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We consider Feynman integrals with algebraic leading singularities and total differentials in ed In
form. We show for the first time that it is possible to evaluate integrals with singularities involving
unrationalizable roots in terms of conventional multiple polylogarithms, by either parametric integration or
matching the symbol. As our main application, we evaluate the two-loop master integrals relevant to the
aa, corrections to Drell-Yan lepton pair production at hadron colliders. We optimize our functional basis to
allow for fast and stable numerical evaluations in the physical region of phase space.
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I. INTRODUCTION

The Drell-Yan process [1] is one of the most important
and basic processes measured at the Large Hadron Collider
at CERN. It is used for precision measurements of the W+
mass, the Z mass, and the weak mixing angle, as well as for
new physics searches. In order to interpret the increasingly
precise data, higher-order corrections must be included in
the theory predictions. In fixed-order perturbation theory,
the pure quantum chromodynamic (QCD) corrections
to the cross section are known through to next-to-next-
to-leading order [2-5], the pure quantum electrodynamics
(QED) corrections to neutral gauge boson production and
decay are known at next-to-next-to-leading order [6,7],
whereas the exact electroweak (EW) corrections are known
only at next-to-leading order [8—10]. Since these correc-
tions turn out to be significant, the inclusion of exact mixed
EW-QCD corrections is well motivated; at the present
time, results are known only for the mixed QED-QCD
corrections [11] and in the pole approximation for the full
EW-QCD corrections [12,13].

The two-loop master integrals relevant to the virtual part
of the mixed EW-QCD corrections to the Drell-Yan process
were studied in [14,15] and all of them admit e-decoupled
and, subsequently, ed In differential equations [16]. All of
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the double-box integrals are actually planar, and for most of
them, no intrinsically nonrational prefactors appear in the
e-decoupled differential equations written with respect to
suitable kinematic variables. It has come to light, however,
that the two most complicated two-loop integral topologies
(right panels of Figs. 1 and 2) involve three square roots at
once which cannot be rationalized simultaneously [17,18].
Here and in the following, we will refer to a set of roots as
unrationalizable if no locally invertible rational variable
transformation exists, which turns all of them into rational
functions at the same time. The presence of nonrational
symbol letters [19] in the ed In differential equations
makes the standard approach to the integration of the
differential equations in terms of multiple polylogarithms
impossible.

For most Feynman integrals considered in the literature so
far, kinematic square roots could be rationalized by a
suitable choice of variables, e.g., by using a Landau variable
for Feynman integrals with a two-mass threshold [20], by
using momentum twistor variables [21] for multileg
Feynman integrals [22-24], or by using diophantine equa-
tions to construct suitable variables [25]. However, in several
processes studied in the literature, no simultaneous ration-
alization of the square roots which appear could be found. In
addition to the Drell-Yan process mentioned above, this is an
issue for a subset of the planar two-loop master integrals for
Bhabha electron-positron scattering [26,27] and for a subset
of the planar two-loop master integrals for the next-to-
leading-order QCD corrections to Higgs plus jet production
with full heavy top quark mass dependence [28].

So far, master integrals satisfying ed In differential
equations which involve nonrational symbol letters have
typically been treated as generic Chen iterated integrals
[29], with a focus on the Euclidean region of phase space.

Published by the American Physical Society
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FIG. 1. Planar top-level topology for the two-loop QED
corrections to Bhabha electron-positron scattering (left) and
the most complicated top-level topology for the mixed EW-
QCD two-loop corrections to Drell-Yan lepton production (right).
Thick lines denote massive propagators and massive legs, and
thin lines are used in the massless case. Both of the integral
topologies depicted above admit ed In differential equations.

(s,t7m2) (s,t, m2)

FIG. 2. Feynman integrals relevant to the two-loop QED
corrections to Bhabha electron-positron scattering (left) and
the two-loop mixed EW-QCD corrections to Drell-Yan lepton
production (right), which have problematic root-valued leading
singularities.

Given our experience from other processes [30,31], one
may expect significantly faster and also more stable
numerical evaluations for results directly expressed in
terms of suitably chosen multiple polylogarithms. A
constructive algorithm to obtain such a solution in the
presence of root-valued symbol letters was used in [32] to
calculate Feynman integrals. However, the latter case is
special since the symbol alphabet is univariate and simple,
and a rational parametrization does in fact exist. In other
words, it was unclear until now whether it should generi-
cally be possible to find linear combinations of multiple
polylogarithms which solve ed In differential equations
with symbol letters involving unrationalizable algebraic
functions.

In this article, we show for the first time that it is indeed
possible to integrate Feynman integrals of current phe-
nomenological interest with unrationalizable roots in their
symbol letters in terms of multiple polylogarithms, focus-
ing primarily on the most complicated two-loop mixed EW-
QCD Drell-Yan master integrals. Our method allows us to
derive results written in terms of multiple polylogarithms
well suited for the physical region of phase space. The two-
loop mixed EW-QCD Drell-Yan master integrals with two
massive internal lines exhibit a rich structure of thresholds
and pseudothresholds, which means that one must think
carefully about the analytic structure of the involved
functions. We discuss in detail a procedure to systemati-
cally filter the functions in a given region of phase space,
such that no explicit Feynman +i0 prescriptions are
required for the kinematic variables and spurious singu-
larities of individual multiple polylogarithms at pseudo-
thresholds of the Feynman integrals are avoided.

The outline of the article is as follows. In Sec. II we
discuss the linear reducibility of examples which are well
known in the literature to frustrate the standard machinery
of Feynman integral calculus. Specifically, we prove that
the integral topologies of Fig. 2, a five-line master integral
for Bhabha scattering and a six-line master integral for
Drell-Yan production, are linearly reducible for the first
time. Linear reducibility is a technical criterion which is of
interest here because linearly reducible Feynman integrals
are guaranteed to be integrable in terms of multiple
polylogarithms to all orders in €. In Sec. III, we define a
normal form basis with e d In differential equations for the
two-loop master integrals for the mixed EW-QCD correc-
tions to Drell-Yan production with two massive internal
lines (see the right panel of Fig. 1) and discuss a partial
rationalization of the roots appearing in our integral basis
definition. In Sec. IV, we show how to integrate the
differential equations directly in terms of multiple poly-
logarithms even in the presence of root-valued symbol
letters. In Sec. V, we review the analytic continuation of
multiple polylogarithms and outline our procedure to filter
multiple polylogarithms with undesirable analytic proper-
ties out of our Ansdtze. In Sec. VI, we present results for the
most complicated two-loop mixed EW-QCD Drell-Yan
master integrals. In particular, we highlight the notable
analytic features of our solution for the six-line integral
from the right panel of Fig. 2. We conclude in Sec. VII and,
for clarity, we give the set of complete ¢d In differential
equations for the two-loop master integrals considered in
this paper in Appendix A. In Appendix B we give an
example for the construction of algebraic letters in the
presence of multiple root-valued leading singularities.

II. LINEAR REDUCIBILITY FOR ALGEBRAIC
SYMBOL LETTERS

In this section, we discuss the direct integration of a
five-line master integral for the two-loop QED corrections
to massive Bhabha scattering (left panel of Fig. 2). This
particular five-line integral is of special interest because
its symbol letters are not simultaneously rationaliz-
able [27]. It has been known for quite some time that
the planar master integrals for the two-loop QED correc-
tions to Bhabha scattering (see the left panel of Fig. 1)
satisfy e-decoupled differential equations [26], but, even
at leading order in the € expansion, it is not at all clear that
integral (2.1) below may be expressed as a linear combi-
nation of standard multiple polylogarithms [33-35]. In
fact, it was suggested in [36] that elliptic multiple
polylogarithms [37] might actually be required for such
cases. It is therefore of some importance to demonstrate
that one can actually integrate it to all orders in € in terms
of Goncharov or multiple polylogarithms using a HyperInt-
like approach [38—48].

In fact, this may be readily achieved by studying the
polynomials which appear in the polynomial reduction
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[38,39,42] of the Symanzik polynomials at intermediate
stages. The idea is to make changes of variables which
factorize totally quadratic polynomials to allow for further
integrations without producing square root-valued func-
tions of the remaining Feynman parameters. Ultimately, the
goal is to find a complete sequence of integration variables
or, in the language introduced in [39] and refined in [40], to

|

N (s,t,m?) = =P (1 4+ 2¢)

where

U=aiay +aja3 + ajas + oo + aray

+ mas + may + auas, (2.2)

F = —sayaas — tayopaz + m?(ay + as)U
- mz(a1a2a4 + 0105 + O a30 + A 0305 + A 005
(2.3)
|

+ mazay + mazas + azauas)

5 oo
11 / dailé(l—a5)u_1+3€.7-'_l_2€,
=170

show that (2.1) is a linearly reducible Feynman integral in
the chosen variables. Practically speaking, a Feynman
integral is linearly reducible if it can be evaluated in terms
of Goncharov polylogarithms, starting from the Feynman
parametric representation but allowing for arbitrary varia-
ble changes along the way. In this case, the Feynman
parametric representation is

(2.1)

[

are the integral’s Symanzik polynomials. We implement the
delta function constraint at the very beginning by setting
as = 1 inside ¢/ and F. Our normalization for the integral
is chosen to facilitate comparison with FIESTA4 [49].

At the outset, the polynomial reduction of U/ and F
indicates that just one integration can safely be performed,
with respect to either a; or as. The irreducible polynomials
in the remaining Feynman parameters which could poten-
tially appear in the result after integrating out a; are [40]

L, ={l+a+a.m* —tmaz, ar(1 + a3) + (1 + ap + a3)ay,

m*ay + (m* + (2m* = s)ay)ay +m* (1 + a, + a3)ag,

a3(m? + taz(1 + a3)) + (2m* — s + taz) (1 + ay + a3) 0y + m*(1 + ay + a3)?a3 }.

(2.4)

The final totally quadratic polynomial in L, is conveniently dealt with by using the first nontrivial variable change from
the discussion of the period P;;; in [42]. It is readily apparent from the form of the polynomial that two powers of a,

factorize from it once the variable change

X4

Qy =—""— 2.5
4 1+ o + o3 ( )
is applied:
ai(m? + taz(1 + a3)) + (2m* — s + ta3) (1 + ay + a3)pay + m*(1 + ay + a3)?a?
= a3(m? + taz(1 + a3) + (2m?* — s + taz)x, + m*x3). (2.6)

Quite remarkably, the other polynomials in L, which depend on ay still give rise exclusively to irreducible polynomials

linear in a, after changing variables:

a(l+a3) + (1 +a+as)ay = ar(1 + a3 + xy), (2.7)
m?a, + (m* + (2m?* = s)ay)ay + m*(1 + ay + a3)a
= 1++22+a3 (m?*(1 4+ ay + a3) + (m? + (2m?* = s)ay ) x4 + m*apx3). (2.8)

From Eqgs. (2.6)—(2.8), it is clear that we can now safely integrate out a,.

016025-3



HELLER, VON MANTEUFFEL, and SCHABINGER

PHYS. REV. D 102, 016025 (2020)

Rerunning the polynomial reduction with HyperInt after
changing variables shows that the irreducible polynomials

Ly, = {1+ a3. 1 + a3 + x4, m* + tas + 1a3,
m* + (2m? — s)x4 + m*x73,
m*(1+x4) —s + (M*(2 + x4) — 5)as,
m? 4+ (2m?* — s)xy + m*x% + (1 + x4)a3 + ta3}
(2.9)

could appear in the result after integrating out ; followed
by a,. L, 4, is more nontrivial to treat than L, and requires
us to think carefully, both about what sort of result we
expect to find and how the MATHEMATICA-based private
direct integration code written by one of us actually
operates in practice. As should by now be clear, our goal
is to delay the appearance of square roots until the final
variable of integration is moved into the arguments of the
Goncharov polylogarithms which depend on it. With the
final integration of the most complicated weight-three
functions in mind, it is useful to aim for a final integration
domain of [0, 1]. This will naturally produce Goncharov
polylogarithms of argument 1 which contain a complicated
square root in the weights. Actually, due to the way that our
integration script is written, it is most natural for us to
integrate complicated finite Feynman parameter integrals
such as the one considered in this section over the unit
hypercube. This is because it is easier for our integration
code to take a definite integral on [0, 1] than on [0, c0), due
to the fact that no complicated argument inversion formulas
|

m? + (2m* = s)x, +m?x3 =

m?((14+v;)(1=v5) + (1= v1) (1 +v2)xg) (1 =vy) (1 +05) + (1 +0y)(1 —Uz)x4).

for nontrivial Goncharov polylogarithms need to be derived
if the upper integration end point is always set to 1.

In this spirit, we initiate our treatment of L,, ., by trivially
mapping one of the remaining integration domains onto
[0, 1] via the transformation

X3

a3 (2.10)

:1—.)63'

It is also useful to note that two of the quadratic poly-
nomials in Eq. (2.9) depend on just a single Feynman
parameter each, a situation which strongly suggests that a
change of kinematic variables would be advantageous.
Indeed, with Euclidean s and ¢ in mind, we see that the
variable changes

_ 4””2(112 - 111)2 n
T

200 2 \2
po M —v) (2.11)
V10

rationalize two square roots which would otherwise arise
from the third irreducible polynomial of L

ajay

2
m-(v;— (v, —vy)oz) (v + (V) — )X
2 tas tag (1 (2 1) 3)(2 (2 l) 3)7
U103

(2.12)

and the fourth irreducible polynomial of L, ,,

Curiously, transformation (2.11) was also found to be
useful in the context of the multiloop QED corrections
to light-by-light scattering [50].

At this stage, it turns out that just a single nontrivial
algebraic function of x, is generated if one attempts to
naively continue the calculation by integrating out x;:

2(4m? —2s — 1) 5
\/1 +WX4 + x3.

(2.14)

To our knowledge, a situation such as this was first
discussed in the Feynman integral literature in the context
of the fully massless (three-loop) K, integral [51]. Using
the method of parametrization by lines [51,52], it is
completely straightforward to derive a final variable change
for x, which rationalizes (2.14) and produces an integration

(I=v)(T+v)(1=v2)(1+vy)

(2.13)

|
domain of [0, 1]. As usual, one begins by identifying a
suitable rational point of the algebraic variety

2(4m* — 25 — 1)

1+
4m? — ¢

x4 + x5 = p*. (2.15)

For our purposes, the point

(xio),p(o)) — GM, 1> (2.16)

4m? — ¢

is ideal.' Equation (2.15) defines a hyperbola which can be
rationally parametrized by a family of lines passing through
(2.16):

'We avoid the other obvious rational point, (xgo) ,p(())) =(0,1),
because the resulting variable change does not map the x4
integration domain onto the unit interval.
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0)

P =4 (x4 - xg ) +p©, (2.17)

We combine Egs. (2.15) and (2.17) to determine x4 as a
function of yj,:

Ll A2ty
! (1= y4)(1 4 ys4)

(2.18)

As desired, we see from the above that the integration
domain for y, is the unit interval.

By combining together the various variable changes
given above, we obtain the complete sequence of integra-
tion variables {a;,a,,x3,y4} and establish that, up to

|

which we could rapidly confirm agrees to five significant
digits with an independent FIESTA4 evaluation of the
integral.

Let us stress once more that the unrationalizable square
root

\/Pl (v1, v2) P2(v1, v2) 3 (V1. v2) a1, v2), (2.21)

where

pi1(v,v) =1+ —vy(1=vy),
P2(v1,v2) =1+ v — v (1-vy),
p3(vivy) =vi(1—v)) +02(1 =) + 01022 -0 —03),
pa(vi.v2) =01 (1+v)) +v2(1+02) = 01022+ v +0y),

(2.22)

appears in our analytic integrations only at the very end,
once all Feynman parameters have been integrated out. The
most complicated, weight-four functions which appear in
the final result have argument unity and weights which are
nontrivial functions of the square root above. For the final
integration, our integration code actually utilizes the
generalized weights of [45]. The idea is that, for the final
integration over y,, one can employ nonlinear integrating

factors of the form dy,(9f (va; v1. v2)/0y4)/f(y4; v1. v2),
for nonlinear irreducible polynomials f(y,; vy, v5) in yg.

(—1/36,—8/35,2) ~ —6.317550089475753330169497 ... + O (e)

an overall normalization factor, integral (2.1) may be
evaluated as a rational linear combination of Goncharov
polylogarithms to all orders in €. As a sanity check, we
explicitly evaluate all Feynman parameter integrals ana-
lytically using our direct integration code at O(¢”) and then
evaluate the result obtained numerically to high precision
using GiNaC [53,54] at the randomly chosen Euclidean
phase space point

(v1,v5,m*)=(1/7,1/5,2). (2.19)

We find

(2.20)

|
This allows for a more concise representation of the final
result without giving up access to the well-tested numerical
routines provided by GiNaC. If desired, a representation
written strictly in terms of Goncharov polylogarithms may
also be derived by fully factoring all of the generalized
weights.

Of course, the direct integration approach described in
this section is not without its limitations. For one thing, it
would at first seem quite nontrivial to find an explicit
integration order for e.g., the two-loop double box with two
massive internal lines from the two-loop mixed EW-QCD
corrections to Drell-Yan lepton production (right panel of
Fig. 1). Actually, with the help of Hyperint, it is compara-
tively easy to find a complete sequence of integration
variables; for a fixed number of loops and legs, one gets the
impression that the number of internal lines is a less
important factor in determining the difficulty of a linear
reducibility analysis than the total number of massive lines.
Although we could directly integrate through to weight four
the six-line basic scalar integral (right panel of Fig. 2)
which first inherits unrationalizable symbol letters from its
unrationalizable leading singularity, we find the direct
integration of the top-level two-massive-line integrals to
be very cumbersome at the technical level. Furthermore, the
produced Goncharov polylogarithms are very complicated,
not minimal, and suboptimal for numerical evaluations
with GiNaC.

An alternative approach which can avoid these issues is
to apply the differential equation method. We shall see
that the differential equation method has the very appeal-
ing feature that one can fit an Ansarz of multiple
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polylogarithmic functions appropriate for each physical
kinematic region separately. In the following sections, we
discuss in some detail how this is achieved for the mixed
EW-QCD Drell-Yan master integrals with two massive
lines, including, in particular, the six- and seven-line
integrals with an unrationalizable square root in their
symbol letters.

III. AN ¢ BASIS FOR THE DRELL-YAN
MASTER INTEGRALS WITH
TWO MASSIVE LINES

In this work, we are primarily concerned with neutral-
current lepton pair production2 in quark-antiquark
annihilation,

q(P1)g(p2) = ¢ (p3)¢" (pa), (3.1)

where all external particles are taken massless and on
their mass shell. The most complicated master integrals
for the two-loop mixed EW-QCD corrections to the
above process are those with two internal lines of mass
m, where, depending on the parent Feynman diagram, m
may refer to either my, or my. In particular, as mentioned
above, it has been known to us for some time that the
integral topologies from the right panels of Figs. 1 and 2
actually contain master integrals with unrationalizable
symbol letters in their e-decoupled differential equations.
To index the 17 master integrals with two massive
internal lines, it suffices to consider a single integral
family based on the two-loop planar double box with two
massive internal lines from Fig. 1 (family E from
Table I). For completeness, we will also give definitions
for those normal form integrals with zero or one massive
internal lines which appear on the right-hand sides of the

*The two-loop mixed EW-QCD corrections to the charged-
current Drell-Yan process could be accessed by expanding
in 1—m?3,/m%, as this would allow one to make effective

w/ Mz,
use of the equal-mass integrals relevant to the neutral-current
process.

TABLE 1. Integral families for the master integrals which
appear in the differential equations for the two-loop mixed
EW-QCD Drell-Yan master integrals with two massive internal
lines.

Family A Family C Family E
ki ki ki
K3 K3 K —m?
(ky = ka)? (ky = ky)? (ky = ka)?
(k1 - P1)2 (kl - P1)2 (kl - 171)2
(kz—l’l)2 (kz—P1)2 (kz—l’l)2
(ki=p1=p2)*  (ki=pi—p2)? (ky = py = p2)?
(ky = py —Pz)2 (ky = py —P2)2 - m? (ky = py —Pz)z—mz
(ki = p3)? (ki — p3)? (ky = p3)?
(ky — P3)2 (k, — P3)2 (ky — P3)2

e-decoupled differential equations for the master integrals
with two massive internal lines. To index these auxiliary
integrals, we reintroduce two additional integral families
which were already studied in the physical region by two
of us some time ago [15] (family A and family C from
Table I).

In order to obtain a closed system of differential
equations for the masters with two massive internal
lines, we need to consider 36 integrals in total. Our
notation for Feynman integrals in this section is exactly
that of [15] (i.e., dots for doubled propagators, heavy
lines for massive propagators, numerator insertions
written in square brackets, and F:x for the crossed
version of sector x from family F). For the kinematic
invariants we use

s = (p1+ p2)* t=(p1—p3

u=(p—p3)*  pi

In the following, we keep the dependence on the internal
mass parameter m implicit for the sake of brevity and
since it is anyway clear from the thick-line notation. We
build up our normal form basis out of the following 36
Feynman integrals:
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From the general principles discussed in [46], one can

readily cast (3.3) above into a normal form basis for the ry = \/ —st (4m2(m2 + 1) = s1), (3.5)
integrals of interest.” Abbreviating the three square roots
which appear as
PP ry = \/s(2(s = 4m?) + m2s(m? = 21)).  (3.6)
_ A2
ri =/ s(s —4m?*), (3.4) we find
J
m; = et 338, m, = s 597, m; = e(1 — e)m*f§76, my = s 59,
ms = 2¢*(s — m*)f5? + € (s — m?) 5%, mg = €75 £4753, m, = 3 f35,
mg = 31 £§212, mgy = e2sr f5,
e(1—e)m?s ... €25(s =3m?) jn.co  €2s(s —m?) . e2(1 =2e)m?s .. .
m, = ( ) fg.76 _ ( )fg.69 _ ( )fg.69 + ( ) f113671, m; = €3Sf11:‘1‘78,
47‘1 . 27"1 47'1 r
e(1—e)m?s c.p  36s(s —2m?) Lo €'mbs .o
mp; = - 30+ ————— 1+ —— 157,
r r r
m; = €3sth:174 m, = Em th 372, ms = €3m2tf%244,
mc = > m?s £, m; = 2 G117 mg = e (1 —2e)1 £534,
myo = 3¢ (1 = 2e)m* £33 + 2(1 — 2e)m? (m?* + 1)£534,
my, = €4(S + t)f(2:6213’ my; = € m (S + t)fc 213 my, = € Ssz 115
m,; = (1 — 2¢)s 5193, my, = e3(1 — 2¢)s 5%, m,s = e*s £5:7°,
my = e3(1 — 2¢)s £5:214, m,; = e, 5214, myg = st 52,
myy = 2e*m?s £ + 3 m?s(m? + )52, my, = etsr f51°,
ms, = e3(1 = 2¢)r, 534, my, = et fE205, my; = etsrf2Y, my, = 25247,
m;s = 2€ trle 215 _ € str fE 247 + € ST fE 247’
1 1
: 3 . : E:11 .
msz = 2€4z‘f§0213 +e€ sz‘fgz115 — §€3S f]253 103 _ 5648(5‘ — 2m2)f30 94+ €4stf§2215
1 . 1 . .
- §€4st(s —2m*)f52 + Ee“s(s —2m?)F52T 4 et £ 24T (3.7)
For m, ..., msc, we employ the integration measure = (1 —e)l(142¢) [ 1\ % (3.9)
b I'(1-3e¢) s) '

1 —
( €)s > /d“ 2k, /d4 2k, (3.8)
with ¢ = (4 —d)/2, which allows us to consider our
integrals to be functions of two dimensionless kinematic
variables.* For instance,

Due to the presence of unrationalizable square roots, the
available public software packages for the construction of a
normal form basis of integrals [55-57] are not applicable to the
problem at hand.

*The normal form basis (3.7) closely resembles the one given in
[14], but we correct typos and employ a different overall normali-
zation. Note that 73 =s(s—4m?) is positive for both s >4m? and
s < 0. However, one must take care when attempting to simplify r;

to make contact with the Euclidean-region analysis of [14]; r; =

s\/1—4m?/s for s >4m?, but r; =—s+/1—4m?/s for s < 0.

One achieves a rationalization of two of our three roots, r,
and r,, with the parametrization [14]

2uw(1 2
and t:_M’

BT rwy s 10

and we hereafter work primarily with the variables w and z.
It is immediate from (3.7) that, in the (w, z) representation,
the only normal form integral which involves a square root
in its definition is ms, (i.e., the integral from the right panel
of Fig. 2). Indeed, we see from (3.10) and Appendix A of
[14] that
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m*(1 —w)(1+w)

= - , 3.11
r w ( )
-w)(1-2)(1
Z(1+w)
ry = m(1—w) \/(1 +w?Z)(w+2)? + 2wz(w — 2)? + 4wz (1 + w?) (3.13)
wz(l +w)
|
in the region s > 4m? [see also Sec. VA for a detailed ooy S
discussion of the (w, z) parametrization]. m(e,X) = Pexp |e ) dA | m(e, Xo), (4.2)
In the following, we will replace r;, r, and r; according
to (3.11)—(3.13) in the normal form definitions my, ..., msg4 where
and use these partially rationalized expressions for the
entire physical region of phase space. That is, only the (4.3)

definition of mj3, involves a root

r= \/(1 + w222 (w + 2)* + 2wz(w — 2)* + 4wz* (1 + w?)
(3.14)

in the prefactor, which requires a nontrivial analytic con-
tinuation from s > 4m> to other regions of phase space
on its own. Using these definitions, it is straightforward
to obtain the differential equations in the e-decoupled
form discussed in the next section. We used REDUZE 2
[54,58-60] to compute the integration-by-parts identities
required to derive the differential equations.

IV. INTEGRATING ROOT-VALUED
SYMBOLS IN TERMS OF
MULTIPLE POLYLOGARITHMS

Our normal form basis for the mixed EW-QCD Drell-
Yan integrals with two massive internal lines, (3.7), is
chosen to bring the associated differential equations into an
e-decoupled form [16,61]:

dm; =€) din(l)(A®),m,;,

Jjk

(4.1)

where [, are the symbol letters, AX) are matrices of rational
numbers, and i, j = 1, ...,36. It was demonstrated already
in [14] that a e d In form does in fact exist, but their choice
of the symbol letters is not optimal for our purposes. For
now, we proceed with the understanding that some alge-
braic symbol letters appear in Eq. (4.1) but leave their
number and precise form to be determined by the analy-
sis below.

Using X = (w,z) and m = (m;), i = 1, ..., 36, one can
give a formal solution of Eq. (4.1) in terms of Chen iterated
integrals as

dA =" "dIn(f,)A®),
k

m (e, X;) are the boundary constants of the master integrals
at the point X = X, y is a piecewise smooth path connecting
X and X, and the path-ordered exponential in Eq. (4.2) is
defined in the usual way as an infinite series of integral
operators acting to the right,

Pexp [e/d,&} El+€/dA+€2/dAdA+~-. (4.4)
Y Y 14

In (4.4), the product of two or more d In terms is understood
as an instruction to take the corresponding iterated integral
of the kernel along the path y. As a concrete example, let us
consider a straight-line path 7 on the real axis from 0 to x.
One can write, e.g.,

X dX2 XZd)Cl
dl din(x+1) = —
Jommanesn) = [* 2| [0

= Lip(—x) + In(x) In(x + 1).

(4.5)

Note that, in the above example, one could equally well
identify the iterated integral as a Goncharov polylogarithm,

/ din(¥)din(x + 1) = G(=1,0:x).  (4.6)

T

If all symbol letters are linear, it is always possible to
integrate Chen iterated integrals in closed form using G
functions. This is no longer true, however, if one encounters
nonlinear or nonrational letters. In the former case, it is
often possible to choose an appropriate integration order for
which the nonlinear letters appear only in the final
integration kernel. At this stage, one may employ the
generalized weights used in Sec. II to obtain concise
results. If one encounters nonrational symbol letters, the
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standard integration algorithms for G functions cannot
be applied. In many cases, a transformation can be
found which simultaneously rationalizes all letters of the
alphabet. Nevertheless, it can be proven that the symbol
alphabet of the five most complicated integrals from (3.7),
{mj3,, ..., ms4}, cannot be rationalized [17,18]. Of course,
it is a priori not obvious whether the functional basis for
{mj3,, ..., msq} consists solely of multiple polylogarithms;
at the outset, it is certainly possible that one could have to
deal with a more involved space of functions.

Fortunately, our linear reducibility analysis from Sec. 11
guarantees that standard multiple polylogarithms suffice;
what we need is a better way to integrate ¢ d In differential
equations. A clear alternative is to proceed by matching the
symbol of the Chen iterated integrals to a suitable Ansarz
built out of logarithms and Li functions. For rational
alphabets, a method was provided in [62] by Duhr,
Gangl, and Rhodes to construct suitable Li function argu-
ments, such that the functional basis contains no spurious
letters. At weight one, it is clear that logarithms of the
letters are admissible functions. The nontrivial step is to
find a sufficiently large set of admissible Li, arguments;
once these arguments have been found, it is straightforward
to construct all admissible arguments for the Li functions of
depth greater than one. By considering the symbol of these
functions,

S(Lln(f)):_(l_f)®f®®f7

(n—1)times

(4.7)

we see that it is desirable to admit only those function
arguments f which have the property that both f and 1 — f
may also be written as a power product of the symbol
letters. In practice, one therefore forms power products f
out of the letters and tests if 1 — f factorizes over the
alphabet. The symbols of higher-depth Li functions are
more complicated and lead to additional constraints. To
treat Li, ;, Liz ;, and Li, ,, let F be the union of the set of
admissible Li, function arguments and the set {1}. Then,
the symbol dictates that a possible pair of arguments for
Li, ,,. (fi.f;) such that f; f; € F, is admissible if
L — fifj factorizes over the alphabet. It has proven useful
for practical applications to impose further constraints on
the functional basis to ensure real valuedness and good
numerical performance. An implementation of this method
written by one of us in MATHEMATICA has been applied
successfully to various processes [15,31,43,44,46,48].

In the presence of square roots, we use a heuristic
factorization algorithm to detect admissible function argu-
ments. For a given expression g we are interested in

factorizations of the form
g= c“ol?llgz..., (4.8)

with a rational number ¢ and a, € Q. It is nontrivial to
find such factorizations using standard computer algebra

systems due to the presence of the root r in the symbol
letters. We observe that the factorization (4.8) implies

In(g) —apIn(c) —a;In(l}) —ayIn(l,) —---=0.  (4.9)
Replacing the variables by numerical samples allows us to
find these relations using heuristic integer relation finders.
To find the required factorizations, we employ the Lenstra-
Lenstra-Lovéasz algorithm [63] implemented in PARI/GP
[64] for a parallelized C++ code written by one of us.

We would like to stress that the definition of the symbol
letters is not unique. One can replace a letter by power
products of letters and it is a priori unclear which choice is
optimal for practical purposes. For example, we find that
out of the 17 letters presented in [14], only 16 combinations
are actually required for the integration of the Drell-Yan
integrals. Furthermore, since we consider actual derivatives
of Feynman integrals, we are not sensitive to numerical
letters like 2. In principle, one needs to include also ad hoc
letters like —1, 2, etc., in the construction of function
arguments f. This is a problem occurring also in the
purely rational case and does not seem to be a major
obstacle in practice. In the applications we have considered
so far, including —1 and 2 was sufficient. For the case
of the Drell-Yan integrals, we were able to absorb the letter
2 by a redefinition of our symbol alphabet, as will be
explained below.

In practice, we encounter two main problems specific to
the case of nonrational symbol alphabets.

(1) In general, one needs to allow for noninteger
powers, e.g., 1/2, 1/4, etc., when forming power
products f. Consequently, one may have to test
many more expressions than in the rational case in
order to construct enough function arguments to
successfully “integrate the symbol.” In fact, without
additional constraints, the inherent combinatorial
complexity makes this extension of the Duhr-
Gangl-Rhodes method too costly for two-loop cal-
culations of current phenomenological interest.

(ii) Factorization over algebraic functions is not unam-
biguously defined; in principle, it is not clear where
to “stop” factorizing. Consider, for instance, the set
of letters {/x, \/y,x — y} and note that it is a priori
unclear whether one ought to factor the third letter
further, i.e., x —y = (Vx4 /7)(vVx — /).

In the case of the Drell-Yan integrals, both of these
problems can be tackled by the following observations:
given an alphabet, we introduce the subset of rational
letters, L, and the subset of intrinsically nonrational
letters, £,. Let us assume that in £, we encounter a
square root r. We find it natural to take r itself to be an
element of £,. For a given algebraic letter with a nontrivial
rational part [,, we define the conjugated letter [, by
making the replacement r - —rin [,. Foreach [, € £, we
observe that /, can be written as a power product of other
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symbol letters; that is to say, one could exchange any letter
for its conjugate without affecting the singularity structure
of the alphabet. Furthermore, we observe that the product
1,1, always factorizes over the rational part of the alphabet,
Lr. We find these observations to be quite compelling and
therefore conjecture that these structural constraints hold
also for other symbol alphabets of this type.

Our conjecture is a strong one, since it implies that one
can predict the form of the remaining unrationalizable
symbol letters which appear in the presence of the square
root r: knowing only the rational part of the alphabet, L,
and the unrationalizable square root which appears, it
allows one to construct the algebraic part of the alphabet,
L4, unambiguously. As we shall see, our new insight
allows for a drastic simplification of the algebraic part of
the symbol alphabet relative to what was presented in
Egs. (5.13)—(5.19) of [14] and what we were able to derive
ourselves initially using the above-mentioned heuristic
factorization code.

We want to show this in some detail for the EW-QCD
Drell-Yan master integrals with two massive internal lines.
At the outset, after carefully considering various possibil-
ities, we find the rational alphabet

Lrp={l-w,—w,14+w,1-w+w>1-z,-2,1+7z,

l—wz, 1 +w'z,—z—w? z—w} (4.10)
and the intrinsically algebraic alphabet
Li={r,—(1=w)(z=w)(1=wz)+r(1+w),

—(I=w)(dwz+(w+2)(1+wz2))—r(14+w),
r2=2w2(1=w)?+r(w+2)(1 +wz),
r?(1-2)>+22%(z+w?) (1 + wz)
+r(1=2)(1+2)2wz—(w+z)(1+wz))},  (4.11)

where r=1/(14+w?z?) (w+2z)2+2wz(w—z)> +4wz? (1+w?),
using our heuristic factorization code. Note that r already
appears as a letter in Eq. (4.11). However, there are also
two rather complicated-looking symbol letters with terms
involving 2.

As stated above, knowing only » and Ly, we can also
construct an improved representation of the algebraic part
of the alphabet by making an Ansatz of the form

l,=q,+r, (4.12)

where ¢, is a rational function in w and z, and then
requiring that /,/, factorize over L. In practice, it is more
convenient to directly make an Ansatz of the form

(@at+1)qa—1) =5 —r> = aywiz/ =r>  (4.13)

ij

and then solve for the unknowns a;;. The algorithm to
construct (simple) algebraic letters then reads

Input: rational part of alphabet and square root r depending on x;
Result: simplified letters
initialization: monlist=monomials of rational alphabet up to degree n
for f in monlist do
d; = deg(f.x;);
polynomial Ansatz: p = 52, S a, X'
solve f = p — r* for unknown coefficients a;
if p is perfect square, then
set polynomial ¢ = ,/p;
add [ = g + r to new alphabet;
end
end

In order to also reproduce the original letters we would
need to allow for a polynomial prefactor in front of the r?
term, which we deliberately avoid here to simplify our
construction. In practice, we run the algorithm with a
degree n at least sufficiently large to be able to express the
differential equations in terms of the new alphabet.

By using this procedure up to degree 4, we find the
following algebraic letters for the Drell-Yan integrals:

~ 1
ﬁA—{r,§(2+z—w+wz(w+z)+r),

1
2w? +z—w+wz(w+2z) +r),

(=(w+2)(1 —wz) +r),

N = N = N

(=(z=w)(1 +wz) +r)}. (4.14)
The overall factors of 1/2 in Eq. (4.14) are judiciously
chosen after the fact to prevent the appearance of explicit
factors of 2 in our Li function arguments; as alluded to
above, our original construction of the functional basis
appended 2 as an auxiliary letter. The presence of this factor
can also be understood in light of the factorization property:
one can easily check that all letters in L, after multipli-
cation with their conjugate indeed factorize over the
rational part of the alphabet without the presence of the
factor 2 in this product. In order to find the correct
normalization, one can run the above algorithm first adding
the letter 2 in the rational part of the alphabet.

Using our heuristic approach to algebraic function fac-
torization, we immediately find that the nontrivial elements
of L, can indeed be expressed as power products of letters
drawn from the improved alphabet:
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2(-w)(1+2)(—=z=w?) 2+ z=w+wz(w+2) +71)

—(I=w)(z=w)(l =wz) +r(l+w) = B S , (4.15)
—(I=w)@dwz+ (w+z)(1 +wz)) —r(1+w)
8(—w)2(=2)(1 + 231 +w?)(2w? + z—w+wz(w+2) + 1) (4.16)
Q4+z-wH+wzw+z2)+r)(-w+2)(1 —wz) +r)(—(z=w) (1 +wz) + 1)’ '
12 =2wz2(1 = w)> + r(w+z)(1 + wz)
(2 +z—wHwzw+2) + )P 2w+ z—w+wz(w+z) +1)? (4.17)
C8(1+ 221+ w2 (—=(w+2)(1 =wz) + 1) (=(z =w)(1 +wz) + )2’ '
(1 =224+ 222z +w?) (1 +w?2) + r(1 = 2)(1 + 2) 2wz — (W + 2)(1 + wz))
_ 2220+ w2 =+ (1 —wz) +1)° (4.18)

(=(z=w)(1 +wz) +r)?

In summary, we define the full symbol alphabet for the two-massive-line Drell-Yan integrals, £L = L U L4, in terms of
positive definite letters for physical phase space points which satisfy —1 < w < 0 and w < z < —w? [this component of
(w, z) space corresponds to part of the s > 4m? region; see Sec. VA for details]. From Egs. (4.10) and (4.14), we have

E - {l],...,l]é}

:{1—w,—w,1+w,1—w+w2,1—z,—z,1+z,1—wz,1+w2z,—z—w2,

1

z=w,r,=2+z—w+wz(w+2) +7r),

2

N =

Most importantly, our improved representation of the
alphabet effectively solves the problem of finding power
products of high degree, since we observe in practice that
we do not need to consider square roots of any letter in L.
For the integration of the EW-QCD Drell-Yan master
integrals with two massive internal lines through to weight
four, it was enough to consider power products of symbol
letters derived above up to total degree 9.

The construction above employed a representation with
only a single root-valued leading singularity. In Appendix B,
we consider a one-loop integral which involves five different
root-valued leading singularities. We demonstrate that the
algebraic part of the symbol alphabet can be constructed
without any reparametrization by generalizing the procedure
above to the case of multiple roots.

V. ANALYTIC CONTINUATION AND
OPTIMIZATION OF THE FUNCTIONAL BASES

In this section, we review the salient features of the (w, z)
representation for the mixed EW-QCD corrections to Drell-
Yan production introduced in Sec. III above, as well as
subtleties one encounters when analytically continuing

(=00 2)(1 = w2) 4 1) 5 (== w1 +w2) 41)

1
5(2w2+z—w+wz(w+z)+r),

(4.19)

multiple polylogarithms. Our primary goal in Sec. VA is
to motivate the analysis of Sec. V B, where we show how
we avoid all explicit analytic continuations and +i0
prescriptions by partitioning the physical phase space
and finding several solutions to the differential equations
in terms of well-behaved Li functions valid in judiciously
chosen regions. However, we also find it useful to review
the fundamentals of analytic continuation of Feynman
integrals as well as some details relevant to our specific
representation.

A. Analytic continuation

Feynman’s +i0 prescription for the propagators deter-
mines the value of a given Feynman integral in a specific
region of phase space unambiguously. In principle, one
could imagine to solve the Feynman integral in each region
of phase space separately. Alternatively, one can try to
solve the integral in one region and then use the solution to
obtain a result for it in a neighboring region by analytic
continuation. The latter method is of particular interest for
the method of differential equations, since it typically
involves regularity conditions in some regions of phase
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Im[w]

Im|z]

Refw] : Re[z]
-1.0 -0.5 0.5 1.0 -1.0 -0.5 0.5 1.0
FIG. 3. The (w, z) representation of the physical phase space has two main components which merge at the point of nonanalyticity
w = z = —1, corresponding to the two-mass threshold at s = 4m?. The line segments on the negative real axes of w space (left) and z

space (right) are half-open intervals which correspond to the above-threshold region; the points w = 0 and z = 0 are approached in the
s — oo limit. The semicircular domains in the upper w and z half-planes correspond to the below-threshold region; the point w = 1
corresponds to the phase space boundary point s = 0 and z = 1 corresponds to the phase space boundary point s = —t = 2m?. Note that
the upper end point of z depends parametrically on w both above and below the two-mass threshold.

space, and one needs to transport this knowledge to the
region of interest.

If we want to continue a specific representation of the
solution based on just the solution itself (without reference
to the original Feynman integral), we need to make sure
Feynman’s +i0 prescription is maintained by appropriate
complex values of the kinematic parameters. It is essential
to observe that the analytic continuation is along a path in
complex phase space and that the +i0 prescriptions must be
respected for all points along this path, not just for the start
and end point. This is in general nontrivial and needs to be
checked for the representation at hand.

What is commonly referred to as “analytic continuation”
in the physics literature should really be regarded as a two-
step procedure in general:

(i) The actual analytic continuation in the mathe-
matical sense: given a solution for one region,
derive a solution for a connected region in some
representation.

(i) A possible change of functional representation in the
new region such that no explicit +i0 prescription is
necessary.

We will now work out the details for our current application.

From the second Symanzik polynomials of our Drell-
Yan master integrals, we see that their Euclidean region is
given by s <0, t <0 and m> > 0. Considering other
regions of phase space, we observe that the Feynman
propagator prescription can effectively be implemented by
the replacements s — s + i0, t — ¢+ i0, since these are
external scales, and m? — m? — i0, since this is an internal
scale. The +i0 prescription is relevant for s (#) whenever s
(1) is positive. For the discussion of w and z, we will see that
it is sufficient to view m? as being normalized to 1 without
any imaginary part.

>For nonplanar topologies with four massless external legs, also
cuts in # must be taken into account, which may actually prevent the
existence of a Euclidean region with s + 7+ u = 0 [65].

Let us focus on the (w,z) parametrization of our
integrals in the physical region of phase space, s > 0,
t <0 and m?> > 0. It was noted in [14] that the (w,z)
representation has a point of nonanalyticity at the physical
two-mass threshold s = 4m? and a rather different char-
acter depending on whether s is above or below this
threshold. We find it natural to adopt the definitions

i Vm

= itV 1)
L \/4m4—t(s—4m2)—\/—t(s—4m2) (5.2)

- Vam®* — t(s — 4m?) 4+ \/—t(s — 4m?) .

We can see from the above that w and z are real vari-
ables which satisfy —1 < w < 0 and —1 < z < —w? in the
region s > 4m?. With our choices (5.1) and (5.2), we
find that the Feynman prescription implies w — w + i0 and
z — z 4+ i0 in this region. On the other hand, both w and z
become pure phases in the region 0 < s < 4m?. Therefore,
it makes sense to explicitly extract their real and imaginary
parts,

wet-— s io(1-=2)0 (53
=1-— —|1=—== i .
2m? 2m?*)

t(4m* =) t(4m? —s)\?
— o S (o B
¢ 2m* Jr\/ ( 2m* :

to emphasize that, in the below-threshold region, the imagi-
nary parts of w and z are fixed in terms of the real parts
of w and z. In particular, we can deduce from Egs. (5.3)
and (5.4) that Re[w| and Re[z] satisfy —1 < Re[w] < 1 and
—1 < Re[z] < 1-2(Re[w])? in the below-threshold region.
A visualization of the full physical phase space in the (w, z)
representation is given in Fig. 3.

(5.4)
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In the following, we will study how to analytically
continue solutions between different regions in s. In
practice, we work with simple straight-line paths in the
complex (w,z) space, checking after the fact that the
chosen paths of analytic continuation always preserve
the +i0 prescription for the original kinematic variables.
In what follows, we carefully go through typical elementary
examples of analytic continuation in order to clearly
illustrate the subtleties for our Li functions which one
must be wary of to avoid introducing errors.

First, let us illustrate the importance of taking into account
the complete path of analytic continuation rather than just
the start and end point. Consider the analytic continuation of
In(w?) along a straight-line path from w; = w + i§ to
w, = —wg) + id, for real w(g) and & such that 0 < wy) < 1
and 0 < 6 < w(g (see Fig. 4). Such a path allows one to

connect solutions for s < 0 with solutions for s > 4m?>.
Naively, one might be tempted to erroneously implement the
analytic continuation as In(w?)= ln(wfo)) =In((-w))?) =
In(w?) and incorrectly conclude that the analytic continu-
ation is trivial along the chosen path. The problem here is
that the logarithm is a multivalued function and one must
therefore carefully check whether or not the specified path of
analytic continuation forces the polynomial function argu-
ment to cross the branch cut of the logarithm on the negative
real axis, (—o0, 0). In the absence of any branch cut cross-
ings, knowledge of the end point of the path is sufficient.
However, in the presence of one or more branch cut
crossings, the function leaves its principal Riemann sheet
and one must add an appropriate monodromy contribution,
taking into account the details of the path of analytic
continuation.

Let us spell out in detail how to correctly analytically
continue solutions valid for different values of s. We
parametrize our chosen path in w space as

Im[w]
0.12f

0.10f
0.08f

Q.06

A
A

0.04 |

-0.15 -0.10 -0.05 0.056 0.10 0.15

w(v) = (1 =2v)w ) + di, (5.5)
with a parameter v € [0, 1]. We then have
w?(v) = (1 - ZU)ZW%O) - & +2(1-20)éwyi  (5.6)

for the argument of In(w?). As depicted in Fig. 5, our path
in w space takes w?(v) from just above the point W%O) - &
2 _ 52
(0)

and, crucially, it passes through the negative real axis at
w(1/2) = 8i. The monodromy contribution to In(w?) in
this case is well known to be simply 27, due to the fact that
our path induces just one counterclockwise branch cut
crossing. Therefore, the analytically continued function is
In(w?) + 27i in a neighborhood of the end point of our
chosen path. This conclusion may be quickly checked by
rewriting the function In(w?) as 21In(w) in the Euclidean
region where 0 < Re[w] <1 before carrying out the
analytic continuation along our chosen path. When the
function is viewed in this alternative way, no branch cut
crossing is induced and one can simply rewrite the function
to explicitly extract its imaginary part: for Im[w] > 0,
2In(w) =2(In(=w) + zi) = 2In(=w) + 27i = In(w?) + 27i.
In the two-step picture mentioned above we thus have

on the positive real axis to just below the point w

ln(wz)(w) In(w?) + 27:1'(.:') In(w?) +27i  (5.7)
or
In(w?) = 21n(w)(ﬁ)2 ln(w)(;)2ln(—w) + 2mi
= In(w?) + 2xi (5.8)

Im(s]

Re[w] : : : Rels]

-5 5 10

FIG. 4. The path in w space prescribed by Eq. (5.5) for w(gy = 1/6 and § = 1/17 (left) induces a nearly semicircular path in s space
(right) which respects the +i0 prescription for s. Note that, for fixed # and m?, this straight-line path in w determines a nearly straight-line

path in z as well.
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Im|w]

0.12f
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A
A
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Refw]
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Tm[lL'Q]
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0.01f

/ S[w?]

L " " " " . Re
_0.00é\ 0.005 0.010 0.015 0.020 0.025

-0.01}

—-0.02

FIG. 5. The path in w space prescribed by Eq. (5.5) for wi) = 1/6 and 6 = 1/17 (left) induces an essentially hyperbolic path in w?

space (right) which crosses the negative real axis at —5°.

Depending on the type of representation we consider, either
the analytic continuation (i) or the rewriting of the function
to be independent of +i0 prescriptions (ii) is trivial in this
example.

The relevant monodromy contributions become more
complicated for higher-weight Li functions. Already for
Li,, a new feature emerges: moving across its branch cut on
the positive real axis, (1, ), onto a Riemann sheet other
than the principal one actually exposes the existence of a
hidden branch point at 1. To see this, consider Euler’s
identity for the dilogarithm of 1 — w?,

Liy(1 — w?) = —Liy(w?) — In(w?) In(1 — w?) + % (5.9)

The representation furnished by the right-hand side of (5.9)
and the above discussion of In(w?) make it clear that
Li, (1 —w?) has nontrivial monodromy for the path w(v)
defined above in Eq. (5.5). For the path w(v), we find

2
Liy(1 —w?) = —Li(w?) —In(w?) In(1 —w?) +%

2

e —Liy(w?) = (In(w?) 4 27i) In(1 —w?) —I—%

=Liy(1—w?) = 2ziln(1—w?). (5.10)

This implies that Liy(1 —w?) picks up a monodromy
contribution of —27iIn(1 —w?) due to the branch point
at w = 1, despite the fact the function is continuous at that
point on the principal sheet.

When considering general analytic continuations of
Li, ., functions, one must take into account all function
arguments to obtain the monodromy contributions as one
moves along the path of analytic continuation. Building on
the work of Goncharov [66], it was shown in [67] how one
can easily compute the monodromy of an arbitrary Li
function in terms of monodromies of simple logarithms

using the coproduct. In particular, the presence of a
monodromy contribution can be detected by studying
the first entry of the symbol. For our master integrals,
the sheer number of distinct branch cut crossings which can
arise from the arguments of the various Li functions renders
the analytic continuation between different regions rather
involved in practice. While our final goal is to obtain
representations in terms of well-behaved Li functions for
kinematic regions, we find it convenient to also employ
auxiliary representations for the purpose of analytic
continuations.

If available, a representation in terms of G functions with
the kinematic variables in the argument avoids many of the
subtleties involved in the continuation described above. For
the integrals with unrationalizable alphabets, however, this
is not an option. For such cases, we find it useful to use
expansions around regular and singular points [68] for the
continuation. For this part of the analysis, we do not include
the unrationalizable root of ms, in (A1) in the definition of
our basis in order to work with rational differential
equations. Using high-precision numerical evaluations
for two expansion points with an overlapping region of
convergence and the PSLQ algorithm [69], one can
effectively transport analytic integration constants.

What has been discussed so far allows us to construct
a functional basis for a given region of phase space,
integrate the symbol in terms of these functions, and
relate solutions for different regions by analytic continu-
ation in order to fix the integration constants. We will now
discuss how to construct domain-restricted but well-
behaved Ansdtze of multiple polylogarithms, which do
not require an explicit +i0 prescription and perform well
numerically.

B. Optimizing the bases of multiple polylogarithms

Starting from a Duhr-Gangl-Rhodes basis of multiple
polylogarithms for the integrals m, we wish to remove Li
functions which have suboptimal analytic properties for
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physical kinematics (s > 0). In fact, one finds that even the
purely rational function arguments allowed by the letters
(4.10) are nontrivial to treat systematically, and we will
therefore restrict the discussion in this section to this
rational subset. The main idea is to make a partition
of the physical phase space into regions D; such that,
inside each region, a solution to the differential equations
may be constructed out of Li functions which never
diverge or move off of their principal Riemann sheets
for arbitrary phase space trajectories contained in D;.
Although our primary goal is to show how to one can
avoid supplying explicit +i0 prescriptions for w and z,
we also find it convenient to impose further aesthetic
criteria on our polylogarithmic bases in order to simplify
our results. For example, we find it useful in each
Ansatz to give precedence to those functions which do
not involve the symbol letter 1 —w +w?, since this
ensures that the master integrals which do not depend
on 1 —w+w? are manifestly free of 1 —w +w? at the
level of functions.’®
The first step of our analysis is to study the letters of the
rational alphabet, Ly, above and below the physical two-
mass threshold at s = 4m?. To proceed, we must determine
under what conditions the logarithms of the letters either
diverge or move off of their principal Riemann sheets. We
find that, in practice, it is simplest to use Eqs. (5.1) and
(5.2) above threshold, Eqs. (5.3) and (5.4) below threshold,
and the MATHEMATICA function Reduce to work out how
various constraints on polynomials of w and z map back to
conditions on the original and more familiar kinematic
variables s, 7, and m2. We find that Reduce works in
an efficient way when the system of inequalities to be
reduced is formulated in terms of real-valued parameters
and the solution to the system does not involve roots of
high-degree polynomials. Fortunately, these assumptions
are always satisfied for the Li functions which have
symbols built out of letters from Lg.” To check whether
it is possible to live without a 4-i0 prescription, we must
first understand for what values of s, ¢, and m? both the real
and imaginary parts of the letters vanish simultaneously
and for what values of s, ¢, and m? the imaginary parts of
the letters vanish while their real parts happen to be
negative.
(i) In(l;) =In(1 —w) diverges at the phase space
boundary point s = 0.
(ii) In(Z,) = In(—w) has no issues for m> > 0, except at
the phase space boundary point s =0 where it
becomes ill defined.

®The presence or absence of the letter 1 — w + w? for particular
master integrals is linked to the presence or absence of a one-mass
threshold at s = m?.
In Sec. VI, the method described in this section is also used to
prepare an Ansatz involving Li functions which have symbols

built out of letters from both L and L.

(iii) In(Z3) = In(1 + w) diverges at the two-mass thresh-
old s = 4m?.

@(iv) In(ly) = In(1 —w + w?) diverges at the one-mass
threshold s = m?.

(v) In(l5) = In(1 — z) diverges at the phase space boun-
dary point s = —t = 2m?.

(vi) In(lg) = In(—z) has no issues for m? > 0, except at
the phase space boundary point s = —t = 2m?>
where it becomes ill defined.

(vii) In(l;) =1In(1 +z) diverges at the phase space
boundary where t = 0 and at the two-mass threshold

s = 4m?.
(viii) In(lg) = In(1 — wz) diverges at the two-mass thresh-
old s = 4m?.

(ix) In(ly) = In(1 + w?z) diverges at the phase space
boundary s = —f for 0 < s < 2m? and at the two-
mass threshold s = 4m?.

(x) In(l}) = In(—z — w?) diverges at the phase space

boundary s = —¢t for s > 2m? and, in particular,
at s = 4m?.

(xi) In(l};) = In(z — w) diverges when ¢ = —m? for s >
m? and, in particular, at s = 4m>. In(l,,) is also not
analytic at s = — fn”fitt for —m?> <t <0.

The next step is to determine from the above data how
many regions of the physical phase space it makes sense to
consider separately. In a sense, this step is the most
nontrivial because different choices besides the one we
ultimately make are possible. Our choices are guided by
imposing analytic properties of the integrals onto the basis
functions themselves. Due to the absence of u dependence
in our planar double boxes, we expect them to have a
regular limit as u approaches 0. We see from the above
that, depending on whether s is less than or greater than
2m?, regularity as u — 0 suggests the absence, respec-
tively, of In(ly) or In(l;y) at weight one. Of course, we
wish to achieve that also the higher weight basis functions
lack logarithmic singularities as Iy — 0 for 0 < 5 < 2m?
and [,y — 0 for s> 2m? This can be achieved by
choosing the point s = 2m? as a region boundary and
then imposing an appropriate first-entry condition [67,
70-72] on the symbol to select suitable functions. In other
words, we remove from consideration all Li functions
which have the letter /o in the first entry of their symbols in
0 < s < 2m? regions and all functions which have the
letter [, in the first entry of their symbols in s > 2m?>
regions. All of the other letters exhibit problems only at the
physical one- and two-mass thresholds or at other excep-
tional points on the boundary of the physical phase space
like s = 0. The only logarithm with a spurious singularity
in the physical region is In(/; ), which can be dealt with by
imposing an additional first-entry condition on /;; in all
regions.

Ultimately, we find it natural to partition the physical
phase space into four regions:
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(s,t)|s >4m?, —s <t <0}

{
{

where, as suggested by Egs. (5.3) and (5.4), we have
eliminated Im[w| and Im[z] below the two-mass threshold

_ _ _ 2
={w.g[-l<w<0-l<z<-wi} (511 by exploiting the fact that w and z become pure phases:
— 2 2
Dy, ={(s.0)[2m” < s < 4m*, s <1 < 0} Im{w] = /1~ (Re[w])> and Im[] = /1~ (Re[z])2.
= {(w.2)] = 1 < Relw] <0, (5.15)
— 1 < Re[z] < 1 -2(Re[w])?}, (5.12)
Even for the 12 two-mass master integrals which have
D — N2 I — ; rational symbols in the (w, z) representation, it is not obvious
by = {(s,0)lm” <5 <2m%, =5 <1 <0}, that it suffices to consider a partition of the physical phase
= {(w,2)|0 < Re[w] < 1/2, space into just four separate regions. Fortunately, no further
— 1 <Refz] < 1 —2(Re[w])?}, (5.13) subd'ivisions.are necessary8 and it. is even possible to
consistently impose stronger constraints in each region on
d the subset of Li functions which survive our first-entry cuts.
an Our basis of Li functions in region D, may be further
5 refined along the lines described in [15], where the EW-
Dy, ={(s.0)0 <s <m*, —s <1 <0} QCD Drell-Yan master integrals with a single massive line
= {(w.2)[1/2 < Re[w] < 1, were evaluated in the physical region for the first time.
5 Consider, for example, the set of 192 Li, arguments
— 1 <Refz] < 1-2(Re[w])"}. (5.14) consistent with our first-entry conditions in this region:
|
1111 11111 11 [
l,l,—l,l,l,l,l,_l,l,l,l,—,—,—,—,——,—,—,—,—,——,_,—ll,ll,—,
{12 e A A A AR A A P A A A 12,4153, 7
bl b by bl s ol bl b b _bols by
P P R A A A A A A A A A A A
Cholsly b hiho 1l il U bl l 1 b Lhy 1
N S N P P A P P P N L L Gl L b L bl
Lhlinl 1L BB L b Wl bl bl bl b b
G'LL L L L LG Ly Iyl e s Thlst BT 6
B _bls _bls _bly bl bly _bho bls _bh _bly bls bl _lshy Lho
L g gt Lyl g I "Iy LT LTl L7 gy
O T A VIR S VIR N - IO VR VI S VR
lelg Igly”  Lily" L' Lilg Ll Lls  Lly' Ll Ly Ly Ly Ll ;'
Sl s sl ho 11 Bbl Lo ho dy oIl
Li;" Ll bl LisB" B Bl’B° L7 Thig Ly Ll LW LT Ll
ho b s bl bl hisle iy bis hly Ble Bl By bhls _bise
L LW LWL, BBy l; " Ll " L B oyl g ly lg
Ll bl Isl; Ly 111 _ Lol ﬁ _é Il Isho L ho i
Ly Ll 7R ’lz’ Ily "Lily" Isly; Isl; " Usly " Lilyls Ll Lisl;’
b b ho _ho dy b 5 bbby bl _ b
Lils Lils™ Bly' Bl Bl Bl L Ly Ly Ly Ll Ll
ho o ho _hh _ B Bl Bl Bl _bly _lly B Iy lsh
Lils Lils Lisls™ Bl Ll Ll Lly" Blg' Blg Bls Ll L'
lsliyy Lo Ll 5l sl Lol Lol I _ bly, 19110} (5.16)
L2 Blsl,” B L Bl Lldsl; BEC Lilsl; LBl PRI S '
215 2lsly 2 3 16 3lalsly 143l507 1136 1113l6

®This conclusion remains unchanged if one passes from Ly to the full alphabet.
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Above threshold, the letters are real-valued functions and
it turns out that the Li, functions themselves may be chosen
to be real valued in D,. By using the Reduce function of
MATHEMATICA, we can rapidly check whether any of the

above function arguments assume values larger than one for
(w,z) in D,. As one might expect, this is a nontrivial
constraint to impose on (5.16) and only 148 function
arguments survive. We find

111 11 I L b Iy I
Ly, =, 13, 1, =1, 17, 1g, lg,——,—,— =1, 15, —, l2,ll,— , sy,
{2,236 67518, L9 161514 1211 142 3l 2206 l4 l 341918
o _te i hodn he s b _ho B lnhe ke _hils i b
YTl Iy Ay T L L g e s Is s sk
Ll bln ls 1 hb Ll Ll Wi Ll L B2 ﬁ_% _bls
A A A A N A A A A A A
_bl bl bl _bho bls bl _bls Lls _Lls Ll lho _Li Lo _ Lo
R L T
b e B b b sl o B
Lls Lls' Lls Lly' Ll bly bls i, Liy' blg bls' bLis B 1"
bis ho by L _ln _ L ho bl hisls Lils hin _Liy _Bls Bl
R N e N N A N A A A
l%lu hhls _121316 Ll bl _@ @ li _110111 _é lgl1y _lﬁllo _ I
ly " ly Iy Thilyg Ll BCRCBRT Ll sl sl sl Ll
Lo I _ g _11_0 _11_0 _ ly lz 1217 12111 _12111 _ ly _ i
Lide Lisl,” Ll Bl Bl Bl Lis Ll Ll Ll Lily' 1l
Lo ho _ﬂ _i _13111 l& _@ _% _18111 lolyy I3l gl _ Lo
Lils Lills' Bl Ll Lly B Ll Bly' Bl Lkl LB LE" Blsl’
Ll ll7 ZSIll Lol lyl1o 1%1 loly  lolyg
— T3 0 27 T TR T T T 27 2R (5'17)
B LIy Bl Ll BE° Ll LBl PRl

for our final set of preferred Li, function arguments above
the two-mass threshold. We can proceed analogously to
filter the set of Li, ;, Liz ;, and Li, , function argument pairs
which survive our first-entry cuts. For the sake of brevity,
let us simply state that we find 2496 preferred pairs of
function arguments (f;,f;) after using Reduce to throw
away all pairs for which f; > 1 or f;f; > 1 for (w,z) in
D,. As explained in [15], we can further improve the
numerical performance of our functional basis in GiNaC by
reordering the lists of function arguments obtained to
ensure that those which lead to convergent power series
expansions are given precedence.

In region D, , the first-entry conditions are the same
as for D, and again lead to (5.16). As mentioned above,
we can use Reduce to efficiently check which Li, basis
functions have suitable analytic properties below the two-
mass threshold as well; despite the fact that w and z become
complex functions of the original kinematic variables in
D, and the remaining below-threshold regions, we can

proceed as before provided that we first eliminate Im[w]
and Im[z] via Eq. (5.15) and work only with Re[w| and
Re(z]. It turns out that a surprisingly large number of
exceptional phase space points and trajectories cause
problems for particular basis functions in the (w,z)
representation. Specifically, we find that certain Li, argu-
ments assume values on the real axis greater than one
(i) when s = 3m? for —=3m?> <t <0,

(ii) when s = —3:5—’2 for —=3m? < t < —m?,

(i) when s = S 2EEA) for —(24V2)m? <1 <
—m?, and

(iv) when 5 = dmihek —— (B0 for —(2 4+ v2)m?
t <O.

We also observe that a number of function arguments have
imaginary parts which vanish identically below threshold.
Any such Li, function with an argument which can attain
values greater than one on D, must be discarded because it
will be ill defined unless small imaginary parts are assigned
to w and z.
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In the end, we find the 178 preferred Li, function arguments

1111 11111 11 Loh
l,l,_l,l,l,l,l,_l,l,_7_7_,_,__,_,_7_7_,__7_7_ll7117_9_,_’
{12 A A A S A A A A A A A

gk bbbl p b Lhiln Lol loln _holl L
2526, 14’ 13719518518’16’ 6° l7519’18’ 18’18’ 19519’187177 l7’l7vl77 163

Ly Lo 1 lg Ly lg 1 Ly lgly 1 L L ly 11 5L Ay byl

BN A A AN A AT A VAR SR AU RS AR

1 L Wb bl bl _hhy ble L Lo B _bls bl bl bl
T T T T T 222> T T T T T

L Ll el Ty s bl B Lyl
lzln 12110 1218 lzl7 1218 1316 1316 lélll 16110 lll llO llO l7 lll

B A R A A R R A N AR WA NN
18 lll l3 l3 lll lll l9 lll 18 19 lll l8 l4 llO 1 1

Ll Lls' bly' Ll Ly by bly bl bl bl bls' Lis'B' B Bl 5
Bl s ho b Ly b ool Lo bl hbls Ll Lin

L0 L L Ll Ll Ll Ll Ll s L BBy L Ll

1113 I%ZG l%l7 l%lll 121316 _121316 12111 12110 l7l9 l%l 110111 l% l6l11

BT 0y e Ly Ayl il BB Ily  Isky sl

sl Ly Lo InIg ly Lo Lo Iy _ﬁ Ll; bl
Isl;  Liyls Llls Lisl,” Ll  Lisls Bly™ Bl BL° L LWy Ly’
L b h ho ly ho Li; 5 Bly Bls Gl _hly

Ll Lily' Ll Ll Ll Ll Bl Ll bl B Ly Bl

_18111 19111 ISle 18111 110 l%ﬁ 18111 110111 19110 l%l l9lll 19110}

) ) s s s [ ) s s s s 5-18
Ble bl LE L2 Blsh il Blg hlsh' BB Lk L2, BRSO

for Dy, . In an analogous manner, we find 3314 preferred pairs of Li, ;, Lis ;, and Li, , function arguments (f;, f;) after
using Reduce to throw away all pairs for which either Re[f;] > 1 and Im[f;] = 0 or, alternatively, Re[f;f,] > 1 and
Im[f;f;] = 0 for (w,z) in D, .

For regions D, and D, , the first-entry conditions lead to the preliminary list of 194 Li, function arguments

l’ls_lsl7lalal’_l’lal’l1_a_a_7__’_?_1_1_a__7_’_1l1lla__
{ 142 25035 445 855 L6 607548549 l8 l7 l6 16 ls l4 l3 lz 12 l] 1425 41°%3
ll 16 l6 l7 l7 lll lll lll l9 19
7alzyll7_79_7all575115777712171_7577_7a_7775_777 -7
P A A R TR Py PR P

Ly Lolsgly L Ly Lo lle Lylyg 1 Lylgly 1 5 1yl 1

R A A A N N N A A R N A S A A N A
1L Iy Iy Iy 1 1 BB L, LWy LWz L Ly Lig Lis I [ B
l% 9 ll 9 ll bl ll 9 ll bl lll3 9 lllz 9 l4 9 l2 9 l4 9 llo b l7 b 9 9 2’

L GG Lls hLils bl Ll bl bl bl Bl Lls  Lls L

L L I3 Is s

A A e R N T A A A A S
lﬁlll lél9 lll l9 l9 l]O 17 lll 18 lll 18 13 ll] l9

Cly Lo Il Isho Isly’ Ll Blg' Ll Ly Lls Bl bl bl bl
s bkl s hn ks by bl Lol Bl s Lo ly (5.19)
Ll Ll Ly Ll Ll Lls™ Lis Ly B3 l%’l%’ Ll T Lhie L L '
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I Iy L Ly ly Ly bl Ll Ly Ly LI Bl Bl bl

L L L Ll Ll L L BB 1y Ll bl B Ly Ly bl
hlip Glyls  Isl; Ly i _ bl _l%_] _& lehi Lo  Lly Ly Iy ly

Lly" Lo " L7 L' Lo sl sl Tlyds Ll by T hlsl bl

_ho _he bl B by b Lby o he by 5
Bly" Bl BL Bl LIy Ly Lly' Ll Lisls Ll Ll Ll Ll

_bhly kil 1%_1 gy Dby Lgly gy Bl Ll Ll Blg _191%1

sy~ Blg' Bly' Blg hily LE LE W B Bly Bl "lldy Bl

ol BLlls Iyl el Bl _ i _ bly bl Lyl Iyl
Lislsly” Bly BB Blsly Lilly' Lislsl,” LBl 1Blg BBl 1,Blsl

(5.19)

The rest of the filtering procedure in the remaining regions is closely analogous to what is described above for D, , but we
nevertheless summarize our findings for the benefit of the reader.

In D,,, besides those functions whose arguments have imaginary parts which vanish identically, we find that
certain L1 arguments assume values on the real axis greater than one

2
(i) when s — — 4"”for —-m* <t<-",
.. 2m?(=2t-m
(i) when s = — L’)for —-m?<t<-— 2’é’,and
4m+t—\/ Sm —1)

(iii) when s = for ’” <t<O.
After discarding all of the offending Lln function arguments, we find that 184 preferred ones remain:

B Lo

lsla_lslylalvls l9l7l9_1_1_5__7_7_9_9_1__a_v_ll9ll9 s )

{] 2 254350450556 6575 19 18 l7 l6 l6 15 l4 l3 lz l2 l] 1425 4143 18 l4 12
12 1,1 l2 12 121 l3 lS 15 2 l6 16 l7 l7 ll] l]] l]] 19 l9 l]] l]O

20206, T ST T T 3 T s T s T s ke T s T T T S T T s T s T T T s T T T s T T

ls 1 A T e T e P T A

Lh Tl U Bl U5 Ul L L Ll b b L bl BT

ls 1 1 L Ly Ll hlg Liy ble b L oo B BB bls bl

[ T A P P N P A N A T A A

bl Ll bl bl bl Gly Gl Ll Ll Ll lly Ly Ly Iy

P T S S S S R TR S T S 7 O A ST T O
ho L ln g Iy g Lol ls 1y I ly Iy

Ll Lls Ll Bly' Lis Lly Ll Ly by Ll bl Ly bl by’
b b bl Bbls I ol by lno s b ohe b b

Lis Ll B R B 101 his Ly Ll Ly Ly’ Ll Ly Ly Iy 1y B
ly Lkl LWy Ly Bl Bl bly bly Llls bly By bly G B

l%’ ll() l2l7 lz llO llO l3l6 ’ l3l4 ’ llO ' l% ’ l% ’ 18110’ l7ll()’ 1517’
lliy Lo Lly Ly 1y ly Lo Lo Ly Iy i bl L
Isl; "Lills Ll by "Lisl Lils' Bly' Bl Bl Bl Ly Ly Ll
CLhy W ho bl B Ll bly By Iy bl gl
Lo~ Lile Lisls Ll Lilsls” Ll lghy Bl Blg'~ Blg biply LI’

sl Ll sl Whls Bl LB Il Llls  lolg Ly Bl 2,

LE'~ BT Bl Bl Ly’ Bl bislsl,) Bly ' BEBlsl;, Lisly' Lislsly’

bl Lhhy bl bl
LBl 1Bl BRI 1 Blsls |

(5.20)

In much the same way, we find 3420 preferred pairs of function arguments for Li, ;, Lis ;, and Liy , in D,,.
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In D,,,, besides those functions whose arguments have imaginary parts which vanish identically, we find that certain Li,

arguments assume values on the real axis greater than one
. 2 2
(i) when s = =22 for -2 < <0,

(i) when s = =222 for 208 <4 < (2 — \/2)m?, and

t
(iii) when s = 2V o (0 \oym? <1 < -2

m*
3

After filtering, we find that 184 preferred Li, function arguments remain:

R Lo

l’l’_l ’l?l ’l’l 7_1 1l ,l a_a_a_a__’_9_7_7_7__’_?_1l1lls_a_a_7

{12 2 bbb lo =lo Iy oo g oo = e e o e e e Thi Wi
2 12 l3 15 lS 2 16 16 l7 l7 lll lll lll 19 l9 lll llO 18 l9
12a12161__al3l47_7_7_1 6°7 T 7 07 0T T T T Ty s T s s T T T s T T v v
l3 lS l8 16 llU l7 18 ll() l8 l8 ll() lg ll() l7 l7 l7 l7

L by Vg Ly lyg 1 Iy lgly 1 ly Ly 11 L dy Iy g

16’ l6 ’lg’ls’ ZS ’ls’lsl7’ 13 ’l3’l3,l3l4’ 12, 12’ 12 71216’1%’11711’ ll ,ll’

1 L BB LG Ly Ll Llg Lhy Ll Ll L

s B B L _bLls

T A A A A e A e A A A R T A

_bls bl Lly _bln _bho bl Lly Lls  bls Ly _Ishi lely  Li Iy
P O Y - S S S PO Y TR S ST 7 O AT

T T L Ly ls 1y I ly 1y lg

I lile 1 Bbls s b Lo s b ho b L Lhibls Lis
Ll BB B 1L s hls bl Lle Ll Ly Ll Ly L B Lyl
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Note that (5.20) and (5.21) are not identical even though
they are of identical length. As before, we find 3420
preferred pairs of function arguments for Li, ;, Liz;, and
Li2.2 in Db3'

Although it is not a priori clear that such restrictive
choices for the Ansdtze of Li functions in each region are
actually allowed, it turns out that we can in fact use the sets
of function arguments derived from the considerations
outlined above to write explicit solutions which satisfy
the differential equations for the 12 two-massive-line
master integrals with rational symbols in D,, D, , D,,,
and D,,,. We have explicitly checked numerically against
the G function representation with kinematic variables in
the arguments at a large number of physical phase space
points that, as desired, our results are correct independent
of whether explicit positive imaginary parts are assigned to

b ) s T s T bl ) ) . 5.21
B2 Bl Lk " hhish 1Bl LB BRIl h@gk} (5:21)

w and z. In the next section, we will discuss the more
complicated master integrals which involve the intrinsically
algebraic part of the full symbol alphabet, £,, in a similar
manner.

VI. WEIGHT-FOUR MULTIPLE
POLYLOGARITHMS FOR DRELL-YAN
MASTER INTEGRALS

In this section, we apply the techniques introduced in
Secs. IV and V B to explicitly integrate the ed In form for
{my,...,ms4}, (Al), in the physical region above the two-
mass threshold (s > 4m?) through to weight four in terms
of real-valued Li functions. To our knowledge, this is the
first time a complete solution in terms of standard multiple
polylogarithms has been found for a multiloop Feynman
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integral with an ed In differential equation containing
unrationalizable symbol letters. We fix our integration con-
stants using a variety of established techniques, such as direct

evaluation in
ematic limits

kinematic limits where particular integrals are power sup-
pressed and must therefore vanish (see Sec. 5.2 of [14]).
Due to the significant length of our results, we refrain
from presenting them explicitly in the text. For the benefit
of the reader interested in the detailed structure of our

solution, we provide the result through to weight four for ~ appear in it:

{

1 1 12 l 12 l Iy 1 Ll lg 11
— b b5 2 L -2 B -2 2 = = 2 e g, Ble, 2

ll’ E?E? 117 157 15 5
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L e X A A L
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the six-line normal form integral from the right panel of
Fig. 2, m3,, as an ancillary file included with our arXiv
submission. ms3, has a number of notable analytic fea-
Feynman parameters, exploiting regular kin-  tures. We find a basis of multiple polylogarithms com-
of the differential equations, and exploiting  prised of 14 In functions [by construction, In(/;y) and
In(/;;) cannot appear], 46 Li, functions, 235 Li; func-
tions, 342 Li, functions, 28 Li,; functions, 742 Lij
functions, and 324 Li,, functions. To give the reader a
feeling for the complexity of our result for ms,, we present
the complete list of 347 Li, function arguments which
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It is also worth pointing out that our choice of alphabet, 1335349 &2~ 1167 (6.3)
Eq. (4.19), produces remarkably simple integration con- 32 2 37 '
stants. We find

at weight four.

3 3 In lieu of our explicit analytic results, it is straightfor-

¢y —=ndi 6.2
24,3 2" (6.2) ward to obtain high-precision numerical results for our
master integrals using GiNaC. For the randomly chosen
at weight three and physical phase space point
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(s.t.m?) = (17,-7,6241/1681)

(6.4)

we find for the most complicated master integrals with two massive internal lines

my, ~ €(0.066537984962080530758... — 27.508245870011457529...1)

+€*(51.615607433806381131... — 149.06326619542437190...i) + O(e’),

(6.5)

ms3 ~ €2(10.163316917366188927... + 6.2974465571355440423....i)
+€3(33.914009430201406423... + 4.6486595371603574921...1)

+ €*(163.17321004422879959. .. — 128.72756457117576796...i) + O(€’),

(6.6)

ms, = €2(—9.3166453894096456380... — 4.6722528592943756861...1)
+€3(=12.274144284891231677... — 11.270075866466130873...i)

+ €*(=51.057330106861359687... + 87.629800828432935443...i) + O(¢’),

mss ~ €4(6.9039856473317646358... — 0.013343873471826080269...i) + O(¢’),

(6.7)

(6.8)

m3, ~ €2 (—4.7564239669560836801... + 4.0753242804814306037...1)

+ €*(—8.5216864119748844907... — 13.318764764536663942...i) + O(e’).

Using the finite integral method [15,73,74] and SecDec3
[75], we were able to independently check these numerical
results to a few decimal digits.

We find that a double precision evaluation of all 36
master integrals m, ..., ms¢ at the point (6.4) using GiNaC
takes 0.5 s on one Intel E3-1275 CPU core. The perfor-
mance in this central point in phase space is therefore not
much worse than what is encountered for Feynman
integrals involving rational alphabets; see e.g., the dis-
cussion in [31]. Therefore, we expect the functional
representation discussed in this paper to be well suited
for direct usage in Monte Carlo programs.

VII. OUTLOOK

In this article, we considered irreducible Feynman
integrals satisfying ed In differential equations with non-
rational symbol letters and described methods for their
evaluation in terms of standard multiple polylogarithms.
We show for the first time that a complete solution in
terms of standard multiple polylogarithms can be obtained
even in the presence of unrationalizable symbol letters.
In particular, new techniques for the construction of an
Ansatz which matches the symbol in a particular region of
phase space allowed us to calculate the two-loop master
integrals for the mixed EW-QCD corrections to Drell-Yan
lepton pair production in the physical region using Li
functions through to weight four. We discussed in detail
how to optimize the functional basis to allow for fast
and stable numerical evaluations, systematically avoiding

(6.9)

arguments on branch cuts which would require an explicit
+i0 prescription. The presented techniques and results may
be applied directly to the calculation of the virtual ampli-
tudes for the full EW-QCD corrections to Drell-Yan
production of relative order aaq.

As motivation, we also considered a rather nontrivial
master integral for massive Bhabha electron-positron scat-
tering and showed that it may be directly integrated from
Feynman parameters to all orders in € in terms of multiple
polylogarithms despite the presence of root-valued symbol
letters. Besides the applications discussed in this paper,
e d In differential equations with root-valued symbol letters
also appear in other interesting contexts, such as the next-
to-leading-order QCD corrections to H + jet production
with full heavy top quark mass dependence. One may
therefore expect that our techniques could be fruitfully
applied also to other problems of current phenomenological
interest.
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APPENDIX A: DIFFERENTIAL EQUATIONS
FOR THE DRELL-YAN MASTERS WITH
TWO MASSIVE LINES

In terms of the symbol letters {/y, ..., [} defined in
(4.19), the system of differential equations for my, ..., ms¢
in (3.7) can be cleanly written in differential form:

e~'dm, = m, [4dIn(;) — 4dIn(Ly) + 4dIn(l3) + 2d In(lg) — 4dIn(l;)],
e~'dm, = m,[2dIn(l;) — dIn(B)],
e~'dmy = ms[4dIn(l,) — 2d In(l, )]
e~'dm, = my[6dIn(l;) — 3dIn(5,)] + ms[dIn(ly) — dIn(l,)].
e~ldms = my[12dIn(1,) — 6dIn(1,)] + ms[4dIn(1,) + 2d In(l) — 4d In(1,))].
e 'dmg = 0,
e~ldm, = m;[ddIn(l,) — 4dIn(ly) + 4d In(ls) + 2d In(lg) — 4d In(L;)],

€_1dm8 = m,

{—dln(l3) - %dln(lﬁ) + %dln(lg) + %dln(lll)]

1 1 1
+ m3 {dln(lﬁ -l-zdln(l(,) - Edln(lg) - zdln(lll)]

+ mg[4d In(/,)

e"'dmg = m,[—dIn(l,)] + my[2d In(1;)

—dIn(ly) + 2d1In(l3) + dIn(lg) + 2dIn(l;)
—2d1n(13)].

—2dIn(lg) = 2d1n(1;)],

e~'dm,y = m; {—%dln(lz)] +my Bdln(lz)] +ms {—%dln(b)]

—+ m10[4d ln(ll) — dln(lz)

—2dIn(Ly))],

€_]dm11 = m11[6dln(ll) — 3dln(lz)} =+ mlz[dln(lz)],

e~'dmy, = ms[-2d1In(l)] + my; [3d1In(L,)] + m,[4d In(1;)

—dlIn(l,) — 2dIn(l3)],

3 3
€_1dm13 = m; |:—3d1n(12) - 3d1n(l7) + Edln(lg) + Edln(l]o):|

+ mg[6dIn(/;) + 6d1n(l3) + 3d1In(ls)
— 4d1n(ly) + 2dIn(l5) + d ()

=+ m13[2d hl(l )

—3dIn(ly) — 3dIn

(110)]
—4d1In(l;) + dIn(ly) + dIn(ly)],

1
l(111114_ mj |:d ln(l3) + 2dln(l6) 2dln(lg) - Edln(111>:|

+my[3dIn(l,) + 6d1n(l;)
+my[4din(l;) —dIn(l,) + 2d In(
e~'dm;5 = m,[-dIn(l,) — 2dIn(l7) + dIn(lg)
+ m3[2dIn(/3) 4+ d1n(lg)
+ mg[4dIn(l,) + 8d1n(l;)

— 3dIn(lg)
l7)

—4dIn(ly,)] + mys[4dIn(l)

—3dIn(ly,)]

—dIn(lg)
+dIn(ly)]

—dIn(lg) —dIn

— 4d1n(lg)

—dIn(lyy)],

(111)]
—2d1n(1,)],
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e-1dm ¢ — m,[dIn(l,) — dIn(L,)] + my {d In(l,) - édln(lz) - %dm(u)]

+my,[6dIn(l;) — 3d1n(l,)] 4+ ms [—d In(l}) + %dln(lz) - édln(h)]

1 mg[—2dIn(ly) + 2d1n(ly)] + myq [6d In(l,) - %dln(lz) - §d1n(z4)}

+m; [4d In(Zy) - %dln(lz) - %‘dln(h)] J
e~'dm; = m,[dIn(L,) — dIn(l,)] + m; Bdln(lz) - %dln(l@]
+m; {—%dln(lz) + %dln(h)] + mg[~2d1In(l) + 2dIn(1,)]

2 2 2 4
+mg [3dln(lz) - 3dln(l4)] +my; [4d In(l;) — gdln(lz) - 3dln(l4)} ,
€_1dm18 = m4[4d ln(ll) + 4dh’1<l3) + 2d 11’1(16) —-2d 11’1(19) —2d 11’1(110)]
1 1 1
+ my {—dln(ll) — dln(l3) — Edln(lﬁ) + Edln(lg) + Edln(llo):|

+my[—4dIn(l;) — 4dIn(l5) — 2d In(lg) + 2d In(lo) + 2d In(L,)]
+mygldIn(l) +4dIn(l;) — 3dIn(lg) + dIn(le) + dIn(ly) — 3dIn(ly,)]
+my9[—2d1In(/;) —dIn(lg) + dIn(ly) + dIn(l;y) — dIn(ly;)],

e~ldmyy = my[~12dIn(1;) + 3dIn(ly) — 6dIn(ls) + 6dIn(ly) — 3d1In(lg) + 6dIn(i7)]

+mj {3dln(ll) —dIn(ly) + 2d1n(l3) — %dln(l4) +dlIn(lg) - 2d ln(l7)]

+m,[12d1n(1;) — 6d1n(1,)]
+mg[12d1n(1;) — 6d1In(ly) — 6dIn(ly) — 12d1n(l;) + 6dIn(lg) + 6d1n(1;,)]
+myo[10d1n(1;) — 3dIn(ly) — 4dIn(l,) — 4dIn(l;) + 2dIn(lg) + 2d In(1y,)].

e ldmy) = m;y {—dln(ll) +dIn(l) —dlIn(l3) — %dln(lﬁ) - dln(l7)]
+my[—4dIn(l;) + 4d1In(l,) — 4d1In(l3) — 2d1In(lg) + 4d In(l;)]
+ m; {d In(l;) —dIn(l,) + dIn(l5) + %dln(l(,) - dln(lﬁ}

+mg[—2d1In(l;,) + 2d1In(ly) — 2dIn(l3) — dIn(lg) + 2d In(l;)] + mag[—4d In(Z,)
— 4d1n(l;) + 2d1In(ly) + 2d1n(1,)] + myy [~2d In(Z;) + dIn(Z,)],
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1 1 1 1 1
€_]dm2] = m; |:—§dln(lz) + dln(l3) + Edll’l(l4) + Edll’l(l(,) —Edln(lg) - Edln(l”)

3 1 1 1
=+ mj |:2d ln(ll) - §d1n<lz) =+ dln(l3) — 5(?111’1(14) =+ 5(?111’1(16) - 2d ln(l7) =+ Edln(lg)

+ %dln(lu)] +my[6dIn(l;) — 6dIn(ly) + 6dIn(l3) + 3dIn(lg) — 6dIn(l;)]

+ms[-2d1In(1,) + 2dIn(l,) — 2d In(l5) — dIn(ls) + 2d In(1;)]

+ mgl6dIn(l,) — 4dIn(ly) + 2dIn(l5) — 2d In(L,) + dIn(ls) — 6d In(L;) + 2d In(ly)

+2d1In(l,,)] + myo[12dIn(7;) — 6d In(l,)]

+my;[10d1n(l;) — 5d1n(l,) —4d1In(ly) — 4d1n(l;) + 2d1n(ly) 4 2d1n(l)],
e~ldmyy = mo[~2d In(l)] +my,[4d In(1;) — 2dIn(L, )]

eldm,y; = m; {d In(l) — %dln(lz)] +my[4dIn(l;) — 2d1n(l,)]

+m; {—d In(l;) + ;dln(lz)} +my[2d In(Ly)] + m,[2d In(Ly)]

+ my3[4dIn(l)) — 2d1In(l,)],
€_1dm24 = mlo[—Zd ln(lz)} =+ m24[6d ln(ll) —3d ln(lz)],

1 1
e_ldm25 = mj |:—§d1n(ll) + Zdll’l(lz):| + m4[—2d hl(ll) + dln(lz)]

+m; Bdln(z]) —idln(lz)] +myldIn(L,)] +my, {dln([l) - %dln(lz)

1
i) |+ magfaainiy) - 2am(e)].
€_ldm26 = mg[—Zd 1n<l2) —-2d 11’1(17) + dll’l(lg) + dln(ll())]

1 1
—+ my, —dln(lz) — dln(l7) + idln(lg) +2d1n(110):| + mlz[—dln(lz)]

[ 1 1
=+ myq 8d ln(ll) - 4dln(lz) + 2d 11’1([3) =+ dln(lﬁ) - dll’l(l7> - 5(111’1([9) - Edln(llo):|

(1 1
+m27 —Edln(lg) +§dln(llo):|,
e~'dmy; = m[=dIn(lg) +dIn(ly;)] +ms[dIn(lg) — d1n(Z};)] + mg[4d In(lg)

3 3
- 3d ln(lg> —+ 3d ln(llo> - 4d ln(lll>] —+ my; |:—§dln(lg) + Edln(llo)]

+m[—dIn(lg)] + myg Bdln(lg) - %dln(llo)} +my; {4(1 In(1;) — 4d1n(1,)

3 3
- 2d ln(l3) - 4d lll(ls) + dln(l6) - dln(l7) + Edln(lg) + Edln(llo):| s
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1 1 1 1 1
€_1dm28 = m; —zdln(l]) —zdln(l3) —Zdln(lé) +Zdln(19) +Zdln(l|0)]

(1 1 1 1 1
+ ms Edln(ll) + Edln(l3) +Zd1n(l6) — Zdll’l(lg) — Zdll’l(llo):|

+my |3dIn(l,) + 3dIn(l3) + %dln(lﬁ) - %dln(l9) - %dln(llo)}

[ 1 1 1 1 1
=+ m5 _—Edln(ll) — Edln(l3) — Zdln(l6) =+ Zdln(lg) +Zd1n(110):|
=+ mg[—4d ln(ll) - 4d 111([3) - 2d ln(lﬁ) 4 2d ln(lg) -+ 2d 11’1(110)]
1 1 1
+ m15 dln(ll) + dln(l3) +§dln(l6) —Edln(lg) - zdln(llo):|

+my;[2dIn(l,) + 2dIn(l3) + dIn(ls) — dIn(ly) — dIn(lyy)]

g [—=6d1n(l;) — 6d1n(l3) — 3dIn(le) + 3dIn(ls) + 3dIn(ly0)]
+my,[~2d1In(l;) = 2dIn(l5) — dIn(lg) + d1n(l) + dIn(l3o)]

+ my[2d1In(l,) — 2d1n(l,) 4+ 2d1n(l3) 4+ dIn(ls) — 2dIn(lg) + d1In(ly) + d1In(/;g)
—2d1In(ly;)] + my[2d1n(l3) + dIn(ls) — dIn(lg) — dIn(lyy)],

3 1 1 3
e‘ldng = m, {dln(ll) + Zdln(b) +§dln(l3) + 5(11[1(14) + Zdll’l(lﬁ) + 5(111’1(17)

—dlIn(ly) — dln(l,o)} +m,[—dIn(l,) + 4d1n(l;) + d1n(l,) + 2d1n(lg) — 2d In(l,)

—dlIn(ly) = dIn(l,)] + my; [ din(l)) + 33 dln(lz) - %dln(l3) - 6(1111(14)

1 2 2
- %dln(lG) + 8(1111([7) + gdln(lg) + gdln(llo)] + m4 |:—6d ln(ll) + %dll’l(lz)

9
- 9d 111([3) - Edln(l6) + 3d 111([7) + 3d ln(lg) + 3d ln(llo):| =+ mgy |:d ln(ll)

12 2
+mg[dIn(l,) — 6d1n(l3) — 2d1In(ly) — 3d1n(ls) + 2d1In(l;) + 2dIn(ly)
+2d1In(l,0)] + mg[8d1n(l;) + 4dIn(l3) — 2d1n(ly) + 2d1In(lg) — 2d In(l)
—2d1In(l,0)] + my3[dIn(ly) — 2dIn(l3) — dIn(lg) 4 2d In(1;)]

1 1 1 2 2
- dln(lz> + idln(l3) + Edln(l4) + %dln(lG) - gdln(l7) - gdln(lg) - gdln(llo)]

1
+m15 2dln ——dln<lz) dln(l3) —Edln(IG) —dln(l7) —|—d1n(lg) +d1n(llo):|

+m 2
163 3

4 2 2
din(l,) += dln(l4)+3dln(l7)——dln(lg)— dln(llo)}
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€_ldm30 =

e ldmy, =

€_1dm32 =

1 4 2
+ m]7 |:—4d hl(l]) + gdlﬂ(lQ) - 2dh’l(lg) + gdh’l(l;;) — dll’l(lé) + gdll’l(l7)

2 2
+ gdh’l(lg) + gdln(ll())] + m20[12d 11’1(11) - 3d 11'1([2) + 6d 11'1([3) - 6d ln(l4)

+3d1n(lg) — 6d1n(l;)] + my, [4d In(ly) — 3dIn(ly) + 2d In(ls) — 4d In(,)
+dlIn(lg) — 6d1n(l;) + 2dIn(lo) + 2d In(ly0)] + mag[3d In(ly) — 2d In(l;) — d In(lg)
+6d1n(l;) — 2d1n(ly) — 2d1In(1;,)] + mao[2dIn(Z;) — dIn(ly) — 2d In(L3) — dIn(lg)
+2d1In(l;) —dlIn(lg) + dIn(ly) + dIn(l,y) — dIn(l,)],

m;[dIn(ly)] + my[6dIn(ly)] + ms[—dIn(ly)] + ms[2d In(/;)]

+my;[4dIn(y)] + moy[-2dIn(ly)] + mo3[2d In(ly)] 4 mypy[-2d In(1;)]
+myl6dIn(l,) — 4dIn(ly) + 2d In(Z3)],

m; [—%dln(ls) + %dln(ln)} +my[-2dIn(ly) + 2dIn(ly9)]

1 1
—+ my |:§dln(19) — Edln(llo):| —+ m7[—3d ln(lg) + 3d ln(lg) —3d ln(llo)

+3dIn(131)] + myo[2dIn(lg)] + myg[—dIn(ls) + dIn(ly) — dIn(lyo) +dIn(l;,)]
+myg[3dIn(lg) — 3dIn(l;;)] +myo[dIn(ls) + dIn(ly) — dIn(lyp) — dIn(Zy)]
+myy[-2d In(ly) + 2d1In(l;g)] + m3[4dIn(l;) — 3dIn(l,) — 2dIn(l5) — 2d In(l5)
+dIn(ly) +dlIn(ly)],

1 1 1 1 1
m; |:—Zdln<lz) + Zdln(lg> - Zdln(llo) - 5(?111’1(113) +§dln(ll4)]

1 1 1 1 1 1
+m3 |:—Zdhl(lz) — Edln(l(,) — Edln(l7) —Edln(lg) +§dln(l|3) —Edln(lm,)

1 1
+ Edll’l(lls) + 5(‘111‘1(116) + m4[—d ln(lz) - 2d ln(l6) - 2d ln(l7) - Zd 1n(19)

1 1
+ 2(1111([13) - 2(1111([14) + 2d1n(l15) + 2dhl(ll6)] + m5 |:Zdln(lz) + Edln(l(,)

1 1 1 1 1 1
+§dln(l7) +§dln(19) — idln(ln) +§dln(114) —Edln(lls) —2d1n(ll6):|

+ mg[—Zd 11’1(12) + 2d 11’1(19) - 2d ln(llo) - 4d ln(ll3) + 4d ln(ll4)]
+ mlo[Zd 11’1(11) + dln(lz) + 2d 11'1(17) + 2d ln(lg) —-2d 11’1([13) —-2d 11’1(114)

1 1 1
+ 2dln(ll5) - 2dln(116)} ‘I‘ m]] |:—§dln(lz) +§dln(lg) —Edln(llo) - dln(ll3)

+ dln(ll4)] +mp, [—dln(ll) — %dln(lz) —dlIn(l;) —dIn(ly) + dIn(l3)
+dlIn(l4) —dIn(l5) + dln(lm)}

1 1 1
+ ms |:2dln(l2) — Edln(lg) + Edln(llo) + dln(113) - dln(ll4)

+ mzo[—?)dln(lz) + 3d ln(lg) - 3d ln(ll()) - 6d 11'1(113) =+ 6d 111(114)]
+ my; [—3d ln(lz) - Zd 11’1(16) - 2d ln(l7) - 2d ln(llo) - 2d ln(ll3) + 2d ln(ll4)
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+ 2d ln(115) + 2d 1[1(116)] —+ m24[—2d ln(lz) —-2d ln(l6) —-2d 11’1([7) - dln(l:;)
- dln(llo> + 2d 1[1(115) + 2d 11’1(116)]

—+ mys [d 111([2) — dln(lg) + dln(llo) + 2d h](l]:;) —2d ln(l]4)] + myq |:3d ln(lz)
3 3
=+ 3dhl(l6) + 3dln(l7) +§d1n(lg) +§d1n(llo) — 3dln(115) - 3dln(ll6)]

1 1
sy LaIn(ly) - Jdn(lo) +dln(ls) - dinle)
+my[4dIn(l,) — dn(l,) — 2dIn(Z3) + 2dIn(l;) + dIn(le) +dIn(ly) — 2d In(ly,)],

3 3 13
€_1dm33 = m; [Zdln(lg) - Zd]n(llo)] —+ mz[dln(lg) - d]n(llo)] + myj [—Edh’l(lg)

13 11 13 13
+Edln(110):| +m4|: 2 dln(lg) + — dln(llo):| +m5 |:12dln(lg) 12

+mg[—dIn(ly) + dIn(lyo)] + mg[6dIn(ly) — 6dIn(l19)] + mg[—2d In(/)]
+myo[—4dIn(ls)] +my;[2dIn(ly) — 2dIn(l3)] + mp[2d In(fs)]

dln(llo)}

1 1 3 3
-+ mi3 |:—§d1n(lg) -+ gdln(llo)] -+ mis |:—§d1n(19) -+ Edln(llo):|

2 2 7 7
+ mq |:—§dln(lg) + gdln(llo)] + m,y |:—§dln(19) —+ gdln(llo):|

+ my[5d1n(ly) = 5dIn(l1g)] + my; [3dIn(ly) — 3dIn(ly)]

+my;[2dIn(ly) = 2d1n(ly0)] + mys[=dIn(ly) + dIn(l)]

+myy[2d1In(ly) — 2d1In(l)0)] + mys[-2d1In(ly) + 2dIn(l)]

+mys[—2d1In(ly) + 2dIn(l1)] + mog[4dIn(lg) — dIn(ly) + dIn(lyp) — 4dIn(ly;)]
+ mye[2d In(ly) — dn(ly) +dIn(ly) — 2dIn(ly,)]

+my,[2dIn(ly) — 2d1n(l,0) + 4d In(ls) — 4d In(l;6)]

+my;[2dIn(l) — 4dIn(ly) — 2dIn(l) — 6dIn(l5) + 2d In(lg) — 2d In(l;)
+2d1In(l) + 2dIn(1,0)] + mas[~2d In(lg)] + mag[2d In(ls) — 2d In(l0)],

1 1 1 1
e‘ldm34 =1m, [—Edln(lz) — idln(l7) + Zdln(lg) + Zdln(llo)]

7
dll’l(lz) + —dln(l7)

6

7
+ mz[—Zd ln(lz) - 2dln(l7) + dln(lg) + dln(llo)} + m3 |:6

_ 17—2dln(19) 72 dln(llo)] +m, {Sdln(lz) +5dIn(l;) — %dln(lg) - gdln(llo)

7 7 7 7
+ ms |:—6d1n(12) - 6(1111([7) + Edln(lg) + udln(llo):|

+mg[2d1n(L,) + 2dIn(l;) — dIn(ly) — d1n(l3)] + mg[—4d In(l,) — 4d In(1;)
+2d1In(ly) + 2d1n(l,9)] + me[2d In(1,)] + m o [4d In(1,)]
+m,;[-2dIn(l,) — 2d1In(l;) + dIn(ly) + d1n(l59)] + my,[-2d In(1,)]
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2 2 1 1
—+ mi3 |:§dln(12) + §dln(l7) — §dln(19) — §dln(l]0)} —+ mis |:dln(12) —+ dln(l7)

1 1 4 4 2 2
- Edln(lg) - Edln(llo)] + mq |:§d1n(12) + 5(111’1(17) - gdln(lg) - gdln(llo):|

2 2 1 1
—+ my |:§d1n(12) —+ gdln(l7) — gdln(lg) — gdln(llo):| —+ m20[2d hl(lz) —+ 2d ln(l7)

—dIn(ly) — d1In(l,g)] + my [~2dIn(,) — 2d In(l;) + dIn(le) + dIn(ly0)]

+ my,[—4dIn(l,) — 4dIn(3) — 2d In(lg) + 2d In(ly) + 2d In(1,o)]

+ moyy[~4d In(ly) — 4dIn(l;) + 2d In(l) + 2d In(l,0)] + mog[4dIn(,) + 4d In(ly)
—2dIn(ly) —2d1In(l,g)] + myg[2d In(l,) + 2d In(l;) — dIn(ly) — d1n(l)]

+ myy[2d1In(l,) + 2d1In(l;) — dIn(ly) — dIn(l;g)] + mszy[—2d In(7,)]
+my,[4dIn(ly) + 4dIn(lg) + 4dIn(ly) + 2d In(ly) + 2d In(ly)

—4dIn(l;5) — 4dIn(ly6)] + m33[dIn(ly) — dIn(ly)]

+myf4dIn(l,) — 4dIn(ly) — 2dIn(l;) + dIn(ly) + d1n(l30)] + mss[2d In(ly)]
+mag[—4dIn(ly) — 4dIn(ly) + 2d In(lo) + 2d In(1yp)].

e~ 'dmys = m, {—%dln(lz)] + m,[dIn(/,)] + m; [%dln(lz)] +my Bdln(lz)]
+ms {—%dln(lz)} + mg[—dIn(ly)] + mg[-6dIn(L)] + m; {—%dln(lz)]
s 3amn()| g amn)| 4 mig | S|+ magf-din()
+my; [dIn()] + my[-2dIn(l)] + mys[2d In(l5)] + mye[-2d In(1)]
+my;(2d1n(ls)] + mog[-3dIn(ly)] + myg[—dIn(l;)]
+ m3y[—2dIn(/y) — 2dIn(/;) + dIn(ly) + dIn(l;)] + m3,[4dIn(l;) + 2d1In(l,)
+4dIn(l;) +4dIn(ly) —4dIn(l;3) — 4d1In(l,4) +4dIn(l;5) — 4dIn(l,6)]
+mys2d1n(l)] + mas[2d In(l;) — 2d In(ly) — 2d In(L3) — 2dIn(lg) + 2d In(l;)
+dIn(ly) + dlIn(ly9)] + mys[—4dIn(ly)],

5 3 1 1 1 1
€_1dm36 = m, Zdln(ll) — gdln(lz) + Edln(l3) + Zdln(l(,) - Zdln(lg) - Zdln(110>:|

I 1
+m; |din(ly) + 7 dn(l) +2dIn(l;) + dIn(lg) ~ dn(ly) ~ dln(llo)}

[ 17 1 3 3 3 3
+ m3 —Ed1n<l1) - ﬁdll’l(lz) - Edll’l(l:;) - Zdln(l6> + Zdln(lg) + Zdln(llo)]

[ 13 1 7 7 7
+ my —Edln(ll) - Zdln(lz) — 7d1n(l3) - Edln(l()) + Edln(lg> + 2dln(llo):|

(17 1 3 3 3 3
+ ms Edln(ll) =+ ﬂdanZ) —+ Edln(l3) —+ Zdln(l6) — Zdln(lg) — Zdln(llo)]

I 1
+ mg —d ln(ll) - Edln(12> —2d 11'1(13) - dln(l()) + dln(19> + dln(llo):|

+ myl6dIn(l;) = 3d1n(1)] + my[—dIn(l,)] + myo[~dIn(L,)]
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[ 1 1 2 1 1 1
+ mi3 —gdh’l(ll) —gdln(lz) —gdh’l(l:;) —gdh’l(l6) +§d1n(19) +§d1n(llo>:|

[ 5 3 1 1 1
+ m15 —zdln(ll) + Zdln(lz) - dln(l3) - zdln(l6) + Edln(lg) + Edln(llo)]

2 1 5 1
—+ mq gdln(l]) —3dln(12):| —+ m,y |:—3dln(ll) —6dln(lz) - 2d1n(l’;) — dln(l6)

+dlIn(ly) + dln(llo)} +my, {7dln(ll) - %dln(lz) + 6d1In(l3) + 3d1n(lg) — 3dIn(ly)
- 3dln(l,0)] +m,, [dln(ll) + %dln(lz) +2d1n(l3) + dIn(lg) — dIn(ly) — dln(l,o)}
+my2d1In(1}) + 2dIn(l3) + dIn(lg) — dIn(ly) — dIn(l;0)] + my; {—Zd In(1,)

+dlIn(ly) —2dIn(l3) —dIn(lg) + dIn(l7) + %dln(lg) + %dln(llo)}
+ myy[-2d1In(l;) + dIn(ly)] + mys[-2d In(Z;) + dIn(ly)] + myg[4dIn(l;)
—dIn(ly) +2dIn(l3) + dIn(ls) — dIn(ly) — dIn(l;0)] + mys[=d In(ly) + d1In(l0)]

+ mog {d In(1,) - %dm(zz) —2d1n(l3) — dlIn(ls) + dIn(ly) + dln(llo)}

+ my {—d In(l,) — %dln(lz) —2dIn(l3) — dIn(ls) 4 dIn(ls) + dln(llo)]

+my2dIn(L,)] + may[—3dIn(ly) — 2dIn(lg) — 2d In(l;) — 2dIn(l,0) — 2d In(1;5)
+2dIn(l14) + 2d1n(ly5) + 2d1In(l3)] + ms3[—dIn(ly) + dIn(Z;)]
+ my5[—2d In(1,)] + msg[4dIn(ly) + 2d In(L;) — dIn(ly) — dIn(1y,)). (A1)

APPENDIX B: A SYMBOL ALPHABET WITH SEVERAL INDEPENDENT ROOTS

In this appendix, we consider the symbol alphabet of the one-loop box integral shown in Fig. 6. This integral occurs in
processes like gg — hh or gg — ZZ with a top quark running in the loop.
We use the kinematical definitions

(SN}

$=pi=my, (B1)

—0
I
S
I

o
AN

s=(pi+p)  t=(p—-p3)> P

and m? for the internal mass squared.

b1 P3

P2 P4

FIG. 6. Feynman integral with symbol alphabet depending on several roots.
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It is straightforward to write down a normal form basis:

m=c ) (B2)
my = /ss —4m?) e () (83)
ny = \fmi(mf —am?) e () (B4
ng = \Jt(t —am?) e ()= (B5)

which fulfils a differential equation of the form

dn; = €Y din(l)(A®), ;. (B10)
ok
with i, j = 1, ..., 8. It is not straightforward, however, to actually arrive at (B10) with a simple form for the letters /; due to

the presence of the five different square roots. Moreover, while it is not difficult to choose a set of independent letters, it is
not obvious how to minimize the number of independent letters.

While one could try to rationalize some of the roots with a suitable reparametrization, we want to take a different
approach here and just directly work with the original kinematic invariants. Our primary motivation is to extend the
construction of symbol letters presented in Sec. IV to the case of several root-valued leading singularities.

Employing the integration measure

(1 —e)m?
e (B11)
the integrals m; depend only on the dimensionless ratios of scales
wy = s/m?2, (B12)
wy = t/m?2, (B13)
wy = mi/m?. (B14)

In a conventional approach, one might try to directly integrate the terms in the partial differential equations with e.g.,
MATHEMATICA to arrive at the form (B10). In this approach, we obtained 24 independent letters, many of which are very
complicated and involve high powers of the variables.

Instead, the following construction leads to much simpler and fewer independent letters. Starting from the rational part

{W],Wz,W3,W3 — Wy, W; + W% —4W3,W1W2 + W% — 2W2W3 + W%} (BIS)

and the five square roots
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{\/(Wl —4wi /(W —4)ws. /(W —4)wa, /wy (wy _4W3)v\/WI(WIW%_4W1W2_4W%+8W2W3_4W%)}9 (B16)

we used the algorithm described in Sec. IV for each of these square roots independently. Next, we formed pairs and triples
of the roots and used the algorithm on their products. We find a total of 22 independent candidates for letters in this way,
which are much simpler than the original set of letters and involve only low powers of the variables:

Z - {71...,722}

= {wl,wz,w3,w2 — w3, Wy — 4wz + w3, wiwy + wi = 2wows + w3, /(=4 +wp)wy,
V(=4 4 wa)wa, /w3 (=4 4 w3), \/wi (w) — 4ws), (\/Wl(—4 +wy) + W1>/27
<\/ wy (=4 +wy) + W2> /2, <\/ wiy(—4+w3) + Ws) /2,
\/WI(WIWZ(W2 —4) —4(wy —w3)?), (\/Wl(wl —4w3)\/ws(—4 4 w3) + W1W3)/27
(W% + VWi (=4 +wi)y/wi (w —4ws) — 2W3W1)/2’
(wiwa =+ s (wrwalows = 4) = 40w2 = w5)2)) /2,
(W%Wz + \/WI(WIWZ(W2 —4) = 4wy —w3)?)V/wi(w = 4ws) = 2wowswy + ZW%W1>/2,
(—2w% — dwawy + wiwy + dwsw,
V(A )y w (s (w = 4) = 40w, = w3)%) ) /2,
(—2W1W2 — 2W1W3 + WiWoWw3
V(A )y w (s (w = 4) = 40wy = w3)) ) /2,
(—4w1w2 —2W3 + w w3 + dwyws — 2w

V(A ) (v (ws = 4) = 40wy = w5)2)) /2}. (B17)

The factor 1/2 appears for the same reason as in Sec. IV to prevent any factor of 2 in the factorization of the product of a
letter with its conjugate over the rational part. All of these letters are power products of the 24 letters in the differential
equation obtained in the first attempt.

To go to even lower degrees, one can do a further factorization of the letters by factorizing the square roots further, i.e., by
splitting them in a similar way to

Vw = 4w = wiy/w —4, (B18)

and dividing them out in all letters, if possible. Note that this leads to a representation with a possible sum of different square
roots in each letter. If one would like to derive this representation along the lines described in Sec. IV, one would need to
allow for more general structures than

=G+ (B19)

with rational ¢,.

Interestingly, in our new representation even more letters drop out of the differential equation, and one finds only 19
letters in the end:
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L - {ll...,llg}

= GV a v ) (Vi v ) Vi
3 (Vo= i) (Ve AV —a s vy ) =,

1
5(\/“’1 _4\/W1 — 4wz +wy _2W3>’W2—W3, wz — 4,

1
— (\/wl —4\/W1W2(W2 —4) —4(wy —w3)? +wiwy — 2w, — 4w, +4w3),

1

2 (\/wl - 4w3\/w1w2(w2 —4) —4(wy —w3)? + wiwy — 2wows + 2w§),

1

5 (\/ w3 — 4\/W3\/W1W2(W2 — 4) — 4(W2 - W3)2 + VWIWoW3 — 2w/W1W2 — 2\/W1W3) },

with the differential equation given by

e 'dn, =0,

e~'dn, = nd In(#) + nyd In (1/5),

e'dny =n;d In(2) + n3d In (1/13)),

e~'dny = n,d In(22) + nyd In (1/22),

e'dns = n,d In(53),

e~'dng = nyd In(2) +nyd In (1/22),

e~'dny = nyd In (12/113) + nd In(2, /1) + nyd In (2/1,5).

e”ldng = nod In (I};3/113) + mad In (1, 135/ 1) + mad In (I5/1g) + nsd In (Fg/11a)
+ned In (13/1) +nd In (lg/(113114)) + ngd In (114/17;).
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