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A B S T R A C T   

Theoretical vehicle bridge interaction (VBI) models have been widely studied for decades for the simply sup-
ported boundary condition but not for the other boundary conditions. This paper presents the mathematical 
models for several non-simply supported boundary conditions including both ends fixed, fixed simply supported, 
and one end fixed the other end free (cantilever) boundary condition. The closed-form solutions can be found 
under the assumption that the vehicle acceleration magnitude is far lower than the gravitational acceleration 
constant. The analytical solutions are then illustrated on a specific bridge example to compare the responses due 
to different bridge boundary conditions, and to study different vehicle parameter effects on extracting multiple 
bridge frequencies (five) from the vehicle responses. A signal drift phenomenon can be observed on the accel-
eration response of both the bridge and the vehicle, while a camel hump phenomenon can be observed on the 
Fast Fourier analysis of the vehicle acceleration signal. The parameter study shows that the vehicle frequency is 
preferred to be high due to the attenuation effect on the bridge frequencies that are higher than the vehicle 
frequency. The vehicle speed parameter is preferred to be low to reduce both the camel hump phenomenon and 
the vehicle acceleration magnitude, while both the vehicle mass and damping parameter have little effect on the 
multiple bridge frequencies extraction from the vehicle. Besides presenting the explicit solutions for calibrating 
other numerical models, this study also demonstrates the feasibility of the vehicle-based bridge health moni-
toring approach, as any bridge anomaly due to deterioration may be sensitively reflected on the bridge frequency 
list extracted from the vehicle response.   

1. Introduction 

Vehicle bridge interaction (VBI) is a fundamental issue in bridge 
engineering. Theoretically understanding the VBI mechanism is not only 
critical for designing a safe bridge but also beneficial for monitoring the 
bridge during its maintenance phase, as bridges in the transportation 
system are subject to a variety of issues such as aging, fatigue, creep, 
corrosion, uneven settlement, stress relaxation and concentration, etc. 
On one hand, the vehicle weight can be estimated based on the bridge 
response so that excessive vehicular loads in the transportation network 
can be monitored, this topic is more commonly known as moving force 
identification in literature [1–5]. On the other hand, the vehicle-based 
structural health monitoring of the bridges has gained wide attention 
due to the advantages of mobility and potential economy characteristics 
[6,7]. This approach assumes that the bridge dynamic information such 
as frequencies [8–16], mode shapes [17–22], and damping properties 
[23,24], can be reflected by the dynamic response of the passing vehicle, 

and has been widely studied both theoretically and experimentally for 
decades. The readers may be directed to several detailed review articles 
[7,25–29] about the vehicle-based structural health monitoring 
approach. The relevant works of this study will be briefly reviewed, with 
the drawbacks and problems pointed out. The novelties and signifi-
cances of this study will then be stated. 

The VBI problem is either studied by analytical explicit solutions 
[30–32] or finite element methods [33–38]. The merit of explicit solu-
tions is that the solutions can be expressed as closed forms which may 
provide a theoretical reference for calibrating other methods. The 
closed-form solutions usually directly reveal the frequency components 
of both the vehicle and the bridge responses and certain features that 
may be expected during an experiment. In 2004, Yang et al. [8] pro-
posed a theoretical VBI model for a simply supported boundary condi-
tion to extract the first bridge frequency from the dynamic response of a 
passing vehicle, in which the closed-form solutions were obtained 
considering only the first mode of the bridge and assuming the vehicle 
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has a mass that is an order magnitude less than the total bridge mass. 
Only the first bridge frequency could be identified from the vehicle since 
only the first bridge vibration mode was considered. Although higher 
bridge modes were considered in a following study [9], both the vehicle 
and bridge damping factors were still not considered in the mathemat-
ical model. On the other hand, the finite element method provides a way 
to address more complicated problems, although the solutions could not 
be expressed as explicit expressions. For example, to study the wheel size 
effect, Yang and Cao [38] recently proposed a finite element double- 
mass vehicle model, in which the vehicle was modelled as a sprung 
mass representing the vehicle body and an un-sprung disk representing 
the axle mass with the wheel radius. The damping effect for the sus-
pension system was considered but not for the wheel since the com-
mercial wheel usually consists of a rigid alloy rim and a pneumatic tire. 
The pneumatic tire, which is designed to provide a contact patch cushion 
to absorb shock and to avoid excessive bearing pressure, is believed to 
have significant damping contributions. 

Besides theoretical studies, numerous experimental studies were also 
conducted to verify or explore the vehicle-based structural health 
monitoring techniques. In a field experimental study, Lin and Yang [10] 
used a truck-towed cart installed with an accelerometer to identify the 
first bridge frequency. Their results show that the first bridge frequency 
can be identified if the cart is maintained at a proper low speed (the 
threshold will depend on specific situation). However, the second bridge 
vertical (besides lateral) frequency was not identified in their tests. 
Wheel effect studies by Yang et al. [14] also shows that the PU (poly-
urethane) coated solid metal wheels performed the best for extracting 
bridge frequencies compared to the common commercial inflatable 
wheels and solid rubber wheels, since the PU wheels show no identifi-
able natural frequencies, while the inflatable wheels and solid rubber 
wheels have their own primary frequencies which may disturb the 
identification of the bridge frequencies. Kim and Lynch [39] used a 
heavy vehicle with wireless sensors to study the interaction with a 
continuous field steel bridge. They argued that the bridge frequencies 
were not identified from the heavy truck is due to possible attenuation 
effect of the suspension system, the reason could also be simply the 
pneumatic tire effect since the pneumatic tires certainly have frequency 
and damping property which may play a significant role in the bridge 
information transmission process. Cerda et al. [40] experimentally 
studied the vehicle-based approach for detecting different simulated 
damage scenarios including support rotation restrictions, adjustable 
damping, and adjustable mass, based on only the first bridge frequency 
identification results. Their study also shows low vehicle speed is 
beneficial for a more accurate identification result. McGetrick et al. [41] 
experimentally monitored the bridge stiffness using the vehicle 
response, when only the first frequency of the bridge can be identified. 
Urushadze and Yau [16] used a stiffness-adjustable vehicle to identify 
the frequencies of a plexiglass beam, they concluded that vehicle with a 
harder spring gives better predictions of the bridge frequencies. In 2017, 
Kim et al. [42] used a tractor-trailer vehicle to detect the bridge fre-
quency, in which only the first bridge frequency was identified with an 
error of 8.8%. Those experiments show that only the first few, in some 
cases none, of the bridge frequencies can be detected, resulting in the 
necessity of reexamining the theoretical studies to identify the problems 
and give possible indications. 

This study establishes the coupled equation group for the VBI system 
to include both the vehicle and bridge damping effects for bridges with 
several non-simply supported boundary conditions including both ends 
fixed, fixed simply supported, and one end fixed the other end free 
(cantilever) boundary condition. The closed-form solutions are sought 
under the assumption that the vehicle acceleration magnitude is negli-
gible compared to the gravitational acceleration constant (g = 9.8 
m⋅s−2). Due to the specialty of the mode shape expression, the most 
common simply supported scenario may be studied separately. Critical 
vehicle parameters including frequency, speed, mass, and damping are 
also studied based on both ends fixed scenario. This study may provide a 

theoretical reference for advancing the vehicle-based structural health 
monitoring approach of bridges, as the bridge dynamic characteristics 
may be timely and effectively reflected from the test vehicles. It needs to 
be mentioned that the road surface roughness is not considered in this 
study for two reasons. Firstly, the inclusion of bridge surface roughness 
into the equations would significantly complicate the problem and 
closed-form solutions may not be obtainable, the finite element method 
is usually adopted to address this problem. Secondly, the effect of the 
road profile is believed to be affected by the contact patch size of the 
vehicle tires. The contact patches are provided by pneumatic tires to 
absorb energy and to avoid excessive pressures. A large contact patch 
would significantly counterbalance the bridge profile to avoid separa-
tion, while a tiny contact patch may introduce jumping interaction be-
tween the vehicle and the bridge, which may require a completely 
different mathematical model, while this study balances the complexity 
of the mathematical model and the feasibility of the closed-form solu-
tions. The obtained solutions are implemented in MATLAB [43] to 
graphically present the results and to study parameter effects. The 
Eigenfunctions of bridge natural frequencies for different boundary 
conditions are also solved numerically by MATLAB. This study is orga-
nized as follows: theoretical formulations for VBI with different 
boundary conditions are respectively introduced in Section 2; parameter 
baseline studies are respectively presented in Section 3 for each 
boundary condition; while vehicle parameter studies are presented in 
Section 4 based on both ends fixed boundary condition, followed by 
conclusions in Section 5. 

2. Theoretical formulations 

2.1. Equation group for general VBI 

A general VBI system without boundary condition is illustrated in 
Fig. 1. The bridge is considered as a Bernoulli-Euler beam with uni-
formly distributed property including unit-length mass constant m, unit- 
length damping constant c, and section stiffnessEI, while the vehicle is 
simplified as a damped sprung mass with mass mv, spring constant kv, 
and damping constant cv. A Bernoulli-Euler beam assumes that plane 
cross-sections remain plane during flexure. For the vehicle, the problem 
is to determine the response of the damped sprung mass due to support 
motion. It can also represent springs in parallel or series to include other 
factors such as multiple axle effects and tire effects. By ignoring the 
flexure effects caused by shear forces, rotary inertial forces, and axial 
forces, the equilibrium equation of the VBI system can be established as 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mvÿv + cv

(

ẏv − ẏb|x=vt

)

+ kv
(
yv − yb|x=vt

)
= 0

m
∂2yb

∂t2 + c
∂yb

∂t
+ EI

∂4yb

∂x4 = p(x, t)

(1)  

in which yvis the vehicle displacement response which is a function of 
time, ybis the bridge displacement response which is a function of both 
time and space, head dots is used for derivatives with respect to time, the 

Fig. 1. General VBI model without boundary conditions.  
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partial differential symbol ∂is used for functions that have two or more 
variables. The lateral load distribution, p(x, t) is zero everywhere along 
the bridge except a concentrated load at the contact point between the 
vehicle and the bridge, and can be described as 

p(x, t) =

⎧
⎨

⎩

kv
(
yv − yb|x=vt

)
+ cv

(

ẏv − ẏb|x=vt

)

− mvg

0

=

{
−mvÿv − mvg, x = vt

0, x ∕= vt (2) 

The coupled equilibrium equation group of the VBI system becomes 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

mvÿv + cvẏv + kvyv = kvyb|x=vt + cvẏb|x=vt

m
∂2yb

∂t2 + c
∂yb

∂t
+ EI

∂4yb

∂x4 =

⎧
⎨

⎩

−mv(ÿv + g), x = vt

0, x ∕= vt

(3) 

It can be seen in the equation group that the unknown bridge 
response yb(t) and vehicle response yv(t) are coupled. The orthogonal 
nature of normal modes provides a way to address a system that has 
multiple degrees-of-freedom by superposition, in which the vibration of 
the system can be expressed in terms of a superposition of a certain 
number of normal modes [44]. Thus, the solution of the bridge equation 
can be found by the method of separation of variables, in which the 
solution is assumed as an infinite superposition of the products of the 
normal modes Φn(x) and time functions zn(t)in the following form 

yb(x, t) =
∑

n
Φn(x)zn(t) (4) 

Substituting into Eq. (3) would result in  

in which c and mare assumed as constants; while Φn(x) and ωn depend on 
boundary conditions and have the following relationship 

ΦIV
n (x) −

mω2
n

EI
Φn(x) = 0 (6) 

Here the roman indices indicate derivatives with respect to the space 
variable x. The differential equation group Eq. (5) that contains the new 
coupled variable ofzn(t)andyv(t), is the exact equation group to be solved 
for the VBI system with both the vehicle and bridge damping effects for 
any boundary conditions. 

2.2. Bridge with both ends fixed boundary condition 

2.2.1. Bridge response 
The VBI equation group in Section 2.1 applies to bridges with any 

boundary conditions. This section presents the bridge with both ends 
fixed scenario which is commonly seen on continuous bridges. Fig. 2 (a) 
shows a schematic of a continuous bridge span in which the boundary 
condition may be simplified as both ends fixed (with rotation resistance) 
for a theoretical VBI model as illustrated in Fig. 2 (b). When the supports 
deteriorate due to certain issues such as corrosion and failure in a field 

bridge, the level of resistance to rotation of the support may change, 
which may then be reflected on the sensitive frequency list of the orig-
inal bridge. For the VBI system with both ends fixed boundary condition, 
the normal modes are 

Φn(x) = cosanx − coshanx − σn(sinanx − sinhanx) (7)  

in which, 

σn =
cosanL − coshanL
sinanL − sinhanL

(8)  

cosanLcoshanL − 1 = 0 (9) 

anL can be calculated numerically, or since the cosh function in-
creases rapidly, a good approximate solution may be expressed as [45] 

anL ≈
(2n + 1)π

2
(10) 

The maximum error for the first root is 0.37% and is decreasing for 
higher roots, the corresponding bridge natural frequencies are 

ωn = (anL)
2

̅̅̅̅̅̅̅̅̅
EI

mL4

√

(11) 

The equation group Eq. (5) can be decoupled if assumingÿv≪g, in 
which case the equation of the bridge becomes 

z̈n(t) +
c
m

żn(t) + ω2
nzn(t) = −

mvg
mAn

[
cosanvt − coshanvt

−σn(sinanvt − sinhanvt)

]

(12)  

in which, 

(a)

(b)

Fig. 2. Bridge with both ends fixed boundary condition (a) schematic elevation 
view of a bridge continuous span (b) theoretical VBI model with both ends fixed 
boundary condition. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mvÿv + cvẏv + kvyv =
∑

n

[

kvzn(t) + cvżn(t)
]

Φn(vt)

z̈n(t) +
c
m

żn(t) + ω2
nzn(t) =

∫ L

0
Φn(x)

⎧
⎪⎨

⎪⎩

−mv

(

ÿv + g
)

, x = vt

0, x ∕= vt

dx

m
∫ L

0
Φ2

n(x)dx
(5)   
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An =

∫ L

0
Φ2

n(x)dx =
1

2an

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
σ2

n − 1
)(

eanL − e−anL)
cosanL

−
[
(1 − σn)

2eanL + (1 + σn)
2e−anL ]

sinanL

−σncosh2anL +

(
1 + σ2

n

)

2
sinh2anL

+σncos2anL +

(
1 − σ2

n

)

2
sin2anL + 2anL

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13) 

Assuming zero initial conditions (bridge in the static equilibrium 
state), that iszn(0) = 0, and żn(0) = 0, the solution to the bridge time 
function equation can be found as 

zn(t) = e−ξnωnt

⎧
⎪⎨

⎪⎩

A*
ncos

[( ̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωnt

]

+B*
nsin

[( ̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωnt

]

⎫
⎪⎬

⎪⎭
+

(
C*

ncosanvt + D*
nsinanvt

+G*
ncoshanvt + H*

n sinhanvt

)

(14)  

in which, 

ξn =
c

2mωn
(15)  

and, 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A*
n = −C*

n − G*
n

B*
n =

ξnωnA*
n − anv

(
D*

n + H*
n

)

( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωn

C*
n = −

mvg
mAn

{[
ω2

n − (anv)
2 ]

+ 2ξnωnanvσn
}

[
ω2

n − (anv)
2 ]2

+ (2ξnωnanv)
2

D*
n = −

mvg
mAn

2ξnωnanv − σn
[
ω2

n − (anv)
2 ]

[
ω2

n − (anv)
2 ]2

+ (2ξnωnanv)
2

G*
n =

mvg
mAn

[
ω2

n + (anv)
2 ]

+ 2ξnωnanvσn
[
ω2

n + (anv)
2 ]2

− (2ξnωnanv)
2

H*
n = −

mvg
mAn

2ξnωnanv + σn
[
ω2

n + (anv)
2 ]

[
ω2

n + (anv)
2 ]2

− (2ξnωnanv)
2

(16)  

after obtaining the time function, the displacement and acceleration 

response of the bridge can be respectively obtained as: 

yb(x,t)=
∑

n

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎧
⎨

⎩

e−ξnωnt{A*
ncos

[( ̅̅̅̅̅̅̅̅̅̅̅

1−ξ2
n

√ )
ωnt

]
+B*

nsin
[( ̅̅̅̅̅̅̅̅̅̅̅

1−ξ2
n

√ )
ωnt

]}

+(C*
ncosanvt+D*

nsinanvt+G*
ncoshanvt+H*

n sinhanvt)

⎫
⎬

⎭

[cosanx−coshanx−σn(sinanx−sinhanx)]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(17)   

It can be noticed that the bridge acceleration response is dominated 
by two different categories of frequency, the damped bridge frequencies 
( ̅̅̅̅̅̅̅̅̅̅̅̅

1−ξ2
n

√ )
ωn, and the vehicle driving frequencies anv. Due to the intro-

duction of non-periodic hyperbolic terms, signals may be drifted. 

2.2.2. Vehicle response 
The bridge vibration response is transmitted to the vehicle as an 

input. After obtaining the time function zn(t) of the bridge, the equation 
for the vehicle becomes 

ÿv + 2ξvωvẏv + ω2
vyv =

∑

n

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−ξnωnt

⎧
⎪⎪⎨

⎪⎪⎩

a*
ncos

[( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωnt

]

+b*
nsin

[( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωnt

]

⎫
⎪⎪⎬

⎪⎪⎭

+c*
ncosanvt + d*

nsinanvt

+g*
ncoshanvt + h*

nsinhanvt

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

[ cosanvt − coshanvt − σn(sinanvt − sinhanvt) ]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(19)  

in which 

ÿb(x, t) =
∑

n

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−ξnωnt

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎣

(ξnωn)
2A*

n − 2ξnωn

( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωnB*

n

−
(
1 − ξ2

n

)
ω2

nA*
n

⎤

⎥
⎦cos

[( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωnt

]

+

⎡

⎢
⎣

(ξnωn)
2B*

n + 2ξnωn

( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωnA*

n

−
(
1 − ξ2

n

)
ω2

nB*
n

⎤

⎥
⎦sin

[( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωnt

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+(anv)
2(

− C*
ncosanvt − D*

nsinanvt
)

+(anv)
2(

G*
ncoshanvt + H*

n sinhanvt
)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

[ cosanx − coshanx − σn(sinanx − sinhanx) ]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(18)   
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a*
n = ω2

vA*
n + 2ξvωv

( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωnB*

n − 2ξvωvξnωnA*
n

b*
n = ω2

vB*
n − 2ξvωv

( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωnA*

n − 2ξvωvξnωnB*
n

c*
n = ω2

vC*
n + 2ξvωvanvD*

n

d*
n = ω2

vD*
n − 2ξvωvanvC*

n

g*
n = ω2

vG*
n + 2ξvωvanvH*

n

h*
n = ω2

vH*
n + 2ξvωvanvG*

n

(20) 

The right-hand side expression needs to be deduced to incorporate 
the time-varying mode shape termΦn(vt). The equation of the vehicle 
becomes (note: for the convenience of integration, some of the hyper-
bolic functions were expressed by its natural exponential function 
forms) 

ÿv + 2ξvωvẏv + ω2
vyv =

The solution to this nonhomogeneous differential equation can be 
expressed by a complementary solution to the associated homogeneous 
differential equation plus a particular solution which can be obtained by 
solving each right-hand term and then superposing them together. The 
coefficients for the complementary solution can then be determined by 
the initial conditions (in this case, assume both the initial displacement 
and initial velocity of the vehicle are zero). In theory, the total response 
of the vehicle will then be the superposition of an infinite number of 
bridge vibration modes. The displacement and acceleration response are 

deduced respectively as:    

in which the detailed coefficients are summarized in the appendix. Note 
that the vehicle acceleration response is dominated by five different 

∑

n

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+
a*

n + σnb*
n

2
e−ξnωntcos

[( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωn + anv

]
t

+
b*

n − σna*
n

2
e−ξnωntsin

[( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωn + anv

]
t

+
a*

n − σnb*
n

2
e−ξnωntcos

[( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωn − anv

]
t

+
b*

n + σna*
n

2
e−ξnωntsin

[( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωn − anv

]
t

+
a*

n(σn − 1)

2
e−(ξnωn−anv)tcos

( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωnt

+
b*

n(σn − 1)

2
e−(ξnωn−anv)tsin

( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωnt

−
a*

n(σn + 1)

2
e−(ξnωn+anv)tcos

( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωnt

−
b*

n(σn + 1)

2
e−(ξnωn+anv)tsin

( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωnt

+
g*

n + h*
n + (σn − 1)c*

n

2
eanvtcosanvt

+
g*

n − h*
n − (σn + 1)c*

n

2
e−anvtcosanvt

+
(σn − 1)d*

n − σn(g*
n + h*

n)

2
eanvtsinanvt

−
(σn + 1)d*

n + σn(g*
n − h*

n)

2
e−anvtsinanvt

+
c*

n + σnd*
n

2
cos2anvt +

d*
n − σnc*

n

2
sin2anvt

+
σnh*

n − g*
n

2
cosh2anvt +

σng*
n − h*

n

2
sinh2anvt

+
c*

n − σn
(
d*

n + h*
n

)
− g*

n

2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(21)   

(a)

(b)

Fig. 3. Bridge with fixed simply supported boundary condition (a) schematic 
elevation view of a bridge approach span (b) theoretical VBI model with fixed 
simply supported boundary condition. 
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yv(t) =
∑

n

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−ξvωvt
{

M0cos
[( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
v

√ )
ωvt

]
+ N0sin

[( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
v

√ )
ωvt

] }

+e−ξnωnt
{

M1cos
[( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωn + anv

]
t + N1sin

[( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωn + anv

]
t
}

+ + e−ξnωnt
{

M2cos
[( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωn − anv

]
t + N2sin

[( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωn − anv

]
t
}

+e−(ξnωn−anv)t
[
M3cos

( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωnt + N3sin

( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωnt

]

+e−(ξnωn+anv)t
[
M4cos

( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωnt + N4sin

( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωnt

]

+eanvt(M5cosanvt + N5sinanvt) + e−anvt(M6cosanvt + N6sinanvt)

+M7cos2anvt + N7sin2anvt + +M8cosh2anvt + N8sinh2anvt

+
c*

n − σn
(
d*

n + h*
n

)
− g*

n

2ω2
v

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(22)   

ÿv(t) =
∑

n

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−ξvωvt{ m0cos
[( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
v

√ )
ωvt

]
+ n0sin

[( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
v

√ )
ωvt

] }

+e−ξnωnt{ m1cos
[( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωn + anv

]
t + n1sin

[( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωn + anv

]
t

}

+e−ξnωnt{ m2cos
[( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωn − anv

]
t + n2sin

[( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωn − anv

]
t

}

+e−(ξnωn−anv)t[ m3cos
( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωnt + n3sin

( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωnt

]

+e−(ξnωn+anv)t[ m4cos
( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωnt + n4sin

( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωnt

]

+eanvt(m5cosanvt + n5sinanvt) + e−anvt(m6cosanvt + n6sinanvt)
+m7cos2anvt + n7sin2anvt + m8cosh2anvt + n8sinh2anvt

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(23)   

(a)

(b)

Fig. 4. Bridge with one end fixed the other end free boundary condition (a) schematic elevation view of a bridge with cantilever arms (b) theoretical VBI model with 
cantilever boundary condition. 
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categories of frequency due to the constrained boundary condition: the 

damped vehicle frequency 
( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
v

√ )
ωv, damped bridge frequencies 

( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωn, vehicle driving frequency affected damped bridge fre-

quencies 
( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωn ± anv, vehicle driving frequency anv, and 

doubled vehicle driving frequency 2anv, and because of the introduction 
of non-periodic hyperbolic terms, signal drift may be expected. 

2.3. Bridge with fixed simply supported boundary condition 

Bridge with fixed simply supported boundary condition may be 
commonly seen on the approach spans of a continuous bridge as shown 
in Fig. 3 (a). The support at the abutment usually restrains the bridge 
end from vertical movement but not for rotational movement, while the 
other end is restrained for both vertical and rotational movement (to 
some extent due to the continuous span). Bridge span with such a kind of 
boundary condition may be modelled as one end fixed the other end 
simply supported in a theoretical VBI model as shown in Fig. 3 (b). For a 
field bridge, the bearing degradation may cause a simply supported 
condition to have some rotational resistance thus results in the original 
bridge to have a quite different frequency list, as bridge frequency is 
very sensitive to the changes of the boundary condition. For the VBI 

system with one end fixed the other end simply supported boundary 
condition, the normal modes are 

Φn(x) = cosanx − coshanx − σn(sinanx − sinhanx) (24)  

in which, 

σn =
cosanL − coshanL
sinanL − sinhanL

(25)  

tananL = tanhanL (26)  

in which anLcan be calculated numerically, or a good approximate so-
lution may be expressed as [45] 

anL ≈
(4n + 1)π

4
(27)  

with a decreasing error of 0.01% starting from the first mode. Since the 
normal mode expressions are the same as both ends fixed boundary 
condition, the expressions of the vehicle and bridge responses will be the 
same. However, anneeds to be calculated differently based on new Eigen 
equations. 

2.4. Bridge with one end fixed the other end free (cantilever) boundary 
condition 

Bridge with one end fixed the other end free boundary condition is 
commonly seen on bridges with cantilever spans, suspended spans, and 
cantilever span systems. Fig. 4 (a) shows a schematic of a bridge with 
cantilever arms and a suspended span connected via a pin-hanger as-
sembly. Those types of bridges were prevailing in the 1950s since stat-
ically determinate structures are easy to analyze, the only critical 
component needs to be designed is the linkage, which is the pin-hanger 
assembly, that supports the suspended span from the cantilevers [46]. 
The failure of the bridge over the Mianus River in Greenwich, Con-
necticut, June 1983 had such a structure system [47]. The bearing 
deterioration may cause the level of fixed boundary condition to be 
changed and thus could be reflected on the original bridge frequency 
list. This type of structural interaction may also be commonly seen in 

Table 1 
Vehicle and bridge parameters used in the analytical baseline study.  

Vehicle Property Bridge Property 

kv(N⋅m−1)  8.0582 × 1010 EI(N⋅m2)  5.0695 × 1010 

mv(kg)  2.2680 × 104 

(40%mb)  
m(kg⋅m−1)  1.8779 × 103 

ξv  0.20 ξb  0.01 
v(m⋅s−1)  8.94 L(m)  30.48 
fv(Hz)  300 fb(fixed–fixed, 1st −

5th) (Hz)  
19.91, 54.89, 107.62, 
177.89, 265.74 

fb(fixed-simply, 1st −
5th) (Hz)  

13.72, 44.47, 92.79, 
158.68, 242.13 

fb(cantilever, 1st −
5th) (Hz)  

3.13, 19.61, 54.92, 
107.61, 177.89  
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(a)                                                                                 (b)
Fig. 5. Displacement and acceleration response of bridge with both ends fixed boundary condition (a) signals from the bridge middle point; (b) signals from 
the vehicle. 
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tower crane scenarios in construction. Structures with such a boundary 
condition may be mathematically represented by one end fixed and the 
other end free boundary condition in a theoretical VBI model as shown 
in Fig. 4 (b), in which the normal modes are 

Φn(x) = cosanx − coshanx − σn(sinanx − sinhanx) (28)  

in which, 

σn =
cosanL + coshanL
sinanL + sinhanL

(29)  

cosanLcoshanL + 1 = 0 (30)  

in which anLcan be calculated numerically, or a good approximate so-
lution except for the first mode may be expressed as [45] 

anL ≈
(2n − 1)π

2
(31)  

with a decreasing error of 0.39% starting from the second mode. Since 
the normal mode expression for this boundary condition is the same as 
both ends fixed scenario, the response expressions of both the vehicle 
and bridge will be the same, however, both anand σnwill be calculated 
differently based on new expressions. 

3. Parameter baseline study 

A 100-ft (30.48 m) long bridge example [46] is adopted to illustrate 
the theoretical solutions obtained in Section 2. This example is only 
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(a)                                                                                 (b)
Fig. 6. Displacement and acceleration response with no damping effect (ξv = 0, ξn = 0) (a) signals from the bridge middle point; (b) signals from the vehicle.  
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Fig. 7. Frequency analysis results of baseline parameters (a) acceleration signal from 45% of bridge length point; (b) acceleration signal from the vehicle.  

Table 2 
Frequency summary of VBI with both ends fixed boundary condition.  

Theoretical frequency 
(Hz) 

Signal from bridge Signal from vehicle 

Frequency 
(Hz) 

Error 
(%) 

Frequency 
(Hz) 

Error 
(%) 

19.91 19.94 0.15% 19.94 0.15% 
54.89 54.84 0.09% 54.84 0.09% 
107.62 107.60 0.02% 107.60 0.02% 
177.89 178.00 0.06% 178.00 0.06% 
265.74 265.70 0.02% 265.70 0.02% 

Note: mv=40%mb, ξb= 0.01, ξv= 0.2, fv= 300 Hz, v= 8.94 m⋅s−1. 
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intended to present the theoretical solutions graphically and to compare 
the sensitivity of bridge frequency list due to different boundary con-
ditions, other examples could also be easily implemented into the so-
lutions. The vehicle and bridge properties used in this illustration are 
summarized in Table 1. The bridge properties are equivalently calcu-
lated based on the original bridge section properties. The HL-93 (high-
way load, developed in 1993) design tandem load is conservatively and 

equivalently represented by the damped sprung mass model to the 
theory. The vehicle mass is initially calculated as 40% of the total bridge 
mass, nevertheless, vehicle mass is not directly limited in the assump-
tion. Although the typical vehicle has low frequencies due to the sus-
pension system and inflated tire effect, the vehicle frequency in this VBI 
model is initially chosen as 300 Hz to avoid the interested bridge fre-
quencies to be extracted. A low vehicle frequency scenario of 5 Hz in the 
parameter study section shows that higher bridge frequencies may be 
more difficult to be identified from the vehicle. The vehicle stiffness is 
then calculated based on the mass and frequency. The vehicle speed is 
initially chosen as 8.94 m⋅s−1. 

Since the bridge has different damping ratios for different vibration 
modes, as indicated by Eq. (15), the first damping ratio is assumed for 
the first mode, then the unit-length damping constant c is calculated 
based on Eq. (15) before other damping ratios (ten modes in total) being 
calculated accordingly. The time step is chosen as 1 × 10−3 s, resulting 
in a maximum frequency identification of 500 Hz. To evaluate the fre-
quency identification result, the frequencies of the bridge are obtained 
by three different approaches: theoretical values based on Eigen equa-
tions, the signal from the bridge, and the signal from the vehicle. Table 1 

0 0.5 1 1.5 2 2.5 3 3.5

-10

-5

0
D

is
pl

ac
em

en
t (

m
)

10-4

0 0.5 1 1.5 2 2.5 3 3.5
Time (s)

-4

-2

0

2

A
cc

el
er

at
io

n 
(m

/s
2 ) 10-3

0 0.5 1 1.5 2 2.5 3 3.5
-15

-10

-5

0

D
is

pl
ac

em
en

t (
m

)

10-4

0 0.5 1 1.5 2 2.5 3 3.5
Time (s)

-4

-2

0

2

A
cc

el
er

at
io

n 
(m

/s
2 ) 10-3

(a) (b)

Fig. 8. Displacement and acceleration response of baseline parameters (a) signals from the bridge middle point; (b) signals from the vehicle.  
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Fig. 9. Frequency analysis results of baseline parameters (a) acceleration signal from the bridge middle point; (b) acceleration signal from the vehicle.  

Table 3 
Frequency summary of VBI with fixed simply supported boundary condition.  

Theoretical frequency 
(Hz) 

Signal from bridge Signal from vehicle 

Frequency 
(Hz) 

Error 
(%) 

Frequency 
(Hz) 

Error 
(%) 

13.72 13.78 0.44% 13.78 0.44% 
44.47 44.57 0.22% 44.57 0.22% 
92.79 92.67 0.13% 92.67 0.13% 
158.68 158.70 0.01% 158.70 0.01% 
242.13 242.20 0.03% 242.20 0.03% 

Note: mv=40%mb, ξb= 0.01, ξv= 0.2, fv= 300 Hz, v= 8.94 m⋅s−1. 
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also summarizes the first five natural frequencies of the bridge with 
different boundary conditions calculated based on Eigen equations to 
facilitate evaluating the frequency extraction results. 

3.1. Bridge with both ends fixed 

Fig. 5 shows the displacement and acceleration responses of the 

bridge middle point and the vehicle for the bridge with both ends fixed 
boundary condition. An interesting signal drift phenomenon can be 
noticed on the acceleration signal both from the bridge and the vehicle, 
while not on the displacement signal, although the acceleration response 
is simply the second time derivative of the displacement response. The 
drift phenomenon could be caused by the non-periodic hyperbolic terms 
due to the constrained boundary condition. Fig. 6 shows the results of 
the zero-damping scenario for both the vehicle and the bridge. The 
damping effect can be noticed on both the non-decay characteristic and 
the signal magnitude. The vehicle acceleration magnitude with the 
damping effect is 1.656 × 10−3 m⋅s−2 (0.02%g), while that of the zero 
damping scenario is 3.436 × 10−3 m⋅s−2 (0.035%g). Thus, the decou-
pling assumption is reasonable. 

The signals from the bridge and the vehicle with damping effect are 
processed by Fast Fourier Transform (FFT) to obtain the frequency in-
formation, as shown in Fig. 7. Note that the bridge middle point signal 
may not reflect the even bridge frequencies such as the 2nd and 4th 
bridge frequency, the signal is instead collected at 45% of the bridge 
length so that the first five bridge frequencies can be reflected, the 20th 
bridge frequency will likely be affected since this signal location is at 9/ 
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Fig. 10. Displacement and acceleration response of baseline parameters (a) signals from the bridge middle point; (b) signals from the vehicle.  
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Fig. 11. Frequency analysis results of baseline parameters (a) acceleration signal from 25% of bridge length point; (b) acceleration signal from the vehicle.  

Table 4 
Frequency summary of VBI with one end fixed the other end free boundary 
condition.  

Theoretical frequency 
(Hz) 

Signal from bridge Signal from vehicle 

Frequency 
(Hz) 

Error 
(%) 

Frequency 
(Hz) 

Error 
(%) 

3.13 3.23 3.19% 3.23 3.19% 
19.61 19.65 0.20% 19.65 0.20% 
54.92 54.84 0.15% 54.84 0.15% 
107.61 107.60 0.01% 107.60 0.01% 
177.89 178.00 0.06% 177.70 0.11% 

Note: mv=40%mb, ξb= 0.01, ξv= 0.2, fv= 300 Hz, v= 8.94 m⋅s−1. 
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20 of the bridge length. The minor peaks in Fig. 7 may indicate other 
categories of frequency. A camel hump phenomenon (both left and right 
bridge frequency shift) can be seen on the higher bridge frequencies 
(≥3rd in this example) when identifying frequency from the FFT result of 
the vehicle signal, as shown in Fig. 7(b). The camel hump phenomenon 

is due to the term 
( ̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√ )
ωn ± anv, and can be noticed more clearly 

for high bridge frequencies and high vehicle speeds. The frequency 

analysis result is summarized in Table 2, note that due to the camel 
hump phenomenon, the frequencies identified from vehicle signal are 
read at the trough point of each camel hump. The result is almost the 
same for the signals from the bridge itself and the vehicle, with an 
excellent error of less than 0.15% compared to the theoretical values. 

3.2. Bridge with fixed simply supported boundary condition 

This section briefly presents the VBI result for the bridge with fixed 
simply supported boundary condition. Fig. 8 shows the displacement 
and acceleration response for the bridge middle point and the vehicle, 
while Fig. 9 shows the FFT result of the acceleration signals. Note that 
the bridge middle point signal is selected since the mode shape is not 
symmetric due to asymmetric boundary condition. The theoretical 
assumption is reasonable since the vehicle acceleration magnitude is 
4.948 × 10−3 m⋅s−2 (0.05%g). Compared to both ends fixed boundary 
condition which shows a symmetric bell-shape displacement response, 
the simply supported boundary condition shows a non-symmetric 
displacement response both for the bridge and for the vehicle. Consis-
tent with both ends fixed boundary condition, the acceleration signals 
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Fig. 12. Displacement and acceleration response due to vehicle frequency effect (fv = 5 Hz) (a) signals from the bridge middle point; (b) signals from the vehicle.  
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Fig. 13. FFT analysis for studying vehicle frequency effect (a) frequency range of 0–500 Hz; (b) frequency range of 250–300 Hz.  

Table 5 
Frequency summary of vehicle frequency effect (worst scenariofv = 5 Hz).  

Theoretical frequency 
(Hz) 

Signal from bridge Signal from vehicle 

Frequency 
(Hz) 

Error 
(%) 

Frequency 
(Hz) 

Error 
(%) 

19.91 19.94 0.15% 19.94 0.15% 
54.89 54.84 0.09% 54.84 0.09% 
107.62 107.60 0.02% 107.60 0.02% 
177.89 178.00 0.06% 177.70 0.11% 
265.74 265.70 0.02% 265.40 0.13% 
Note: mv=40%mb, ξb= 0.01, ξv= 0.2, fv= 5 Hz, v= 8.94 m⋅s−1   
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for the fixed simply supported boundary condition also show drift 
phenomenon. Frequency analysis shows an excellent error of 0.44%, as 
summarized in Table 3. 

3.3. Bridge with one end fixed the other end free (cantilever) boundary 
condition 

This section briefly presents the VBI result for the bridge with one 

end fixed the other end free boundary condition. Fig. 10 shows the 
displacement and acceleration response for the bridge middle point and 
the vehicle. An acceleration signal drift can be noticed due to the 
cantilever boundary condition. The theoretical assumption is reasonable 
since the acceleration magnitude from the vehicle is 2.803 × 10−2 m⋅s−2 

(0.29%g). Fig. 11 shows the FFT result of the acceleration signals, which 
indicates in field application, the frequency may be more difficult to be 
identified. Note that the signal at 25% of the bridge length is chosen to 
obtain the information of the first five bridge frequencies. The frequency 
identification result shows an increased error of 3.19%, as summarized 
in Table 4. 

4. Vehicle parameter effect 

Based on both ends fixed boundary condition, this section presents 
the effect of several vehicle parameters including frequency, speed, mass 
and damping on multiple bridge frequencies extraction from the vehicle 
response. Both the bridge middle point and vehicle responses are pre-
sented for the worst scenario of each vehicle parameter. The vehicle 
frequency plays a significant role in attenuating higher bridge fre-
quencies and is preferred to be beyond the interested bridge frequency 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-6

-4

-2

0
D

is
pl

ac
em

en
t (

m
)

10-4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (s)

-0.05

0

0.05

A
cc

el
er

at
io

n 
(m

/s
2 )

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-6

-4

-2

0

D
is

pl
ac

em
en

t (
m

)

10-4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (s)

-0.02

0

0.02

0.04

A
cc

el
er

at
io

n 
(m

/s
2 )

(a)                                                                                (b)
Fig. 14. Displacement and acceleration response due to vehicle speed effect (v = 35.76 m⋅s−1) (a) signals from the bridge middle point; (b) signals from the vehicle.  

Table 6 
Frequency summary of vehicle speed effect (worst scenariov = 35.76 m⋅s−1).  

Theoretical frequency 
(Hz) 

Signal from bridge Signal from vehicle 

Frequency 
(Hz) 

Error 
(%) 

Frequency 
(Hz) 

Error 
(%) 

19.91 19.93 0.10% 19.93 0.10% 
54.89 55.10 0.38% 55.10 0.38% 
107.62 107.90 0.26% 106.70 0.85% 
177.89 178.20 0.17% 179.40 0.85% 
265.74 266.10 0.14% 264.90 0.32% 

Note: mv=40%mb, ξb= 0.01, ξv= 0.2, fv= 300 Hz, v= 35.76 m⋅s−1. 
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Fig. 15. FFT analysis for studying vehicle speed effect (a) frequency range 0–500 Hz; (b) frequency range 250–300 Hz.  
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range. Vehicle speed is preferred to be low since higher vehicle speed 
intensifies the camel hump phenomenon and the vehicle acceleration 
magnitude. Vehicle mass is not significantly limited in this theory due to 
the constrained boundary condition, as vehicle as heavy as the total 
bridge mass travelling at a high speed (35.76 m⋅s−1) could still meet the 
assumption. Vehicle damping has little effect on extracting multiple 
bridge frequencies information. Detailed results and discussions of each 
parameter are presented in the following sections. 

4.1. Vehicle frequency effect 

This section demonstrates that the vehicle frequency plays a signif-
icant role in transmitting multiple bridge frequencies. Vehicle frequency 
scenarios including 5 Hz, 50 Hz, 150 Hz, and 300 Hz are selected to 
study the effect. Fig. 12 shows respectively the responses of the bridge at 
its middle point and the vehicle for the 5 Hz scenario. The assumption is 
reasonable since the acceleration magnitude from the vehicle is 1.355 ×
10−3 m⋅s−2 (0.014%g). The FFT analysis for all frequency scenarios is 
shown in Fig. 13, in which the 5th bridge frequency is focused to give a 
clearer result. The attenuation effect of the vehicle with low frequency 
can be seen for higher bridge frequencies, although the maximum fre-
quency identification error, as summarized in Table 5, is still as low as 
the baseline study. The attenuation effect is that the power spectral 
density (PSD) drops to 0.8% from the 1st mode to the 5th mode for the 
vehicle frequency of 5 Hz, while that drops to 12.7% for the vehicle 
frequency of 300 Hz. Severer attenuation effect will certainly affect the 
identification of higher bridge frequencies. The indication here is that 
the test vehicle may be preferred to be designed with a high frequency 
beyond the interested bridge frequency range for field application. 
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Fig. 16. Displacement and acceleration response due to vehicle mass effect (vehicle mass is 100% of the total bridge mass) (a) signals from the bridge middle point; 
(b) signals from the vehicle. 
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Fig. 17. Frequency analysis for studying vehicle mass effect (a) frequency range 0–500 Hz; (b) frequency range 250–300 Hz.  

Table 7 
Frequency summary of vehicle mass effect (worst scenario mv = 100%.mb).  

Theoretical frequency 
(Hz) 

Signal from bridge Signal from vehicle 

Frequency 
(Hz) 

Error 
(%) 

Frequency 
(Hz) 

Error 
(%) 

19.91 19.94 0.15% 19.94 0.15% 
54.89 54.84 0.09% 55.13 0.44% 
107.62 107.60 0.02% 107.60 0.02% 
177.89 178.00 0.06% 178.00 0.06% 
265.74 265.70 0.02% 265.70 0.02% 

Note: mv=100%mb, ξb= 0.01, ξv= 0.2, fv= 300 Hz, v=8.94 m⋅s−1. 
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4.2. Vehicle speed effect 

A sequential of the vehicle speed of 8.94 m⋅s−1, 17.88 m⋅s−1, 26.82 
m⋅s−1, and 35.76 m⋅s−1 are selected to study the vehicle speed effect. 
Fig. 14 shows the displacement and acceleration response for the bridge 
middle point and the vehicle for the highest speed scenario (35.76 
m⋅s−1). The maximum vehicle acceleration magnitude is 4.043 × 10−2 

m⋅s−2 (0.41%g), indicating the assumption is still reasonable. The fre-
quencies are identified at the trough point of each camel hump and are 
summarized in Table 6. Due to the increased vehicle speed, the 
maximum frequency identification error for the bridge and vehicle is 
increased to 0.38% and 0.85%, respectively. The FFT result as shown in 
Fig. 15 shows that the camel hump phenomenon is intensified as the 
vehicle speed increases. The camel hump phenomenon may adversely 
affect the bridge frequency identification in field application, as bridges 
in the field often involve noise caused by many other sources such as 
ambient vibration, traffic, and road surface roughness. Higher vehicle 
speed also shows severer attenuation effect, as the PSD drops to 12.7% 
and 3.1% from the 1st mode to the 5th mode for the vehicle speed of 
8.94 m⋅s−1 and 35.76 m⋅s−1, respectively. 

An interesting field study in literature [14] shows that as the vehicle 
speed increases from 2 km⋅h−1 (0.56 m⋅s−1) to 4 km⋅h−1 (1.11 m⋅s−1) 
and then 8 km⋅h−1 (2.22 m⋅s−1), the acceleration magnitude increases 
roughly from 50 Gal (0.5 m⋅s−2) to 100 Gal (1 m⋅s−2) and then 200 Gal 
(2 m⋅s−2). Their FFT frequency study also shows that the bridge fre-
quencies are getting more ambiguous as the vehicle speed increases. The 
explanation could be that the vehicle acceleration signal magnitude is 
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Fig. 18. Displacement and acceleration response due to vehicle damping effect (ξv = 0.5) (a) signals from the bridge middle point; (b) signals from the vehicle.  
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Fig. 19. FFT analysis for studying vehicle damping effect (a) frequency range 0–500 Hz; (b) frequency range 250–300 Hz.  

Table 8 
Frequency summary of vehicle damping effect (worst scenario ξv = 0.5).  

Theoretical frequency 
(Hz) 

Signal from bridge Signal from vehicle 

Frequency 
(Hz) 

Error 
(%) 

Frequency 
(Hz) 

Error 
(%) 

19.91 19.94 0.15% 19.94 0.15% 
54.89 54.84 0.09% 55.13 0.44% 
107.62 107.60 0.02% 107.60 0.02% 
177.89 178.00 0.06% 178.00 0.06% 
265.74 265.70 0.02% 265.70 0.02% 

Note: mv=40%mb, ξb= 0.01, ξv= 0.5, fv= 300 Hz, v= 8.94 m⋅s−1. 
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too high to meet theoretical assumption, as 200 Gal (2 m⋅s−2) is already 
20.4%g. The indication here is that to extract multiple bridge fre-
quencies, the vehicle acceleration magnitude should be maintained far 
lower than the gravitational acceleration constant. 

4.3. Vehicle mass effect 

A set of vehicle mass of 1%, 10%, 50%, and 100% of the total bridge 
mass are selected to study the vehicle mass effect. The vehicle mass 
linearly affects the vehicle acceleration magnitude which may challenge 
the assumption. The maximum vehicle acceleration magnitude is 4.179 
× 10−3 m⋅s−2 (0.04%g), as presented in Fig. 16, indicating the 
assumption is reasonable. Fig. 17 shows the FFT analysis for all vehicle 
mass scenarios, the vehicle mass parameter shows no attenuation effect 
on the PSD, as the PSD drops to 12.7% from the 1st mode to the 5th 
mode for both the lowest and highest vehicle mass scenarios. Table 7 
summarizes the frequency identification results for the highest vehicle 
mass scenario, which shows that the maximum frequency identification 
error is as low as the baseline scenario. 

4.4. Vehicle damping effect 

This section briefly presents the vehicle damping effect. Vehicle 
damping ratios including 0.01, 0.05, 0.1, and 0.5 are selected to study 
the effect. Fig. 18 show the displacement and acceleration response for 
the bridge middle point and the vehicle for the highest vehicle damping 
ratio of 0.5. The FFT analysis for all damping ratio scenarios is shown in 
Fig. 19. Higher vehicle damping ratio decreases PSD, as the PSD drops to 
22.9% and 7.3% from the 1st mode to the 5th mode for the vehicle 
damping ratio of 0.01 and 0.5, respectively. The vehicle damping also 
has a slight effect on the vehicle acceleration magnitude. As the vehicle 
damping increases, the vehicle acceleration magnitude decreases from 
1.841 × 10−3 m⋅s−2 (0.019%g) to 1.569 × 10−3 m⋅s−2 (0.016%g). 
Table 8 summarizes the frequency identification results for the highest 
vehicle damping ratio, which shows that vehicle damping has little ef-
fect on extracting multiple bridge frequencies from the vehicle. 

5. Conclusions 

The coupled differential equation group for the vehicle bridge 
interaction model including both the vehicle and bridge damping effects 
is established for the bridge with both ends fixed, fixed simply sup-
ported, and one end fixed the other end free (cantilever) boundary 
condition. The vehicle is theoretically modelled as a damped sprung 
mass, rather than only a sprung mass, to account for both the frequency 
and damping property of the vehicle. The assumption to decouple the 
equation group requires that the vehicle acceleration magnitude should 
be far lower than the gravitational acceleration constant. The closed- 
form solutions indicate that five different categories of frequency may 
be expected from the vehicle signal, and more categories of frequency 
may be expected for more comprehensive models and field applications. 
Conclusions drawn regarding the theoretical study as well as the 
parameter study include:  

1) The theoretical study shows that multiple bridge frequencies can be 
identified from the vehicle with high accuracy (both ends fixed: 
0.15%, fixed simply: 0.44%, cantilever: 3.19%), and since the bridge 
frequency list is very sensitive to its boundary conditions, bridge 

boundary condition deterioration such as bearing degradation would 
be highly reflected on the original bridge frequency list evolution 
and thus could be monitored.  

2) Although the vehicle frequency parameter study shows a maximum 
vehicle acceleration magnitude of 0.014%g and a maximum fre-
quency identification error of 0.15%, vehicle frequency plays a sig-
nificant role in naturally attenuating higher bridge frequencies and 
therefore vehicle frequency is preferred to be designed higher than 
the interested bridge frequencies to be extracted. The attenuation 
effect of the vehicle frequency parameter is that the PSD drops to 
0.8% and 12.7% from the 1st mode to the 5th mode for the vehicle 
frequency of 5 Hz and 300 Hz, respectively. 

3) The vehicle speed parameter study shows a maximum vehicle ac-
celeration magnitude of 0.41%g and a maximum frequency identi-
fication error of 0.85%, indicating that the vehicle speed is not 
significantly limited in this theoretical model. However, high vehicle 
speed results in more evident camel hump phenomenon which would 
broaden the bridge frequency peaks and adversely disturb multiple 
bridge frequencies identification from the vehicle. Higher vehicle 
speed also shows severer attenuation effect, as the PSD drops to 
12.7% and 3.1% from the 1st mode to the 5th mode for the vehicle 
speed of 8.94 m⋅s−1 and 35.76 m⋅s−1, respectively.  

4) Although the vehicle mass linearly affects the vehicle acceleration 
magnitude, the maximum vehicle acceleration magnitude is only 
0.04%g and the maximum frequency identification error is 0.44%, 
indicating that vehicle mass has little effect on multiple bridge fre-
quencies identification from the vehicle. The vehicle mass parameter 
also shows no attenuation effect on the PSD of the frequency 
analysis.  

5) The vehicle damping parameter study shows a maximum vehicle 
acceleration magnitude of 0.019%g and a maximum frequency 
identification error of 0.44%, indicating that the vehicle damping 
has little effect on multiple bridge frequencies extraction from the 
vehicle. Higher vehicle damping ratio yet shows more evident 
attenuation effect, as the PSD drops to 22.9% and 7.3% from the 1st 
mode to the 5th mode for the vehicle damping ratio of 0.01 and 0.5, 
respectively. 
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Appendix 

Coefficients of vehicle displacement and acceleration response for VBI model with both ends fixed boundary condition: 
⎧
⎪⎨
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2M0 − 2ξvωvN0
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