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We consider Feynman integrals with algebraic leading singularities and total differentials in ϵ d ln
form. We show for the first time that it is possible to evaluate integrals with singularities involving
unrationalizable roots in terms of conventional multiple polylogarithms, by either parametric integration or
matching the symbol. As our main application, we evaluate the two-loop master integrals relevant to the
ααs corrections to Drell-Yan lepton pair production at hadron colliders. We optimize our functional basis to
allow for fast and stable numerical evaluations in the physical region of phase space.
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I. INTRODUCTION

The Drell-Yan process [1] is one of the most important
and basic processes measured at the Large Hadron Collider
at CERN. It is used for precision measurements of the W�
mass, the Z mass, and the weak mixing angle, as well as for
new physics searches. In order to interpret the increasingly
precise data, higher-order corrections must be included in
the theory predictions. In fixed-order perturbation theory,
the pure quantum chromodynamic (QCD) corrections
to the cross section are known through to next-to-next-
to-leading order [2–5], the pure quantum electrodynamics
(QED) corrections to neutral gauge boson production and
decay are known at next-to-next-to-leading order [6,7],
whereas the exact electroweak (EW) corrections are known
only at next-to-leading order [8–10]. Since these correc-
tions turn out to be significant, the inclusion of exact mixed
EW-QCD corrections is well motivated; at the present
time, results are known only for the mixed QED-QCD
corrections [11] and in the pole approximation for the full
EW-QCD corrections [12,13].

The two-loop master integrals relevant to the virtual part
of the mixed EW-QCD corrections to the Drell-Yan process
were studied in [14,15] and all of them admit ϵ-decoupled
and, subsequently, ϵ d ln differential equations [16]. All of

the double-box integrals are actually planar, and for most of
them, no intrinsically nonrational prefactors appear in the
ϵ-decoupled differential equations written with respect to
suitable kinematic variables. It has come to light, however,
that the two most complicated two-loop integral topologies
(right panels of Figs. 1 and 2) involve three square roots at
once which cannot be rationalized simultaneously [17,18].
Here and in the following, we will refer to a set of roots as
unrationalizable if no locally invertible rational variable
transformation exists, which turns all of them into rational
functions at the same time. The presence of nonrational
symbol letters [19] in the ϵ d ln differential equations
makes the standard approach to the integration of the
differential equations in terms of multiple polylogarithms
impossible.
Formost Feynman integrals considered in the literature so

far, kinematic square roots could be rationalized by a
suitable choice of variables, e.g., by using a Landau variable
for Feynman integrals with a two-mass threshold [20], by
using momentum twistor variables [21] for multileg
Feynman integrals [22–24], or by using diophantine equa-
tions to construct suitablevariables [25].However, in several
processes studied in the literature, no simultaneous ration-
alization of the square roots which appear could be found. In
addition to theDrell-Yan processmentioned above, this is an
issue for a subset of the planar two-loop master integrals for
Bhabha electron-positron scattering [26,27] and for a subset
of the planar two-loop master integrals for the next-to-
leading-order QCD corrections to Higgs plus jet production
with full heavy top quark mass dependence [28].
So far, master integrals satisfying ϵ d ln differential

equations which involve nonrational symbol letters have
typically been treated as generic Chen iterated integrals
[29], with a focus on the Euclidean region of phase space.
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Given our experience from other processes [30,31], one
may expect significantly faster and also more stable
numerical evaluations for results directly expressed in
terms of suitably chosen multiple polylogarithms. A
constructive algorithm to obtain such a solution in the
presence of root-valued symbol letters was used in [32] to
calculate Feynman integrals. However, the latter case is
special since the symbol alphabet is univariate and simple,
and a rational parametrization does in fact exist. In other
words, it was unclear until now whether it should generi-
cally be possible to find linear combinations of multiple
polylogarithms which solve ϵ d ln differential equations
with symbol letters involving unrationalizable algebraic
functions.
In this article, we show for the first time that it is indeed

possible to integrate Feynman integrals of current phe-
nomenological interest with unrationalizable roots in their
symbol letters in terms of multiple polylogarithms, focus-
ing primarily on the most complicated two-loop mixed EW-
QCD Drell-Yan master integrals. Our method allows us to
derive results written in terms of multiple polylogarithms
well suited for the physical region of phase space. The two-
loop mixed EW-QCD Drell-Yan master integrals with two
massive internal lines exhibit a rich structure of thresholds
and pseudothresholds, which means that one must think
carefully about the analytic structure of the involved
functions. We discuss in detail a procedure to systemati-
cally filter the functions in a given region of phase space,
such that no explicit Feynman þi0 prescriptions are
required for the kinematic variables and spurious singu-
larities of individual multiple polylogarithms at pseudo-
thresholds of the Feynman integrals are avoided.

The outline of the article is as follows. In Sec. II we
discuss the linear reducibility of examples which are well
known in the literature to frustrate the standard machinery
of Feynman integral calculus. Specifically, we prove that
the integral topologies of Fig. 2, a five-line master integral
for Bhabha scattering and a six-line master integral for
Drell-Yan production, are linearly reducible for the first
time. Linear reducibility is a technical criterion which is of
interest here because linearly reducible Feynman integrals
are guaranteed to be integrable in terms of multiple
polylogarithms to all orders in ϵ. In Sec. III, we define a
normal form basis with ϵ d ln differential equations for the
two-loop master integrals for the mixed EW-QCD correc-
tions to Drell-Yan production with two massive internal
lines (see the right panel of Fig. 1) and discuss a partial
rationalization of the roots appearing in our integral basis
definition. In Sec. IV, we show how to integrate the
differential equations directly in terms of multiple poly-
logarithms even in the presence of root-valued symbol
letters. In Sec. V, we review the analytic continuation of
multiple polylogarithms and outline our procedure to filter
multiple polylogarithms with undesirable analytic proper-
ties out of our Ansätze. In Sec. VI, we present results for the
most complicated two-loop mixed EW-QCD Drell-Yan
master integrals. In particular, we highlight the notable
analytic features of our solution for the six-line integral
from the right panel of Fig. 2. We conclude in Sec. VII and,
for clarity, we give the set of complete ϵ d ln differential
equations for the two-loop master integrals considered in
this paper in Appendix A. In Appendix B we give an
example for the construction of algebraic letters in the
presence of multiple root-valued leading singularities.

II. LINEAR REDUCIBILITY FOR ALGEBRAIC
SYMBOL LETTERS

In this section, we discuss the direct integration of a
five-line master integral for the two-loop QED corrections
to massive Bhabha scattering (left panel of Fig. 2). This
particular five-line integral is of special interest because
its symbol letters are not simultaneously rationaliz-
able [27]. It has been known for quite some time that
the planar master integrals for the two-loop QED correc-
tions to Bhabha scattering (see the left panel of Fig. 1)
satisfy ϵ-decoupled differential equations [26], but, even
at leading order in the ϵ expansion, it is not at all clear that
integral (2.1) below may be expressed as a linear combi-
nation of standard multiple polylogarithms [33–35]. In
fact, it was suggested in [36] that elliptic multiple
polylogarithms [37] might actually be required for such
cases. It is therefore of some importance to demonstrate
that one can actually integrate it to all orders in ϵ in terms
of Goncharov or multiple polylogarithms using a HyperInt-
like approach [38–48].
In fact, this may be readily achieved by studying the

polynomials which appear in the polynomial reduction

FIG. 1. Planar top-level topology for the two-loop QED
corrections to Bhabha electron-positron scattering (left) and
the most complicated top-level topology for the mixed EW-
QCD two-loop corrections to Drell-Yan lepton production (right).
Thick lines denote massive propagators and massive legs, and
thin lines are used in the massless case. Both of the integral
topologies depicted above admit ϵ d ln differential equations.

FIG. 2. Feynman integrals relevant to the two-loop QED
corrections to Bhabha electron-positron scattering (left) and
the two-loop mixed EW-QCD corrections to Drell-Yan lepton
production (right), which have problematic root-valued leading
singularities.
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[38,39,42] of the Symanzik polynomials at intermediate
stages. The idea is to make changes of variables which
factorize totally quadratic polynomials to allow for further
integrations without producing square root-valued func-
tions of the remaining Feynman parameters. Ultimately, the
goal is to find a complete sequence of integration variables
or, in the language introduced in [39] and refined in [40], to

show that (2.1) is a linearly reducible Feynman integral in
the chosen variables. Practically speaking, a Feynman
integral is linearly reducible if it can be evaluated in terms
of Goncharov polylogarithms, starting from the Feynman
parametric representation but allowing for arbitrary varia-
ble changes along the way. In this case, the Feynman
parametric representation is

ð2:1Þ

where

U ¼ α1α2 þ α1α3 þ α1α5 þ α2α3 þ α2α4

þ α2α5 þ α3α4 þ α4α5; ð2:2Þ

F ¼ −sα2α4α5 − tα1α2α3 þm2ðα4 þ α5ÞU
−m2ðα1α2α4 þ α1α2α5 þ α1α3α4 þ α1α3α5 þ α1α4α5

þ α2α3α4 þ α2α3α5 þ α3α4α5Þ ð2:3Þ

are the integral’s Symanzik polynomials. We implement the
delta function constraint at the very beginning by setting
α5 ¼ 1 inside U and F . Our normalization for the integral
is chosen to facilitate comparison with FIESTA4 [49].
At the outset, the polynomial reduction of U and F

indicates that just one integration can safely be performed,
with respect to either α1 or α3. The irreducible polynomials
in the remaining Feynman parameters which could poten-
tially appear in the result after integrating out α1 are [40]

Lα1 ¼ f1þ α2 þ α3; m2 − tα2α3; α2ð1þ α3Þ þ ð1þ α2 þ α3Þα4;
m2α2 þ ðm2 þ ð2m2 − sÞα2Þα4 þm2ð1þ α2 þ α3Þα24;
α22ðm2 þ tα3ð1þ α3ÞÞ þ ð2m2 − sþ tα3Þð1þ α2 þ α3Þα2α4 þm2ð1þ α2 þ α3Þ2α24g: ð2:4Þ

The final totally quadratic polynomial in Lα1 is conveniently dealt with by using the first nontrivial variable change from
the discussion of the period P7;11 in [42]. It is readily apparent from the form of the polynomial that two powers of α2
factorize from it once the variable change

α4 ¼
x4α2

1þ α2 þ α3
ð2:5Þ

is applied:

α22ðm2 þ tα3ð1þ α3ÞÞ þ ð2m2 − sþ tα3Þð1þ α2 þ α3Þα2α4 þm2ð1þ α2 þ α3Þ2α24
¼ α22ðm2 þ tα3ð1þ α3Þ þ ð2m2 − sþ tα3Þx4 þm2x24Þ: ð2:6Þ

Quite remarkably, the other polynomials in Lα1 which depend on α4 still give rise exclusively to irreducible polynomials
linear in α2 after changing variables:

α2ð1þ α3Þ þ ð1þ α2 þ α3Þα4 ¼ α2ð1þ α3 þ x4Þ; ð2:7Þ

m2α2 þ ðm2 þ ð2m2 − sÞα2Þα4 þm2ð1þ α2 þ α3Þα24
¼ α2

1þ α2 þ α3
ðm2ð1þ α2 þ α3Þ þ ðm2 þ ð2m2 − sÞα2Þx4 þm2α2x24Þ: ð2:8Þ

From Eqs. (2.6)–(2.8), it is clear that we can now safely integrate out α2.
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Rerunning the polynomial reduction with HyperInt after
changing variables shows that the irreducible polynomials

Lα1α2 ¼ f1þ α3; 1þ α3 þ x4; m2 þ tα3 þ tα23;

m2 þ ð2m2 − sÞx4 þm2x24;

m2ð1þ x4Þ − sþ ðm2ð2þ x4Þ − sÞα3;
m2 þ ð2m2 − sÞx4 þm2x24 þ tð1þ x4Þα3 þ tα23g

ð2:9Þ

could appear in the result after integrating out α1 followed
by α2. Lα1α2 is more nontrivial to treat than Lα1 and requires
us to think carefully, both about what sort of result we
expect to find and how the MATHEMATICA-based private
direct integration code written by one of us actually
operates in practice. As should by now be clear, our goal
is to delay the appearance of square roots until the final
variable of integration is moved into the arguments of the
Goncharov polylogarithms which depend on it. With the
final integration of the most complicated weight-three
functions in mind, it is useful to aim for a final integration
domain of [0, 1]. This will naturally produce Goncharov
polylogarithms of argument 1 which contain a complicated
square root in the weights. Actually, due to the way that our
integration script is written, it is most natural for us to
integrate complicated finite Feynman parameter integrals
such as the one considered in this section over the unit
hypercube. This is because it is easier for our integration
code to take a definite integral on [0, 1] than on ½0;∞Þ, due
to the fact that no complicated argument inversion formulas

for nontrivial Goncharov polylogarithms need to be derived
if the upper integration end point is always set to 1.
In this spirit, we initiate our treatment of Lα1α2 by trivially

mapping one of the remaining integration domains onto
[0, 1] via the transformation

α3 ¼
x3

1 − x3
: ð2:10Þ

It is also useful to note that two of the quadratic poly-
nomials in Eq. (2.9) depend on just a single Feynman
parameter each, a situation which strongly suggests that a
change of kinematic variables would be advantageous.
Indeed, with Euclidean s and t in mind, we see that the
variable changes

s ¼ −
4m2ðv2 − v1Þ2

ð1 − v1Þð1þ v1Þð1 − v2Þð1þ v2Þ
and

t ¼ −
m2ðv2 − v1Þ2

v1v2
ð2:11Þ

rationalize two square roots which would otherwise arise
from the third irreducible polynomial of Lα1α2 ,

m2þ tα3þ tα23 ¼
m2ðv1− ðv2−v1Þα3Þðv2þðv2−v1Þα3Þ

v1v2
;

ð2:12Þ

and the fourth irreducible polynomial of Lα1α2 ,

m2þð2m2− sÞx4þm2x24¼
m2ðð1þv1Þð1−v2Þþð1−v1Þð1þv2Þx4Þðð1−v1Þð1þv2Þþð1þv1Þð1−v2Þx4Þ

ð1−v1Þð1þv1Þð1−v2Þð1þv2Þ
: ð2:13Þ

Curiously, transformation (2.11) was also found to be
useful in the context of the multiloop QED corrections
to light-by-light scattering [50].
At this stage, it turns out that just a single nontrivial

algebraic function of x4 is generated if one attempts to
naively continue the calculation by integrating out x3:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ð4m2 − 2s − tÞ

4m2 − t
x4 þ x24

s
: ð2:14Þ

To our knowledge, a situation such as this was first
discussed in the Feynman integral literature in the context
of the fully massless (three-loop) K4 integral [51]. Using
the method of parametrization by lines [51,52], it is
completely straightforward to derive a final variable change
for x4 which rationalizes (2.14) and produces an integration

domain of [0, 1]. As usual, one begins by identifying a
suitable rational point of the algebraic variety

1þ 2ð4m2 − 2s − tÞ
4m2 − t

x4 þ x24 ¼ ρ2: ð2:15Þ

For our purposes, the point

�
xð0Þ4 ; ρð0Þ

�
¼

�
−
2ð4m2 − 2s − tÞ

4m2 − t
; 1

�
ð2:16Þ

is ideal.1 Equation (2.15) defines a hyperbola which can be
rationally parametrized by a family of lines passing through
(2.16):

1We avoid the other obvious rational point, ðxð0Þ4 ;ρð0ÞÞ¼ð0;1Þ,
because the resulting variable change does not map the x4
integration domain onto the unit interval.

HELLER, VON MANTEUFFEL, and SCHABINGER PHYS. REV. D 102, 016025 (2020)

016025-4



ρ ¼ y4
�
x4 − xð0Þ4

�
þ ρð0Þ: ð2:17Þ

We combine Eqs. (2.15) and (2.17) to determine x4 as a
function of y4:

x4 ¼
2y4ð1þ 4m2−2s−t

4m2−t y4Þ
ð1 − y4Þð1þ y4Þ

: ð2:18Þ

As desired, we see from the above that the integration
domain for y4 is the unit interval.
By combining together the various variable changes

given above, we obtain the complete sequence of integra-
tion variables fα1; α2; x3; y4g and establish that, up to

an overall normalization factor, integral (2.1) may be
evaluated as a rational linear combination of Goncharov
polylogarithms to all orders in ϵ. As a sanity check, we
explicitly evaluate all Feynman parameter integrals ana-
lytically using our direct integration code atOðϵ0Þ and then
evaluate the result obtained numerically to high precision
using GiNaC [53,54] at the randomly chosen Euclidean
phase space point

ðv1;v2;m2Þ¼ ð1=7;1=5;2Þ: ð2:19Þ

We find

ð2:20Þ

which we could rapidly confirm agrees to five significant
digits with an independent FIESTA4 evaluation of the
integral.
Let us stress once more that the unrationalizable square

root

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ðv1; v2Þp2ðv1; v2Þp3ðv1; v2Þp4ðv1; v2Þ

p
; ð2:21Þ

where

p1ðv1;v2Þ¼ 1þv1−v2ð1−v1Þ;
p2ðv1;v2Þ¼ 1þv2−v1ð1−v2Þ;
p3ðv1;v2Þ¼ v1ð1−v1Þþv2ð1−v2Þþv1v2ð2−v1−v2Þ;
p4ðv1;v2Þ¼ v1ð1þv1Þþv2ð1þv2Þ−v1v2ð2þv1þv2Þ;

ð2:22Þ

appears in our analytic integrations only at the very end,
once all Feynman parameters have been integrated out. The
most complicated, weight-four functions which appear in
the final result have argument unity and weights which are
nontrivial functions of the square root above. For the final
integration, our integration code actually utilizes the
generalized weights of [45]. The idea is that, for the final
integration over y4, one can employ nonlinear integrating
factors of the form dy4ð∂fðy4; v1; v2Þ=∂y4Þ=fðy4; v1; v2Þ,
for nonlinear irreducible polynomials fðy4; v1; v2Þ in y4.

This allows for a more concise representation of the final
result without giving up access to the well-tested numerical
routines provided by GiNaC. If desired, a representation
written strictly in terms of Goncharov polylogarithms may
also be derived by fully factoring all of the generalized
weights.
Of course, the direct integration approach described in

this section is not without its limitations. For one thing, it
would at first seem quite nontrivial to find an explicit
integration order for e.g., the two-loop double box with two
massive internal lines from the two-loop mixed EW-QCD
corrections to Drell-Yan lepton production (right panel of
Fig. 1). Actually, with the help of HyperInt, it is compara-
tively easy to find a complete sequence of integration
variables; for a fixed number of loops and legs, one gets the
impression that the number of internal lines is a less
important factor in determining the difficulty of a linear
reducibility analysis than the total number of massive lines.
Although we could directly integrate through to weight four
the six-line basic scalar integral (right panel of Fig. 2)
which first inherits unrationalizable symbol letters from its
unrationalizable leading singularity, we find the direct
integration of the top-level two-massive-line integrals to
be very cumbersome at the technical level. Furthermore, the
produced Goncharov polylogarithms are very complicated,
not minimal, and suboptimal for numerical evaluations
with GiNaC.
An alternative approach which can avoid these issues is

to apply the differential equation method. We shall see
that the differential equation method has the very appeal-
ing feature that one can fit an Ansatz of multiple
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polylogarithmic functions appropriate for each physical
kinematic region separately. In the following sections, we
discuss in some detail how this is achieved for the mixed
EW-QCD Drell-Yan master integrals with two massive
lines, including, in particular, the six- and seven-line
integrals with an unrationalizable square root in their
symbol letters.

III. AN ϵ BASIS FOR THE DRELL-YAN
MASTER INTEGRALS WITH

TWO MASSIVE LINES

In this work, we are primarily concerned with neutral-
current lepton pair production2 in quark-antiquark
annihilation,

qðp1Þq̄ðp2Þ → l−ðp3Þlþðp4Þ; ð3:1Þ

where all external particles are taken massless and on
their mass shell. The most complicated master integrals
for the two-loop mixed EW-QCD corrections to the
above process are those with two internal lines of mass
m, where, depending on the parent Feynman diagram, m
may refer to either mW or mZ. In particular, as mentioned
above, it has been known to us for some time that the
integral topologies from the right panels of Figs. 1 and 2
actually contain master integrals with unrationalizable
symbol letters in their ϵ-decoupled differential equations.
To index the 17 master integrals with two massive
internal lines, it suffices to consider a single integral
family based on the two-loop planar double box with two
massive internal lines from Fig. 1 (family E from
Table I). For completeness, we will also give definitions
for those normal form integrals with zero or one massive
internal lines which appear on the right-hand sides of the

ϵ-decoupled differential equations for the master integrals
with two massive internal lines. To index these auxiliary
integrals, we reintroduce two additional integral families
which were already studied in the physical region by two
of us some time ago [15] (family A and family C from
Table I).
In order to obtain a closed system of differential

equations for the masters with two massive internal
lines, we need to consider 36 integrals in total. Our
notation for Feynman integrals in this section is exactly
that of [15] (i.e., dots for doubled propagators, heavy
lines for massive propagators, numerator insertions
written in square brackets, and F̄∶x for the crossed
version of sector x from family F). For the kinematic
invariants we use

s ¼ ðp1 þ p2Þ2; t ¼ ðp1 − p3Þ2;
u ¼ ðp2 − p3Þ2; p2

1 ¼ p2
2 ¼ p2

3 ¼ p2
4 ¼ 0: ð3:2Þ

In the following, we keep the dependence on the internal
mass parameter m implicit for the sake of brevity and
since it is anyway clear from the thick-line notation. We
build up our normal form basis out of the following 36
Feynman integrals:

TABLE I. Integral families for the master integrals which
appear in the differential equations for the two-loop mixed
EW-QCD Drell-Yan master integrals with two massive internal
lines.

Family A Family C Family E

k21 k21 k21
k22 k22 k22 −m2

ðk1 − k2Þ2 ðk1 − k2Þ2 ðk1 − k2Þ2
ðk1 − p1Þ2 ðk1 − p1Þ2 ðk1 − p1Þ2
ðk2 − p1Þ2 ðk2 − p1Þ2 ðk2 − p1Þ2

ðk1 − p1 − p2Þ2 ðk1 − p1 − p2Þ2 ðk1 − p1 − p2Þ2
ðk2 − p1 − p2Þ2 ðk2 − p1 − p2Þ2 −m2 ðk2 − p1 − p2Þ2 −m2

ðk1 − p3Þ2 ðk1 − p3Þ2 ðk1 − p3Þ2
ðk2 − p3Þ2 ðk2 − p3Þ2 ðk2 − p3Þ2

2The two-loop mixed EW-QCD corrections to the charged-
current Drell-Yan process could be accessed by expanding
in 1 −m2

W=m
2
Z, as this would allow one to make effective

use of the equal-mass integrals relevant to the neutral-current
process.

HELLER, VON MANTEUFFEL, and SCHABINGER PHYS. REV. D 102, 016025 (2020)

016025-6



ð3:3Þ
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From the general principles discussed in [46], one can
readily cast (3.3) above into a normal form basis for the
integrals of interest.3 Abbreviating the three square roots
which appear as

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

q
; ð3:4Þ

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−stð4m2ðm2 þ tÞ − stÞ

q
; ð3:5Þ

r3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðt2ðs − 4m2Þ þm2sðm2 − 2tÞÞ

q
; ð3:6Þ

we find

m1 ¼ ϵ2t fĀ∶381 ; m2 ¼ ϵ2s fC∶972 ; m3 ¼ ϵð1 − ϵÞm2fC∶763 ; m4 ¼ ϵ2s fC∶694 ;

m5 ¼ 2ϵ2ðs −m2ÞfC∶694 þ ϵ2ðs −m2ÞfC∶695 ; m6 ¼ ϵ3s fA∶536 ; m7 ¼ ϵ3tfĀ∶537 ;

m8 ¼ ϵ3t fC∶2128 ; m9 ¼ ϵ2sr1fE∶999 ;

m10 ¼
ϵð1 − ϵÞm2s

4r1
fC∶763 −

ϵ2sðs − 3m2Þ
2r1

fC∶694 −
ϵ2sðs −m2Þ

4r1
fC∶695 þ ϵ2ð1 − 2ϵÞm2s

r1
fE∶7110 ; m11 ¼ ϵ3s fE∶7811 ;

m12 ¼ −
ϵð1 − ϵÞm2s

r1
fC∶763 þ 3ϵ3sðs − 2m2Þ

r1
fE∶7811 þ ϵ2m4s

r1
fE∶7812 ;

m13 ¼ ϵ3st fĀ∶17413 ; m14 ¼ ϵ3m2t fC∶37214 ; m15 ¼ ϵ3m2t fC∶24415 ;

m16 ¼ ϵ3m2s fC∶11716 ; m17 ¼ ϵ3s2fC∶11717 ; m18 ¼ ϵ3ð1 − 2ϵÞt fC∶34118 ;

m19 ¼ 3ϵ3ð1 − 2ϵÞm2fC∶34118 þ ϵ2ð1 − 2ϵÞm2ðm2 þ tÞfC∶34119 ;

m20 ¼ ϵ4ðsþ tÞfC∶21320 ; m21 ¼ ϵ3m2ðsþ tÞfC∶21321 ; m22 ¼ ϵ3s2fE∶11522 ;

m23 ¼ ϵ3ð1 − 2ϵÞs fE∶10323 ; m24 ¼ ϵ3ð1 − 2ϵÞs fE∶8724 ; m25 ¼ ϵ4s fE∶7925 ;

m26 ¼ ϵ3ð1 − 2ϵÞs fE∶21426 ; m27 ¼ ϵ3r2fE∶21427 ; m28 ¼ ϵ4st fC∶24528 ;

m29 ¼ 2ϵ4m2s fC∶24528 þ ϵ3m2sðm2 þ tÞfC∶24529 ; m30 ¼ ϵ4sr1fE∶11930 ;

m31 ¼ ϵ3ð1 − 2ϵÞr2fE∶34331 ; m32 ¼ ϵ4r3fE∶21532 ; m33 ¼ ϵ4sr2fE∶24733 ; m34 ¼ ϵ4s2fE∶24734 ;

m35 ¼ 2ϵ4tr1fE∶21532 − ϵ4str1fE∶24733 þ ϵ4sr1fE∶24735 ;

m36 ¼ 2ϵ4t fC∶21320 þ ϵ3stfE∶11522 −
1

2
ϵ3s fE∶10323 −

1

2
ϵ4sðs − 2m2ÞfE∶11930 þ ϵ4st fE∶21532

−
1

2
ϵ4stðs − 2m2ÞfE∶24733 þ 1

2
ϵ4sðs − 2m2ÞfE∶24735 þ ϵ4s fE∶24736 : ð3:7Þ

For m1;…;m36, we employ the integration measure�
Γð1 − ϵÞsϵ

iπ2−ϵ

�
2
Z

d4−2ϵk1

Z
d4−2ϵk2 ð3:8Þ

with ϵ ¼ ð4 − dÞ=2, which allows us to consider our
integrals to be functions of two dimensionless kinematic
variables.4 For instance,

m1 ¼
Γ5ð1 − ϵÞΓð1þ 2ϵÞ

Γð1 − 3ϵÞ
�
−
t
s

�
−2ϵ

: ð3:9Þ

One achieves a rationalization of two of our three roots, r1
and r2, with the parametrization [14]

s ¼ −
m2ð1 − wÞ2

w
and t ¼ −

m2wð1þ zÞ2
zð1þ wÞ2 ; ð3:10Þ

and we hereafter work primarily with the variables w and z.
It is immediate from (3.7) that, in the ðw; zÞ representation,
the only normal form integral which involves a square root
in its definition ism32 (i.e., the integral from the right panel
of Fig. 2). Indeed, we see from (3.10) and Appendix A of
[14] that

4The normal form basis (3.7) closely resembles the one given in
[14], but we correct typos and employ a different overall normali-
zation. Note that r21¼sðs−4m2Þ is positive for both s>4m2 and
s < 0. However, onemust take carewhen attempting to simplify r1
to make contact with the Euclidean-region analysis of [14]; r1¼
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4m2=s

p
for s>4m2, but r1¼−s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4m2=s

p
for s < 0.

3Due to the presence of unrationalizable square roots, the
available public software packages for the construction of a
normal form basis of integrals [55–57] are not applicable to the
problem at hand.
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r1 ¼ −
m2ð1 − wÞð1þ wÞ

w
; ð3:11Þ

r2 ¼ −
m4ð1 − wÞð1 − zÞð1þ zÞ

zð1þ wÞ ; ð3:12Þ

r3 ¼
m4ð1 − wÞ
wzð1þ wÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ w2z2Þðwþ zÞ2 þ 2wzðw − zÞ2 þ 4wz2ð1þ w2Þ

q
ð3:13Þ

in the region s > 4m2 [see also Sec. VA for a detailed
discussion of the ðw; zÞ parametrization].
In the following, we will replace r1, r2 and r3 according

to (3.11)–(3.13) in the normal form definitionsm1;…;m36

and use these partially rationalized expressions for the
entire physical region of phase space. That is, only the
definition of m32 involves a root

r≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ w2z2Þðwþ zÞ2 þ 2wzðw − zÞ2 þ 4wz2ð1þ w2Þ

q
ð3:14Þ

in the prefactor, which requires a nontrivial analytic con-
tinuation from s > 4m2 to other regions of phase space
on its own. Using these definitions, it is straightforward
to obtain the differential equations in the ϵ-decoupled
form discussed in the next section. We used REDUZE 2

[54,58–60] to compute the integration-by-parts identities
required to derive the differential equations.

IV. INTEGRATING ROOT-VALUED
SYMBOLS IN TERMS OF

MULTIPLE POLYLOGARITHMS

Our normal form basis for the mixed EW-QCD Drell-
Yan integrals with two massive internal lines, (3.7), is
chosen to bring the associated differential equations into an
ϵ-decoupled form [16,61]:

dmi ¼ ϵ
X
j;k

d lnðlkÞðAðkÞÞijmj; ð4:1Þ

where lk are the symbol letters, AðkÞ are matrices of rational
numbers, and i; j ¼ 1;…; 36. It was demonstrated already
in [14] that a ϵ d ln form does in fact exist, but their choice
of the symbol letters is not optimal for our purposes. For
now, we proceed with the understanding that some alge-
braic symbol letters appear in Eq. (4.1) but leave their
number and precise form to be determined by the analy-
sis below.
Using  x ¼ ðw; zÞ and  m ¼ ðmiÞ, i ¼ 1;…; 36, one can

give a formal solution of Eq. (4.1) in terms of Chen iterated
integrals as

 mðϵ;  xÞ ¼ P exp

�
ϵ

Z
γ
dA

�
 mðϵ;  x0Þ; ð4:2Þ

where

dA¼
X
k

dlnðlkÞAðkÞ; ð4:3Þ

 mðϵ;  x0Þ are the boundary constants of the master integrals
at the point  x ¼  x0, γ is a piecewise smooth path connecting
 x0 and  x, and the path-ordered exponential in Eq. (4.2) is
defined in the usual way as an infinite series of integral
operators acting to the right,

P exp

�
ϵ

Z
γ
dA

�
≡1þ ϵ

Z
γ
dAþ ϵ2

Z
γ
dAdAþ�� � : ð4:4Þ

In (4.4), the product of two or more d ln terms is understood
as an instruction to take the corresponding iterated integral
of the kernel along the path γ. As a concrete example, let us
consider a straight-line path τ on the real axis from 0 to x.
One can write, e.g.,

Z
τ
d lnðxÞd lnðxþ 1Þ ¼

Z
x

0

dx2
x2 þ 1

�Z
x2

0

dx1
x1

�

¼ Li2ð−xÞ þ lnðxÞ lnðxþ 1Þ: ð4:5Þ

Note that, in the above example, one could equally well
identify the iterated integral as a Goncharov polylogarithm,

Z
τ
d lnðxÞd lnðxþ 1Þ ¼ Gð−1; 0; xÞ: ð4:6Þ

If all symbol letters are linear, it is always possible to
integrate Chen iterated integrals in closed form using G
functions. This is no longer true, however, if one encounters
nonlinear or nonrational letters. In the former case, it is
often possible to choose an appropriate integration order for
which the nonlinear letters appear only in the final
integration kernel. At this stage, one may employ the
generalized weights used in Sec. II to obtain concise
results. If one encounters nonrational symbol letters, the
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standard integration algorithms for G functions cannot
be applied. In many cases, a transformation can be
found which simultaneously rationalizes all letters of the
alphabet. Nevertheless, it can be proven that the symbol
alphabet of the five most complicated integrals from (3.7),
fm32;…;m36g, cannot be rationalized [17,18]. Of course,
it is a priori not obvious whether the functional basis for
fm32;…;m36g consists solely of multiple polylogarithms;
at the outset, it is certainly possible that one could have to
deal with a more involved space of functions.
Fortunately, our linear reducibility analysis from Sec. II

guarantees that standard multiple polylogarithms suffice;
what we need is a better way to integrate ϵ d ln differential
equations. A clear alternative is to proceed by matching the
symbol of the Chen iterated integrals to a suitable Ansatz
built out of logarithms and Li functions. For rational
alphabets, a method was provided in [62] by Duhr,
Gangl, and Rhodes to construct suitable Li function argu-
ments, such that the functional basis contains no spurious
letters. At weight one, it is clear that logarithms of the
letters are admissible functions. The nontrivial step is to
find a sufficiently large set of admissible Lin arguments;
once these arguments have been found, it is straightforward
to construct all admissible arguments for the Li functions of
depth greater than one. By considering the symbol of these
functions,

SðLinðfÞÞ ¼ −ð1 − fÞ ⊗ f ⊗ � � � ⊗ f|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ðn−1Þtimes

; ð4:7Þ

we see that it is desirable to admit only those function
arguments f which have the property that both f and 1 − f
may also be written as a power product of the symbol
letters. In practice, one therefore forms power products f
out of the letters and tests if 1 − f factorizes over the
alphabet. The symbols of higher-depth Li functions are
more complicated and lead to additional constraints. To
treat Li2;1, Li3;1, and Li2;2, let F be the union of the set of
admissible Lin function arguments and the set f1g. Then,
the symbol dictates that a possible pair of arguments for
Lin1;n2 , ðfi; fjÞ such that fi; fj ∈ F , is admissible if
1 − fifj factorizes over the alphabet. It has proven useful
for practical applications to impose further constraints on
the functional basis to ensure real valuedness and good
numerical performance. An implementation of this method
written by one of us in MATHEMATICA has been applied
successfully to various processes [15,31,43,44,46,48].

In the presence of square roots, we use a heuristic
factorization algorithm to detect admissible function argu-
ments. For a given expression g we are interested in
factorizations of the form

g ¼ ca0la11 la22 …; ð4:8Þ
with a rational number c and an ∈ Q. It is nontrivial to
find such factorizations using standard computer algebra

systems due to the presence of the root r in the symbol
letters. We observe that the factorization (4.8) implies

lnðgÞ − a0 lnðcÞ − a1 lnðl1Þ − a2 lnðl2Þ − � � � ¼ 0: ð4:9Þ

Replacing the variables by numerical samples allows us to
find these relations using heuristic integer relation finders.
To find the required factorizations, we employ the Lenstra-
Lenstra-Lovász algorithm [63] implemented in PARI/GP
[64] for a parallelized C++ code written by one of us.
We would like to stress that the definition of the symbol

letters is not unique. One can replace a letter by power
products of letters and it is a priori unclear which choice is
optimal for practical purposes. For example, we find that
out of the 17 letters presented in [14], only 16 combinations
are actually required for the integration of the Drell-Yan
integrals. Furthermore, since we consider actual derivatives
of Feynman integrals, we are not sensitive to numerical
letters like 2. In principle, one needs to include also ad hoc
letters like −1, 2, etc., in the construction of function
arguments f. This is a problem occurring also in the
purely rational case and does not seem to be a major
obstacle in practice. In the applications we have considered
so far, including −1 and 2 was sufficient. For the case
of the Drell-Yan integrals, we were able to absorb the letter
2 by a redefinition of our symbol alphabet, as will be
explained below.
In practice, we encounter two main problems specific to

the case of nonrational symbol alphabets.
(i) In general, one needs to allow for noninteger

powers, e.g., 1=2, 1=4, etc., when forming power
products f. Consequently, one may have to test
many more expressions than in the rational case in
order to construct enough function arguments to
successfully “integrate the symbol.” In fact, without
additional constraints, the inherent combinatorial
complexity makes this extension of the Duhr-
Gangl-Rhodes method too costly for two-loop cal-
culations of current phenomenological interest.

(ii) Factorization over algebraic functions is not unam-
biguously defined; in principle, it is not clear where
to “stop” factorizing. Consider, for instance, the set
of letters f ffiffiffi

x
p

;
ffiffiffi
y

p
; x − yg and note that it is a priori

unclear whether one ought to factor the third letter
further, i.e., x − y ¼ ð ffiffiffi

x
p þ ffiffiffi

y
p Þð ffiffiffi

x
p

− ffiffiffi
y

p Þ.
In the case of the Drell-Yan integrals, both of these
problems can be tackled by the following observations:
given an alphabet, we introduce the subset of rational
letters, LR, and the subset of intrinsically nonrational
letters, LA. Let us assume that in LA we encounter a
square root r. We find it natural to take r itself to be an
element of LA. For a given algebraic letter with a nontrivial
rational part la, we define the conjugated letter l̄a by
making the replacement r → −r in la. For each la ∈ LA we
observe that l̄a can be written as a power product of other
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symbol letters; that is to say, one could exchange any letter
for its conjugate without affecting the singularity structure
of the alphabet. Furthermore, we observe that the product
lal̄a always factorizes over the rational part of the alphabet,
LR. We find these observations to be quite compelling and
therefore conjecture that these structural constraints hold
also for other symbol alphabets of this type.
Our conjecture is a strong one, since it implies that one

can predict the form of the remaining unrationalizable
symbol letters which appear in the presence of the square
root r: knowing only the rational part of the alphabet, LR,
and the unrationalizable square root which appears, it
allows one to construct the algebraic part of the alphabet,
LA, unambiguously. As we shall see, our new insight
allows for a drastic simplification of the algebraic part of
the symbol alphabet relative to what was presented in
Eqs. (5.13)–(5.19) of [14] and what we were able to derive
ourselves initially using the above-mentioned heuristic
factorization code.
We want to show this in some detail for the EW-QCD

Drell-Yan master integrals with two massive internal lines.
At the outset, after carefully considering various possibil-
ities, we find the rational alphabet

LR ¼ f1 − w;−w; 1þ w; 1 − wþ w2; 1 − z;−z; 1þ z;

1 − wz; 1þ w2z;−z − w2; z − wg ð4:10Þ

and the intrinsically algebraic alphabet

LA ¼fr;−ð1−wÞðz−wÞð1−wzÞþ rð1þwÞ;
− ð1−wÞð4wzþðwþ zÞð1þwzÞÞ−rð1þwÞ;
r2−2wz2ð1−wÞ2þ rðwþ zÞð1þwzÞ;
r2ð1−zÞ2þ2z2ðzþw2Þð1þw2zÞ
þ rð1− zÞð1þ zÞð2wz− ðwþ zÞð1þwzÞÞg; ð4:11Þ

where r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þw2z2ÞðwþzÞ2þ2wzðw−zÞ2þ4wz2ð1þw2Þ

p
,

using our heuristic factorization code. Note that r already
appears as a letter in Eq. (4.11). However, there are also
two rather complicated-looking symbol letters with terms
involving r2.
As stated above, knowing only r and LR, we can also

construct an improved representation of the algebraic part
of the alphabet by making an Ansatz of the form

la ¼ qa þ r; ð4:12Þ

where qa is a rational function in w and z, and then
requiring that lal̄a factorize over LR. In practice, it is more
convenient to directly make an Ansatz of the form

ðqa þ rÞðqa − rÞ ¼ q2a − r2 ¼
X
ij

aijwizj − r2 ð4:13Þ

and then solve for the unknowns aij. The algorithm to
construct (simple) algebraic letters then reads

In order to also reproduce the original letters we would
need to allow for a polynomial prefactor in front of the r2

term, which we deliberately avoid here to simplify our
construction. In practice, we run the algorithm with a
degree n at least sufficiently large to be able to express the
differential equations in terms of the new alphabet.
By using this procedure up to degree 4, we find the

following algebraic letters for the Drell-Yan integrals:

L̃A ¼


r;
1

2
ð2þ z − wþ wzðwþ zÞ þ rÞ;

1

2
ð2w2 þ z − wþ wzðwþ zÞ þ rÞ;

1

2
ð−ðwþ zÞð1 − wzÞ þ rÞ;

1

2
ð−ðz − wÞð1þ wzÞ þ rÞ

�
: ð4:14Þ

The overall factors of 1=2 in Eq. (4.14) are judiciously
chosen after the fact to prevent the appearance of explicit
factors of 2 in our Li function arguments; as alluded to
above, our original construction of the functional basis
appended 2 as an auxiliary letter. The presence of this factor
can also be understood in light of the factorization property:
one can easily check that all letters in L̃A after multipli-
cation with their conjugate indeed factorize over the
rational part of the alphabet without the presence of the
factor 2 in this product. In order to find the correct
normalization, one can run the above algorithm first adding
the letter 2 in the rational part of the alphabet.
Using our heuristic approach to algebraic function fac-

torization, we immediately find that the nontrivial elements
of LA can indeed be expressed as power products of letters
drawn from the improved alphabet:

Input: rational part of alphabet and square root r depending on xi
Result: simplified letters
initialization:monlist¼monomials of rational alphabet up todegreen
for f in monlist do

di ¼ degðf; xiÞ;
polynomial Ansatz: p ¼ P

i

Pdi
ni anix

ni
i ;

solve f ¼ p − r2 for unknown coefficients ani ;
if p is perfect square, then

set polynomial q≡ ffiffiffi
p

p
;

add l ¼ qþ r to new alphabet;
end

end
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−ð1 − wÞðz − wÞð1 − wzÞ þ rð1þ wÞ ¼ 2ð−wÞð1þ zÞð−z − w2Þð2þ z − wþ wzðwþ zÞ þ rÞ
2w2 þ z − wþ wzðwþ zÞ þ r

; ð4:15Þ

− ð1 − wÞð4wzþ ðwþ zÞð1þ wzÞÞ − rð1þ wÞ

¼ 8ð−wÞ2ð−zÞð1þ zÞ3ð1þ w2zÞð2w2 þ z − wþ wzðwþ zÞ þ rÞ
ð2þ z − wþ wzðwþ zÞ þ rÞð−ðwþ zÞð1 − wzÞ þ rÞð−ðz − wÞð1þ wzÞ þ rÞ ; ð4:16Þ

r2 − 2wz2ð1 − wÞ2 þ rðwþ zÞð1þ wzÞ

¼ ð−zÞ2ð2þ z − wþ wzðwþ zÞ þ rÞ2ð2w2 þ z − wþ wzðwþ zÞ þ rÞ2
8ð1þ zÞ2ð1þ w2zÞ2ð−ðwþ zÞð1 − wzÞ þ rÞ2ð−ðz − wÞð1þ wzÞ þ rÞ−2 ; ð4:17Þ

r2ð1 − zÞ2 þ 2z2ðzþ w2Þð1þ w2zÞ þ rð1 − zÞð1þ zÞð2wz − ðwþ zÞð1þ wzÞÞ

¼ 2ð−zÞ2ð1þ w2zÞ2ð−ðwþ zÞð1 − wzÞ þ rÞ2
ð−ðz − wÞð1þ wzÞ þ rÞ2 : ð4:18Þ

In summary, we define the full symbol alphabet for the two-massive-line Drell-Yan integrals, L ¼ LR ∪ L̃A, in terms of
positive definite letters for physical phase space points which satisfy −1 < w < 0 and w < z < −w2 [this component of
ðw; zÞ space corresponds to part of the s > 4m2 region; see Sec. VA for details]. From Eqs. (4.10) and (4.14), we have

L ¼ fl1;…; l16g

¼


1 − w;−w; 1þ w; 1 − wþ w2; 1 − z;−z; 1þ z; 1 − wz; 1þ w2z;−z − w2;

z − w; r;
1

2
ð2þ z − wþ wzðwþ zÞ þ rÞ; 1

2
ð2w2 þ z − wþ wzðwþ zÞ þ rÞ;

1

2
ð−ðwþ zÞð1 − wzÞ þ rÞ; 1

2
ð−ðz − wÞð1þ wzÞ þ rÞ

�
: ð4:19Þ

Most importantly, our improved representation of the
alphabet effectively solves the problem of finding power
products of high degree, since we observe in practice that
we do not need to consider square roots of any letter in L.
For the integration of the EW-QCD Drell-Yan master
integrals with two massive internal lines through to weight
four, it was enough to consider power products of symbol
letters derived above up to total degree 9.
The construction above employed a representation with

only a single root-valued leading singularity. InAppendixB,
we consider a one-loop integral which involves five different
root-valued leading singularities. We demonstrate that the
algebraic part of the symbol alphabet can be constructed
without any reparametrization by generalizing the procedure
above to the case of multiple roots.

V. ANALYTIC CONTINUATION AND
OPTIMIZATION OF THE FUNCTIONAL BASES

In this section, we review the salient features of the ðw; zÞ
representation for the mixed EW-QCD corrections to Drell-
Yan production introduced in Sec. III above, as well as
subtleties one encounters when analytically continuing

multiple polylogarithms. Our primary goal in Sec. VA is
to motivate the analysis of Sec. V B, where we show how
we avoid all explicit analytic continuations and þi0
prescriptions by partitioning the physical phase space
and finding several solutions to the differential equations
in terms of well-behaved Li functions valid in judiciously
chosen regions. However, we also find it useful to review
the fundamentals of analytic continuation of Feynman
integrals as well as some details relevant to our specific
representation.

A. Analytic continuation

Feynman’s þi0 prescription for the propagators deter-
mines the value of a given Feynman integral in a specific
region of phase space unambiguously. In principle, one
could imagine to solve the Feynman integral in each region
of phase space separately. Alternatively, one can try to
solve the integral in one region and then use the solution to
obtain a result for it in a neighboring region by analytic
continuation. The latter method is of particular interest for
the method of differential equations, since it typically
involves regularity conditions in some regions of phase
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space, and one needs to transport this knowledge to the
region of interest.
If we want to continue a specific representation of the

solution based on just the solution itself (without reference
to the original Feynman integral), we need to make sure
Feynman’s þi0 prescription is maintained by appropriate
complex values of the kinematic parameters. It is essential
to observe that the analytic continuation is along a path in
complex phase space and that theþi0 prescriptions must be
respected for all points along this path, not just for the start
and end point. This is in general nontrivial and needs to be
checked for the representation at hand.
What is commonly referred to as “analytic continuation”

in the physics literature should really be regarded as a two-
step procedure in general:

(i) The actual analytic continuation in the mathe-
matical sense: given a solution for one region,
derive a solution for a connected region in some
representation.

(ii) A possible change of functional representation in the
new region such that no explicit þi0 prescription is
necessary.

Wewill now work out the details for our current application.
From the second Symanzik polynomials of our Drell-

Yan master integrals, we see that their Euclidean region is
given by s < 0, t < 0 and m2 > 0.5 Considering other
regions of phase space, we observe that the Feynman
propagator prescription can effectively be implemented by
the replacements s → sþ i0, t → tþ i0, since these are
external scales, and m2 → m2 − i0, since this is an internal
scale. The þi0 prescription is relevant for s (t) whenever s
(t) is positive. For the discussion of w and z, we will see that
it is sufficient to view m2 as being normalized to 1 without
any imaginary part.

Let us focus on the ðw; zÞ parametrization of our
integrals in the physical region of phase space, s > 0,
t < 0 and m2 > 0. It was noted in [14] that the ðw; zÞ
representation has a point of nonanalyticity at the physical
two-mass threshold s ¼ 4m2 and a rather different char-
acter depending on whether s is above or below this
threshold. We find it natural to adopt the definitions

w ¼ −
ffiffiffi
s

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

p
ffiffiffi
s

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

p ; ð5:1Þ

z ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m4 − tðs − 4m2Þ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−tðs − 4m2Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m4 − tðs − 4m2Þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−tðs − 4m2Þ

p : ð5:2Þ

We can see from the above that w and z are real vari-
ables which satisfy −1 < w < 0 and −1 < z < −w2 in the
region s > 4m2. With our choices (5.1) and (5.2), we
find that the Feynman prescription implies w → wþ i0 and
z → zþ i0 in this region. On the other hand, both w and z
become pure phases in the region 0 < s < 4m2. Therefore,
it makes sense to explicitly extract their real and imaginary
parts,

w ¼ 1 −
s

2m2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1 −

s
2m2

�
2

s
i; ð5:3Þ

z¼−1−
tð4m2− sÞ

2m4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

�
−1−

tð4m2− sÞ
2m4

�
2

s
i; ð5:4Þ

to emphasize that, in the below-threshold region, the imagi-
nary parts of w and z are fixed in terms of the real parts
of w and z. In particular, we can deduce from Eqs. (5.3)
and (5.4) that Re½w� and Re½z� satisfy −1 < Re½w� < 1 and
−1 < Re½z� < 1–2ðRe½w�Þ2 in the below-threshold region.
A visualization of the full physical phase space in the ðw; zÞ
representation is given in Fig. 3.
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FIG. 3. The ðw; zÞ representation of the physical phase space has two main components which merge at the point of nonanalyticity
w ¼ z ¼ −1, corresponding to the two-mass threshold at s ¼ 4m2. The line segments on the negative real axes of w space (left) and z
space (right) are half-open intervals which correspond to the above-threshold region; the points w ¼ 0 and z ¼ 0 are approached in the
s → ∞ limit. The semicircular domains in the upper w and z half-planes correspond to the below-threshold region; the point w ¼ 1

corresponds to the phase space boundary point s ¼ 0 and z ¼ 1 corresponds to the phase space boundary point s ¼ −t ¼ 2m2. Note that
the upper end point of z depends parametrically on w both above and below the two-mass threshold.

5For nonplanar topologies with four massless external legs, also
cuts inumust be taken into account,whichmayactually prevent the
existence of a Euclidean region with sþ tþ u ¼ 0 [65].
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In the following, we will study how to analytically
continue solutions between different regions in s. In
practice, we work with simple straight-line paths in the
complex ðw; zÞ space, checking after the fact that the
chosen paths of analytic continuation always preserve
the þi0 prescription for the original kinematic variables.
In what follows, we carefully go through typical elementary
examples of analytic continuation in order to clearly
illustrate the subtleties for our Li functions which one
must be wary of to avoid introducing errors.
First, let us illustrate the importance of taking into account

the complete path of analytic continuation rather than just
the start and end point. Consider the analytic continuation of
lnðw2Þ along a straight-line path from wi ¼ wð0Þ þ iδ to
we ¼ −wð0Þ þ iδ, for real wð0Þ and δ such that 0 < wð0Þ < 1

and 0 < δ < wð0Þ (see Fig. 4). Such a path allows one to
connect solutions for s < 0 with solutions for s > 4m2.
Naively, onemight be tempted to erroneously implement the
analytic continuation as lnðw2

i Þ¼ lnðw2
ð0ÞÞ¼ lnðð−wð0ÞÞ2Þ¼

lnðw2
eÞ and incorrectly conclude that the analytic continu-

ation is trivial along the chosen path. The problem here is
that the logarithm is a multivalued function and one must
therefore carefully checkwhether or not the specified path of
analytic continuation forces the polynomial function argu-
ment to cross the branch cut of the logarithm on the negative
real axis, ð−∞; 0Þ. In the absence of any branch cut cross-
ings, knowledge of the end point of the path is sufficient.
However, in the presence of one or more branch cut
crossings, the function leaves its principal Riemann sheet
and one must add an appropriate monodromy contribution,
taking into account the details of the path of analytic
continuation.
Let us spell out in detail how to correctly analytically

continue solutions valid for different values of s. We
parametrize our chosen path in w space as

wðvÞ ¼ ð1 − 2vÞwð0Þ þ δi; ð5:5Þ

with a parameter v ∈ ½0; 1�. We then have

w2ðvÞ ¼ ð1 − 2vÞ2w2
ð0Þ − δ2 þ 2ð1 − 2vÞδwð0Þi ð5:6Þ

for the argument of lnðw2Þ. As depicted in Fig. 5, our path
in w space takes w2ðvÞ from just above the point w2

ð0Þ − δ2

on the positive real axis to just below the point w2
ð0Þ − δ2

and, crucially, it passes through the negative real axis at
wð1=2Þ ¼ δi. The monodromy contribution to lnðw2Þ in
this case is well known to be simply 2πi, due to the fact that
our path induces just one counterclockwise branch cut
crossing. Therefore, the analytically continued function is
lnðw2Þ þ 2πi in a neighborhood of the end point of our
chosen path. This conclusion may be quickly checked by
rewriting the function lnðw2Þ as 2 lnðwÞ in the Euclidean
region where 0 < Re½w� < 1 before carrying out the
analytic continuation along our chosen path. When the
function is viewed in this alternative way, no branch cut
crossing is induced and one can simply rewrite the function
to explicitly extract its imaginary part: for Im½w� > 0,
2 lnðwÞ¼ 2ðlnð−wÞþπiÞ¼ 2 lnð−wÞþ2πi¼ lnðw2Þþ2πi.
In the two-step picture mentioned above we thus have

lnðw2Þ ⟶
ðiÞwðvÞ

lnðw2Þ þ 2πi¼
ðiiÞ

lnðw2Þ þ 2πi ð5:7Þ

or

lnðw2Þ ¼ 2 lnðwÞ ⟶
ðiÞwðvÞ

2 lnðwÞ¼
ðiiÞ
2 lnð−wÞ þ 2πi

¼ lnðw2Þ þ 2πi ð5:8Þ
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FIG. 4. The path in w space prescribed by Eq. (5.5) for wð0Þ ¼ 1=6 and δ ¼ 1=17 (left) induces a nearly semicircular path in s space
(right) which respects theþi0 prescription for s. Note that, for fixed t andm2, this straight-line path in w determines a nearly straight-line
path in z as well.
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Depending on the type of representation we consider, either
the analytic continuation (i) or the rewriting of the function
to be independent of þi0 prescriptions (ii) is trivial in this
example.
The relevant monodromy contributions become more

complicated for higher-weight Li functions. Already for
Li2, a new feature emerges: moving across its branch cut on
the positive real axis, ð1;∞Þ, onto a Riemann sheet other
than the principal one actually exposes the existence of a
hidden branch point at 1. To see this, consider Euler’s
identity for the dilogarithm of 1 − w2,

Li2ð1 − w2Þ ¼ −Li2ðw2Þ − lnðw2Þ lnð1 − w2Þ þ π2

6
: ð5:9Þ

The representation furnished by the right-hand side of (5.9)
and the above discussion of lnðw2Þ make it clear that
Li2ð1 − w2Þ has nontrivial monodromy for the path wðvÞ
defined above in Eq. (5.5). For the path wðvÞ, we find

Li2ð1−w2Þ ¼−Li2ðw2Þ− lnðw2Þ lnð1−w2Þþπ2

6

→
wðvÞ

−Li2ðw2Þ− ðlnðw2Þþ2πiÞ lnð1−w2Þþπ2

6

¼Li2ð1−w2Þ−2πi lnð1−w2Þ: ð5:10Þ

This implies that Li2ð1 − w2Þ picks up a monodromy
contribution of −2πi lnð1 − w2Þ due to the branch point
at w ¼ 1, despite the fact the function is continuous at that
point on the principal sheet.
When considering general analytic continuations of

Lin1;…;nk functions, one must take into account all function
arguments to obtain the monodromy contributions as one
moves along the path of analytic continuation. Building on
the work of Goncharov [66], it was shown in [67] how one
can easily compute the monodromy of an arbitrary Li
function in terms of monodromies of simple logarithms

using the coproduct. In particular, the presence of a
monodromy contribution can be detected by studying
the first entry of the symbol. For our master integrals,
the sheer number of distinct branch cut crossings which can
arise from the arguments of the various Li functions renders
the analytic continuation between different regions rather
involved in practice. While our final goal is to obtain
representations in terms of well-behaved Li functions for
kinematic regions, we find it convenient to also employ
auxiliary representations for the purpose of analytic
continuations.
If available, a representation in terms ofG functions with

the kinematic variables in the argument avoids many of the
subtleties involved in the continuation described above. For
the integrals with unrationalizable alphabets, however, this
is not an option. For such cases, we find it useful to use
expansions around regular and singular points [68] for the
continuation. For this part of the analysis, we do not include
the unrationalizable root of m32 in (A1) in the definition of
our basis in order to work with rational differential
equations. Using high-precision numerical evaluations
for two expansion points with an overlapping region of
convergence and the PSLQ algorithm [69], one can
effectively transport analytic integration constants.
What has been discussed so far allows us to construct

a functional basis for a given region of phase space,
integrate the symbol in terms of these functions, and
relate solutions for different regions by analytic continu-
ation in order to fix the integration constants. We will now
discuss how to construct domain-restricted but well-
behaved Ansätze of multiple polylogarithms, which do
not require an explicit þi0 prescription and perform well
numerically.

B. Optimizing the bases of multiple polylogarithms

Starting from a Duhr-Gangl-Rhodes basis of multiple
polylogarithms for the integrals  m, we wish to remove Li
functions which have suboptimal analytic properties for
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FIG. 5. The path in w space prescribed by Eq. (5.5) for wð0Þ ¼ 1=6 and δ ¼ 1=17 (left) induces an essentially hyperbolic path in w2

space (right) which crosses the negative real axis at −δ2.
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physical kinematics (s > 0). In fact, one finds that even the
purely rational function arguments allowed by the letters
(4.10) are nontrivial to treat systematically, and we will
therefore restrict the discussion in this section to this
rational subset. The main idea is to make a partition
of the physical phase space into regions Di such that,
inside each region, a solution to the differential equations
may be constructed out of Li functions which never
diverge or move off of their principal Riemann sheets
for arbitrary phase space trajectories contained in Di.
Although our primary goal is to show how to one can
avoid supplying explicit þi0 prescriptions for w and z,
we also find it convenient to impose further aesthetic
criteria on our polylogarithmic bases in order to simplify
our results. For example, we find it useful in each
Ansatz to give precedence to those functions which do
not involve the symbol letter 1 − wþ w2, since this
ensures that the master integrals which do not depend
on 1 − wþ w2 are manifestly free of 1 − wþ w2 at the
level of functions.6

The first step of our analysis is to study the letters of the
rational alphabet, LR, above and below the physical two-
mass threshold at s ¼ 4m2. To proceed, we must determine
under what conditions the logarithms of the letters either
diverge or move off of their principal Riemann sheets. We
find that, in practice, it is simplest to use Eqs. (5.1) and
(5.2) above threshold, Eqs. (5.3) and (5.4) below threshold,
and the MATHEMATICA function Reduce to work out how
various constraints on polynomials of w and z map back to
conditions on the original and more familiar kinematic
variables s, t, and m2. We find that Reduce works in
an efficient way when the system of inequalities to be
reduced is formulated in terms of real-valued parameters
and the solution to the system does not involve roots of
high-degree polynomials. Fortunately, these assumptions
are always satisfied for the Li functions which have
symbols built out of letters from LR.

7 To check whether
it is possible to live without a þi0 prescription, we must
first understand for what values of s, t, andm2 both the real
and imaginary parts of the letters vanish simultaneously
and for what values of s, t, and m2 the imaginary parts of
the letters vanish while their real parts happen to be
negative.

(i) lnðl1Þ ¼ lnð1 − wÞ diverges at the phase space
boundary point s ¼ 0.

(ii) lnðl2Þ ¼ lnð−wÞ has no issues for m2 > 0, except at
the phase space boundary point s ¼ 0 where it
becomes ill defined.

(iii) lnðl3Þ ¼ lnð1þ wÞ diverges at the two-mass thresh-
old s ¼ 4m2.

(iv) lnðl4Þ ¼ lnð1 − wþ w2Þ diverges at the one-mass
threshold s ¼ m2.

(v) lnðl5Þ ¼ lnð1 − zÞ diverges at the phase space boun-
dary point s ¼ −t ¼ 2m2.

(vi) lnðl6Þ ¼ lnð−zÞ has no issues for m2 > 0, except at
the phase space boundary point s ¼ −t ¼ 2m2

where it becomes ill defined.
(vii) lnðl7Þ ¼ lnð1þ zÞ diverges at the phase space

boundary where t ¼ 0 and at the two-mass threshold
s ¼ 4m2.

(viii) lnðl8Þ ¼ lnð1 − wzÞ diverges at the two-mass thresh-
old s ¼ 4m2.

(ix) lnðl9Þ ¼ lnð1þ w2zÞ diverges at the phase space
boundary s ¼ −t for 0 ≤ s ≤ 2m2 and at the two-
mass threshold s ¼ 4m2.

(x) lnðl10Þ ¼ lnð−z − w2Þ diverges at the phase space
boundary s ¼ −t for s ≥ 2m2 and, in particular,
at s ¼ 4m2.

(xi) lnðl11Þ ¼ lnðz − wÞ diverges when t ¼ −m2 for s ≥
m2 and, in particular, at s ¼ 4m2. lnðl11Þ is also not
analytic at s ¼ − 4m2t

m2−t for −m
2 ≤ t ≤ 0.

The next step is to determine from the above data how
many regions of the physical phase space it makes sense to
consider separately. In a sense, this step is the most
nontrivial because different choices besides the one we
ultimately make are possible. Our choices are guided by
imposing analytic properties of the integrals onto the basis
functions themselves. Due to the absence of u dependence
in our planar double boxes, we expect them to have a
regular limit as u approaches 0. We see from the above
that, depending on whether s is less than or greater than
2m2, regularity as u → 0 suggests the absence, respec-
tively, of lnðl9Þ or lnðl10Þ at weight one. Of course, we
wish to achieve that also the higher weight basis functions
lack logarithmic singularities as l9 → 0 for 0 < s < 2m2

and l10 → 0 for s > 2m2. This can be achieved by
choosing the point s ¼ 2m2 as a region boundary and
then imposing an appropriate first-entry condition [67,
70–72] on the symbol to select suitable functions. In other
words, we remove from consideration all Li functions
which have the letter l9 in the first entry of their symbols in
0 < s < 2m2 regions and all functions which have the
letter l10 in the first entry of their symbols in s > 2m2

regions. All of the other letters exhibit problems only at the
physical one- and two-mass thresholds or at other excep-
tional points on the boundary of the physical phase space
like s ¼ 0. The only logarithm with a spurious singularity
in the physical region is lnðl11Þ, which can be dealt with by
imposing an additional first-entry condition on l11 in all
regions.
Ultimately, we find it natural to partition the physical

phase space into four regions:

6The presence or absence of the letter 1 − wþ w2 for particular
master integrals is linked to the presence or absence of a one-mass
threshold at s ¼ m2.

7In Sec. VI, the method described in this section is also used to
prepare an Ansatz involving Li functions which have symbols
built out of letters from both LR and LA.
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Da ¼ fðs; tÞjs > 4m2;−s < t < 0g
¼ fðw; zÞj − 1 < w < 0;−1 < z < −w2g; ð5:11Þ

Db1 ¼ fðs; tÞj2m2 < s < 4m2;−s < t < 0g
¼ fðw; zÞj − 1 < Re½w� < 0;

− 1 < Re½z� < 1 − 2ðRe½w�Þ2g; ð5:12Þ

Db2 ¼ fðs; tÞjm2 < s < 2m2;−s < t < 0g;
¼ fðw; zÞj0 < Re½w� < 1=2;

− 1 < Re½z� < 1 − 2ðRe½w�Þ2g; ð5:13Þ

and

Db3 ¼ fðs; tÞj0 < s < m2;−s < t < 0g
¼ fðw; zÞj1=2 < Re½w� < 1;

− 1 < Re½z� < 1 − 2ðRe½w�Þ2g; ð5:14Þ

where, as suggested by Eqs. (5.3) and (5.4), we have
eliminated Im½w� and Im½z� below the two-mass threshold
by exploiting the fact that w and z become pure phases:

Im½w� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðRe½w�Þ2

q
and Im½z� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðRe½z�Þ2

q
:

ð5:15Þ

Even for the 12 two-mass master integrals which have
rational symbols in the ðw; zÞ representation, it is not obvious
that it suffices to consider a partition of the physical phase
space into just four separate regions. Fortunately, no further
subdivisions are necessary8 and it is even possible to
consistently impose stronger constraints in each region on
the subset of Li functions which survive our first-entry cuts.
Our basis of Li functions in region Da may be further

refined along the lines described in [15], where the EW-
QCD Drell-Yan master integrals with a single massive line
were evaluated in the physical region for the first time.
Consider, for example, the set of 192 Lin arguments
consistent with our first-entry conditions in this region:



l1; l2;−l2; l3; l4; l5; l6;−l6; l7; l8; l9;

1

l9
;
1

l8
;
1

l7
;
1

l6
;−

1

l6
;
1

l5
;
1

l4
;
1

l3
;
1

l2
;−

1

l2
;
1

l1
;−l1l2; l1l3;

l1
l8
;

l1
l4
;
l1
l2
; l22; l2l6;−

l2
l4
;−

l2
l3
; l3l4;

l3
l9
;
l3
l8
; l5l7;

l5
l8
;
l5
l6
; l26;−

l6
l7
;
l7
l9
;
l7
l8
;−

l11
l8

;
l11
l8

;−
l10
l9

;
l8
l9
;
l9
l8
;
l11
l7

;

−
l10
l7

;
l8
l7
;
l9
l7
;−

l7
l6
;−

l11
l6

;
l10
l6

;
1

l26
;
l6
l5
;−

l11
l5

;
l8
l5
;
1

l5l7
;−

l11
l3

;
l8
l3
;
l9
l3
;
1

l3l4
;−

l3
l2
;−

l4
l2
;
l11
l2

;
1

l2l6
;

1

l22
;
l2
l1
;
l4
l1
;
l11
l1

;
l8
l1
;
1

l1l3
;−

1

l1l2
;
l21
l4
;
l21
l2
;
l1l2
l4

;
l1l3
l9

;−
l1l6
l8

;−
l1l11
l9

;
l1l8
l9

;
l1l6
l5

;
l1
l2l5

;−
l1
l22
; l32; l

2
2l6;

l22
l4
;−

l2l5
l8

;−
l2l6
l8

;−
l2l7
l9

;
l2l7
l8

;
l2l11
l8

;−
l2l10
l8

;
l2l8
l9

;−
l2l7
l3

;−
l2l8
l3

;
l3l6
l8

;−
l3l6
l7

;−
l6l11
l8

;
l6l10
l9

;

−
l11
l6l8

;
l10
l6l9

;−
l10
l4l7

;−
l7
l3l6

;−
l11
l3l6

;
l8
l3l6

;−
l11
l3l5

;−
l3
l2l8

;−
l3
l2l7

;
l11
l2l9

;
l11
l2l8

;
l9
l2l8

;
l11
l2l7

;
l8
l2l7

;

−
l9
l2l7

;−
l8
l2l6

;
l11
l2l5

;−
l8
l2l5

;
l4
l22
;−

l10
l22

;
1

l22l6
;
1

l32
;−

l22
l1
;
l2l5
l1

;
l5
l1l6

;
l10
l1l8

;
l9
l1l8

;
l11
l1l7

;−
l11
l1l6

;−
l8
l1l6

;

l10
l1l3

;
l9
l1l3

;
l4
l1l2

;
l2
l21
;
l4
l21
;
l1l3l6
l9

;−
l1l3l6
l7

;
l1l11
l4l7

;
l1l8
l2l7

;−
l1l3
l22

;−
l22l6
l9

;
l22l7
l9

;
l22l11
l9

;
l2l3l6
l9

;−
l2l3l6
l8

;

l2l11
l4l8

;
l2l10
l3l4

;−
l5l7
l26

;
l7l9
l28

;
l211
l28

;−
l10l11
l8l9

;
l28
l7l9

;−
l26
l5l7

;
l6l11
l5l7

;−
l6l10
l5l7

;−
l11

l3l4l6
;
l10

l3l4l6
;
l11

l2l5l7
;

−
l8

l2l3l6
;

l9
l2l3l6

;−
l10
l22l8

;−
l10
l22l7

;
l9
l22l7

;−
l9
l22l6

;−
l22
l1l3

;
l2l7
l1l8

;−
l2l11
l1l9

;−
l2l11
l1l3

;−
l7

l1l3l6
;−

l11
l1l3l6

;

l10
l1l3l6

;
l9

l1l3l6
;
l10

l1l3l5
;−

l1l3
l22l7

;−
l32
l3l4

;−
l22l11
l3l4

;
l23l6
l28

;−
l23l6
l7l9

;−
l7l9
l23l6

;−
l8l11
l23l6

;
l28
l23l6

;
l9l11
l2l7l8

;
l8l11
l2l27

;

l8l11
l2l25

;−
l10

l22l5l7
;−

l3l4
l32

;−
l22l7
l1l3

;−
l8l11
l21l6

;
l10l11
l3l4l5l7

;−
l9l10
l22l

2
7

;−
l211

l1l3l5l7
;−

l9l11
l1l23l6

;
l9l10
l21l

2
3l6

�
: ð5:16Þ

8This conclusion remains unchanged if one passes from LR to the full alphabet.
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Above threshold, the letters are real-valued functions and
it turns out that the Lin functions themselves may be chosen
to be real valued in Da. By using the Reduce function of
MATHEMATICA, we can rapidly check whether any of the

above function arguments assume values larger than one for
ðw; zÞ in Da. As one might expect, this is a nontrivial
constraint to impose on (5.16) and only 148 function
arguments survive. We find



l2;−l2; l3; l6;−l6; l7; l8; l9;−

1

l6
;
1

l5
;
1

l4
;−

1

l2
;
1

l1
;−l1l2; l1l3;

l1
l4
; l22; l2l6;−

l2
l4
;−

l2
l3
; l3l4;

l3
l9
;
l3
l8
;

l5l7; l26;−
l6
l7
;
l7
l9
;
l7
l8
;−

l11
l8

;
l11
l8

;−
l10
l9

;
l8
l9
;
l11
l7

;−
l10
l7

;−
l7
l6
;−

l11
l6

;
l10
l6

;
l6
l5
;−

l11
l5

;
l8
l5
;−

l11
l3

;−
l3
l2
;

−
l4
l2
;
l11
l2

;
l2
l1
;
l11
l1

;
l8
l1
;−

1

l1l2
;
l1l2
l4

;
l1l3
l9

;−
l1l6
l8

;−
l1l11
l9

;
l1l6
l5

;−
l1
l22
; l32; l

2
2l6;

l22
l4
;−

l2l5
l8

;−
l2l6
l8

;

−
l2l7
l9

;
l2l7
l8

;
l2l11
l8

;−
l2l10
l8

;
l2l8
l9

;−
l2l7
l3

;−
l2l8
l3

;
l3l6
l8

;−
l3l6
l7

;−
l6l11
l8

;
l6l10
l9

;−
l11
l6l8

;
l10
l6l9

;−
l10
l4l7

;

−
l7
l3l6

;−
l11
l3l6

;−
l11
l3l5

;−
l3
l2l8

;−
l3
l2l7

;
l11
l2l9

;
l11
l2l8

;
l11
l2l7

;−
l9
l2l7

;−
l8
l2l6

;
l11
l2l5

;−
l8
l2l5

;−
l10
l22

;−
l22
l1
;

l2l5
l1

;
l10
l1l8

;
l9
l1l8

;
l11
l1l7

;−
l11
l1l6

;−
l8
l1l6

;
l10
l1l3

;
l2
l21
;
l4
l21
;
l1l3l6
l9

;−
l1l3l6
l7

;
l1l11
l4l7

;−
l1l3
l22

;−
l22l6
l9

;
l22l7
l9

;

l22l11
l9

;
l2l3l6
l9

;−
l2l3l6
l8

;
l2l11
l4l8

;
l2l10
l3l4

;−
l5l7
l26

;
l7l9
l28

;
l211
l28

;−
l10l11
l8l9

;−
l26
l5l7

;
l6l11
l5l7

;−
l6l10
l5l7

;−
l11

l3l4l6
;

l10
l3l4l6

;
l11

l2l5l7
;−

l8
l2l3l6

;−
l10
l22l8

;−
l10
l22l7

;−
l9
l22l6

;−
l22
l1l3

;
l2l7
l1l8

;−
l2l11
l1l9

;−
l2l11
l1l3

;−
l7

l1l3l6
;−

l11
l1l3l6

;

l10
l1l3l6

;
l10

l1l3l5
;−

l1l3
l22l7

;−
l32
l3l4

;−
l22l11
l3l4

;
l23l6
l28

;−
l23l6
l7l9

;−
l7l9
l23l6

;−
l8l11
l23l6

;
l9l11
l2l7l8

;
l8l11
l2l27

;
l8l11
l2l25

;−
l10

l22l5l7
;

−
l3l4
l32

;−
l22l7
l1l3

;−
l8l11
l21l6

;
l10l11
l3l4l5l7

;−
l9l10
l22l

2
7

;−
l211

l1l3l5l7
;−

l9l11
l1l23l6

;
l9l10
l21l

2
3l6

�
ð5:17Þ

for our final set of preferred Lin function arguments above
the two-mass threshold. We can proceed analogously to
filter the set of Li2;1, Li3;1, and Li2;2 function argument pairs
which survive our first-entry cuts. For the sake of brevity,
let us simply state that we find 2496 preferred pairs of
function arguments ðfi; fjÞ after using Reduce to throw
away all pairs for which fi > 1 or fifj > 1 for ðw; zÞ in
Da. As explained in [15], we can further improve the
numerical performance of our functional basis in GiNaC by
reordering the lists of function arguments obtained to
ensure that those which lead to convergent power series
expansions are given precedence.
In region Db1 , the first-entry conditions are the same

as for Da and again lead to (5.16). As mentioned above,
we can use Reduce to efficiently check which Lin basis
functions have suitable analytic properties below the two-
mass threshold as well; despite the fact that w and z become
complex functions of the original kinematic variables in
Db1 and the remaining below-threshold regions, we can

proceed as before provided that we first eliminate Im½w�
and Im½z� via Eq. (5.15) and work only with Re½w� and
Re½z�. It turns out that a surprisingly large number of
exceptional phase space points and trajectories cause
problems for particular basis functions in the ðw; zÞ
representation. Specifically, we find that certain Lin argu-
ments assume values on the real axis greater than one

(i) when s ¼ 3m2 for −3m2 < t < 0,
(ii) when s ¼ − 4m2t

m2−t for −3m
2 < t < −m2,

(iii) when s ¼ − 2m2ð−2t−m2Þ
t for −ð2þ ffiffiffi

2
p Þm2 < t <

−m2, and
(iv) when s ¼ 4m2þtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−tð8m2−tÞ

p
2

for −ð2þ ffiffiffi
2

p Þm2 <
t < 0.

We also observe that a number of function arguments have
imaginary parts which vanish identically below threshold.
Any such Lin function with an argument which can attain
values greater than one onDb1 must be discarded because it
will be ill defined unless small imaginary parts are assigned
to w and z.
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In the end, we find the 178 preferred Lin function arguments

n
l1; l2;−l2; l3; l4; l5; l6;−l6; l7;

1

l9
;
1

l8
;
1

l7
;
1

l6
;−

1

l6
;
1

l5
;
1

l4
;
1

l3
;
1

l2
;−

1

l2
;
1

l1
;−l1l2; l1l3;

l1
l8
;
l1
l4
;
l1
l2
;

l22; l2l6;−
l2
l4
;−

l2
l3
;
l3
l9
;
l3
l8
;
l5
l8
;
l5
l6
; l26;−

l6
l7
;
l7
l9
;
l7
l8
;−

l11
l8

;
l11
l8

;−
l10
l9

;
l8
l9
;
l9
l8
;
l11
l7

;−
l10
l7

;
l8
l7
;
l9
l7
;−

l7
l6
;

−
l11
l6

;
l10
l6

;
1

l26
;
l6
l5
;−

l11
l5

;
l8
l5
;
1

l5l7
;−

l11
l3

;
l8
l3
;
l9
l3
;
1

l3l4
;−

l3
l2
;−

l4
l2
;
l11
l2

;
1

l2l6
;
1

l22
;
l2
l1
;
l4
l1
;
l11
l1

;
l8
l1
;

1

l1l3
;−

1

l1l2
;
l1l2
l4

;
l1l3
l9

;−
l1l6
l8

;−
l1l11
l9

;
l1l6
l5

;
l1
l2l5

;−
l1
l22
; l32; l

2
2l6;

l22
l4
;−

l2l5
l8

;−
l2l6
l8

;−
l2l7
l9

;
l2l7
l8

;

l2l11
l8

;−
l2l10
l8

;
l2l8
l9

;−
l2l7
l3

;−
l2l8
l3

;
l3l6
l8

;−
l3l6
l7

;−
l6l11
l8

;
l6l10
l9

;−
l11
l6l8

;
l10
l6l9

;−
l10
l4l7

;−
l7
l3l6

;−
l11
l3l6

;

l8
l3l6

;−
l11
l3l5

;−
l3
l2l8

;−
l3
l2l7

;
l11
l2l9

;
l11
l2l8

;
l9
l2l8

;
l11
l2l7

;
l8
l2l7

;−
l9
l2l7

;
l11
l2l5

;−
l8
l2l5

;
l4
l22
;−

l10
l22

;
1

l22l6
;
1

l32
;

−
l22
l1
;
l2l5
l1

;
l5
l1l6

;
l10
l1l8

;
l9
l1l8

;
l11
l1l7

;−
l11
l1l6

;−
l8
l1l6

;
l10
l1l3

;
l9
l1l3

;
l4
l1l2

;
l2
l21
;
l4
l21
;
l1l3l6
l9

;−
l1l3l6
l7

;
l1l11
l4l7

;

−
l1l3
l22

;−
l22l6
l9

;
l22l7
l9

;
l22l11
l9

;
l2l3l6
l9

;−
l2l3l6
l8

;
l2l11
l4l8

;
l2l10
l3l4

;
l7l9
l28

;
l211
l28

;−
l10l11
l8l9

;−
l26
l5l7

;
l6l11
l5l7

;

−
l6l10
l5l7

;−
l11

l3l4l6
;
l10

l3l4l6
;
l11

l2l5l7
;−

l8
l2l3l6

;
l9

l2l3l6
;−

l10
l22l8

;−
l10
l22l7

;
l9
l22l7

;−
l22
l1l3

;
l2l7
l1l8

;−
l2l11
l1l9

;

−
l2l11
l1l3

;−
l7

l1l3l6
;−

l11
l1l3l6

;
l10

l1l3l6
;

l9
l1l3l6

;
l10

l1l3l5
;−

l1l3
l22l7

;−
l32
l3l4

;−
l22l11
l3l4

;
l23l6
l28

;−
l23l6
l7l9

;−
l7l9
l23l6

;

−
l8l11
l23l6

;
l9l11
l2l7l8

;
l8l11
l2l27

;
l8l11
l2l25

;−
l10

l22l5l7
;−

l22l7
l1l3

;−
l8l11
l21l6

;
l10l11
l3l4l5l7

;−
l9l10
l22l

2
7

;−
l211

l1l3l5l7
;−

l9l11
l1l23l6

;
l9l10
l21l

2
3l6

o
ð5:18Þ

for Db1. In an analogous manner, we find 3314 preferred pairs of Li2;1, Li3;1, and Li2;2 function arguments ðfi; fjÞ after
using Reduce to throw away all pairs for which either Re½fi� > 1 and Im½fi� ¼ 0 or, alternatively, Re½fifj� > 1 and
Im½fifj� ¼ 0 for ðw; zÞ in Db1 .
For regions Db2 and Db3 , the first-entry conditions lead to the preliminary list of 194 Lin function arguments



l1; l2;−l2; l3; l4; l5; l6;−l6; l7; l8; l9;

1

l8
;
1

l7
;
1

l6
;−

1

l6
;
1

l5
;
1

l4
;
1

l3
;
1

l2
;−

1

l2
;
1

l1
;−l1l2; l1l3;

l1
l8
;
l1
l4
;

l1
l2
; l22; l2l6;−

l2
l4
;−

l2
l3
; l3l4;

l3
l8
; l5l7;

l5
l8
;
l5
l6
; l26;

l6
l10

;−
l6
l7
;
l7
l8
;−

l7
l10

;−
l11
l8

;
l11
l8

;−
l11
l10

;
l9
l8
;−

l9
l10

;

l11
l7

;−
l10
l7

;
l8
l7
;
l9
l7
;−

l7
l6
;−

l11
l6

;
l10
l6

;
1

l26
;
l6
l5
;−

l11
l5

;
l8
l5
;
1

l5l7
;−

l11
l3

;
l8
l3
;
l9
l3
;
1

l3l4
;−

l3
l2
;−

l4
l2
;
l11
l2

;
1

l2l6
;

1

l22
;
l2
l1
;
l4
l1
;
l11
l1

;
l8
l1
;
1

l1l3
;−

1

l1l2
;
l21
l4
;
l21
l2
;
l1l2
l4

;
l1l3
l10

;
l1l3
l7

;−
l1l6
l8

;−
l1l11
l10

;
l1l8
l10

;
l1l6
l5

;
l1
l2l5

;−
l1
l22
; l32;

−
l22
l10

;
l22
l6
;
l22
l4
;−

l2l5
l8

;−
l2l6
l8

;
l2l7
l8

;
l2l11
l8

;−
l2l11
l10

;−
l2l10
l8

;−
l2l7
l3

;
l3l4
l8

;
l3l6
l8

;−
l3l6
l7

;−
l4l7
l10

;

−
l6l11
l8

;
l6l9
l10

;−
l11
l6l8

;
l9

l6l10
;
l9
l5l7

;−
l10
l4l7

;−
l7
l3l6

;−
l11
l3l6

;
l8
l3l6

;−
l11
l3l5

;
l8
l3l4

;−
l3
l2l7

;
l11
l2l8

;
l9
l2l8

;

−
l8

l2l10
;
l11
l2l7

;
l8
l2l7

;−
l9
l2l7

;−
l8
l2l6

;
l11
l2l5

;−
l8
l2l5

;
l11
l2l3

;
l4
l22
;
l6
l22
;−

l10
l22

;
1

l32
;−

l22
l1
;
l2l5
l1

;
l5
l1l6

;
l10
l1l8

;
l9
l1l8

; ð5:19Þ
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l11
l1l7

;−
l11
l1l6

;−
l8
l1l6

;
l7
l1l3

;
l10
l1l3

;
l9
l1l3

;
l4
l1l2

;
l2
l21
;
l4
l21
;
l1l3l6
l10

;
l1l8
l4l7

;
l1l11
l2l7

;−
l1l3
l22

;−
l22l7
l10

;−
l22l8
l10

;
l2l11
l3l6

;

l2l10
l3l4

;
l3l4l6
l10

;−
l5l7
l26

;
l7l9
l28

;
l211
l28

;−
l9l11
l8l10

;−
l211
l7l10

;−
l26
l5l7

;
l6l11
l5l7

;
l10

l3l4l6
;
l3l4
l2l10

;
l4l11
l2l8

;
l11

l2l5l7
;

l9
l2l3l6

;

−
l10
l22l8

;−
l10
l22l7

;
l9
l22l7

;−
l9
l22l6

;−
l22
l1l3

;−
l2l11
l1l3

;
l4l7
l1l8

;−
l4l11
l1l10

;−
l11

l1l3l6
;
l10

l1l3l6
;

l9
l1l3l6

;
l9

l1l3l5
;−

l32
l3l4

;

−
l2l7l11
l8l10

;−
l7l9
l23l6

;
l211
l23l6

;−
l8l11
l23l6

;
l9l11
l2l7l8

;
l8l11
l2l27

;
l8l11
l2l25

;−
l3l4
l32

;−
l8l11
l21l6

;
l1l3l6
l22l7

;
l22l8
l3l4l6

;−
l9l211
l28l10

;

l9l11
l2l3l5l7

;
l3l4l6
l22l8

;−
l9l10
l22l

2
7

;
l6l9
l22l5l7

;
l22l7
l1l3l6

;−
l211

l1l3l5l7
;−

l9l11
l1l23l6

;
l2l7l11
l1l23l6

;
l9l10
l21l

2
3l6

;
l9l211

l1l33l5l6

�
: ð5:19Þ

The rest of the filtering procedure in the remaining regions is closely analogous to what is described above for Db1, but we
nevertheless summarize our findings for the benefit of the reader.
In Db2 , besides those functions whose arguments have imaginary parts which vanish identically, we find that

certain Lin arguments assume values on the real axis greater than one
(i) when s ¼ − 4m2t

m2−t for −m
2 < t < − m2

3
,

(ii) when s ¼ − 2m2ð−2t−m2Þ
t for −m2 < t < − 2m2

3
, and

(iii) when s ¼ 4m2þt−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−tð8m2−tÞ

p
2

for − m2

3
< t < 0.

After discarding all of the offending Lin function arguments, we find that 184 preferred ones remain:



l1; l2;−l2; l3; l4; l5; l6;−l6; l7; l9;

1

l8
;
1

l7
;
1

l6
;−

1

l6
;
1

l5
;
1

l4
;
1

l3
;
1

l2
;−

1

l2
;
1

l1
;−l1l2; l1l3;

l1
l8
;
l1
l4
;
l1
l2
;

l22; l2l6;−
l2
l4
;−

l2
l3
; l3l4;

l3
l8
;
l5
l8
;
l5
l6
; l26;

l6
l10

;−
l6
l7
;
l7
l8
;−

l7
l10

;−
l11
l8

;
l11
l8

;−
l11
l10

;
l9
l8
;−

l9
l10

;
l11
l7

;−
l10
l7

;

l8
l7
;
l9
l7
;−

l7
l6
;−

l11
l6

;
1

l26
;
l6
l5
;−

l11
l5

;
l8
l5
;
1

l5l7
;−

l11
l3

;
l8
l3
;
l9
l3
;
1

l3l4
;−

l3
l2
;−

l4
l2
;
l11
l2

;
1

l2l6
;
1

l22
;
l2
l1
;
l4
l1
;
l11
l1

;

l8
l1
;
1

l1l3
;−

1

l1l2
;
l1l2
l4

;
l1l3
l10

;
l1l3
l7

;−
l1l6
l8

;−
l1l11
l10

;
l1l6
l5

;
l1
l2l5

;−
l1
l22
; l32;−

l22
l10

;
l22
l6
;
l22
l4
;−

l2l5
l8

;−
l2l6
l8

;

l2l7
l8

;
l2l11
l8

;−
l2l11
l10

;−
l2l10
l8

;−
l2l7
l3

;
l3l4
l8

;
l3l6
l8

;−
l3l6
l7

;−
l4l7
l10

;−
l6l11
l8

;
l6l9
l10

;−
l11
l6l8

;
l9

l6l10
;
l9
l5l7

;

−
l10
l4l7

;−
l7
l3l6

;−
l11
l3l6

;
l8
l3l6

;−
l11
l3l5

;
l8
l3l4

;−
l3
l2l7

;
l11
l2l8

;
l9
l2l8

;−
l8

l2l10
;
l11
l2l7

;
l8
l2l7

;−
l9
l2l7

;
l11
l2l5

;

−
l8
l2l5

;
l11
l2l3

;
l4
l22
;
l6
l22
;
1

l32
;−

l22
l1
;
l2l5
l1

;
l5
l1l6

;
l10
l1l8

;
l9
l1l8

;
l11
l1l7

;−
l11
l1l6

;−
l8
l1l6

;
l7
l1l3

;
l10
l1l3

;
l9
l1l3

;
l4
l1l2

;
l2
l21
;

l4
l21
;
l1l3l6
l10

;
l1l11
l2l7

;−
l1l3
l22

;−
l22l7
l10

;−
l22l8
l10

;
l2l11
l3l6

;
l2l10
l3l4

;
l3l4l6
l10

;
l7l9
l28

;
l211
l28

;−
l9l11
l8l10

;−
l211
l7l10

;−
l26
l5l7

;

l6l11
l5l7

;
l10

l3l4l6
;
l3l4
l2l10

;
l4l11
l2l8

;
l11

l2l5l7
;

l9
l2l3l6

;−
l10
l22l8

;−
l10
l22l7

;
l9
l22l7

;−
l9
l22l6

;−
l22
l1l3

;−
l2l11
l1l3

;
l4l7
l1l8

;

−
l4l11
l1l10

;−
l11

l1l3l6
;
l10

l1l3l6
;

l9
l1l3l6

;
l9

l1l3l5
;−

l32
l3l4

;−
l2l7l11
l8l10

;−
l7l9
l23l6

;
l211
l23l6

;−
l8l11
l23l6

;
l9l11
l2l7l8

;
l8l11
l2l27

;

l8l11
l2l25

;−
l3l4
l32

;−
l8l11
l21l6

;
l1l3l6
l22l7

;
l22l8
l3l4l6

;−
l9l211
l28l10

;
l9l11

l2l3l5l7
;
l3l4l6
l22l8

;−
l9l10
l22l

2
7

;
l6l9
l22l5l7

;
l22l7
l1l3l6

;−
l211

l1l3l5l7
;

−
l9l11
l1l23l6

;
l2l7l11
l1l23l6

;
l9l10
l21l

2
3l6

;
l9l211

l1l33l5l6

�
: ð5:20Þ

In much the same way, we find 3420 preferred pairs of function arguments for Li2;1, Li3;1, and Li2;2 in Db2 .
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In Db3 , besides those functions whose arguments have imaginary parts which vanish identically, we find that certain Lin
arguments assume values on the real axis greater than one

(i) when s ¼ − 4m2t
m2−t for −

m2

3
< t < 0,

(ii) when s ¼ − 2m2ð−2t−m2Þ
t for − 2m2

3
< t < −ð2 − ffiffiffi

2
p Þm2, and

(iii) when s ¼ 4m2þt−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−tð8m2−tÞ

p
2

for −ð2 − ffiffiffi
2

p Þm2 < t < − m2

3
.

After filtering, we find that 184 preferred Lin function arguments remain:



l1; l2;−l2; l3; l4; l5; l6;−l6; l7; l9;

1

l8
;
1

l7
;
1

l6
;−

1

l6
;
1

l5
;
1

l4
;
1

l3
;
1

l2
;−

1

l2
;
1

l1
;−l1l2; l1l3;

l1
l8
;
l1
l4
;
l1
l2
;

l22; l2l6;−
l2
l3
; l3l4;

l3
l8
;
l5
l8
;
l5
l6
; l26;

l6
l10

;−
l6
l7
;
l7
l8
;−

l7
l10

;−
l11
l8

;
l11
l8

;−
l11
l10

;
l9
l8
;−

l9
l10

;
l11
l7

;−
l10
l7

;
l8
l7
;
l9
l7
;

−
l7
l6
;−

l11
l6

;
1

l26
;
l6
l5
;−

l11
l5

;
l8
l5
;
1

l5l7
;−

l11
l3

;
l8
l3
;
l9
l3
;
1

l3l4
;−

l3
l2
;−

l4
l2
;
l11
l2

;
1

l2l6
;
1

l22
;
l2
l1
;
l4
l1
;
l11
l1

;
l8
l1
;

1

l1l3
;−

1

l1l2
;
l21
l4
;
l21
l2
;
l1l2
l4

;
l1l3
l10

;
l1l3
l7

;−
l1l6
l8

;−
l1l11
l10

;
l1l8
l10

;
l1l6
l5

;
l1
l2l5

;−
l1
l22
; l32;−

l22
l10

;
l22
l6
;
l22
l4
;−

l2l5
l8

;

−
l2l6
l8

;
l2l7
l8

;
l2l11
l8

;−
l2l11
l10

;−
l2l10
l8

;−
l2l7
l3

;
l3l4
l8

;
l3l6
l8

;−
l3l6
l7

;−
l4l7
l10

;−
l6l11
l8

;
l6l9
l10

;−
l11
l6l8

;
l9

l6l10
;

l9
l5l7

;−
l7
l3l6

;−
l11
l3l6

;
l8
l3l6

;−
l11
l3l5

;
l8
l3l4

;−
l3
l2l7

;
l11
l2l8

;
l9
l2l8

;−
l8

l2l10
;
l11
l2l7

;
l8
l2l7

;−
l9
l2l7

;
l11
l2l5

;−
l8
l2l5

;

l11
l2l3

;
l4
l22
;
l6
l22
;
1

l32
;−

l22
l1
;
l2l5
l1

;
l5
l1l6

;
l9
l1l8

;
l11
l1l7

;−
l11
l1l6

;−
l8
l1l6

;
l7
l1l3

;
l10
l1l3

;
l9
l1l3

;
l4
l1l2

;
l4
l21
;
l1l3l6
l10

;
l1l8
l4l7

;

l1l11
l2l7

;−
l1l3
l22

;−
l22l7
l10

;−
l22l8
l10

;
l2l11
l3l6

;
l2l10
l3l4

;
l3l4l6
l10

;
l7l9
l28

;
l211
l28

;−
l9l11
l8l10

;−
l211
l7l10

;−
l26
l5l7

;
l6l11
l5l7

;
l10

l3l4l6
;

l3l4
l2l10

;
l4l11
l2l8

;
l11

l2l5l7
;

l9
l2l3l6

;−
l10
l22l8

;−
l10
l22l7

;
l9
l22l7

;−
l9
l22l6

;−
l22
l1l3

;−
l2l11
l1l3

;
l4l7
l1l8

;−
l4l11
l1l10

;−
l11

l1l3l6
;

l10
l1l3l6

;
l9

l1l3l6
;

l9
l1l3l5

;−
l32
l3l4

;−
l2l7l11
l8l10

;−
l7l9
l23l6

;
l211
l23l6

;−
l8l11
l23l6

;
l9l11
l2l7l8

;
l8l11
l2l27

;
l8l11
l2l25

;−
l3l4
l32

;−
l8l11
l21l6

;

l1l3l6
l22l7

;
l22l8
l3l4l6

;−
l9l211
l28l10

;
l9l11

l2l3l5l7
;
l3l4l6
l22l8

;−
l9l10
l22l

2
7

;
l6l9
l22l5l7

;
l22l7
l1l3l6

;−
l211

l1l3l5l7
;−

l9l11
l1l23l6

;
l2l7l11
l1l23l6

;
l9l10
l21l

2
3l6

;
l9l211

l1l33l5l6

�
: ð5:21Þ

Note that (5.20) and (5.21) are not identical even though
they are of identical length. As before, we find 3420
preferred pairs of function arguments for Li2;1, Li3;1, and
Li2;2 in Db3 .
Although it is not a priori clear that such restrictive

choices for the Ansätze of Li functions in each region are
actually allowed, it turns out that we can in fact use the sets
of function arguments derived from the considerations
outlined above to write explicit solutions which satisfy
the differential equations for the 12 two-massive-line
master integrals with rational symbols in Da, Db1 , Db2 ,
and Db3 . We have explicitly checked numerically against
the G function representation with kinematic variables in
the arguments at a large number of physical phase space
points that, as desired, our results are correct independent
of whether explicit positive imaginary parts are assigned to

w and z. In the next section, we will discuss the more
complicated master integrals which involve the intrinsically
algebraic part of the full symbol alphabet, LA, in a similar
manner.

VI. WEIGHT-FOUR MULTIPLE
POLYLOGARITHMS FOR DRELL-YAN

MASTER INTEGRALS

In this section, we apply the techniques introduced in
Secs. IV and V B to explicitly integrate the ϵ d ln form for
fm1;…;m36g, (A1), in the physical region above the two-
mass threshold (s > 4m2) through to weight four in terms
of real-valued Li functions. To our knowledge, this is the
first time a complete solution in terms of standard multiple
polylogarithms has been found for a multiloop Feynman
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integral with an ϵ d ln differential equation containing
unrationalizable symbol letters. We fix our integration con-
stants using a variety of established techniques, such as direct
evaluation in Feynman parameters, exploiting regular kin-
ematic limits of the differential equations, and exploiting
kinematic limits where particular integrals are power sup-
pressed and must therefore vanish (see Sec. 5.2 of [14]).
Due to the significant length of our results, we refrain

from presenting them explicitly in the text. For the benefit
of the reader interested in the detailed structure of our
solution, we provide the result through to weight four for

the six-line normal form integral from the right panel of
Fig. 2, m32, as an ancillary file included with our arXiv
submission. m32 has a number of notable analytic fea-
tures. We find a basis of multiple polylogarithms com-
prised of 14 ln functions [by construction, lnðl10Þ and
lnðl11Þ cannot appear], 46 Li2 functions, 235 Li3 func-
tions, 342 Li4 functions, 28 Li2;1 functions, 742 Li3;1
functions, and 324 Li2;2 functions. To give the reader a
feeling for the complexity of our result form32, we present
the complete list of 347 Lin function arguments which
appear in it:



1

l1
;−l2; l2;

l2
l21
;
l2
l1
;−l1l2;−

l22
l1
; l32;−

l2
l3
;−

l22
l1l3

; l3;
l4
l21
;−

l4
l2
;
1

l5
;
l2l5
l1

;−l6; l6; l2l6; l22l6;
l6
l5
;
l1l6
l5

;

−
l1l3
l22l7

;−
l3
l2l7

;−
l6
l7
;−

l3l6
l7

;−
l1l3l6
l7

;−
l26
l5l7

; l7;
l23l6
l28

;
l3
l8
;−

l3
l2l8

;−
l2l5
l8

;−
l1l6
l8

;
l3l6
l8

;−
l2l3l6
l8

;
l7
l8
;

l2l7
l8

;
l2l7
l1l8

; l8;
l8
l1
;
l8
l5
;
l3
l9
;
l1l3
l9

;−
l22l6
l9

;
l1l3l6
l9

;
l2l3l6
l9

;−
l23l6
l7l9

;
l7
l9
;−

l2l7
l9

;
l22l7
l9

;
l8
l9
;
l2l8
l9

;
l7l9
l28

;
l9
l1l8

;

l10
l1l3

;
l10

l1l3l5
;
l10

l1l3l6
;−

l10
l7

;−
l10
l22l7

;−
l10

l22l5l7
;−

l6l10
l5l7

;
l10
l1l8

;−
l2l10
l8

;−
l10
l9

;
l10
l6l9

;
l6l10
l9

;
l9l10
l21l

2
3l6

;

−
l9l10
l22l

2
7

;
l11
l1

;
l11
l2

;−
l11
l3

;−
l2l11
l1l3

;−
l11
l5

;
l11
l2l5

;−
l11
l3l5

;−
l11
l6

;−
l11
l1l6

;−
l11
l3l6

;−
l11

l1l3l6
;
l11
l7

;
l11
l1l7

;

l11
l2l7

;
l11

l2l5l7
;
l6l11
l5l7

;−
l11
l8

;
l11
l8

;
l11
l2l8

;
l2l11
l8

;−
l11
l6l8

;−
l6l11
l8

;
l8l11
l2l25

;−
l8l11
l21l6

;−
l8l11
l23l6

;
l8l11
l2l27

;−
l1l11
l9

;

−
l2l11
l1l9

;
l22l11
l9

;−
l9l11
l1l23l6

;
l9l11
l2l7l8

;−
l10l11
l8l9

;−
l211

l1l3l5l7
;
l1l7l9
l213

;
l1l3
l13

;
l7
l13

;
l1l7
l13

;
l1l8
l13

;
l9
l13

;
l9

l5l13
;
l7l9
l13

;

l7l9
l8l13

;
l1l11
l2l13

;−
l1l7l9
l12l13

;
l12
l13

;
l13
l1

;−
l1l2l7l10

l214
;−

l10l213
l7l214

;−
l2l10l213
l9l214

;−
l1l3
l14

;
l1l2l7
l14

;
l22l7
l14

;−
l10
l14

;

−
l1l10
l2l14

;−
l10
l5l14

;−
l7l10
l14

;
l2l7l10
l3l14

;−
l7l10
l8l14

;
l1l11
l14

;
l1l2l7l10
l12l14

;
l2l7l13
l8l14

;−
l1l23l6l13
l7l9l14

;
l2l7l13
l9l14

;
l22l7l13
l9l14

;

−
l10l13
l7l14

;−
l10l13
l1l7l14

;−
l10l13
l2l7l14

;−
l1l10l13
l4l7l14

;−
l10l13
l8l14

;−
l10l13
l9l14

;−
l2l10l13
l9l14

;−
l8l10l13
l7l9l14

;
l11l13
l7l14

;

l2l11l13
l9l14

;
l2l7l10l13
l3l12l14

;
l14
l1l2

;
l14

l1l2l5l7
;
l14
l13

;
l14
l2l13

;
l9l14

l1l2l7l13
;−

l7l10
l215

;
l2l6l7l10

l215
;
l2l6l10l213
l1l9l215

;

−
l22l6l7l

2
10l

2
13

l9l214l
2
15

;−
l6l214
l1l215

;−
l6l7l9l214
l213l

2
15

;
l1l3l6
l15

;−
l7
l15

;
l2l7
l15

;
l2l5l7
l15

;
l2l6l7
l15

;
l2l3l6l7
l8l15

;

l10
l15

;−
l10
l2l15

;
l6l10
l15

;−
l2l6l10
l15

;
l6l10
l5l15

;
l2l7l10
l1l3l15

;
l3l6l10
l8l15

;
l8l10
l3l15

;−
l2l7l11
l3l15

;
l2l10l11
l3l4l15

;−
l2l6l7l10
l12l15

;

l2l13
l1l15

;−
l22l6l13
l9l15

;
l1l3l6l13
l9l15

;
l2l3l6l13
l9l15

;−
l10l13
l1l2l15

;
l10l13
l1l3l15

;
l2l10l13
l21l3l15

;
l22l10l13
l1l3l4l15

;
l6l10l13
l1l8l15

;
l6l10l13
l9l15

;

l2l6l10l13
l1l9l15

;−
l2l6l11l13
l9l15

;−
l2l6l10l13
l12l15

;−
l10l13
l14l15

;−
l2l6l10l13
l14l15

;
l2l7l10l13
l3l14l15

;−
l2l3l6l10l13
l9l14l15

;
l2l7l10l13
l9l14l15

;

l22l6l7l10l13
l9l14l15

;−
l2l210l13
l3l4l14l15

;
l1l2l3l6l11l13

l9l14l15
;
l2l6l10l11l13
l5l9l14l15

;
l2l6l7l210l13
l8l12l14l15

;
l14
l1l15

;−
l6l14
l15

;−
l6l14
l1l15

;

−
l6l14
l7l15

;−
l3l6l14
l7l15

;
l3l6l14
l2l7l15

;
l7l14
l1l15

;−
l2l7l14
l1l3l15

;−
l2l6l7l14
l1l8l15

;−
l6l11l14
l2l7l15

;
l2l6l7l14
l12l15

;−
l3l6l14
l13l15

;
l7l14
l13l15

;
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l2l6l7l14
l13l15

;−
l2l27l14
l3l13l15

;
l3l6l9l14
l2l7l13l15

;−
l1l3l6l11l14
l2l7l13l15

;−
l6l9l11l14
l2l5l7l13l15

;
l2l6l27l9l14
l8l12l13l15

;−
l6l11l13l14
l2l7l9l15

;−
l15

l22l6l7
;

l15
l13

;−
l21l3l15
l22l7l14

;
l2l7l15
l8l14

;
l1l2l7l15
l12l14

;
l21l11l15
l2l13l14

;−
l2l13l15
l9l14

;−
l13l15
l6l9l14

;
l2l7l13l15
l8l12l14

;−
l2l6l7l9
l216

;

−
l1l2l6l27l

2
9

l213l
2
16

;
l1l22l6l

2
7l9l10

l214l
2
16

;−
l22l

2
6l

2
7l9l10

l215l
2
16

;
l2l26l

2
7l

2
9l

2
14

l213l
2
15l

2
16

;−
l21l2l7l9l11l15
l13l14l216

;−
l2l5l7
l16

;−
l2l6l7
l16

;

−
l6l9
l2l16

;−
l2l7l9
l1l3l16

;
l3l6l9
l8l16

;−
l9l11
l3l16

;
l2l6l7l9
l12l16

;
l1l3l6l9
l13l16

;−
l1l3l6l9
l2l13l16

;−
l1l7l9
l13l16

;
l2l6l7l9
l13l16

;−
l2l27l9
l3l13l16

;

−
l1l9l11
l13l16

;
l1l2l6l27l9
l12l13l16

;
l1l2l3l6l7
l14l16

;
l21l2l3l6l7
l14l16

;
l2l6l7l9
l14l16

;
l2l7l10
l14l16

;
l1l2l7l10
l14l16

;
l2l7l9l10
l14l16

;
l2l7l9l10
l3l14l16

;

l2l7l9l10
l1l3l14l16

;
l2l7l9l10
l3l4l14l16

;
l2l7l9l10
l8l14l16

;−
l1l2l7l11
l14l16

;−
l1l6l7l9l10
l12l14l16

;
l2l27l9l10
l8l13l14l16

;
l2l7l9l10l13
l1l3l8l14l16

;
l2l6l27
l15l16

;

−
l22l6l

2
7

l15l16
;
l32l6l

2
7

l15l16
;
l2l6l7l9
l15l16

;−
l2l6l7l10
l15l16

;
l6l9l10
l15l16

;−
l6l9l10
l2l15l16

;−
l2l6l9l10
l15l16

;−
l2l6l9l10
l4l15l16

;
l22l6l

2
7l9l10

l1l3l12l15l16
;

l22l6l7l8l13
l14l15l16

;−
l6l7l10l13
l14l15l16

;
l1l2l6l7l10l13
l14l15l16

;
l22l6l7l10l13
l1l14l15l16

;−
l32l6l7l10l13
l14l15l16

;
l2l6l7l210l13
l8l14l15l16

;

−
l22l6l7l10l11l13
l9l14l15l16

;
l1l23l

2
6l9l14

l2l7l13l15l16
;
l6l7l9l14
l13l15l16

;
l2l6l7l9l14
l13l15l16

;
l2l6l7l9l14
l1l13l15l16

;
l2l6l27l9l14
l8l13l15l16

;
l6l8l9l14
l13l15l16

;

l6l9l11l14
l13l15l16

;
l3l6l9l12l14
l2l7l13l15l16

;
l6l29l

2
14

l2l213l15l16
;−

l6l15
l16

;
l6l9l15
l5l13l16

;−
l1l2l6l15
l14l16

;−
l12l15
l6l14l16

;
l1l2l6l7l9l15
l13l14l16

;

−
l7l9l12l15
l6l13l14l16

;−
l16
l2l7

;−
l3l16
l2l7l8

;
l16
l9

;−
l16
l2l9

;
l16
l6l9

;−
l3l4l16
l2l8l9

;−
l11l16
l3l6l9

;
l16
l12

;
l13l16
l1l6l9

;−
l13l16
l2l27l9

;

−
l1l3l13l16
l2l27l9

;−
l13l16
l2l7l9

;
l13l16
l1l6l8l9

;−
l8l13l16
l2l27l9

;
l13l16
l9l12

;
l14l16
l1l2l6l7

;
l14l16

l1l2l6l7l9
;
l16
l15

;−
l6l16
l15

;−
l10l16
l9l15

;

l10l16
l6l9l15

;
l6l10l16
l9l15

;
l11l16
l8l15

;−
l10l11l16
l8l9l15

;
l6l10l16
l5l12l15

;
l13l16
l9l15

;
l13l16
l1l9l15

;−
l6l13l16
l7l9l15

;−
l3l6l13l16
l7l9l15

;
l10l13l16
l1l6l9l15

;

l10l13l16
l1l3l6l9l15

;−
l10l13l16
l7l9l15

;−
l10l13l16
l1l7l9l15

;−
l6l10l13l16
l1l5l7l9l15

;−
l2l10l13l16
l1l8l9l15

;
l11l13l16
l7l9l15

;
l6l10l13l16
l9l12l15

;
l14l16

l1l2l7l15
;

l6l14l16
l1l2l5l7l15

;
l14l16
l1l8l15

;
l14l16
l9l15

;
l2l14l16
l1l9l15

;−
l6l14l16
l7l9l15

;
l3l6l14l16
l2l7l9l15

;
l8l14l16
l2l7l9l15

;
l11l14l16
l7l9l15

;
l13l14l16
l1l7l9l15

;

l13l14l16
l1l2l7l9l15

;
l2l13l14l16
l1l7l9l15

;
l6l13l14l16
l1l7l9l15

;
l6l13l14l16
l1l2l7l9l15

;
l12l13l14l16
l21l2l6l7l9l15

;−
l3l12l13l15l16
l22l6l

3
7l9l14

;−
l10l216
l9l215

;

−
l10l213l

2
16

l1l7l29l
2
15

;
l214l

2
16

l1l2l7l9l215
;
l213l

2
14l

2
16

l21l2l
2
7l

2
9l

2
15

;
l11l13l14l216
l2l6l27l

2
9l15

�
: ð6:1Þ

It is also worth pointing out that our choice of alphabet,
Eq. (4.19), produces remarkably simple integration con-
stants. We find

3

2
ζ3 −

3

2
π3i ð6:2Þ

at weight three and

1335349

32
ζ22 − 116ζ3πi ð6:3Þ

at weight four.
In lieu of our explicit analytic results, it is straightfor-

ward to obtain high-precision numerical results for our
master integrals using GiNaC. For the randomly chosen
physical phase space point
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ðs; t; m2Þ ¼ ð17;−7; 6241=1681Þ ð6:4Þ

we find for the most complicated master integrals with two massive internal lines

m32 ≈ ϵ3ð0.066537984962080530758… − 27.508245870011457529…iÞ
þ ϵ4ð51.615607433806381131… − 149.06326619542437190…iÞ þOðϵ5Þ; ð6:5Þ

m33 ≈ ϵ2ð10.163316917366188927…þ 6.2974465571355440423…iÞ
þ ϵ3ð33.914009430201406423…þ 4.6486595371603574921…iÞ
þ ϵ4ð163.17321004422879959… − 128.72756457117576796…iÞ þOðϵ5Þ; ð6:6Þ

m34 ≈ ϵ2ð−9.3166453894096456380… − 4.6722528592943756861…iÞ
þ ϵ3ð−12.274144284891231677… − 11.270075866466130873…iÞ
þ ϵ4ð−51.057330106861359687…þ 87.629800828432935443…iÞ þOðϵ5Þ; ð6:7Þ

m35 ≈ ϵ4ð6.9039856473317646358… − 0.013343873471826080269…iÞ þOðϵ5Þ; ð6:8Þ

m36 ≈ ϵ3ð−4.7564239669560836801…þ 4.0753242804814306037…iÞ
þ ϵ4ð−8.5216864119748844907… − 13.318764764536663942…iÞ þOðϵ5Þ: ð6:9Þ

Using the finite integral method [15,73,74] and SecDec3

[75], we were able to independently check these numerical
results to a few decimal digits.
We find that a double precision evaluation of all 36

master integrals m1;…; m36 at the point (6.4) using GiNaC

takes 0.5 s on one Intel E3-1275 CPU core. The perfor-
mance in this central point in phase space is therefore not
much worse than what is encountered for Feynman
integrals involving rational alphabets; see e.g., the dis-
cussion in [31]. Therefore, we expect the functional
representation discussed in this paper to be well suited
for direct usage in Monte Carlo programs.

VII. OUTLOOK

In this article, we considered irreducible Feynman
integrals satisfying ϵ d ln differential equations with non-
rational symbol letters and described methods for their
evaluation in terms of standard multiple polylogarithms.
We show for the first time that a complete solution in
terms of standard multiple polylogarithms can be obtained
even in the presence of unrationalizable symbol letters.
In particular, new techniques for the construction of an
Ansatz which matches the symbol in a particular region of
phase space allowed us to calculate the two-loop master
integrals for the mixed EW-QCD corrections to Drell-Yan
lepton pair production in the physical region using Li
functions through to weight four. We discussed in detail
how to optimize the functional basis to allow for fast
and stable numerical evaluations, systematically avoiding

arguments on branch cuts which would require an explicit
þi0 prescription. The presented techniques and results may
be applied directly to the calculation of the virtual ampli-
tudes for the full EW-QCD corrections to Drell-Yan
production of relative order ααs.
As motivation, we also considered a rather nontrivial

master integral for massive Bhabha electron-positron scat-
tering and showed that it may be directly integrated from
Feynman parameters to all orders in ϵ in terms of multiple
polylogarithms despite the presence of root-valued symbol
letters. Besides the applications discussed in this paper,
ϵ d ln differential equations with root-valued symbol letters
also appear in other interesting contexts, such as the next-
to-leading-order QCD corrections to H þ jet production
with full heavy top quark mass dependence. One may
therefore expect that our techniques could be fruitfully
applied also to other problems of current phenomenological
interest.

ACKNOWLEDGMENTS

We gratefully acknowledge Erik Panzer for inspiring and
stimulating discussions over the last several years about
various aspects of this work. R. M. S. is also very grateful to
Francis Brown, Erik Panzer, and All Souls College of
Oxford University for their hospitality at an early stage of
this work. We thank Stefan Müller-Stach, Duco van
Straten, and Marco Besier for many enlightening discus-
sions about the theory of rational parametrization. We
would also like to thank Hubert Spiesberger for his support

HELLER, VON MANTEUFFEL, and SCHABINGER PHYS. REV. D 102, 016025 (2020)

016025-24



and for collaborations on related topics. We thank Roberto
Bonciani, Stefano Di Vita, Pierpaolo Mastrolia, and
Ulrich Schubert for comparisons. M. H. was supported
in part by the German Research Foundation (DFG),
through the Collaborative Research Center, Project ID
No. 204404729, SFB 1044, and the Cluster of
Excellence PRISMAþ, Project ID No. 39083149, EXC
2118/1. A. v. M. was supported in part by the National
Science Foundation under Grant No. 1719863. The
authors would like to express a special thanks to the
Mainz Institute for Theoretical Physics (MITP) of

the Cluster of Excellence PRISMAþ for its hospitality
and support. Our figures were generated using JaxoDraw

[76], based on AxoDraw [77].

APPENDIX A: DIFFERENTIAL EQUATIONS
FOR THE DRELL-YAN MASTERS WITH

TWO MASSIVE LINES

In terms of the symbol letters fl1;…; l16g defined in
(4.19), the system of differential equations for m1;…;m36

in (3.7) can be cleanly written in differential form:

ϵ−1dm1 ¼ m1½4d lnðl1Þ − 4d lnðl2Þ þ 4d lnðl3Þ þ 2d lnðl6Þ − 4d lnðl7Þ�;
ϵ−1dm2 ¼ m2½2d lnðl1Þ − d lnðl2Þ�;
ϵ−1dm3 ¼ m3½4d lnðl1Þ − 2d lnðl2Þ�;
ϵ−1dm4 ¼ m4½6d lnðl1Þ − 3d lnðl2Þ� þm5½d lnðl2Þ − d lnðl4Þ�;
ϵ−1dm5 ¼ m4½12d lnðl1Þ − 6d lnðl2Þ� þm5½4d lnðl1Þ þ 2d lnðl2Þ − 4d lnðl4Þ�;
ϵ−1dm6 ¼ 0;

ϵ−1dm7 ¼ m7½4d lnðl1Þ − 4d lnðl2Þ þ 4d lnðl3Þ þ 2d lnðl6Þ − 4d lnðl7Þ�;

ϵ−1dm8 ¼ m1

�
−d lnðl3Þ −

1

2
d lnðl6Þ þ

1

2
d lnðl8Þ þ

1

2
d lnðl11Þ

�

þm3

�
d lnðl3Þ þ

1

2
d lnðl6Þ −

1

2
d lnðl8Þ −

1

2
d lnðl11Þ

�

þm8½4d lnðl1Þ − d lnðl2Þ þ 2d lnðl3Þ þ d lnðl6Þ þ 2d lnðl7Þ − 2d lnðl8Þ − 2d lnðl11Þ�;
ϵ−1dm9 ¼ m2½−d lnðl2Þ� þm9½2d lnðl1Þ − 2d lnðl3Þ�;

ϵ−1dm10 ¼ m3

�
−
1

4
d lnðl2Þ

�
þm4

�
3

2
d lnðl2Þ

�
þm5

�
−
3

4
d lnðl2Þ

�

þm10½4d lnðl1Þ − d lnðl2Þ − 2d lnðl3Þ�;
ϵ−1dm11 ¼ m11½6d lnðl1Þ − 3d lnðl2Þ� þm12½d lnðl2Þ�;
ϵ−1dm12 ¼ m3½−2d lnðl2Þ� þm11½3d lnðl2Þ� þm12½4d lnðl1Þ − d lnðl2Þ − 2d lnðl3Þ�;

ϵ−1dm13 ¼ m1

�
−3d lnðl2Þ − 3d lnðl7Þ þ

3

2
d lnðl9Þ þ

3

2
d lnðl10Þ

�

þm6½6d lnðl1Þ þ 6d lnðl3Þ þ 3d lnðl6Þ − 3d lnðl9Þ − 3d lnðl10Þ�
þm13½2d lnðl1Þ − 4d lnðl2Þ þ 2d lnðl3Þ þ d lnðl6Þ − 4d lnðl7Þ þ d lnðl9Þ þ d lnðl10Þ�;

ϵ−1dm14 ¼ m3

�
d lnðl3Þ þ

1

2
d lnðl6Þ −

1

2
d lnðl8Þ −

1

2
d lnðl11Þ

�

þm7½3d lnðl2Þ þ 6d lnðl7Þ − 3d lnðl8Þ − 3d lnðl11Þ�
þm14½4d lnðl1Þ − d lnðl2Þ þ 2d lnðl7Þ − d lnðl8Þ − d lnðl11Þ�;

ϵ−1dm15 ¼ m1½−d lnðl2Þ − 2d lnðl7Þ þ d lnðl8Þ þ d lnðl11Þ�
þm3½2d lnðl3Þ þ d lnðl6Þ − d lnðl8Þ − d lnðl11Þ�
þm8½4d lnðl2Þ þ 8d lnðl7Þ − 4d lnðl8Þ − 4d lnðl11Þ� þm15½4d lnðl1Þ − 2d lnðl2Þ�;
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ϵ−1dm16 ¼ m2½d lnðl2Þ − d lnðl4Þ� þm3

�
d lnðl1Þ −

1

6
d lnðl2Þ −

1

3
d lnðl4Þ

�

þm4½6d lnðl1Þ − 3d lnðl2Þ� þm5

�
−d lnðl1Þ þ

2

3
d lnðl2Þ −

1

6
d lnðl4Þ

�

þm6½−2d lnðl2Þ þ 2d lnðl4Þ� þm16

�
6d lnðl1Þ −

7

3
d lnðl2Þ −

2

3
d lnðl4Þ

�

þm17

�
4d lnðl1Þ −

2

3
d lnðl2Þ −

4

3
d lnðl4Þ

�
;

ϵ−1dm17 ¼ m2½d lnðl2Þ − d lnðl4Þ� þm3

�
1

3
d lnðl2Þ −

1

3
d lnðl4Þ

�

þm5

�
−
1

3
d lnðl2Þ þ

1

3
d lnðl4Þ

�
þm6½−2d lnðl2Þ þ 2d lnðl4Þ�

þm16

�
2

3
d lnðl2Þ −

2

3
d lnðl4Þ

�
þm17

�
4d lnðl1Þ −

2

3
d lnðl2Þ −

4

3
d lnðl4Þ

�
;

ϵ−1dm18 ¼ m4½4d lnðl1Þ þ 4d lnðl3Þ þ 2d lnðl6Þ − 2d lnðl9Þ − 2d lnðl10Þ�

þm5

�
−d lnðl1Þ − d lnðl3Þ −

1

2
d lnðl6Þ þ

1

2
d lnðl9Þ þ

1

2
d lnðl10Þ

�

þm7½−4d lnðl1Þ − 4d lnðl3Þ − 2d lnðl6Þ þ 2d lnðl9Þ þ 2d lnðl10Þ�
þm18½d lnðl2Þ þ 4d lnðl7Þ − 3d lnðl8Þ þ d lnðl9Þ þ d lnðl10Þ − 3d lnðl11Þ�
þm19½−2d lnðl1Þ − d lnðl8Þ þ d lnðl9Þ þ d lnðl10Þ − d lnðl11Þ�;

ϵ−1dm19 ¼ m4½−12d lnðl1Þ þ 3d lnðl2Þ − 6d lnðl3Þ þ 6d lnðl4Þ − 3d lnðl6Þ þ 6d lnðl7Þ�

þm5

�
3d lnðl1Þ − d lnðl2Þ þ 2d lnðl3Þ −

3

2
d lnðl4Þ þ d lnðl6Þ − 2d lnðl7Þ

�

þm7½12d lnðl1Þ − 6d lnðl4Þ�
þm18½12d lnðl1Þ − 6d lnðl2Þ − 6d lnðl4Þ − 12d lnðl7Þ þ 6d lnðl8Þ þ 6d lnðl11Þ�
þm19½10d lnðl1Þ − 3d lnðl2Þ − 4d lnðl4Þ − 4d lnðl7Þ þ 2d lnðl8Þ þ 2d lnðl11Þ�;

ϵ−1dm20 ¼ m3

�
−d lnðl1Þ þ d lnðl2Þ − d lnðl3Þ −

1

2
d lnðl6Þ þ d lnðl7Þ

�

þm4½−4d lnðl1Þ þ 4d lnðl2Þ − 4d lnðl3Þ − 2d lnðl6Þ þ 4d lnðl7Þ�

þm5

�
d lnðl1Þ − d lnðl2Þ þ d lnðl3Þ þ

1

2
d lnðl6Þ − d lnðl7Þ

�

þm8½−2d lnðl1Þ þ 2d lnðl2Þ − 2d lnðl3Þ − d lnðl6Þ þ 2d lnðl7Þ� þm20½−4d lnðl2Þ
− 4d lnðl7Þ þ 2d lnðl9Þ þ 2d lnðl10Þ� þm21½−2d lnðl1Þ þ d lnðl2Þ�;
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ϵ−1dm21 ¼ m1

�
−
1

2
d lnðl2Þ þ d lnðl3Þ þ

1

2
d lnðl4Þ þ

1

2
d lnðl6Þ −

1

2
d lnðl8Þ −

1

2
d lnðl11Þ

�

þm3

�
2d lnðl1Þ −

3

2
d lnðl2Þ þ d lnðl3Þ −

1

2
d lnðl4Þ þ

1

2
d lnðl6Þ − 2d lnðl7Þ þ

1

2
d lnðl8Þ

þ 1

2
d lnðl11Þ

�
þm4½6d lnðl1Þ − 6d lnðl2Þ þ 6d lnðl3Þ þ 3d lnðl6Þ − 6d lnðl7Þ�

þm5½−2d lnðl1Þ þ 2d lnðl2Þ − 2d lnðl3Þ − d lnðl6Þ þ 2d lnðl7Þ�
þm8½6d lnðl1Þ − 4d lnðl2Þ þ 2d lnðl3Þ − 2d lnðl4Þ þ d lnðl6Þ − 6d lnðl7Þ þ 2d lnðl8Þ
þ 2d lnðl11Þ� þm20½12d lnðl1Þ − 6d lnðl4Þ�
þm21½10d lnðl1Þ − 5d lnðl2Þ − 4d lnðl4Þ − 4d lnðl7Þ þ 2d lnðl9Þ þ 2d lnðl10Þ�;

ϵ−1dm22 ¼ m9½−2d lnðl2Þ� þm22½4d lnðl1Þ − 2d lnðl2Þ�;

ϵ−1dm23 ¼ m3

�
d lnðl1Þ −

1

2
d lnðl2Þ

�
þm4½4d lnðl1Þ − 2d lnðl2Þ�

þm5

�
−d lnðl1Þ þ

1

2
d lnðl2Þ

�
þm9½2d lnðl2Þ� þm10½2d lnðl2Þ�

þm23½4d lnðl1Þ − 2d lnðl2Þ�;
ϵ−1dm24 ¼ m10½−2d lnðl2Þ� þm24½6d lnðl1Þ − 3d lnðl2Þ�;

ϵ−1dm25 ¼ m3

�
−
1

2
d lnðl1Þ þ

1

4
d lnðl2Þ

�
þm4½−2d lnðl1Þ þ d lnðl2Þ�

þm5

�
1

2
d lnðl1Þ −

1

4
d lnðl2Þ

�
þm10½d lnðl2Þ� þm11

�
d lnðl1Þ −

1

2
d lnðl2Þ

�

þm12

�
−
1

2
lnðl2Þ

�
þm25½4d lnðl1Þ − 2d lnðl2Þ�;

ϵ−1dm26 ¼ m8½−2d lnðl2Þ − 2d lnðl7Þ þ d lnðl9Þ þ d lnðl10Þ�

þm11

�
−d lnðl2Þ − d lnðl7Þ þ

1

2
d lnðl9Þ þ

1

2
d lnðl10Þ

�
þm12½−d lnðl2Þ�

þm26

�
8d lnðl1Þ − 4d lnðl2Þ þ 2d lnðl3Þ þ d lnðl6Þ − d lnðl7Þ −

1

2
d lnðl9Þ −

1

2
d lnðl10Þ

�

þm27

�
−
1

2
d lnðl9Þ þ

1

2
d lnðl10Þ

�
;

ϵ−1dm27 ¼ m1½−d lnðl8Þ þ d lnðl11Þ� þm3½d lnðl8Þ − d lnðl11Þ� þm8½4d lnðl8Þ

− 3d lnðl9Þ þ 3d lnðl10Þ − 4d lnðl11Þ� þm11

�
−
3

2
d lnðl9Þ þ

3

2
d lnðl10Þ

�

þm12½−d lnðl6Þ� þm26

�
3

2
d lnðl9Þ −

3

2
d lnðl10Þ

�
þm27

�
4d lnðl1Þ − 4d lnðl2Þ

− 2d lnðl3Þ − 4d lnðl5Þ þ d lnðl6Þ − d lnðl7Þ þ
3

2
d lnðl9Þ þ

3

2
d lnðl10Þ

�
;
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ϵ−1dm28 ¼ m1

�
−
1

2
d lnðl1Þ −

1

2
d lnðl3Þ −

1

4
d lnðl6Þ þ

1

4
d lnðl9Þ þ

1

4
d lnðl10Þ

�

þm3

�
1

2
d lnðl1Þ þ

1

2
d lnðl3Þ þ

1

4
d lnðl6Þ −

1

4
d lnðl9Þ −

1

4
d lnðl10Þ

�

þm4

�
3d lnðl1Þ þ 3d lnðl3Þ þ

3

2
d lnðl6Þ −

3

2
d lnðl9Þ −

3

2
d lnðl10Þ

�

þm5

�
−
1

2
d lnðl1Þ −

1

2
d lnðl3Þ −

1

4
d lnðl6Þ þ

1

4
d lnðl9Þ þ

1

4
d lnðl10Þ

�

þm8½−4d lnðl1Þ − 4d lnðl3Þ − 2d lnðl6Þ þ 2d lnðl9Þ þ 2d lnðl10Þ�

þm15

�
d lnðl1Þ þ d lnðl3Þ þ

1

2
d lnðl6Þ −

1

2
d lnðl9Þ −

1

2
d lnðl10Þ

�

þm17½2d lnðl1Þ þ 2d lnðl3Þ þ d lnðl6Þ − d lnðl9Þ − d lnðl10Þ�
þm20½−6d lnðl1Þ − 6d lnðl3Þ − 3d lnðl6Þ þ 3d lnðl9Þ þ 3d lnðl10Þ�
þm21½−2d lnðl1Þ − 2d lnðl3Þ − d lnðl6Þ þ d lnðl9Þ þ d lnðl10Þ�
þm28½2d lnðl1Þ − 2d lnðl2Þ þ 2d lnðl3Þ þ d lnðl6Þ − 2d lnðl8Þ þ d lnðl9Þ þ d lnðl10Þ
− 2d lnðl11Þ� þm29½2d lnðl3Þ þ d lnðl6Þ − d lnðl8Þ − d lnðl11Þ�;

ϵ−1dm29 ¼ m1

�
d lnðl1Þ þ

3

4
d lnðl2Þ þ

1

2
d lnðl3Þ þ

1

2
d lnðl4Þ þ

1

4
d lnðl6Þ þ

3

2
d lnðl7Þ

− d lnðl9Þ − d lnðl10Þ
�
þm2½−d lnðl2Þ þ 4d lnðl3Þ þ d lnðl4Þ þ 2d lnðl6Þ − 2d lnðl7Þ

− d lnðl9Þ − d lnðl10Þ� þm3

�
−d lnðl1Þ þ

1

12
d lnðl2Þ −

3

2
d lnðl3Þ −

1

6
d lnðl4Þ

−
3

4
d lnðl6Þ þ

1

6
d lnðl7Þ þ

2

3
d lnðl9Þ þ

2

3
d lnðl10Þ

�
þm4

�
−6d lnðl1Þ þ

3

2
d lnðl2Þ

− 9d lnðl3Þ −
9

2
d lnðl6Þ þ 3d lnðl7Þ þ 3d lnðl9Þ þ 3d lnðl10Þ

�
þm5

�
d lnðl1Þ

−
1

12
d lnðl2Þ þ

3

2
d lnðl3Þ þ

1

6
d lnðl4Þ þ

3

4
d lnðl6Þ −

1

6
d lnðl7Þ −

2

3
d lnðl9Þ −

2

3
d lnðl10Þ

�

þm6½d lnðl2Þ − 6d lnðl3Þ − 2d lnðl4Þ − 3d lnðl6Þ þ 2d lnðl7Þ þ 2d lnðl9Þ
þ 2d lnðl10Þ� þm8½8d lnðl1Þ þ 4d lnðl3Þ − 2d lnðl4Þ þ 2d lnðl6Þ − 2d lnðl9Þ
− 2d lnðl10Þ� þm13½d lnðl2Þ − 2d lnðl3Þ − d lnðl6Þ þ 2d lnðl7Þ�

þm15

�
−2d lnðl1Þ −

1

2
d lnðl2Þ − d lnðl3Þ −

1

2
d lnðl6Þ − d lnðl7Þ þ d lnðl9Þ þ d lnðl10Þ

�

þm16

�
2

3
d lnðl2Þ þ

2

3
d lnðl4Þ þ

4

3
d lnðl7Þ −

2

3
d lnðl9Þ −

2

3
d lnðl10Þ

�
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þm17

�
−4d lnðl1Þ þ

1

3
d lnðl2Þ − 2d lnðl3Þ þ

4

3
d lnðl4Þ − d lnðl6Þ þ

2

3
d lnðl7Þ

þ 2

3
d lnðl9Þ þ

2

3
d lnðl10Þ

�
þm20½12d lnðl1Þ − 3d lnðl2Þ þ 6d lnðl3Þ − 6d lnðl4Þ

þ 3d lnðl6Þ − 6d lnðl7Þ� þm21½4d lnðl1Þ − 3d lnðl2Þ þ 2d lnðl3Þ − 4d lnðl4Þ
þ d lnðl6Þ − 6d lnðl7Þ þ 2d lnðl9Þ þ 2d lnðl10Þ� þm28½3d lnðl2Þ − 2d lnðl3Þ − d lnðl6Þ
þ 6d lnðl7Þ − 2d lnðl8Þ − 2d lnðl11Þ� þm29½2d lnðl1Þ − d lnðl2Þ − 2d lnðl3Þ − d lnðl6Þ
þ 2d lnðl7Þ − d lnðl8Þ þ d lnðl9Þ þ d lnðl10Þ − d lnðl11Þ�;

ϵ−1dm30 ¼ m3½d lnðl2Þ� þm4½6d lnðl2Þ� þm5½−d lnðl2Þ� þm16½2d lnðl2Þ�
þm17½4d lnðl2Þ� þm22½−2d lnðl2Þ� þm23½2d lnðl2Þ� þm24½−2d lnðl2Þ�
þm30½6d lnðl1Þ − 4d lnðl2Þ þ 2d lnðl3Þ�;

ϵ−1dm31 ¼ m3

�
−
1

2
d lnðl8Þ þ

1

2
d lnðl11Þ

�
þm4½−2d lnðl9Þ þ 2d lnðl10Þ�

þm5

�
1

2
d lnðl9Þ −

1

2
d lnðl10Þ

�
þm7½−3d lnðl8Þ þ 3d lnðl9Þ − 3d lnðl10Þ

þ 3d lnðl11Þ� þm10½2d lnðl6Þ� þm14½−d lnðl8Þ þ d lnðl9Þ − d lnðl10Þ þ d lnðl11Þ�
þm18½3d lnðl8Þ − 3d lnðl11Þ� þm19½d lnðl8Þ þ d lnðl9Þ − d lnðl10Þ − d lnðl11Þ�
þm24½−2d lnðl9Þ þ 2d lnðl10Þ� þm31½4d lnðl1Þ − 3d lnðl2Þ − 2d lnðl3Þ − 2d lnðl5Þ
þ d lnðl9Þ þ d lnðl10Þ�;

ϵ−1dm32 ¼ m1

�
−
1

4
d lnðl2Þ þ

1

4
d lnðl9Þ −

1

4
d lnðl10Þ −

1

2
d lnðl13Þ þ

1

2
d lnðl14Þ

�

þm3

�
−
1

4
d lnðl2Þ −

1

2
d lnðl6Þ −

1

2
d lnðl7Þ −

1

2
d lnðl9Þ þ

1

2
d lnðl13Þ −

1

2
d lnðl14Þ

þ 1

2
d lnðl15Þ þ

1

2
d lnðl16Þ

�
þm4½−d lnðl2Þ − 2d lnðl6Þ − 2d lnðl7Þ − 2d lnðl9Þ

þ 2d lnðl13Þ − 2d lnðl14Þ þ 2d lnðl15Þ þ 2d lnðl16Þ� þm5

�
1

4
d lnðl2Þ þ

1

2
d lnðl6Þ

þ 1

2
d lnðl7Þ þ

1

2
d lnðl9Þ −

1

2
d lnðl13Þ þ

1

2
d lnðl14Þ −

1

2
d lnðl15Þ −

1

2
d lnðl16Þ

�

þm8½−2d lnðl2Þ þ 2d lnðl9Þ − 2d lnðl10Þ − 4d lnðl13Þ þ 4d lnðl14Þ�
þm10½2d lnðl1Þ þ d lnðl2Þ þ 2d lnðl7Þ þ 2d lnðl9Þ − 2d lnðl13Þ − 2d lnðl14Þ

þ 2d lnðl15Þ − 2d lnðl16Þ� þm11

�
−
1

2
d lnðl2Þ þ

1

2
d lnðl9Þ −

1

2
d lnðl10Þ − d lnðl13Þ

þ d lnðl14Þ
�
þm12

�
−d lnðl1Þ −

1

2
d lnðl2Þ − d lnðl7Þ − d lnðl9Þ þ d lnðl13Þ

þ d lnðl14Þ − d lnðl15Þ þ d lnðl16Þ
�

þm15

�
1

2
d lnðl2Þ −

1

2
d lnðl9Þ þ

1

2
d lnðl10Þ þ d lnðl13Þ − d lnðl14Þ

�

þm20½−3d lnðl2Þ þ 3d lnðl9Þ − 3d lnðl10Þ − 6d lnðl13Þ þ 6d lnðl14Þ�
þm21½−3d lnðl2Þ − 2d lnðl6Þ − 2d lnðl7Þ − 2d lnðl10Þ − 2d lnðl13Þ þ 2d lnðl14Þ
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þ 2d lnðl15Þ þ 2d lnðl16Þ� þm24½−2d lnðl2Þ − 2d lnðl6Þ − 2d lnðl7Þ − d lnðl9Þ
− d lnðl10Þ þ 2d lnðl15Þ þ 2d lnðl16Þ�

þm25½d lnðl2Þ − d lnðl9Þ þ d lnðl10Þ þ 2d lnðl13Þ − 2d lnðl14Þ� þm26

�
3d lnðl2Þ

þ 3d lnðl6Þ þ 3d lnðl7Þ þ
3

2
d lnðl9Þ þ

3

2
d lnðl10Þ − 3d lnðl15Þ − 3d lnðl16Þ

�

þm27

�
1

2
d lnðl9Þ −

1

2
d lnðl10Þ þ d lnðl15Þ − d lnðl16Þ

�

þm32½4d lnðl1Þ − d lnðl2Þ − 2d lnðl3Þ þ 2d lnðl7Þ þ d lnðl9Þ þ d lnðl10Þ − 2d lnðl12Þ�;

ϵ−1dm33 ¼ m1

�
3

4
d lnðl9Þ −

3

4
d lnðl10Þ

�
þm2½d lnðl9Þ − d lnðl10Þ� þm3

�
−
13

12
d lnðl9Þ

þ 13

12
d lnðl10Þ

�
þm4

�
−
11

2
d lnðl9Þ þ

11

2
d lnðl10Þ

�
þm5

�
13

12
d lnðl9Þ −

13

12
d lnðl10Þ

�

þm6½−d lnðl9Þ þ d lnðl10Þ� þm8½6d lnðl9Þ − 6d lnðl10Þ� þm9½−2d lnðl6Þ�
þm10½−4d lnðl6Þ� þm11½2d lnðl9Þ − 2d lnðl10Þ� þm12½2d lnðl6Þ�

þm13

�
−
1

3
d lnðl9Þ þ

1

3
d lnðl10Þ

�
þm15

�
−
3

2
d lnðl9Þ þ

3

2
d lnðl10Þ

�

þm16

�
−
2

3
d lnðl9Þ þ

2

3
d lnðl10Þ

�
þm17

�
−
7

3
d lnðl9Þ þ

7

3
d lnðl10Þ

�

þm20½5d lnðl9Þ − 5d lnðl10Þ� þm21½3d lnðl9Þ − 3d lnðl10Þ�
þm22½2d lnðl9Þ − 2d lnðl10Þ� þm23½−d lnðl9Þ þ d lnðl10Þ�
þm24½2d lnðl9Þ − 2d lnðl10Þ� þm25½−2d lnðl9Þ þ 2d lnðl10Þ�
þm26½−2d lnðl9Þ þ 2d lnðl10Þ� þm28½4d lnðl8Þ − d lnðl9Þ þ d lnðl10Þ − 4d lnðl11Þ�
þm29½2d lnðl8Þ − d lnðl9Þ þ d lnðl10Þ − 2d lnðl11Þ�
þm32½2d lnðl9Þ − 2d lnðl10Þ þ 4d lnðl15Þ − 4d lnðl16Þ�
þm33½2d lnðl1Þ − 4d lnðl2Þ − 2d lnðl3Þ − 6d lnðl5Þ þ 2d lnðl6Þ − 2d lnðl7Þ
þ 2d lnðl9Þ þ 2d lnðl10Þ� þm35½−2d lnðl6Þ� þm36½2d lnðl9Þ − 2d lnðl10Þ�;

ϵ−1dm34 ¼ m1

�
−
1

2
d lnðl2Þ −

1

2
d lnðl7Þ þ

1

4
d lnðl9Þ þ

1

4
d lnðl10Þ

�

þm2½−2d lnðl2Þ − 2d lnðl7Þ þ d lnðl9Þ þ d lnðl10Þ� þm3

�
7

6
d lnðl2Þ þ

7

6
d lnðl7Þ

−
7

12
d lnðl9Þ −

7

12
d lnðl10Þ

�
þm4

�
5d lnðl2Þ þ 5d lnðl7Þ −

5

2
d lnðl9Þ −

5

2
d lnðl10Þ

�

þm5

�
−
7

6
d lnðl2Þ −

7

6
d lnðl7Þ þ

7

12
d lnðl9Þ þ

7

12
d lnðl10Þ

�

þm6½2d lnðl2Þ þ 2d lnðl7Þ − d lnðl9Þ − d lnðl10Þ� þm8½−4d lnðl2Þ − 4d lnðl7Þ
þ 2d lnðl9Þ þ 2d lnðl10Þ� þm9½2d lnðl2Þ� þm10½4d lnðl2Þ�
þm11½−2d lnðl2Þ − 2d lnðl7Þ þ d lnðl9Þ þ d lnðl10Þ� þm12½−2d lnðl2Þ�
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þm13

�
2

3
d lnðl2Þ þ

2

3
d lnðl7Þ −

1

3
d lnðl9Þ −

1

3
d lnðl10Þ

�
þm15

�
d lnðl2Þ þ d lnðl7Þ

−
1

2
d lnðl9Þ −

1

2
d lnðl10Þ

�
þm16

�
4

3
d lnðl2Þ þ

4

3
d lnðl7Þ −

2

3
d lnðl9Þ −

2

3
d lnðl10Þ

�

þm17

�
2

3
d lnðl2Þ þ

2

3
d lnðl7Þ −

1

3
d lnðl9Þ −

1

3
d lnðl10Þ

�
þm20½2d lnðl2Þ þ 2d lnðl7Þ

− d lnðl9Þ − d lnðl10Þ� þm21½−2d lnðl2Þ − 2d lnðl7Þ þ d lnðl9Þ þ d lnðl10Þ�
þm22½−4d lnðl1Þ − 4d lnðl3Þ − 2d lnðl6Þ þ 2d lnðl9Þ þ 2d lnðl10Þ�
þm24½−4d lnðl2Þ − 4d lnðl7Þ þ 2d lnðl9Þ þ 2d lnðl10Þ� þm26½4d lnðl2Þ þ 4d lnðl7Þ
− 2d lnðl9Þ − 2d lnðl10Þ� þm28½2d lnðl2Þ þ 2d lnðl7Þ − d lnðl9Þ − d lnðl10Þ�
þm29½2d lnðl2Þ þ 2d lnðl7Þ − d lnðl9Þ − d lnðl10Þ� þm30½−2d lnðl2Þ�
þm32½4d lnðl2Þ þ 4d lnðl6Þ þ 4d lnðl7Þ þ 2d lnðl9Þ þ 2d lnðl10Þ
− 4d lnðl15Þ − 4d lnðl16Þ� þm33½d lnðl9Þ − d lnðl10Þ�
þm34½4d lnðl1Þ − 4d lnðl2Þ − 2d lnðl7Þ þ d lnðl9Þ þ d lnðl10Þ� þm35½2d lnðl2Þ�
þm36½−4d lnðl2Þ − 4d lnðl7Þ þ 2d lnðl9Þ þ 2d lnðl10Þ�;

ϵ−1dm35 ¼ m1

�
−
3

4
d lnðl2Þ

�
þm2½d lnðl2Þ� þm3

�
5

12
d lnðl2Þ

�
þm4

�
7

2
d lnðl2Þ

�

þm5

�
−

5

12
d lnðl2Þ

�
þm6½−d lnðl2Þ� þm8½−6d lnðl2Þ� þm13

�
−
1

3
d lnðl2Þ

�

þm15

�
3

2
d lnðl2Þ

�
þm16

�
4

3
d lnðl2Þ

�
þm17

�
11

3
d lnðl2Þ

�
þm20½−d lnðl2Þ�

þm21½d lnðl2Þ� þm22½−2d lnðl2Þ� þm25½2d lnðl2Þ� þm26½−2d lnðl2Þ�
þm27½2d lnðl6Þ� þm28½−3d lnðl2Þ� þm29½−d lnðl2Þ�
þm30½−2d lnðl2Þ − 2d lnðl7Þ þ d lnðl9Þ þ d lnðl10Þ� þm32½4d lnðl1Þ þ 2d lnðl2Þ
þ 4d lnðl7Þ þ 4d lnðl9Þ − 4d lnðl13Þ − 4d lnðl14Þ þ 4d lnðl15Þ − 4d lnðl16Þ�
þm33½2d lnðl6Þ� þm35½2d lnðl1Þ − 2d lnðl2Þ − 2d lnðl3Þ − 2d lnðl6Þ þ 2d lnðl7Þ
þ d lnðl9Þ þ d lnðl10Þ� þm36½−4d lnðl2Þ�;

ϵ−1dm36 ¼ m1

�
5

4
d lnðl1Þ −

3

8
d lnðl2Þ þ

1

2
d lnðl3Þ þ

1

4
d lnðl6Þ −

1

4
d lnðl9Þ −

1

4
d lnðl10Þ

�

þm2

�
d lnðl1Þ þ

1

2
d lnðl2Þ þ 2d lnðl3Þ þ d lnðl6Þ − d lnðl9Þ − d lnðl10Þ

�

þm3

�
−
17

12
d lnðl1Þ −

1

24
d lnðl2Þ −

3

2
d lnðl3Þ −

3

4
d lnðl6Þ þ

3

4
d lnðl9Þ þ

3

4
d lnðl10Þ

�

þm4

�
−
13

2
d lnðl1Þ −

1

4
d lnðl2Þ − 7d lnðl3Þ −

7

2
d lnðl6Þ þ

7

2
d lnðl9Þ þ

7

2
d lnðl10Þ

�

þm5

�
17

12
d lnðl1Þ þ

1

24
d lnðl2Þ þ

3

2
d lnðl3Þ þ

3

4
d lnðl6Þ −

3

4
d lnðl9Þ −

3

4
d lnðl10Þ

�

þm6

�
−d lnðl1Þ −

1

2
d lnðl2Þ − 2d lnðl3Þ − d lnðl6Þ þ d lnðl9Þ þ d lnðl10Þ

�

þm8½6d lnðl1Þ − 3d lnðl2Þ� þm9½−d lnðl2Þ� þm10½−d lnðl2Þ�
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þm13

�
−
1

3
d lnðl1Þ −

1

6
d lnðl2Þ −

2

3
d lnðl3Þ −

1

3
d lnðl6Þ þ

1

3
d lnðl9Þ þ

1

3
d lnðl10Þ

�

þm15

�
−
5

2
d lnðl1Þ þ

3

4
d lnðl2Þ − d lnðl3Þ −

1

2
d lnðl6Þ þ

1

2
d lnðl9Þ þ

1

2
d lnðl10Þ

�

þm16

�
2

3
d lnðl1Þ −

1

3
d lnðl2Þ

�
þm17

�
−
5

3
d lnðl1Þ −

1

6
d lnðl2Þ − 2d lnðl3Þ − d lnðl6Þ

þ d lnðl9Þ þ d lnðl10Þ
�
þm20

�
7d lnðl1Þ −

1

2
d lnðl2Þ þ 6d lnðl3Þ þ 3d lnðl6Þ − 3d lnðl9Þ

− 3d lnðl10Þ
�
þm21

�
d lnðl1Þ þ

1

2
d lnðl2Þ þ 2d lnðl3Þ þ d lnðl6Þ − d lnðl9Þ − d lnðl10Þ

�

þm22½2d lnðl1Þ þ 2d lnðl3Þ þ d lnðl6Þ − d lnðl9Þ − d lnðl10Þ� þm23

�
−2d lnðl1Þ

þ d lnðl2Þ − 2d lnðl3Þ − d lnðl6Þ þ d lnðl7Þ þ
1

2
d lnðl9Þ þ

1

2
d lnðl10Þ

�

þm24½−2d lnðl1Þ þ d lnðl2Þ� þm25½−2d lnðl1Þ þ d lnðl2Þ� þm26½4d lnðl1Þ
− d lnðl2Þ þ 2d lnðl3Þ þ d lnðl6Þ − d lnðl9Þ − d lnðl10Þ� þm27½−d lnðl9Þ þ d lnðl10Þ�

þm28

�
d lnðl1Þ −

3

2
d lnðl2Þ − 2d lnðl3Þ − d lnðl6Þ þ d lnðl9Þ þ d lnðl10Þ

�

þm29

�
−d lnðl1Þ −

1

2
d lnðl2Þ − 2d lnðl3Þ − d lnðl6Þ þ d lnðl9Þ þ d lnðl10Þ

�

þm30½2d lnðl2Þ� þm32½−3d lnðl2Þ − 2d lnðl6Þ − 2d lnðl7Þ − 2d lnðl10Þ − 2d lnðl13Þ
þ 2d lnðl14Þ þ 2d lnðl15Þ þ 2d lnðl16Þ� þm33½−d lnðl9Þ þ d lnðl10Þ�
þm35½−2d lnðl2Þ� þm36½4d lnðl1Þ þ 2d lnðl7Þ − d lnðl9Þ − d lnðl10Þ�: ðA1Þ

APPENDIX B: A SYMBOL ALPHABET WITH SEVERAL INDEPENDENT ROOTS

In this appendix, we consider the symbol alphabet of the one-loop box integral shown in Fig. 6. This integral occurs in
processes like gg → hh or gg → ZZ with a top quark running in the loop.
We use the kinematical definitions

s ¼ ðp1 þ p2Þ2; t ¼ ðp1 − p3Þ2; p2
1 ¼ p2

2 ¼ 0; p2
3 ¼ p2

4 ¼ m2
h; ðB1Þ

and m2
t for the internal mass squared.

FIG. 6. Feynman integral with symbol alphabet depending on several roots.
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It is straightforward to write down a normal form basis:

ðB2Þ

ðB3Þ

ðB4Þ

ðB5Þ

ðB6Þ

ðB7Þ

ðB8Þ

ðB9Þ

which fulfils a differential equation of the form

dni ¼ ϵ
X
j;k

d lnðlkÞðAðkÞÞijnj; ðB10Þ

with i; j ¼ 1;…; 8. It is not straightforward, however, to actually arrive at (B10) with a simple form for the letters lk due to
the presence of the five different square roots. Moreover, while it is not difficult to choose a set of independent letters, it is
not obvious how to minimize the number of independent letters.
While one could try to rationalize some of the roots with a suitable reparametrization, we want to take a different

approach here and just directly work with the original kinematic invariants. Our primary motivation is to extend the
construction of symbol letters presented in Sec. IV to the case of several root-valued leading singularities.
Employing the integration measure

Γð1 − ϵÞm2ϵ
t

iπ2−ϵ
; ðB11Þ

the integrals mi depend only on the dimensionless ratios of scales

w1 ¼ s=m2
t ; ðB12Þ

w2 ¼ t=m2
t ; ðB13Þ

w3 ¼ m2
h=m

2
t : ðB14Þ

In a conventional approach, one might try to directly integrate the terms in the partial differential equations with e.g.,
MATHEMATICA to arrive at the form (B10). In this approach, we obtained 24 independent letters, many of which are very
complicated and involve high powers of the variables.
Instead, the following construction leads to much simpler and fewer independent letters. Starting from the rational part

fw1; w2; w3; w3 − w2; w1 þ w2
3 − 4w3; w1w2 þ w2

2 − 2w2w3 þ w2
3g ðB15Þ

and the five square roots
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n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw1−4Þw1

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw3−4Þw3

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw2−4Þw2

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1ðw1−4w3Þ

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1ðw1w2

2−4w1w2−4w2
2þ8w2w3−4w2

3Þ
q o

; ðB16Þ

we used the algorithm described in Sec. IV for each of these square roots independently. Next, we formed pairs and triples
of the roots and used the algorithm on their products. We find a total of 22 independent candidates for letters in this way,
which are much simpler than the original set of letters and involve only low powers of the variables:

L̃ ¼ fl̃1…; l̃22g
¼

n
w1; w2; w3; w2 − w3; w1 − 4w3 þ w2

3; w1w2 þ w2
2 − 2w2w3 þ w2

3;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−4þ w1Þw1

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−4þ w2Þw2

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w3ð−4þ w3Þ

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1ðw1 − 4w3Þ

p
;

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1ð−4þ w1Þ

p
þ w1

�
=2;

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2ð−4þ w2Þ

p
þ w2

�
=2;

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w3ð−4þ w3Þ

p
þ w3

�
=2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1ðw1w2ðw2 − 4Þ − 4ðw2 − w3Þ2Þ

q
;
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w1ðw1 − 4w3Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w3ð−4þ w3Þ
p

þ w1w3

�
=2;�

w2
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1ð−4þ w1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1ðw1 − 4w3Þ

p
− 2w3w1

�
=2;�

w1w2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1ðw1w2ðw2 − 4Þ − 4ðw2 − w3Þ2Þ

q �
=2;�

w2
1w2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1ðw1w2ðw2 − 4Þ − 4ðw2 − w3Þ2Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1ðw1 − 4w3Þ

p
− 2w2w3w1 þ 2w2

3w1

�
=2;�

−2w2
1 − 4w2w1 þ w2

1w2 þ 4w3w1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1ð−4þ w1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1ðw1w2ðw2 − 4Þ − 4ðw2 − w3Þ2Þ

q �
=2;�

−2w1w2 − 2w1w3 þ w1w2w3

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w3ð−4þ w3Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1ðw1w2ðw2 − 4Þ − 4ðw2 − w3Þ2Þ

q �
=2;�

−4w1w2 − 2w2
2 þ w1w2

2 þ 4w2w3 − 2w2
3

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2ð−4þ w2Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1ðw1w2ðw2 − 4Þ − 4ðw2 − w3Þ2Þ

q �
=2
o
: ðB17Þ

The factor 1=2 appears for the same reason as in Sec. IV to prevent any factor of 2 in the factorization of the product of a
letter with its conjugate over the rational part. All of these letters are power products of the 24 letters in the differential
equation obtained in the first attempt.
To go to even lower degrees, one can do a further factorization of the letters by factorizing the square roots further, i.e., by

splitting them in a similar way to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw1 − 4Þw1

p
¼ ffiffiffiffiffiffi

w1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
w1 − 4

p
; ðB18Þ

and dividing them out in all letters, if possible. Note that this leads to a representation with a possible sum of different square
roots in each letter. If one would like to derive this representation along the lines described in Sec. IV, one would need to
allow for more general structures than

la ¼ qa þ r ðB19Þ

with rational qa.
Interestingly, in our new representation even more letters drop out of the differential equation, and one finds only 19

letters in the end:
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L ¼ fl1…; l19g

¼
n1
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
w1 − 4

p
þ ffiffiffiffiffiffi

w1

p �
;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w1 − 4

p
;

ffiffiffiffiffiffi
w1

p
;
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 4

p
þ ffiffiffiffiffiffi

w2

p �
;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 4

p
;

1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
w3 − 4

p
þ ffiffiffiffiffiffi

w3

p �
;
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
w3 − 4

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1 − 4w3

p
þ ffiffiffiffiffiffi

w1

p ffiffiffiffiffiffi
w3

p �
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1 − 4w3

p
;

1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
w1 − 4

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1 − 4w3

p
þ w1 − 2w3

�
; w2 − w3;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w3 − 4

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1w2ðw2 − 4Þ − 4ðw2 − w3Þ2

q
; w1 þ w2

3 − 4w3; w1w2 þ w2
2 − 2w2w3 þ w2

3;

1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1w2ðw2 − 4Þ − 4ðw2 − w3Þ2

q
þ ffiffiffiffiffiffi

w1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 4

p ffiffiffiffiffiffi
w2

p �
;

1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1w2ðw2 − 4Þ − 4ðw2 − w3Þ2

q
þ ffiffiffiffiffiffi

w1

p
w2

�
;

1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
w1 − 4

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1w2ðw2 − 4Þ − 4ðw2 − w3Þ2

q
þ w1w2 − 2w1 − 4w2 þ 4w3

�
;

1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1 − 4w3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1w2ðw2 − 4Þ − 4ðw2 − w3Þ2

q
þ w1w2 − 2w2w3 þ 2w2

3

�
;

1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
w3 − 4

p ffiffiffiffiffiffi
w3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1w2ðw2 − 4Þ − 4ðw2 − w3Þ2

q
þ ffiffiffiffiffiffi

w1

p
w2w3 − 2

ffiffiffiffiffiffi
w1

p
w2 − 2

ffiffiffiffiffiffi
w1

p
w3

�o
; ðB20Þ

with the differential equation given by

ϵ−1dn1 ¼ 0;

ϵ−1dn2 ¼ n1d lnðl21Þ þ n2d ln ð1=l22Þ;
ϵ−1dn3 ¼ n1d lnðl26Þ þ n3d ln ð1=l211Þ;
ϵ−1dn4 ¼ n1d lnðl24Þ þ n4d ln ð1=l25Þ;
ϵ−1dn5 ¼ n2d lnðl21Þ;
ϵ−1dn6 ¼ n3d lnðl26Þ þ n4d ln ð1=l24Þ;
ϵ−1dn7 ¼ n2d ln ðl29=l13Þ þ n3d lnðl213=l47Þ þ n7d ln ðl28=l13Þ;
ϵ−1dn8 ¼ n2d ln ðl217l23=l13Þ þ n3d ln ðl410l213=l419Þ þ n4d ln ðl415=l410Þ þ n5d ln ðl216=l14Þ

þ n6d ln ðl214=l416Þ þ n7d ln ðl218=ðl13l14ÞÞ þ n8d ln ðl14=l212Þ: ðB21Þ
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