
known that scattering amplitudes are multivalued complex
functions of the external kinematics and that, in order to
obtain physical results, one must define the integrals on the
correct Riemann sheet whenever one or more of the
Mandelstam invariants are positive. The standard approach
consists, whenever possible, of computing the relevant
scattering amplitude for the unphysical values of the
kinematics where all Mandelstam variables are negative
and a real result is expected. If this is possible, it is
then often simple to analytically continue the amplitudes
to physical kinematics using the Feynman prescription
si → si þ i0 for each Mandelstam invariant si that crosses a
branch cut. Unfortunately, this approach fails for 2 → 2
massless scattering where the momentum conservation
relation sþ tþ u ¼ 0 prevents us from finding such a
unphysical region. As a consequence, the scattering ampli-
tudes must be computed directly in a region where at least
one Mandelstam invariant is positive. In the present case,
extra care has to be taken since the boundary conditions
provided in Ref. [50] are computed on the unphysical
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Riemann sheet reached by giving a small and negative
imaginary part to the Mandelstam invariant s → s − i0. Of
course, it is expected that these results should be related to
the ones for s → sþ i0 by complex conjugation. We have
continued the results of Ref. [50] back to the physical
Riemann sheet and checked that this holds. We then used
them to obtain analytic expressions for all required cross-
ings (see [89] for details). We used these integrals to

compute the three-loop form factors F̄ ð3Þ
j ðs; tÞ.

The results computed with the procedure discussed so far
contain ultraviolet and infrared singularities. Up to three
loops, these can be written as follows:

F̄ i ¼ δklð4παÞe2q
X3
k¼0

�
αs;b
2π

�
k
F̄ ðk;bÞ

i ; ð14Þ

where e ¼ ffiffiffiffiffiffiffiffi
4πα

p
is the electric charge, eq is the charge of

the incoming quark in units of e, αs;b is the bare strong
coupling, and δkl carries the color indices of the two
incoming quarks. We remove ultraviolet singularities by
expressing our result in terms of the MS renormalized
coupling αsðμÞ:

F̄ i ¼ δklð4παÞe2q
X3
k¼0

�
αsðμÞ
2π

�
k
F̄ ðkÞ

i : ð15Þ

The relation between renormalized and bare coupling is
given by

Sϵαs;b ¼ μ2ϵαsðμÞZ½αsðμÞ�; ð16Þ

with Sϵ ¼ ð4πÞ−ϵe−γEϵ and

Z½α� ¼ 1 −
β0
ϵ

�
αs
2π

�
þ
�
β20
ϵ2

−
β1
2ϵ

��
αs
2π

�
2

þOðα3sÞ: ð17Þ

The explicit form of the β-function coefficient β0;1
is reported in the Supplemental Material [56]. For definite-
ness, we will present our results for μ2 ¼ s. It is straight-
forward to obtain results at any other scale using renorm-
alization-group arguments.
The renormalized form factors F̄ ðkÞ

i of Eq. (15) still
contain infrared singularities. Their form is universal and
can be expressed in terms of the lower-order scattering
amplitudes as follows [90,91]:

F̄ ð1Þ
i ¼ I1F̄

ð0Þ
i þ F̄ ð1;finÞ

i ;

F̄ ð2Þ
i ¼ I2F̄

ð0Þ
i þ I1F̄

ð1Þ
i þ F̄ ð2;finÞ

i ; and

F̄ ð3Þ
i ¼ I3F̄

ð0Þ
i þ I2F̄

ð1Þ
i þ I1F̄

ð2Þ
i þ F̄ ð3;finÞ

i : ð18Þ

In these equations, the I j are universal factors that only
depend on the center of mass energy of the colored partons s,

on ϵ and on the QCD Casimirs CF ¼ 4=3, CA ¼ 3, as well
as on the number of light fermions nf. We spell them out
explicitly in the Supplemental Material [56]. For our dis-
cussion, it is only important to note that the function I i

contains infrared poles up to order 2i, i.e., I1 ∼ 1=ϵ2,

I2 ∼ 1=ϵ4, and I3 ∼ 1=ϵ6. The finite remainders F̄ ðk;finÞ
i

in Eq. (18) are finite in the ϵ → 0 limit and contain all the
nontrivial physics information for the process Eq. (1).
As we have already mentioned, it is straightforward to

obtain the helicity amplitudes from our form factors by
evaluating the tensor structures T̄i for well-defined helicity
states [see Eq. (8)]. We stress once more that for any
helicity configuration one has T̄5;λqλ3λ4 ¼ 0. We write for
left-handed spinors ūLðp2Þ ¼ h2j and uLðp1Þ ¼ j1� and for
the photon j of momentum pj

ϵμj;−ðqjÞ ¼
hqjjγμjj�ffiffiffi
2

p hqjji
and ϵμj;þðqjÞ ¼

hjjγμjqj�ffiffiffi
2

p ½jqj�
:

With these definitions we find

AL−− ¼ 2½34�2
h13i½23� αðxÞ; AL−þ ¼ 2h24i½13�

h23i½24� βðxÞ;

ALþ− ¼ 2h23i½41�
h24i½32� γðxÞ; and ALþþ ¼ 2h34i2

h31i½23� δðxÞ;

ð19Þ

with

αðxÞ ¼ t
2

�
F̄ 2 −

t
2
F̄ 3 þ F̄ 4

�
;

βðxÞ ¼ t
2

�
s
2
F̄ 3 þ F̄ 4

�
;

γðxÞ ¼ st
2u

�
F̄ 2 − F̄ 1 −

t
2
F̄ 3 −

t
s
F̄ 4

�
; and

δðxÞ ¼ t
2

�
F̄ 1 þ

t
2
F̄ 3 − F̄ 4

�
: ð20Þ

Note that the remaining amplitudes for right-handed quarks
can be obtained by a charge-conjugation transformation as
follows:

ARλ3λ4 ¼ ALλ�
3
λ�
4
ðhiji ↔ ½ji�Þ; ð21Þ

where λ�i indicates the opposite helicity of λi. Symmetry
under the exchange of the two photons requires

γðxÞ ¼ βð1− xÞ; δðxÞ ¼−αðxÞ; and αð1− xÞ ¼−αðxÞ;
ð22Þ

and at tree level we find α ¼ δ ¼ 0 and β ¼ γ ¼ 1.
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Using the relations Eqs. (19) and (20), we obtain the
three-loop renormalized finite remainders αð3;finÞ, βð3;finÞ,
γð3;finÞ, and δð3;finÞ defined in analogy to Eqs. (15) and (18).
This represents the first three-loop calculation of a full four-
point QCD amplitude. Our result can be expressed in terms
of harmonic polylogarithms of weights 0 and 1, or,
alternatively, in terms of a more compact functional basis
consisting of 14 classical polylogarithms and the nine
functions

Li3;2ðx; 1Þ; Li3;2ð1 − x; 1Þ; Li3;2ð1; xÞ;
Li3;3ðx; 1Þ; Li3;3ð1 − x; 1Þ; Li3;3ðx=ðx − 1Þ; 1Þ;
Li4;2ðx; 1Þ; Li4;2ð1 − x; 1Þ; and Li2;2;2ðx; 1; 1Þ;

ð23Þ

which are two and threefold nested sums in the conventions
of [84]. (Note that PolyLogTools [88] uses a convention for
indices and arguments different from the ones we adopt
here.) In the latter representation, our three-loop amplitudes
can be evaluated in fractions of a second in one phase-space
point. Although the result is relatively compact, it is too
long to be presented here. We have included it in electronic
format in the ancillary files of this Letter. In Fig. 1, we show
a numerical evaluation of our analytic result for all
independent finite remainder functions through to three
loops. While only the real parts are shown, we note that the
imaginary parts of the loop corrections can actually exceed
their real parts substantially in the case of β.
Before concluding, we list some of the checks that we

have performed to verify the correctness of our calculation.
We have performed the tree-level and one- and two-loop
computations from scratch using our setup and obtained
agreement for the finite reminders at Oðϵ0Þ with results in
the literature [10]. From Eq. (18) it follows that, to extract
F̄ ð3;finÞ

i , one must expand the one- and two-loop results up
to orders ϵ4 and ϵ2, respectively. To check the correctness of
our one- and two-loop results, we have abelianized the

result of [49] and checked it against the abelian part of our
results up to weight six. As we have mentioned, Bose
symmetry relates amplitudes of different helicities. We
have verified that our helicity amplitude coefficients up to
three loops display the Bose symmetry properties
in Eq. (22).
A nontrivial aspect of our calculation is the analytic

continuation of all the required integrals to the physical
region. To check our procedure, we verified that our
solutions are consistent with the boundary values for the
master integrals that can be inferred by imposing regu-
larity conditions on their differential equations. This
allowed us to relate complicated four-point integrals to
simpler two- and three-point ones (see [92] for a compi-
lation), whose analytic continuation is straightforward.
Moreover, we used REDUZE2 to find nontrivial symmetry
relations among the master integrals and their crossings
and verified that they are all were satisfied by our analytic
results. In addition, we checked the finite part of the two-
loop integrals against the literature and some of the simple
three-loop integrals against SECDEC [93]. Finally, the most
powerful check of the correctness of our result is that the

remainders F̄ ð3;finÞ
i are in fact finite in the ϵ → 0 limit. This

also tests in a nontrivial way our analytic continuation
procedure, as it links three-loop integrals with lower
loop ones.
In conclusion, in this Letter we have reported the first

calculation of a three-loop four-point scattering amplitude
in full QCD. We have obtained our results by defining a
minimal set of projectors that allowed us to extract all the
information required to reconstruct the helicity amplitudes.
Our result can be expressed in terms of classical poly-
logarithms plus a handful of multiple polylogarithms, and it
is very compact for a QCD amplitude of this type. The
methods we employed for this calculation are generic and
can be used to compute the three-loop helicity amplitudes
for 2 → 2 scattering of massless partons in QCD. We leave
this for future investigations.

FIG. 1. The real part of the three-loop finite remainder functions αð3Þ;finðxÞ and βð3Þ;finðxÞ that determine the helicity amplitudes AL−−
and AL−þ, respectively, for uū → γγ and μ2 ¼ s.
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