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a b s t r a c t 

The coupled differential equation group for the vehicle bridge interaction system is

reestablished to include both the vehicle and bridge damping effects. The equation group

can be uncoupled and closed-form solutions for both the bridge and vehicle can be ob- 

tained under the assumption that the vehicle acceleration magnitude is much lower than

the gravitational acceleration constant. Then based on a simply supported boundary condi- 

tion scenario, several critical parameters including bridge damping, vehicle frequency, ve- 

hicle speed, vehicle mass, and vehicle damping are studied to investigate their effects on

extracting multiple bridge frequencies from the vehicle. The results show that the bridge

damping plays a significant role in the vibration behaviour of both the vehicle and the

bridge compared to the vehicle damping. The vehicle is preferred to be designed with a

high frequency beyond the interested bridge frequencies to be extracted since low vehicle

frequency tends to attenuate bridge frequencies that are higher than the vehicle frequency.

A camel hump phenomenon can be observed on the extracted bridge frequencies from the

vehicle, especially for scenarios that involve high bridge vibration mode and high vehicle

speed. Vehicle speed is preferred to be maintained low to meet the theoretical assump- 

tion and to reduce the camel hump phenomenon. Although vehicle mass is not necessarily

limited in this study, there is a magnitude balance among vehicle mass, vehicle speed, and

damping to meet the theoretical assumption. This theoretical work may give some indica- 

tions for designing a special field test vehicle to monitor bridge in a more comprehensive

way.

© 2020 Elsevier Ltd. All rights reserved.

 

1. Introduction

Vehicle bridge interaction (VBI) is a fundamental issue for fully understanding the dynamic behaviour of both the ve- 

hicle and bridge during their interaction and has been widely studied both theoretically and experimentally for decades. 

Theoretically understanding of the interaction has the potential significance not only for designing the bridges but also that 

the dynamic characteristics of one can be derived by the other. For instance, on one hand, the vehicle weight can be es-

timated based on the bridge response to monitor and potentially regulate vehicles that may have excessive loads in the 

transportation network [1–4] . On the other hand, the vehicle-based structural health monitoring (SHM) of bridges has also 

been gained wide attention due to the advantages of mobility and potential economy characteristics [5,6] . The intention 
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behind this approach is that the bridge dynamic information such as frequencies [7–16] , mode shapes [17–22] , and damp-

ing properties [23,24] can be interpreted by the dynamic response of the passing vehicle. The readers may be directed to a

complete review of VBI related theory and application by Yang et al. [25] about vehicle scanning method for bridges. 

Back in 2004, Yang et al. [7] established a theoretical VBI model without both the vehicle and bridge damping effects to

extract bridge fundamental frequency from the dynamic response of a passing vehicle. Under the assumption that the vehicle 

has a mass that is an order magnitude lower than the total bridge mass, the closed-form solutions were obtained considering

only the first mode of the bridge. Only the first bridge frequency could be detected from the vehicle since only the first

bridge vibration mode was considered in the equations. Based on this theoretical VBI model, Yang et al. [17,22] further

constructed the mode shapes of the bridge using the dynamic response of the passing vehicle, under the assumption that the

driving frequency is much lower than the bridge frequency. However, Yang and Lee [13] pointed out that vehicle damping is

one of the key factors that affect the extraction of bridge frequency results. Their numerical studies show that high vehicle

damping is beneficial to suppress the road surface roughness as well as the vehicle frequency. Nevertheless, only the first 

bridge frequency was studied. Yang and Cao recently [14] proposed a double-mass vehicle model of VBI system to include

the wheel size effect, in which the vehicle was modelled as a sprung mass representing the vehicle body and an un-sprung

disk representing the axle mass with the wheel radius. The damping for the suspension system was considered in their 

model but not for the wheel since the commercial wheel usually consists of a rigid alloy rim and a pneumatic tire. The

pneumatic tire, which is designed to provide a contact patch cushion, or “footprint”, to absorb shock and to avoid excessive

bearing pressure, is believed to have significant damping contribution. In other words, the rigid alloy rim was represented 

but not the pneumatic tire. Due to the complexity of the problem, the system was studied by finite element method rather

than analytical explicit solutions or closed-form solutions. The merit of closed-form solutions is that it may directly reveal 

the frequency components of both the bridge and vehicle responses so that one would expect certain features during a 

realistic experiment. The theoretical studies reviewed here show that the mathematical model of the VBI system is still not 

well represented. A new mathematical model considering both the bridge and vehicle damping effects is proposed in this 

study, and the analytical explicit solutions are sought to reveal the frequency components of both the bridge and vehicle 

responses. 

Besides theoretical study, numerous experimental studies were also conducted to verify or explore vehicle-based ap- 

proach in field applications. In the following experimental verification study, Lin and Yang [9] used an accelerometer- 

installed cart towed by a truck to identify the fundamental bridge frequency. Their results show that the first bridge fre-

quency can be identified if the vehicle is maintained at a proper low speed. However, even the second vertical bridge fre-

quency (besides bridge lateral mode) was not identified in their field tests. A hand-drawn cart field study in 2013 [12] shows

that the PU (polyurethane) wheels were the most suitable for extracting bridge frequencies compared to inflatable wheels 

and rubber wheels, their study shows that heavier cart with low speed could identify multiple bridge frequencies. Since the 

wheel size is relatively small compared to the bridge surface roughness, separation might occur which may void the analyt- 

ical solutions. For commercial wheels with inflated tires, the contact patch may counterbalance the roughness of the asphalt 

so that separation is less likely to occur. Kim and Lynch [26] used wireless sensors deployed on a heavy vehicle and a con-

tinuous steel bridge to study a realistic field VBI scenario. The bridge frequencies were not identified from the heavy truck 

due to possible attenuation effect of the suspension system, while this study indicates that the reason could also be sim-

ply the low-frequency effect due to the inflated tires. In their level 1 screening experiment, Kim et al. [27] experimentally

studied the feasibility of using the vehicle response to monitor a short span bridge, the damages of which were repre-

sented by dampers (old displacement transducers) and additional mass. They concluded that it is possible to detect bridge 

frequency changes due to structural damage under restricted conditions. However, only the first bridge frequency was inves- 

tigated. The spectra may also be controversial since the vehicle frequency and first bridge frequency were close, especially 

considering the possible bridge frequency shift due to numerous side effects. Cerda et al. [28] experimentally studied the 

vehicle-based approach for detecting different scenarios including support rotation restrictions, additional damping, and ad- 

ditional mass, based on only the first bridge frequency identification results. McGetrick et al. [29] experimentally monitored 

the bridge stiffness using the vehicle response, while only the first frequency of the bridge can be identified. Urushadze and

Yau [16] used a stiffness-adjustable vehicle to test the frequencies of a plexiglass beam, they concluded that vehicle with 

harder spring gave better predictions of the bridge frequencies. Kim et al. [30] used a tractor-trailer vehicle to detect the

bridge frequency, in which only the first bridge frequency was identified with an error of 8.8%. The perennial problem of

experimental observations as reviewed here is that only the first bridge frequency (sometimes none, in rare cases, the first 

two) could be identified and most of the results may still be controversial if one inspects various spectra carefully. This is far

from monitoring the bridges in a comprehensive way. From structural dynamics point of view, the integrity of the structural 

dynamic characteristics of the bridge such as frequency, mode shape and damping ratio group list, should be relied on to

comprehensively evaluate and monitor the bridge, rather than only the first frequency of the bridge. Therefore, this study is 

also trying to provide a theoretical reference for designing a special test vehicle so that more bridge dynamic information 

may be reflected. 

To account for both the bridge and vehicle damping effect and to extract multiple bridge dynamic information, this study 

reestablishes the coupled equation group for the VBI system and presents several critical assumptions and discussions when 

extracting multiple frequencies information. The equation group features that it includes the damping effects for both the 

vehicle and bridge and is open for any other kinds of bridge boundary conditions. The equation group is uncoupled under a

new assumption and closed-form solutions are obtained for the bridge with simply supported boundary condition scenario, 
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Fig. 1. General VBI model without boundary conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and critical vehicle design parameters including frequency, speed, mass, and damping are studied. It needs to be mentioned 

that the road surface roughness is not considered in this study. Firstly, the inclusion of bridge surface roughness into the

equations would significantly complicate the problem and closed-form solutions may not be readily obtained. Secondly, the 

effect of road profile is believed to be dependent on the contact patch size. A large contact patch would significantly coun-

terbalance the bridge profile to avoid separation, while a tiny contact patch may introduce separation and impact between 

the vehicle and the bridge which may require a much more complicated mathematical model. The theoretical expressions 

were implemented in MATLAB [31] to present the results in graphics. This study is organized as follows: theoretical for- 

mulation is introduced in Section 2 ; analytical study using baseline parameters is presented in Section 3 ; while parameter

studies are presented in Sections 4 and 5 , followed by conclusions in Section 6 . 

2. Theoretical formulation 

2.1. Equation group for general VBI 

A general VBI system without boundary conditions is illustrated in Fig. 1 . The bridge is considered as a Bernoulli-Euler

beam with uniformly distributed properties including unit-length mass constant m̄ , unit-length damping constant c̄ , and 

section stiffness EI , while the vehicle is simplified as a damped sprung mass with properties of mass m v , spring constant

k v , and damping constant c v . A Bernoulli-Euler beam assumes that a plane cross-section remains a plane during flexure. For

the vehicle, the problem is essentially to determine the response of the damped sprung mass due to the support motion.

By ignoring the flexure effects caused by shear, rotary inertial, and axial forces, the equilibrium equation of the VBI system

can be established as {
m v ̈y v + c v ( ̇ y v − ˙ y b | x = v t ) + k v ( y v − y b | x = v t ) = 0 

m̄ 

∂ 2 y b 
∂ t 2 

+ c̄ ∂ y b 
∂t 

+ EI ∂ 
4 y b 

∂ x 4 
= p ( x, t ) 

(1) 

in which y v is the vehicle displacement which is a function of time, y b is the bridge displacement which is a function of

both time and space, head dots are used for derivatives with respect to time, the partial differential symbol ∂ is used for
functions that have two or more variables. The lateral load distribution p ( x, t ), is zero everywhere along the bridge except

for a concentrated load at the contact point between the vehicle and the bridge. p ( x, t ) can be described as 

p ( x, t ) = 

{
k v ( y v − y b | x = v t ) + c v ( ̇ y v − ˙ y b | x = v t ) − m v g 

0 
= 

{
−m v ̈y v − m v g, x = v t 

0 , x � = v t (2) 

the coupled equilibrium equation group of the VBI system will then be ⎧ ⎨ 

⎩ 

m v ̈y v + c v ̇ y v + k v y v = k v y b | x = v t + c v ̇ y b | x = v t 
m̄ 

∂ 2 y b 
∂ t 2 

+ c̄ ∂ y b 
∂t 

+ EI ∂ 
4 y b 

∂ x 4 
= 

{
−m v ( ̈y v + g ) , x = v t 
0 , x � = v t 

(3) 

The orthogonal nature of normal modes provides a way to address a system that has multiple degree-of-freedom by 

superposition, in which the vibration of the system can be expressed in terms of the superposition of normal modes [32] .

Thus, the solution of the bridge equation can be found by the method of separation of variables, in which the solution is

assumed as an infinite superposition of the product of the normal modes �n ( x ) and time functions z n ( t ) in the following

form 

y b ( x, t ) = 

∑ 

n 

�n ( x ) z n ( t ) (4) 
3 
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substituting into the equation group would result in ⎧ ⎪ ⎨ 

⎪ ⎩ 

m v ̈y v + c v ̇ y v + k v y v = 

∑ 

n 
[ k v z n ( t ) + c v ̇ z n ( t ) ] �n ( v t ) 

z̈ n ( t ) + 
c̄ 
m̄ 
˙ z n ( t ) + ω 

2 
n z n ( t ) = 

∫ L 0 �n ( x ) 

{ −m v ( ̈y v + g ) , x = v t 
0 , x � = v t 

dx 

m̄ ∫ L 0 �2 
n ( x ) dx 

(5) 

in which c̄ and m̄ are assumed as constants; while �n ( x ) and ω n depend on the bridge boundary conditions and have the

following relationship 

�IV 
n ( x ) −

m̄ ω 
2 
n 

EI 
�n ( x ) = 0 (6) 

here the roman indices indicate derivatives with respect to the space variable x . The coupled differential equation group 

Eq. (5) that contains the variable of z n ( t ) and y v ( t ), is the exact equation group to be solved for the VBI system with both the

vehicle and bridge damping effect for any bridge boundary conditions. 

2.2. Bridge response 

Although the VBI equation group in Section 2.1 is open for bridges with any boundary conditions, the normal mode 

expressions may be complicated except for the simply supported scenario. To have some practical implications for field 

application and to present basic steps adopted to address the VBI system, the equation group is uncoupled and solved for

the bridge with simply supported boundary condition, bridges with other types of boundary conditions may be studied in 

future research. For simply supported boundary condition, the normal modes are 

�n = sin 
nπx 

L 
(7) 

the corresponding natural frequencies are 

ω n = n 2 π2 

√ 

EI 

m̄ L 4 
(8) 

the equation group Eq. (5) can be uncoupled if assuming ÿ v � g, in which case the equation of the bridge will be 

z̈ n ( t ) + 

c̄ 

m̄ 

˙ z n ( t ) + ω 
2 
n z n ( t ) = −2 m v g 

m̄ L 
sin 

nπv t 
L 

(9) 

the solution to this second-order ordinary differential equation is 

z n ( t ) = e −ξn ω n t 
[ 
A n cos 

(√ 

1 − ξ 2 
n 

)
ω n t + B n sin 

(√ 

1 − ξ 2 
n 

)
ω n t 

] 
− 2 m v g 

m̄ Lω 
2 
n 

√ (
1 − r 2 n 

)2 + ( 2 r n ξn ) 
2 

sin 

(
nπv 
L 

t − θn 

)
(10) 

in which, 

ξn = 

c̄ 

2 ̄m ω n 
, (11) 

r n = 

nπv 
ω n L 

, (12) 

tan θn = 

2 r n ξn 
1 − r 2 n 

(13) 

for zero initial conditions (bridge in the static equilibrium state), that is z n (0) = 0 , and ˙ z n (0) = 0 , A n and B n can be calcu-

lated as ⎧ ⎪ ⎨ 

⎪ ⎩ 

A n = − 4 m v g r n ξn 

m̄ Lω 2 n 

[ 
( 1 −r 2 n ) 

2 + ( 2 r n ξn ) 2 
] 

B n = 

2 m v g [ ( 1 −r 2 n ) nπv 
L −2 ξn ω n r n ξn ] 

m̄ Lω 2 n 

[ 
( 1 −r 2 n ) 

2 + ( 2 r n ξn ) 2 
] (√ 

1 −ξ 2 
n 

)
ω n 

(14) 

once obtaining the time function, the displacement and acceleration response of the bridge can be respectively obtained as 

y b ( x, t ) = 

∑ 

n 

⎧ ⎨ 

⎩ 

e −ξn ω n t 
[ 
A n cos 

(√ 

1 − ξ 2 
n 

)
ω n t + B n sin 

(√ 

1 − ξ 2 
n 

)
ω n t 

] 
− 2 m v g 

m̄ Lω 2 n 

√ 

( 1 −r 2 n ) 
2 + ( 2 r n ξn ) 2 

sin 
(
nπv 
L 
t − θn 

)
⎫ ⎬ 

⎭ 

sin 
nπx 

L 
(15) 
4 
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ÿ b ( x, t ) = 

∑ 

n 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

e −ξn ω n t 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

[ 

( ξn ω n ) 
2 
A n − 2 ξn 

(√ 

1 − ξ 2 
n 

)
ω 

2 
n B n 

−
(
1 − ξ 2 

n 

)
ω 

2 
n A n 

] 

cos 

(√ 

1 − ξ 2 
n 

)
ω n t 

+ 

[ 

( ξn ω n ) 
2 
B n + 2 ξn 

(√ 

1 − ξ 2 
n 

)
ω 

2 
n A n 

−
(
1 − ξ 2 

n 

)
ω 

2 
n B n 

] 

sin 

(√ 

1 − ξ 2 
n 

)
ω n t 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

+ 
2 m v g 

m̄ Lω 2 n 

√ 

( 1 −r 2 n ) 
2 + ( 2 r n ξn ) 2 

(
nπv 
L 

)2 
sin 

(
nπv 
L 
t − θn 

)

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

sin 
nπx 

L 
(16) 

It can be seen that the bridge responses are dominated by two different categories of frequency: damped bridge frequen- 

cies ( 
√ 

1 − ξ 2 
n ) ω n and vehicle driving frequency 

nπv 
L . Those two different categories of frequency may all be expected from 

the bridge signal. The instantaneous vehicle load can also be thought as a superposition of sequential time-varying impulse 

loads (coupled with the bridge response, rather than a known load with an expression) applied to the bridge, and since

these loads include both symmetrical and antisymmetric scenarios, all the normal modes should be excited on the bridge. 

The implication here is that all the bridge frequency information could be transmitted to and then extracted from the test 

vehicle. Besides, the damping effect may not be neglected since new impulse loads are introduced constantly to the bridge 

so long as the vehicle is still travelling on the bridge. Inclusion of the damping effects also provides a theoretical reference

not only to the structural interaction that involves significant damping properties, but also to the discrepancies between 

theoretical studies and experimental observations, as shown in the analytical study Section 3 , both the bridge and vehicle

responses will be quite different when the damping effect is considered. 

2.3. Vehicle response 

To extract the dynamic information of the bridge from the vehicle signal, the vehicle responses need also to be deter-

mined. Once obtaining the time function z n ( t ) of the bridge, the equation for the vehicle becomes 

ÿ v + 2 ξv ω v ̇ y v + ω 
2 
v y v = 

∑ 

n 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

e −ξn ω n t 

⎧ ⎨ 

⎩ 

E n cos 

[ (√ 

1 − ξ 2 
n 

)
ω n t 

] 
+ F n sin 

[ (√ 

1 − ξ 2 
n 

)
ω n t 

] 
⎫ ⎬ 

⎭ 

−ω 
2 
v D n sin 

(
nπv 
L 
t − θn 

)
−2 ξv ω v D n 

nπv 
L 

cos 
(
nπv 
L 
t − θn 

)

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

sin 
nπv t 
L 

(17) 

in which ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

E n = ω 
2 
v A n − 2 ξv ω v A n ξn ω n + 2 ξv ω v B n 

(√ 

1 − ξ 2 
n 

)
ω n 

F n = ω 
2 
v B n − 2 ξv ω v B n ξn ω n − 2 ξv ω v A n 

(√ 

1 − ξ 2 
n 

)
ω n 

D n = 
2 m v g 

m̄ Lω 2 n 

√ 

( 1 −r 2 n ) 
2 + ( 2 r n ξn ) 2 

(18) 

the equation of the vehicle needs to be further deduced to incorporate the time-variant term sin nπv t 
L which is located 

outside of the curly brackets. The equation becomes 

ÿ v + 2 ξv ω v ̇ y v + ω 
2 
v y v = 

∑ 

n 

( E n 
2 
e −ξn ω n t sin ω̄ n + t + 

E n 
2 
e −ξn ω n t sin ω̄ n −t 

+ 
F n 
2 
e −ξn ω n t cos ω̄ n −t − F n 

2 
e −ξn ω n t cos ω̄ n + t 

−D n P n 
2 

+ 
D n P n 
2 

cos 2 nπv 
L 

t + 
D n Q n 
2 

sin 2 nπv 
L 

t 

) 

(19) 

in which ⎧ ⎨ 

⎩ 

ω̄ n ± = 
nπv 
L 

±
(√ 

1 − ξ 2 
n 

)
ω n 

P n = ω 
2 
v cos θn + 2 ξv ω v 

nπv 
L 

sin θn 
Q n = ω 

2 
v sin θn − 2 ξv ω v 

nπv 
L 

cos θn 

(20) 

the solution to the differential Eq. (19) can be obtained by solving each right-hand term and then superposing them together.

Theoretically, the total response of the vehicle will then be the superposition of an infinite number of bridge vibration 

modes. The displacement and acceleration response of the vehicle can be deduced respectively as: 

y v ( t ) = 

∑ 

n 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

e −ξv ω v t 
[ 
A ∗n cos 

(√ 

1 − ξ 2 
v 

)
ω v t + B ∗n sin 

(√ 

1 − ξ 2 
v 

)
ω v t 

] 
+ e −ξn ω n t 

(
C ∗1 n sin ω̄ n + t + C ∗2 n sin ω̄ n −t + C ∗3 n cos ω̄ n + t + C ∗4 n cos ̄ω n −t 

)
−D n P n 

2 ω 2 v 
+ 

D n 
2 ω 2 v 

1 

( 1 −r 2 v ) 
2 + ( 2 r v ξv ) 

2 

{ [
2 r v ξv P n + 

(
1 − r 2 v 

)
Q n 

]
sin 2 nπv 

L 
t 

+ 

[(
1 − r 2 v 

)
P n − 2 r v ξv Q n 

]
cos 2 nπv 

L 
t 

}
⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎭ 

(21) 
5 
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ÿ v ( t ) = 

∑ 

n 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

e −ξv ω v t 

⎧ ⎨ 

⎩ 

[ 
A ∗n ( ξv ω v ) 

2 − 2 B ∗n ξv 

(√ 

1 − ξ 2 
v 

)
ω 

2 
v − A ∗n 

(
1 − ξ 2 

v 
)
ω 

2 
v 

] 
cos 

(√ 

1 − ξ 2 
v 

)
ω v t 

+ 

[ 
B ∗n ( ξv ω v ) 

2 + 2 A ∗n ξv 

(√ 

1 − ξ 2 
v 

)
ω 

2 
v − B ∗n 

(
1 − ξ 2 

v 
)
ω 

2 
v 

] 
sin 

(√ 

1 − ξ 2 
v 

)
ω v t 

⎫ ⎬ 

⎭ 

+ e −ξn ω n t 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

[
C ∗1 n ( ξn ω n ) 

2 + 2 C ∗3 n ξn ω n ̄ω n + −C ∗1 n ̄ω 
2 
n + 

]
sin ω̄ n + t 

+ 

[
C ∗2 n ( ξn ω n ) 

2 + 2 C ∗4 n ξn ω n ̄ω n − −C ∗2 n ̄ω 
2 
n −

]
sin ω̄ n −t 

+ 

[
C ∗3 n ( ξn ω n ) 

2 − 2 C ∗1 n ξn ω n ̄ω n + −C ∗3 n ̄ω 
2 
n + 

]
cos ω̄ n + t 

+ 

[
C ∗4 n ( ξn ω n ) 

2 − 2 C ∗2 n ξn ω n ̄ω n − −C ∗4 n ̄ω 
2 
n −

]
cos ω̄ n −t 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

− D n 
2 ω 2 v 

(
2 nπv 

L 

)2 1 

( 1 −r 2 v ) 
2 + ( 2 r v ξv ) 

2 

{[
2 P n r v ξv + 

(
1 − r 2 v 

)
Q n 

]
sin 2 nπv 

L 
t 

+ 

[
P n 

(
1 − r 2 v 

)
− 2 r v ξv Q n 

]
cos 2 nπv 

L 
t 

}

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(22) 

in which 

r v = 

2 nπv 
ω v L 

, (23) 

tan θv = 

2 r v ξv 

1 − r 2 v 
(24) 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

A ∗n = −
(
C ∗3 n + C ∗4 n 

)
+ 

D n 
2 ω 2 v 

{
P n − P n ( 1 −r 2 v ) −Q n 2 r v ξv [ 

( 1 −r 2 v ) 
2 + ( 2 r v ξv ) 

2 
] 
}

B ∗n = 

( C ∗3 n + C ∗4 n ) ( ξn ω n −ξv ω v ) −C ∗1 n ̄ω n + −C ∗2 n ̄ω n −

ω v 
√ 

1 −ξ 2 
v 

+ 
D n 

2 ω 2 v 
√ 

1 −ξ 2 
v 

{
P n ξv − P n ξv ( 1+ r 2 v ) −Q n r v ( 2 ξ 2 

v + r 2 v −1 ) [ 
( 1 −r 2 v ) 

2 + ( 2 r v ξv ) 
2 
] 

} (25) 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

C ∗1 n = 
E n M n + + F n N n + 
2 ( M 

2 
n + + N 2 n + ) 

C ∗2 n = 
E n M n −−F n N n −
2 ( M 

2 
n −+ N 2 n −) 

C ∗3 n = 
E n N n + −F n M n + 
2 ( M 

2 
n + + N 2 n + ) 

C ∗4 n = 
E n N n −+ F n M n −
2 ( M 

2 
n −+ N 2 n −) 

(26) 

{
M n ± = ( ξn ω n ) 

2 − ω̄ 
2 
n ± − 2 ξv ω v ξn ω n + ω 

2 
v 

N n ± = 2 ̄ω n ±( ξn ω n − ξv ω v ) 
(27) 

It can be seen that the vehicle responses are dominated by three different categories of frequency: the damped vehi- 

cle frequency ( 
√ 

1 − ξ 2 
v ) ω v , vehicle driving frequency affected damped bridge frequencies nπv 

L ± ( 
√ 

1 − ξ 2 
n ) ω n , and doubled 

vehicle driving frequency 2 nπv 
L . The other two types of frequency components may need to be properly adjusted so that 

the interested multiple bridge frequencies are not disturbed and can be readily identified. It also needs to be pointed out 

that, when neglecting the damping effects by assuming ξv = 0 and ξn = 0 , the solutions of the vehicle will be interestingly

simplified to be left with only the cosine terms, which is also consistent with theoretical models from the literature [22] ,

but the rationale behind the simplification of the initial coupled differential equation group is that the vehicle acceleration 

magnitude is negligible compared to g, rather than that the vehicle mass is far lower than the bridge mass. Analytical study

sections show that not only the vehicle mass but also the vehicle speed will affect the vehicle acceleration magnitude, the

indication here is that the travelling speed can be kept low for the heavy vehicle to meet the assumption. In a scenario

study of the vehicle having a mass as high as 100% of the bridge, but with a travelling speed as 8.94 m ·s −1 on a 30.48 m

long bridge, the vehicle acceleration magnitude is only 2.26%g, which may still meet the theoretical assumption. 

3. Analytical baseline study 

A 100-ft (30.48 m) long bridge example [33] is adopted to illustrate the theoretical solutions obtained in Section 2 . It

needs to be pointed out that this illustration example is just intended to present the theoretical solutions graphically and 

to give some possible indications for field applications, other examples could also be easily adopted. The vehicle and bridge 

properties used in this example are summarized in Table 1 . The bridge properties are equivalently calculated based on the

original bridge section properties. The initial HL-93 (highway load, developed in 1993) design tandem load is conservatively 

selected to test the theory and equivalently represented by the theoretical vehicle model. The HL-93 design truckload is 

not selected due to less reasonable large axle distances. Due to the heavy design tandem load, the vehicle mass is initially

calculated as 40% of the total bridge mass. As mentioned earlier, vehicle mass is not limited to the assumption. Although

typical vehicles have low frequencies due to the suspension system and inflated tire behaviour for attenuation purposes, the 

vehicle frequency in this VBI model is initially selected as 300 Hz. The rationale behind this is to avoid the first five bridge

frequencies ( Table 1 ) so that the vehicle frequency will not interfere with the extraction of the interested bridge frequencies.

Nevertheless, a low vehicle frequency scenario of 5 Hz is also studied in later parameter study section, which shows an
6 
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Table 1 

Vehicle and bridge parameters used in the analytical baseline study. 

Vehicle Property Bridge Property 

k v (N ·m 
−1 ) 3.2233 × 10 11 EI (N ·m 

2 ) 5.0695 × 10 10 

m v (kg) 2.268 × 10 4 (40% m b ) m̄ (kg ·m 
−1 ) 1.8779 × 10 3 

ξ v 0.2 ξ b 0.05 

v (m ·s −1 ) 8.94 L (m) 30.48 

f v (Hz) 300 f b (1 
st - 5 th ) (Hz) 8.78, 35.14, 79.06, 140.56, 219.62 

(a)                                                                                 (b)
Fig. 2. Displacement and acceleration response of baseline parameters (a) signals from the bridge middle point; (b) signals from the vehicle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

unexpected result and may explain the difficulties of vehicle-based bridge monitoring approach in various experiments. The 

vehicle stiffness is then calculated based on mass and frequency. The vehicle speed is initially chosen as 20 mph (8.94

m ·s −1 ). 

Note that since the bridge has different damping ratios for different vibration modes, as indicated by Eq. (11) , the first

damping ratio is assumed for the first mode, then unit-length damping constant c̄ is calculated based on Eq. (11) before

other damping ratios being calculated accordingly. The time step is chosen as 1 × 10 −3 s, which results in a maximum

frequency identification of 500 Hz. To evaluate the frequency identification result, the frequencies of the bridge are obtained 

by three different approaches: well-established theoretical values ( Table 1 ) based on Eq. (8) , the signal from the bridge,

and the signal from the vehicle. Specifically, the vehicle acceleration signal is processed by Fast Fourier Transform (FFT) to 

obtain the bridge frequency information, which is evaluated and compared to the frequency information that is obtained 

from well-established theory, and the FFT-processed bridge acceleration signal. 

The displacement and acceleration responses of the bridge middle point and the vehicle are shown in Fig. 2 (a) and (b),

respectively. The damping effect can be seen on both the vehicle and the bridge acceleration response not only on the decay

phenomenon but also on the signal magnitude, as compared to Fig. 3 , in which the damping ratios for both the vehicle and

bridge are zeros. The acceleration magnitude from the vehicle with the damping effect is 0.0879 m ·s −2 (0.9%g), while that

of the vehicle without damping scenario is 0.4324 m ·s −2 (4.4%g). It can be seen here that the inclusion of damping will

reduce the signal magnitude as expected, and the decoupling assumption of the equation group is more reasonable if the 

damping is considered. 

The signals from the bridge and the vehicle with damping effects are processed by FFT to obtain the frequency informa-

tion, as shown in Fig. 4 . Note that while the bridge middle point signal is collected for maximum magnitude purpose, the

signal at the location of 45% of the total bridge length is collected for the FFT analysis purpose (affected bridge frequency:

20 th ), as the collected signal may not properly reflect comprehensive bridge frequency information (five frequencies in this 

case) if the location is not chosen properly. A camel hump phenomenon (both left and right bridge frequency shift) can be

observed on the higher bridge vibration modes ( ≥ 4 th in this example) when identifying frequency from the FFT result of the

signal from the vehicle, as shown in Fig. 4 (b). The camel hump phenomenon is due to the term ω̄ n ± = 
nπv 
L ± ( 

√ 

1 − ξ 2 
n ) ω n ,

and can be noticed more clearly when the vehicle has a high speed, as shown in later vehicle speed parameter study

Section 5.2 . The ω̄ n ± term also indicates that both high vehicle speed and high frequency mode will have more evident

camel hump phenomenon. Table 2 summarizes of the frequency analysis results, note that due to the camel hump phe- 

nomenon, the frequencies extracted from vehicle signal are read at the trough of each camel hump. The result is almost the
7 
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Fig. 3. Displacement and acceleration response with no damping effect ( ξv = 0 , ξn = 0 ) (a) signals from the bridge middle point; (b) signals from the 

vehicle. 

Fig. 4. Frequency analysis results of baseline parameters (a) acceleration signal from the bridge; (b) acceleration signal from the vehicle. 

Table 2 

Frequency summary of baseline parameters. 

Theoretical frequency (Hz) Signal from bridge Signal from vehicle 

Frequency (Hz) Error (%) Frequency (Hz) Error (%) 

8.78 8.8 0.23% 8.8 0.23% 

35.14 35.19 0.14% 35.19 0.14% 

79.06 79.18 0.15% 79.18 0.15% 

140.56 140.5 0.04% 140.5 0.04% 

219.62 219.6 0.01% 219.6 0.01% 

Note: m v = 40% m b , ξ b = 0.05, ξ v = 0.2, f v = 300 Hz, v = 8.94 m ·s −1 

 

 

 

same for the signals from the bridge itself and the vehicle, with an excellent error of less than 0.3% from the theoretical

values. The next sections will present some parameter effects on extracting multiple bridge frequencies. 

4. Bridge damping effect 

This section presents the bridge damping effect based on the baseline values in Section 3 . Although the damping ratio for

real civil structures is usually in the range of 0.02 to 0.1, to cover other types of non-civil structures or devices that may have
8 
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Fig. 5. Frequency analysis of bridge damping effect (signal from the bridge) (a) frequency range of 0-500 Hz; (b) frequency range of 200-250 Hz. 

Fig. 6. Frequency analysis of bridge damping effect (signal from the vehicle) (a) frequency range of 0-500 Hz; (b) frequency range of 200-250 Hz. 

Table 3 

Frequency summary of bridge damping effect (worst scenario). 

Theoretical frequency (Hz) Signal from bridge Signal from vehicle 

Frequency (Hz) Error (%) Frequency (Hz) Error (%) 

8.78 5.87 33.14% 9.38 6.83% 

35.14 35.78 1.82% 36.95 5.15% 

79.06 78.89 0.22% 79.77 0.90% 

140.56 140.8 0.17% 141.1 0.38% 

219.62 219.9 0.13% 219.9 0.13% 

Note: m v = 40% m b , ξ b = 0.5, ξ v = 0.2, f v = 300 Hz, v = 8.94 m ·s −1 

 

 

 

 

 

 

extreme damping ratios, four different bridge damping ratios (0.01, 0.05, 0.1 and 0.5) are selected to study the effect, while

all the other parameters are maintained as the baseline values. Since Section 3 shows that the maximum vehicle acceleration

magnitude is 4.4%g for zero bridge and vehicle damping ratios and increasing of damping ratio will only decrease the signal

magnitude, the theoretical assumption will only be more reasonable. 

Figs. 5 and 6 show the bridge damping effect on the frequency extraction results from the bridge signal (location at

0.45L) and the vehicle, respectively. A specific bridge frequency (5 th ) is also focused to give a better view. The results show

that increasing of bridge damping will lower the magnitude of power spectrum density, which may make it more difficult 

for the bridge frequencies to be identified, especially for extreme high damping scenario such as 0.5. As shown in Table 3
9 
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Fig. 7. Displacement and acceleration response due to vehicle frequency effect ( f v = 5Hz) (a) signals from the bridge middle point; (b) signals from the 

vehicle. 

Table 4 

Frequency summary of vehicle frequency effect (worst scenario). 

Theoretical frequency (Hz) Signal from bridge Signal from vehicle 

Frequency (Hz) Error (%) Frequency (Hz) Error (%) 

8.78 8.8 0.23% 8.8 0.23% 

35.14 35.19 0.14% 35.19 0.14% 

79.06 79.18 0.15% 79.18 0.15% 

140.56 140.5 0.04% 141.1 0.38% 

219.62 219.6 0.01% 220.2 0.26% 

Note: m v = 40% m b , ξ b = 0.05, ξ v = 0.2, f v = 5 Hz, v = 8.94 m ·s −1 

 

 

 

 

 

 

 

 

 

 

for the worst bridge damping scenario, the maximum frequency identification errors could be as high as 33.14% and 6.83% 

for the bridge signal and vehicle signal, respectively. Fig. 6 clearly shows that a camel hump phenomenon can be noticed

if the signal is collected from the vehicle, which is also affected by the bridge damping property. Higher bridge damping

attenuates the camel hump phenomenon and the magnitude of the power spectrum density of FFT analysis. 

5. Vehicle parameter effect 

This section presents the effect of several vehicle parameters including frequency, speed, mass and damping on multiple 

bridge frequencies identification from the vehicle acceleration signal. Each parameter effect is studied while all the other 

parameters remained as their baseline values in Section 3 . The vehicle frequency plays a significant role in attenuating 

higher bridge frequencies and is preferred to be beyond the interested bridge frequencies. Higher vehicle speed intensifies 

the vehicle signal magnitude and camel hump phenomenon. Although there is no limitation on the vehicle mass in this 

theoretical model, it affects the vehicle signal magnitude. A balance should be given among vehicle damping, vehicle speed, 

and vehicle mass to lower the vehicle acceleration magnitude. Vehicle damping has little effect on extracting multiple bridge 

frequencies information. Detailed results and discussions of each parameter are presented in the following sections. Note 

that FFT analysis will be focused on the vehicle signal rather than the bridge signal, although the responses of both will be

given for extreme cases. 

5.1. Vehicle frequency effect 

This section demonstrates that the vehicle frequency plays a significant role in extracting multiple bridge frequencies. 

Several vehicle frequencies (5Hz, 50Hz, 150Hz, and 300Hz) are selected to study the effect. Fig. 7 shows the responses of

the bridge at its middle point and the vehicle for the lowest vehicle frequency (5Hz). The vehicle shows a quite different

acceleration response compared to all the other scenarios due to its low frequency. The FFT analysis of the vehicle accel-

eration signal is shown in Fig. 8 , in which the 5 th bridge frequency is focused to give a better view. Although the bridge

frequency identification error (worst scenario, summarized in Table 4 ) is low and similar to the baseline result, the feasi-

bility of extracting multiple bridge frequencies from the vehicle may be an issue due to the attenuation effect. The result

in Fig. 8 shows that the vehicle frequency has a clear attenuation effect on transmitting the bridge frequencies. The power
10 
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Fig. 8. FFT analysis for studying vehicle frequency effect (a) frequency range of 0-500 Hz; (b) frequency range of 200-250 Hz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

spectral density (PSD) drops to 0.7% and 55.5% from the 1 st mode to the 5 th mode for the vehicle frequency of 5Hz and

300Hz, respectively. The indication here is that multiple bridge frequencies may be more easily identified if the test vehicle 

is designed with a high frequency beyond the interested bridge frequency range to be extracted. 

The findings of the vehicle frequency effect study in this section are also consistent with experimental observations in 

the literature. In a field experimental study by Lin and Yang [8] , an instrumented cart with a frequency of 1.814 Hz could not

identify the second vertical bridge frequency of 14.928 Hz with the lowest vehicle speed, although the first vertical bridge 

frequency of 3.76 Hz was identified. A realistic heavy truck interacting with a continuous steel girder bridge study by Kim

and Lynch [26] in 2012 shows that none of the first four bridge frequencies could be identified from the truck, since the first

four bridge frequencies were in the range of 2.25 to 4 Hz, while the identified frequencies of the first and third truck axle

were in the range of 10 to 16 Hz, and 8 to 12 Hz, respectively. Besides the truck suspension attenuation effect, the reason

could also be the inflated tire effect. Wheel effect studies by Yang et al. [12] also shows that the thin PU (polyurethane)

layer coated solid metal wheels performed the best for extracting bridge frequencies compared to the common commercial 

inflatable wheels and solid rubber wheels. Their ground dynamic tests show that the inflatable wheels and solid rubber 

wheels had a primary frequency of about 13 Hz and 32 Hz, respectively, while the PU wheels showed no identifiable natural

frequencies which may disturb the bridge frequencies. Experimental studies by Urushadze and Yau [16] using a stiffness- 

adjustable vehicle travelling on a plexiglass beam also shows that vehicle with harder spring gave better identifications of 

the bridge frequencies. Experimental observations and the theoretical study here indicate that to extract multiple bridge 

frequencies, attenuation effect from the suspension system and inflated tire may need to be considered, and the test vehicle 

may need to be specially designed. 

5.2. Vehicle speed effect 

This section presents the vehicle speed effect with a sequential of vehicle speeds as 20 mph (8.94 m ·s −1 ), 40 mph (17.88

m ·s −1 ), 60 mph (26.82 m ·s −1 ), and 80 mph (35.76 m ·s −1 ). Fig. 9 shows the responses of the bridge middle point and the

vehicle for the highest vehicle speed (35.76 m ·s −1 ), in which the generated signal length is shortened as approximately 0.85

s. The vehicle speed is also noticed to affect the vehicle signal magnitude, as shown in Fig. 9 (b), the magnitude is increased

to 0.6001 m ·s −2 (6.12%g). The frequencies are identified as the trough point of each camel hump and are summarized in

Table 5 . Due to extreme high vehicle speed, the errors of the frequency identification from the bridge and vehicle are

increased to 6.49% and 6.83%, respectively. The camel hump phenomenon can be observed on the FFT analysis of the signal

from the vehicle, as shown in Fig. 10 . Higher vehicle speed and higher bridge vibration mode intensify the camel hump

phenomenon, which may adversely affect multiple bridge frequencies identification in field application, as field bridges often 

involve noise caused by many other factors such as ambient vibration, traffic, and road surface roughness. Higher vehicle 

speed also shows more attenuation effect, as the PSD drops to 55.5% and 11.1% from the 1 st mode to the 5 th mode for the

vehicle speed of 8.94 m ·s −1 and 35.76 m ·s −1 , respectively. 

The finding here that the vehicle speed affects the vehicle signal magnitude, is also consistent with the literature, in 

Yang’s experimental study [12] , as the speed of the vehicle increases from 2 km •h −1 to 4 km •h −1 and then 8 km •h −1 , the

acceleration magnitude increases roughly from 50 gals to 100 gals and then 200 gals. Their FFT frequency study also shows

that the bridge frequencies are getting more ambiguous as the vehicle speed increases. The explanation could be that the 

vehicle acceleration magnitude is not negligible compared to g, as 200 gals (2 m ·s −2 ), is already 20.4%g. The indication here
11 
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Fig. 9. Displacement and acceleration response due to vehicle speed effect (v = 35.76 m ·s −1 ) (a) signals from the bridge middle point; (b) signals from the 

vehicle. 

Table 5 

Frequency summary of vehicle speed effect (worst scenario). 

Theoretical frequency (Hz) Signal from bridge Signal from vehicle 

Frequency (Hz) Error (%) Frequency (Hz) Error (%) 

8.78 8.21 6.49% 9.38 6.83% 

35.14 35.17 0.09% 35.17 0.09% 

79.06 78.55 0.65% 78.55 0.65% 

140.56 140.5 0.04% 140.7 0.10% 

219.62 219.2 0.19% 219.2 0.19% 

Note: m v = 40% m b , ξ b = 0.05, ξ v = 0.2, f v = 300 Hz, v = 35.76 m ·s −1 

Fig. 10. FFT analysis for studying vehicle speed effect (a) frequency range 0-500 Hz; (b) frequency range 200-250 Hz. 

 

 

 

is that to extract multiple bridge frequencies, the vehicle acceleration magnitude may need to be kept far lower than the

gravitational acceleration constant. 

5.3. Vehicle mass effect 

The vehicle mass effect is presented in this section with a sequential vehicle masses of 1%, 10%, 50%, and 100% of the total

bridge mass. The vehicle mass affects the vehicle acceleration magnitude which relates to the assumption. Fig. 11 shows the
12 
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Fig. 11. Displacement and acceleration response due to vehicle mass effect (vehicle mass is 100% of the total bridge mass) (a) signals from the bridge 

middle point; (b) signals from the vehicle. 

Fig. 12. Frequency analysis for studying vehicle mass effect (a) frequency range 0-500 Hz; (b) frequency range 200-250 Hz. 

 

 

 

 

 

 

 

 

 

 

responses of the bridge middle point and the vehicle for the extreme high vehicle mass scenario. The acceleration magnitude 

from the vehicle is 0.2219 m ·s −2 (2.26%g). This result shows that the decoupling assumption may still be reasonable for

vehicle mass that is as high as 100% of the total bridge mass if the vehicle is maintained at a low speed. Fig. 12 shows

the FFT analysis of the signal from the vehicle for the maximum mass scenario. The vehicle mass parameter shows no

attenuation effect, as the PSD drops to 55.5% from the 1 st mode to the 5 th mode for both the vehicle mass of 1% and

100% of the total bridge mass. Frequency identification result shows the maximum error is as low as the baseline result, as

summarized in Table 6 . 

It may be necessary to mention here that the vehicle mass, vehicle speed, as well as both the vehicle and bridge damping

will affect the vehicle acceleration magnitude, which may challenge the theoretical assumption. In a maximum vehicle signal 

magnitude study in which both the vehicle and bridge damping are ignored, the vehicle is set with a maximum speed (35.76

m ·s −1 ) and maximum mass (100% of the total bridge mass), the vehicle acceleration magnitude is 3.538 m ·s −2 (36.08%g)

and may void the theoretical assumption. Therefore, there is a balance among those parameters to meet the theoretical 

assumption in this study. 

5.4. Vehicle damping effect 

This section presents the vehicle damping effect with a sequential of vehicle damping ratios as 0.01, 0.05, 0.1, and 0.5.

Fig. 13 show the responses of the bridge middle point and the vehicle for the maximum vehicle damping ratio of 0.5. Due to
13 
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Table 6 

Frequency summary of vehicle mass effect (worst scenario). 

Theoretical frequency (Hz) Signal from bridge Signal from vehicle 

Frequency (Hz) Error (%) Frequency (Hz) Error (%) 

8.78 8.8 0.23% 8.8 0.23% 

35.14 35.19 0.14% 35.19 0.14% 

79.06 79.18 0.15% 79.18 0.15% 

140.56 140.5 0.04% 140.5 0.04% 

219.62 219.6 0.01% 219.6 0.01% 

Note: m v = 100% m b , ξ b = 0.05, ξ v = 0.2, f v = 300 Hz, v = 8.94 m ·s −1 

Fig. 13. Displacement and acceleration response due to vehicle damping effect (a) signals from the bridge middle point; (b) signals from the vehicle. 

Fig. 14. FFT analysis for studying vehicle damping effect (a) frequency range 0-500 Hz; (b) frequency range 200-250 Hz. 

 

 

 

extreme high vehicle damping effect, the acceleration magnitude from the vehicle is decreased from the baseline of 0.0879 

m ·s −2 (0.9%g) to 0.0734 m ·s −2 (0.75%g). Fig. 14 shows the FFT analysis of the vehicle acceleration signals for different vehicle

damping ratios, and Table 7 summarizes the FFT results for the extreme high vehicle damping scenario, both of them show

that the vehicle damping has little effect on extracting multiple bridge frequencies from the vehicle. The vehicle damping 

parameter shows some attenuation effect, since the PSD drops to 62.9% and 41.8% from the 1 st mode to the 5 th mode for

the vehicle damping ratio of 0.01 and 0.5, respectively. 
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Table 7 

Frequency summary of vehicle damping effect (worst scenario). 

Theoretical frequency (Hz) Signal from bridge Signal from vehicle 

Frequency (Hz) Error (%) Frequency (Hz) Error (%) 

8.78 8.8 0.23% 8.8 0.23% 

35.14 35.19 0.14% 35.19 0.14% 

79.06 79.18 0.15% 79.18 0.15% 

140.56 140.5 0.04% 140.5 0.04% 

219.62 219.6 0.01% 219.6 0.01% 

Note: m v = 40% m b , ξ b = 0.05, ξ v = 0.5, f v = 300 Hz, v = 8.94 m ·s −1 

 

 

 

 

6. Conclusions 

The general coupled differential equation group for the vehicle bridge interaction model without bridge boundary restric- 

tion is reestablished to include both the vehicle and bridge damping effect, and important parameters that affect multiple 

bridge frequencies extraction from the vehicle are studied based on the simply supported boundary condition scenario. 

New theoretical simplification assumption requires that the vehicle acceleration magnitude should be much lower than the 

gravitational acceleration constant so that the equation group could be uncoupled, and theoretical solutions could be ob- 

tained. This assumption requires a balance among all the parameters including the bridge condition, vehicle mass, speed, 

and damping. This theoretical work may give some indications for designing a special field test vehicle to monitor bridge in

a more comprehensive way. Several conclusions can be drawn regarding the parameter studies include: 

1) Damping coefficient certainly affects both the vehicle and bridge vibration behaviour. However, structures with extreme 

high damping would adversely affect its dynamic properties transmission to the test vehicle, while the vehicle damp- 

ing has little effect when extracting multiple bridge frequencies. The vehicle damping parameter also shows increasing 

attenuation effect, as the power spectral density drops to 62.9% and 41.8% from the 1 st mode to the 5 th mode for the

vehicle damping ratio of 0.01 and 0.5, respectively. 

2) The vehicle frequency parameter shows significant attenuation effect on the bridge frequencies compared to all the other 

parameters. The power spectral density drops to 0.7% and 55.5% from the 1 st mode to the 5 th mode for the vehicle

frequency of 5Hz and 300Hz, respectively. Therefore vehicle frequency is preferred to be designed beyond the interested 

bridge frequencies to be extracted. For field application, the inflated tires and suspension system of the test vehicle may 

need to be addressed to better reflect the vibration behaviour of the bridge. 

3) Higher vehicle speed not only increases the vehicle acceleration magnitude and challenges the assumption, but also 

intensifies the camel hump phenomenon, which may adversely disturb multiple bridge frequencies identification during 

experiments. Higher vehicle speed also shows more attenuation effect, as the power spectral density drops to 55.5% and 

11.1% from the 1 st mode to the 5 th mode for the vehicle speed of 8.94 m ·s -1 and 35.76 m ·s -1 , respectively. 
4) Although vehicle mass is not limited in this theoretical model, it affects the theoretical assumption along with other 

parameters. Vehicle mass parameter may need to be balanced with vehicle speed and damping parameters to meet the 

theoretical assumption. The vehicle mass parameter shows no attenuation effect on the frequency analysis. 
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