®

Check for
updates

A Logic Programming Approach
to Regression Based Repair
of Incorrect Initial Belief States

Fabio Tardivo®™), Loc Pham, Tran Cao Son, and Enrico Pontelli

New Mexico State University, Las Cruces, NM 88003, USA
{ftardivo,lpham,tson,epontelli}@cs.nmsu.edu

Abstract. This paper explores the challenge of encountering incorrect
beliefs in the context of reasoning about actions and changes using action
languages with sensing actions. An incorrect belief occurs when some
observations conflict with the agent’s own beliefs. A common approach
to recover from this situation is to replace the initial beliefs with beliefs
that conform to the sequence of actions and the observations. The paper
introduces a regression-based and revision-based approach to calculate a
correct initial belief. Starting from an inconsistent history consisting of
actions and observations, the proposed framework (1) computes the ini-
tial belief states that support the actions and observations and (2) uses a
belief revision operator to repair the false initial belief state. The frame-
work operates on domains with static causal laws, supports arbitrary
sequences of actions, and integrates belief revision methods to select a
meaningful initial belief state among possible alternatives.

Keywords: Regression - Action languages - Incorrect beliefs - Prolog

1 Introduction

In reasoning about actions and change, sensing actions have been considered as
the mean for agents to refine their knowledge in presence of uncertainty and/or
incomplete knowledge. In these formalisms, a sensing action helps an agent to
determine the truth value of an unknown fluent. For example, the action look
helps the agent to determine whether the light in the kitchen is on or off (—on).
If the agent does not know whether the light is on or off, her knowledge about
the state of the world is the set of possible states that she thinks she might be in,
i.e., the set {{on}, {—on}}. The execution of the look action will help the agent
to decide whether the current state of the world is {on} or {—on}.

Let us assume that S denotes the set of possible states that an agent believes
she might be in; the execution of a sensing action a, that determines the truth
value of a fluent f, will result in:

© Springer Nature Switzerland AG 2021
J. F. Morales and D. Orchard (Eds.): PADL 2021, LNCS 12548, pp. 73-89, 2021.
https://doi.org/10.1007/978-3-030-67438-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67438-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-67438-0_5

74 F. Tardivo et al.

e S if the truth value of f is correct in every state in S;
e a subset S’ C S, such that each state in S’ has the correct value of f and
each state in S\ S has the incorrect value of f.

It is important to observe that a sensing action does not change the world and
its effect is about the knowledge of the agent. Although this fact is true, previous
approaches to dealing with sensing actions in action languages or situation cal-
culus, such as those proposed in [11,15,17], often make a fundamental implicit
assumption: the reasoning agent has correct information. This also means that
these approaches cannot be directly applied to situations in which the reasoning
agent has completely incorrect information (or beliefs) about the world. Let us
illustrate this with an example.

Example 1. Consider a robot which was told that the light in the kitchen is off
and it needs to turn the light on. According to the given information, a plan for
the robot consists of two actions: go the kitchen and turn the light on. For the
sake of our discussion, let us assume that the action of turning the light on/off
can only be executed when the light is off /on.

If, in reality, the light in the kitchen is on, then the proposed plan of actions
will fail. The robot goes to the kitchen and sees that the light is on. The robot
reasons and comes up with three! possible explanations. The first one is that the
light turned on by itself. The second one is that the robot’s sensing equipment is
defective. The third possibility is that the robot was told something wrong,
i.e., its initial belief about the state of the world is wrong. To check its sensing
equipment and see whether the light turns on by itself, the robot flips the switch
and sees that the light is off. It waits and then flips the switch again and sees
that the light is on. It concludes that its sensing equipment is in good condition
and that the light cannot turn on by itself. It realizes that the third possibility
is the only acceptable explanation for the inconsistency between its beliefs and
the real state of the world. It corrects its initial beliefs and moves on.

This simple example illustrates the usefulness of sensing actions in helping
an agent to revise their beliefs in real-world situations. Generalizing this idea,
it means that agents need to be able to incorporate observations and update
their beliefs while executing a plan. In this paper, we propose an approach that
combines regression (or reasoning about previous states) and belief revision (or
updating the beliefs when new information is available) to allow agents to correct
their initial belief state. The main contributions of this paper can be summarized
as follows: (1) we formalize a general framework based on regression and revi-
sion for repairing false beliefs in dynamic domains and develop algorithms for
a concrete implementation of the framework; (2) we consider the formalization
to include support for static causal laws and sensing actions; (3) we present an
implementation for computing the initial correct belief state.

1 'We ignore the possibility that some other agent turns on the light while the robot
is moving to the kitchen. This could be identified with the first option.

Repairing Initial Belief States Using Regression 75
2 Background: The Action Language Bg

We use a simplified version of the semantics for Bg in [4] that is similar to the
semantics of the language Ag in [11]. In Bg, an action theory in Bg is defined
over two disjoint sets, a set of actions A and a set of fluents F. A fluent literal
is either a fluent f € F or its negation —f. A fluent formula is a propositional
formula constructed from fluent literals.

An action theory is composed of statements of the following forms:

e if {p1,...,pn} (1) a causes {e1,...,e,} if {p1,...,pm} (2)
a executable_if {p1,...,pn} (3) a determines f (4)

where a is an action, f is a fluent, e, e; are fluent literals representing effects
and p; are fluent literals indicating preconditions. (1) represents a static causal
law; it conveys that whenever the fluent literals py,...,p, hold in a state, then
e will also hold in the state. (2) represents a dynamic causal law. It states that
if p1,...,pm hold in a state and action a is executed, then the literals eq,..., e,
will hold in the resulting state after the execution. (3) encodes an executability
condition for action a. It states that action a can only be executed in a state
where the literals py,...,p, hold. (4) is called a knowledge producing law. The
execution of the sensing action a will ensure that in the resulting state the truth
value of f is known.

For simplicity, we assume that sensing actions do not occur in dynamic causal
laws. To simplify the notation, we often drop the set notation from the laws; we
indicate with R, the set of laws of the form a causes {e1, ..., e, } if {p1,...,pm}.
Given a static or dynamic law r, we indicate with e(r) its effects and with p(r)
its preconditions.

An action theory is a pair (D, ¥y) where ¥ is a fluent formula, describing the
initial state, and D, called action domain, consists of laws of the form (1)—(4).
For convenience, we sometimes denote the set of laws of the form (1) by D¢.

2.1 Transition Function

The semantics of Bg is based on a transition function; its definition requires
some introductory concepts. Given a domain D in Bg, a literal is either a fluent
f € F or its negation —f; a set of literals s is said to be consistent if for each
f € F we have that {f,—f} € s. A set of literals s is complete if for all f € F
we have that f € sV —f € s.

A consistent set of literals s is closed under a set of static causal laws C' C D¢
if, for all ¢ € C' we have that p(c) C s = e(c) C s. With Cle(s) we denote the
smaller consistent set of literals that contains s and is closed under C. To simplify
the notation we omit C' when C = D¢.

A set of literals s is a state when it is complete and closed under D¢. A belief
state is a set of states; intuitively, a belief state represents the states that an
agent thinks she may be in. Given a fluent formula ¢ and a state s, a belief state
X, and a set of belief states k, we define: (1) s | ¢ for a state s if s is a model

76 F. Tardivo et al.

of p; (2) X | ¢ for a belief state X if s = ¢ for each s € X; (3) k |E ¢ for
a set of belief states x if X' |= ¢ for at least one X' € k. Given a fluent formula
@, let us define Xy, = {s | s is a state, s = ¢}. ¢ is said to be consistent if X,
is not empty. The direct effects e(a,s) of an action a in a state s are defined as
e(a,s) =U{e(r)|r € Rq,s 2 p(r)}.

The transition function for Bg maps pairs of action and belief state to sets
of belief states. Let us start by defining the transition function @ for the case
of a single state. Let us write, for each fluent f € F, f = =f, =f = f, and
5={l|1 € s} for a set of literals s. Let s be a state and a a non-sensing action
executable in state s, ®(a,s) = {s' | s’ is a state,s’ = Cl((sNs')Ue(a,s))}.

Let X be a belief state and a is an action. If a is not executable in some
s’ € X, we define &(a, X)) =); otherwise,

e If a is a non-sensing action, @(a, X) = {{, c » ?(a, 5)};
e If a is a sensing action a that determines the fluent f, ®(a, X)) = {1, Xo}\{0}
where ¥y ={se X | festand Xy ={se€ X | ~f € s}.

We are also interested in defining the transition function applied to a sequence
of actions; let us define the function ¢ which maps a sequence of actions and
a set of belief states to a set of belief states: given a set of belief states x and
a sequence of actions « represented by a list of actions (using Prolog notation)

[a1, ..., an] = [a1 | B]:

K ifn=0
U &(a1,2) if n=1AP(a1,X) #0 for each X € 5
(k) = YER (1)
(8, ®(a1,k)) ifn>1and &(ay,k) # 0
0 otherwise

We assume that for every action theory (D, %), ¥y is consistent. Since we
are working with a history similar to that discussed in [9], we assume that the
domains under consideration are deterministic.

3 Recovering from Inconsistent Histories

The transition function @ provides a means for an agent to reason and plan in
domains with sensing actions and incomplete knowledge about the initial state.
It works well for hypothetical reasoning and planning but might be insufficient
for an agent to use during the execution of a plan, as it might create discrepancies
between the agent’s hypothetical beliefs and the real-state of the world. Hence,
it will not be help the agent to recover from false beliefs. Let us reconsider the
problem in Example 1. We have that the initial belief state of the agent is X' =
{{—on}} and the action look determines on. The state of the world is given
by {on}. It is easy to see that the definition above yields ®(look, X) = {{—on}}
which indicates that the robot has false beliefs about the world. This is clearly

Repairing Initial Belief States Using Regression 7

not satisfactory; the robot, after observing that the light is on, should realize
that the correct initial belief state is {{on}} and change it accordingly. This issue
becomes even more challenging if the realization of an incorrect initial belief state
occurs after the execution of several actions. In this section, we propose a method
for the robot to deal with this problem and to correct its initial beliefs.

Definition 1. Let T = (D, %) be an action theory. A history of T is a sequence
of pairs of actions and observations o = [(ay1,¥1), ..., (an,¥,)] where a; is an
action and ; is a fluent formula. We assume that if a; is a sensing action for the
fluent f, then either W; = f orW¥; |= = f. We say that the history « is inconsistent
with T if there exists some k, 1 < k < n, such that ®([ay, ..., ar], {Zw,}) ¥ tr.

Intuitively, a indicates that the initial belief state Xy of T is incorrect. We note
that we overload the word “observation” in the definition of a history «. It does
not imply that every action in « is a sensing action. We will assume that actions’
effects are perfect (i.e., actions do not fail and do not produce wrong results).
The case of uncertain effects will be left for future work. In this paper, we will
focus on the following problem:

Given an action theory T = (D, ¥y) and a history o = [(a1,%1), - . ., (ap, P¥n)]
that is inconsistent with T', what is the correct initial belief state of T'7 IL.e.,
what should the initial belief state of T' be so that « is consistent with 77

We note that this problem is similar to the problem discussed in the diagnosis
literature, such as [3,4], which is concerned with identifying possible diagnosis
given an action theory and a sequence of observations. The difference between
this work and diagnosis lies in that this work focuses on the beliefs of agents
along a history, whereas works in diagnosis concentrate in identifying defective
components of the system represented by the action theory. Our work is closely
related to the investigations of iterated belief revision in situation calculus, as
in [9,16]. Our proposed approach combines regression and belief revision. We
start with the definition of a regression function. This function is different for
sensing and non-sensing actions. We start with the case of non-sensing actions
(also known as ontic actions).

Regression by Non-sensing Actions. Let a be a non-sensing action and
and ¢ be conjunctions of fluent literals. We say ¢ is a result of the regression of
a from 1, denoted by ¢ = 1), if Vs € Yo (P(a,s) =1).

Regression by Sensing Actions. Let a be a sensing action and ¢ and ¢ be
conjunctions of fluent literals. We say ¢ is a result of the regression of a from 1,
denoted by ¢ % 1, if there exists some X € &(a, X,) such that X' |= 1.

Observe that the requirement on the regression function for sensing actions
differs from its counterpart for non-sensing actions. This is because the result
of the execution of a sensing action is not deterministically predictable as for
a non-sensing action. We should only guarantee that it is possible to obtain
after the execution of a.

We define the regression of action a from a conjunction of fluent literals 1,

denoted by R(a,v), by R(a,¢) = vsoinb . R(a,) is called the result of the

78 F. Tardivo et al.

regression of a from 1. We say that R(a, 1)) is undefined and write R(a,) =

false if {p| o 5} = 0.
For an arbitrary formula ¢, we define R(a,) = \/f:1 R(a, ;). where \/f:1 Wy
is the unique, full DNF representation of 1.

Proposition 1. For an arbitrary consistent formula 1 such that R(a,v) #
false, it holds that ®(a, X (a,y)) F 9.

Proof. All proofs are omitted for lack of space and detailed in [13]°. O
We illustrate this definition using an example from [9)].

Ezample 2 (Extended Litmus Test). Consider a domain with the fluents { Acid,
Litmus, Blue, Red}, two dynamic laws for action dip, and two static causal laws:

dip causes Red if Litmus, Acid —Red if Blue
dip causes Blue if Litmus,—Acid - Blue if Red

Consider ¢ = =Red A —Blue. Let us compute R(dip,). Clearly, Litrus must
be false before the execution of dip. For otherwise, the paper would change
color. Similarly, both Red and Blue must be false for the execution of dip. As
such, R(dip,v) = —Litmus A =Red A = Blue.

We extend the regression function in order to deal with a history a =
[(a1,91), ..., (an,¥y)] for n > 1 as follows:

e Forn=1

~ R*(ay,v1) if R(aq, ¥ alse
R([(al,wnnz{ ot Rl) 2)

false otherwise
e Forn>1
~ R([(ar, 1), - -, (@n—1,Yn—1 A R*(an, 1))
R([(a‘lv ’(/}1)3 XN (ana wn)D = if wnfl A R*(a’ﬂ7 'wn) 5—'5 false

false otherwise

3)

In (2)—-(3), R*(a,v) denotes R(a,) when a is a non-sensing action and R(a, 1)) A
¢ when a is a sensing action that senses fand £ = fify = f,{=—-fif ¥ = ~f.

Given an action theory (D,%). Let o= [(a1,v1), ..., (an,¥n)] be a history
and 5(@, {Zw,}) ¥ . We can compute ﬁ(a) and use it to correct the initial
belief state. This can be done using a belief revision operator. Let us assume
the existence of a belief revision operator x, which maps pairs of formulas to
formulas and satisfies the AGM postulates [1].

Definition 2. Let (D,%,) be an action theory. Let o = [(a1,¥1), ..., (an,¥n)]
be a history and D(o, { Xy, }) = ¥n. The corrected initial belief state of (D, Wp)

~

is defined by Yo+ R(c).
2 https://github.com /NMSU-KLAP /Repair-by-Regression.

https://github.com/NMSU-KLAP/Repair-by-Regression

Repairing Initial Belief States Using Regression 79

There are several proposals for the operator x (e.g., [5,6,14,19]). In this paper, we
will consider two approaches for defining the x operator. We note that as pointed
out in [2], only the operator proposed in [6] satisfies all AGM postulates. In this
paper, we make use of the following two operators.

e Satoh’s revision operator [14]: Let A be the symmetric difference of two
sets. For formulae 1 and ¢, we define

A () o) = minc ({sAs' | s € Xy, s’ € £,}).

Furthermore, define Yy, as {s € X, | 3s’ € X, such that s’As € A™" (¢,
©)}

e Dalal’s belief revision operator [6]: Let A be a formula. Given s and s’
be two states in X, let us define Diff(s,s’) = |sAs’|. For a formula ¢ and
two arbitrary states s and s,

s Cy & iff 3r € Xy s.t. V' € Dy [Diff (r, s) < Diff (r',s')]

Given two formulas v and ¢, the revision of 1 by ¢ is defined by® ¢ x ¢ =
min(ES@v Ew)

Ezample 8 (Continuation of Example 2). Assume that the initial belief for the
domain in Example 2 is specified by

Yy = Litmus A —=Red A = Blue.

Consider the history a = [(dip,)] where » = —Red A —~Blue. Let s1 =
{Litmus, Acid, ~Red,—Blue} and sy = {Litmus,Acid,—Red,~Blue}. We
have that Xy, = {s1,s2} and ®(dip, Xy,) = {{Litmus, Acid, Red, —Blue},
{Litmus, —Acid, ~Red, Blue}} which indicates that the initial belief state is
incorrect. We need to identify the correct initial belief in this situation.

The regression of dip from 1) gives us R(dip,) = —Litmus A =Red A —Blue.
We want to compute ¥y x ¢ where ¢ = R(dip,).

e Using Satoh’s operator: ¥, = {s3,s4} where s3 = {-Litmus, Acid,
—Red,~Blue} and s, = {~Litmus, ~Acid, —~Red, —Blue}. We calculate

Amin(wo’ (p) = ming{53A81, S3A$2, S4A81, S4A82}
= minc {{—Litmus, Litmus}, {Acid, ~Litmus, Litmus, = Acit}}
= {{—Litmus, Litmus}}

which leads to Wo*¢ = {s3, s4}. In other words, ~Litmus is true in the initial
belief state.

3 The original definition by Dalal identifies the set of formulae which are true in
min(X,, Cy).

4 The results of the computation is the same if states are represented using only
positive literals. In [14], {{—Litmus, Litmus}} would be considered as {{Litmus}}.

80 F. Tardivo et al.

o Using Dalal’s operator: because Yy, has only two elements, s; and sg,
we have that s; C s; for ¢ = 3,4 and s3 Ty, s4 and s4 Ty, s3. Therefore,
min(X,, Cy,) = {s3,s4}. In other words, we receive the same results as with
Satoh’s operator.

We revisit the story from the introduction and illustrate the definition with
sensing actions.

Ezxample 4. A simplified version of the story in the introduction, focused only on
the sensing action look, can be described by the action theory consisting of the
law “look determines on” and the initial belief state specified by the formula
—on. Clearly, the history [(look,on)] is inconsistent with the theory. To correct
the initial belief state, we compute R(look,on) = True and R*(look,on) = on.
—on * on results in on, which shows that our approach allows for the agent to
correct its beliefs.

The correctness of our formalization is proved in the next proposition.

Proposition 2. Given an action theory (D, W) and an inconsistent history o =

o~

[(a1,91),. .., (@n,Pn)], for every k =1,...,n, ®([a1,...,ar], Xyy) = Pr, where
U =Wy xp and ¢ = R(«).

4 A Logic Programming Implementation

We are interested in implementing a system that allows us to resolve situations
where an agent encounters an inconsistent history. The proposed formalism in
the previous section is general and both regression and x can be implemented
in different ways. For example, regression has been mainly implemented by the
planning community using an imperative language and * has been explored using
answer set programming [8]. In this paper, we present an implementation using
Prolog, as Prolog provides an elegant balance between declarative computational
logic and procedural-style encoding. A detailed discussion on the choice of Pro-
log is included in the last subsection. Let D be an action domain. Consider
a non-sensing action a and R C Rg, let us define eff(R) = (J, c gle(r)] and
pre(R) = U, ¢ glp(r)] as the effects and the preconditions of R. We assume that
a executable_if 7, belongs to D.

4.1 Regression of a Non-Sensing Action

Let us consider an action a and a consistent set of fluent literals ¥°. We define

Ry (¢) ={r € Ra | ¥ = p(r)} R, () ={r € Ra | ¥ |= —p(r)}

representing the set of dynamic laws that are applicable and not applicable,
respectively, when a is executed and 1 is definitely true. We say that ¢ is a-
splittable if R, = RY () U R, ().

5 Note we freely exchange between sets of literals and conjunctions of literals.

Repairing Initial Belief States Using Regression 81

se€ X,

¢ (0

LA A

Fig. 1. Intuition for Regression

Proposition 3. Consider two conjunctions ¢ and 1 and a non-sensing action
a such that ¢ > 1. There exists a set of a-splittable conjunctions of literals
{¢1,..., 0K} such that ¢ = \/f:1 ©; and @; = for everyi=1,... k.

For example, considering v = (I3 A l) V (I3 AN ly) and R, =
{a causes {l1} if {l2},a causes {l3} if {l4}}. Two a-splittable formulae are
Y; = _|lz AN lg AN _|l4 and w; = _|13 A l4 A _|lg.

Due to Proposition 3, we will only need to identify a-splittable conjunctions
in computing R(a,). Clearly, if ¢ is the result of regression from % by a then
a must be executable in any state s € X, i.e., Viex, [1a C 5].

Definition 3. A consistent set of literals ¢ is a potential regression result from
a conjunction of literals v with respect to a if Cl(p) is a-splittable, n, C Cl(p),
pre(RT(p)) C Cl(p); and eff (R} () U is consistent.

This definition guides the implementation during the nondeterministic com-
puting of ¢ by reducing the number of guessed literals.

Given a potential regression result ¢ from ¢ by a, we observe that the execu-
tion of a from any state s € X, would divide ¢ into three components as shown
in Fig. 1 where

e J: the set of inertial literals whose values do not change;

e J0g: the set of literals whose values changed because of the application of static
causal laws in the resulting state, i.e., the state containing v; and

e Op: the set of literals whose values changed because the effects of the dynamic
laws in R} (o).

This leads us to the following definition:

Definition 4. A consistent set of literals ¢ is a computed regression result from
¥ w.r.t. an ontic action a if

e © is a potential regression result from 1 with respect to a
o for every vy such that YUy is a state, there exists two consistent sets of literals
6,05 such that

82 F. Tardivo et al.

§C (p\eff(Ra(v)) (4) Cl(6UyUép) is a state (6)
(o\ T (RI(@)) \ 6= b5 (3) $Uss CCIGUUSp) (7)

Equation (4) characterizes 0, the inertial literals from ¢; (5) identifies dg, the
non-inertial literals from ¢ because of static causal laws; and the two equations
(6) and (7) guarantee that the execution of ¢ in 6 U results in 1. This allows to
determine whether a potential regression result ¢ belongs to R(a,). We prove
that computed regression results are really what we need:

Proposition 4. Let D be a deterministic action theory and a be a non-sensing
action. If ¢ is a computed regression result from 1 with respect to a then @ — 1.

The above proposition shows that if there exists no computed regression result
from 1) with respect to a, then R(a,) = false. Using Propositions 3-4, we can
compute the regression result of an arbitrary formula ¢ by (i) computing a full
DNF representation of 1, \/f:1 ¥;; (11) computing R(a,v;); and (éii) returning
R(a,) = \/f:1 R(a, ;) if R(a,p;) # false for some 1.

4.2 Regression of a Sensing Action

Assume that a is a sensing action with executability condition 7, and that a only
senses one fluent f. Let ¢ and ¢ be two conjunctions of literals such that ¢ 5 1),
then a must be executable in any state in X,. Furthermore, f is unknown in ¢
and, 1 differs from ¢ only by the observation f or —f.

Definition 5. Let a be a sensing action that senses f. A consistent conjunction
of literals ¢ is a computed regression result from ¥ by a if n, C Cl(p); {f,~f}N
Cl(e) =0; Y\ {f,~f} C Cl(p); and if f € 1 then ¢ U{f} is consistent and if
—f €1 then ¢ U{~f} is consistent.

Proposition 5. Let ¢ be a computed regression result from 1 by a sensing
action a. Then, ¢ = 1.

The previous proposition and definition provides the basis for computing the
regression with sensing actions. Intuitively, ¢ is the result of regression form

WA\, =) U nga.

4.3 Implementation in Prolog

This section gives an overview of the implementation and some design decisions
in it. The main purpose of the implementation is to guide the development of
the definitions in the previous section and validate our ideas as we proceeded.
Moreover it gives an overview of strengths and weakness of the theory from a
pragmatic point of view.

We use Prolog for different reasons. The simplicity of Prolog in dealing with
lists and formulae makes it a suitable platform for computing R and various

Repairing Initial Belief States Using Regression 83

belief revision operators. The computation of the regression function R is inher-
ently non-deterministic, which matches well with Prolog’s behavior. Last but
not least, Prolog is declarative and modular, which provides a good platform
for guaranteeing the correctness of the implementation and the ability to exper-
iment with various belief revision operators. The implementation makes use of
Prolog built-ins such as fold1l, membership checking, union, set difference, etc.
and has been tested with SWI-Prolog 8.0.3 and YAP 6.3.3 on Linux x86-64. The
complete code is available on GitHub®.

We represent a conjunction of literals as a list and a DNF formula as a list
of lists of literals, respectively. Before we describe the main predicates, we dis-
cuss some auxiliary predicates. We use the conventional notation of Prolog with
‘+’/‘—’ param to indicate whether the parameter is an input/output parameter.
In the following, 1, ¢’, and o are lists of lists of literals, representing formulae
in DNF form; a is an action; «y is a list of literals.

e forceObservation(+y, +o, -1)'): returns w’Athat represents the conjunction
1) A o; this is needed in the computation of R (Eq.3); return False if ¥ A o
is inconsistent.

e minimalPotentialRegressionResult (+n,, +R,, +¥, —p, -Eav): returns a
minimal potential regression result ¢ and the effects of executing a in any
state containing ¢, Eav, given 1,, R,, and 1 according to Definition 3;

e minimalComputedRegressionResult (+Eav, +1, +¢’, —): returns a minimal
(w.r.t. C) computed regression result ¢ containing ¢', given ¢, ¥, and Eav
where ¢’ is a potential regression result.

e revisionBySatoh(+, +¢, ~Revision): returns ¢ x ¢ according to Satoh.

e revisionByDalal (+1), +¢, ~Revision): returns ¢ x ¢ according to Dalal.

The main clauses used in the implementation of R are given below.

e regression(+a, -¢): This is the main predicate that returns R(a) for a
history «. It uses the predicate foldl to iteratively compute the regression
over the suffixes of .

e regressionActionObservation(+(a,0),+1, —¢): This clause returns ¢ =
R(a,oN)) if oA is consistent and the regression of a from oA is successful;
and fails otherwise. It starts by computing o A ¢ and then, depending on
whether a is an ontic or a sensing action, computes R(a, 0 A ¥) accordingly.
Note that we assume that an action is either an ontic or a sensing action but
not both.

e regressionOnticAction(+a, +¢, —-¢): This clause computes p = R(a,v)
for an ontic action a and formula . It uses the minimalPotentialRegres-
sionResult/5 and minimalComputedRegressionResult/4 to identify all
possible regression results by a from . Observe that we only compute min-
imal (with respect to C) regression results since for consistent sets of liter-
als ¢1 C 2, we have that X,, C X, . Therefore, if ¢(a,X,,) = ¢ then

@(a, Evz) ': w

5 https://github.com /NMSU-KLAP /Repair-by-Regression.

https://github.com/NMSU-KLAP/Repair-by-Regression

84 F. Tardivo et al.

e regressionSensingAction(+a, +1), —p): This clause computes ¢ = R(a,)
for a sensing action a and formula).

We conclude the section with an example inspired by the example in [16].

Ezample 5. Consider an extension of Example4 with F = {in(k), on(k) | k =
1,...,n},and the laws withz =1,... n,y=z+1lifz <nandy=1if x =n,
z=1,...,n,and z # x:

leave(z) causes in(y) if in(x) look(k) determines on(k)

o i in(y) if in(2)
turnOn(k) causes on(k) if in(k) look(k) executable_if in(k)

First, let us consider the case n = 2. Assume that the initial state is given by
in(2) A —on(1). Consider the three histories: H = [(leave(2),[1), (look(1),
[[on(1)11)], Hy = [(leave(2),[]1), (turnOn(1),[1), (leave(1),[]1), (loo
k(2),[[on(2)11)], and Hy = [(leave(2),[]1), (turnOn(2), [in(2)]), (loo
k(1), [fon(1)ID].

The goal regression(H;, Regression;) returns Regression; = [[-in(1),
in(2),on(1)]], Regressions = [[-in(1),in(2),0on(2),on(1)], [-in(1),
in(2),0n(2),-on(1)]1], and Regressiong = [], respectively, where the
empty list [] signifies that the regression fails. This is because look(1) is
executable only if in(1) is true, but the observation immediately before the
execution of look(1) indicates that in(2) is true.

With I = [[-in(1),-on(1)]], revisionByXxx(I,Regression;,RISta
te;), where Xxx stands for Satoh or Dalal, returns RIState;=[[-in(1),in(2),
on(1)]], RIStates=[[-in(1),in(2),on(2),-on(1)]1]1, and RI1States=[1,
respectively. We can easily verify that the results are correct.

To experiment with the system on larger problems, we consider the above
domain with n = 2,...,10 and consider the initial belief state I = [[in(n),
on(n), on(n-1),...,on(1)]] and the history H = [(look(n), [[on(n)]1]),
(leave(n),[1),(look(1),[[on(1)]1]), (leave(1),[1),...,(leave(n-2),
[1), (Qook(n-1), [[-on(n-1)]11)].

The problem can be stated as follows. Initially, the robot is in the room n and
believes that all lights are on. It makes a tour, from room n to 1,...,n — 1. In
each room, the robot looks at the light. At the end of the tour, it realizes that its
initial belief is incorrect (—on(n—1) is observed and it supposed to be on(n—1)).
We tested with n = 1,...,10 and the system returns the result within 30 min.
We observe that the size of the domain, in terms of the number of fluents and
the number of actions, plays a significant role in the performance of the system.
For n = 10, we have 20 fluents and the number of potential regression results
for a non-sensing action (e.g., leave(k)) is small but checking whether or not a
potential regression result is a computed regression result involves checking the
number of possible states given a set of formulae, which could range from 2! to
219 We observe that the system spends most of the time doing just that.

We verify our observation by testing with a domain rich in static casual laws.

Repairing Initial Belief States Using Regression 85

Example 6. Consider a pipe line with n sections” from [18]. This domain can be
encoded by a domain with F = {opened(k), pressured(k) | k = 1,...,n}, and
the following laws with x =1,...,n;y=2,...,nand k=1,...,n— 1:

open(z) causes opened(x) if T sense(x) determines pressured(x)

close(z) causes —opened(z) if T open(k) executable_if —opended(k + 1)
—pressured(x) if —opened(x) pressured(y) if opened(y), pressured(y—1)

—pressured(y) if —pressured(y—1) pressured(1) if opened(1)

Assume that initially, the robot believes the first valve is opened and all
other valves are closed. To start the burner, she will open the valves from
2 to n. After opening the n-the valve, she realizes that the burner does not
start. It means that her initial belief is incorrect. Regression and revision is
required, i.e., we need to compute the result R(H) where H = [(open(2),[]1),
(open(3),[1),..., (open(n), [-pressured(n)])]. We tested this problem
withn = 2,...,8. Again, the performance of the system degrades quickly and the
problem of verifying the result of regression, as in Example 5, is also observed.
For n = 8, the system took more than 1 h.

5 Related Work and Discussions

The present work is most closely related to studies in iterated belief change in a
general setting of transition systems [9] or in situation calculus [16], i.e., iterated
belief change in dynamic domains. It is therefore different from studies aimed at
defining and/or characterizing a general iterated belief revision in the literature
such as those summarized in [7,12].

The discussion in [9] has been extended to probabilistic setting in [10]. We will
focus in comparing our work with the work in [9,16]. The key differences between
our work and [9,16] are (i) we employ an action language with static causal laws
to represent dynamic domains whereas [16] uses situation calculus and [9] uses
the general notion of transition system; (ii) we focus on the implementation
of the proposed operator and have a fully functional system for correcting the
initial belief state; (744) we consider sensing actions, which are also considered in
[16] but not in [9]; and (iv) we do not consider nested beliefs as in [16].

Given an action theory (D,%,). D can be seen as a transition system
whose transitions are defined by (s,a,s’) iff s’ € &(a,s). Action histories,
belief histories, and observation histories are defined in [9]. A pair (5,0) of an
action history 8 = [ai,...,a,] and an observation history o = [¢1,..., 1]
in their definitions corresponds to a history o = [(a1,11),. .., (an,¥y)] in
our definition. We do not define belief histories explicitly but implicitly use
[@(a1, %), P([ar,as], %), ..., P([ar,...,as],P)] as the belief history correspond-
ing to a. The idea of combining regression and a belief revision operator to cor-
rect the initial belief state is also present in [9]. Technically, regression from an

" We omit the precise description to save space.

86 F. Tardivo et al.

observation ¢ by an action sequence (3 is defined as the set of states ¢ ~!(3) that
contains every state from which the execution of 3 results in a state satisfying
. A revision is then used to identify the correct initial belief and the belief
history is adjusted accordingly. The focus of the work in [9] is to define a belief
evolution operator that combines belief change and belief revision and study
properties of such operator. Therefore, the definitions in [9] are generic and no
implementation is available.

Our proposed work could be viewed a concretization of the framework in [9],
i.e., we developed and implemented the regression function and two belief revi-
sion operators. In addition, we use a language to specify dynamic systems while
[9] assumes that the transition system is given. The work in [9] also considered
situations when observations can be incorrect.

The work in [16] formalizes reasoning about beliefs in action domains with
sensing actions using situation calculus. Unlike earlier approaches to reasoning
with sensing actions (e.g., [15,17]), the formalism in [16] deals with incorrect
beliefs. It introduced an explicit binary relation B, called an accessibility relation,
between situations for modeling beliefs; and a function pl, called plausibility
function, from situations to natural numbers for modeling the plausibility of
situations. Successor states axioms are then defined for B and pl. This, together
with the situation calculus foundational axioms, will allow agents for reasoning
about beliefs, belief introspection, and awareness of mistakes. Roughly speaking,

the plausibility function modifies the original definition of beliefs of an agent

by Scherl and Levesque, Bel(v,s) = Vs [B(s',s) D ¢[s']], to Bel(%,s) =

Vs [(B(s',8) A (¥s".(B(s",s) D pl(s") < pl(s"))) D [s']], which basically states
that the agent believes v is true in a situation s if ¢ is true in any most plausible
situations accessible to s. Under this framework, it is shown that sensing actions
can be used to correct the incorrect beliefs of agents. Proposition 2 shows that
our approach also allows agent to correct beliefs. We focus on the initial belief
but the approach can easily be adapted to consider any states in a history.
For example, assume that the agent believes that Y is the current belief state,
Y | f, and a is a sensing action that senses f and executable in X, then the
following holds: if @#(a, X') = —f then the current belief state must be revised by
—f, i.e., X x —f. This result is similar to the Theorem 21 in [16]. Similar to [9],
the work in [16] investigates properties of the belief operators while we focus on
the development of a system that computes the correct initial belief state or, as
indicated, the belief states along a history. We observe that the discussion in [16]
does assume that all actions are always executable. A key difference between the
framework of [16] and ours is how the approaches deal with static causal laws.
Indeed, static causal laws could be compiled to effect axioms and dealt with in
the framework of [16] while they are dealt with directly. For example, to work
with Example 5, the approach of [16] requires that effects of actions, direct (e.g.,
in(y) for the action leave(x) or indirect (—in(x)), must be described as effects
of the actions via successor state axioms. Indeed, there are certain advantages
in dealing with static causal laws directly (see below).

Repairing Initial Belief States Using Regression 87

The proposed work is considered in a setting similar to the one considered
in the diagnosis literature such as those in [3,4]. We assumes that the history
is complete and focus on repairing the initial beliefs of the reasoner if the his-
tory is consistent. On the other hand, approaches to diagnosis often assume an
incomplete history and focus on identifying missing action occurrences that are
the source of the history’s inconsistency.

The proposed work is considered within the deterministic fragment of the
action language Bg which is Ag extended with static causal laws. We focus on
deterministic domains with static causal laws for two reasons. First, the use of
static causal laws allows a natural and compact representation of many domains
that would have otherwise required an exponential number of fluents. This cov-
ers the majority of benchmarks used in several planning competitions®. Further-
more, dealing directly with static causal laws in planning is advantageous and
syntactical conditions guaranteeing determinism of domains with static causal
laws can be found in [18]. Second, we employ the assumption sets forth in [9] that
observations are correct. When domains are non-deterministic, this assumption
must be lifted or the revision will need to be weaken as shown below.

Ezample 7. Consider a domain with the set of fluents {f, g, h}, an action a with
a causes f if —f; a causes —f if f and two laws g if f,—h; h if f, —g.

It is easy to see that this domain is non-deterministic. Assume that ini-
tially, the reasoner believe is \/ .y, s where X is the set of all possible
states. Consider the history [(a,®)] with ¢» = f A g A —h. Tt is easy to
see that the regression of a from 1, let us overload it with R(a,%), should
be the set {{-f,g,—h},{~f,—g,—~h}}. Furthermore, the revision of the ini-
tial belief state by R(a,) following either Satoh’s or Dalal’s approach yields
R(a,v). However, the execution of @ in {—f, ~g, -h} gives &(a, {~f, g, h}) =
{{f,9,-h},{f, g, h}} which does not guarantee that the observation is true.

Example7 shows that the non-determinism of actions leads to the non-
determinism of regression, and therefore, would require a relaxed definition of
regression or removal of the assumption that observations along the history are
correct.

6 Conclusions

In this paper, we explore the problem of correcting the initial beliefs of an agent
who, after executing a sequence of actions and making observations along the his-
tory, realizes that her initial beliefs are incorrect. Given an inconsistent history,
the approach starts by regressing from the final to the first observation and revis-
ing the initial beliefs using the result of the regression. Unlike similar approaches
explored in the literature, we consider sensing actions in the presence of static
causal laws and propose algorithms for computing the correct initial beliefs. The

8 E.g., all non-probabilistic domains in www.icaps-conference.org/competitions.

www.icaps-conference.org/competitions

88

F. Tardivo et al.

paper presents an implementation of the algorithms which takes advantage of
the declarative nature of Prolog. Our current work aims at improving the perfor-
mance using tabling, parallelism, and intermediate results minimization. These
directions help increase the performance by removing unnecessary computations
and utilizing the available hardware. In addition, we intend to explore also other
directions as probabilistic settings and ASP implementations. At present, our
approach assumes also that observations are correct and actions are perfect. We
therefore plan to consider the problem of having observations which are uncer-
tain and imperfect actions in the future.

References

10.

11.

12.

13.

14.

15.

16.

. Alchourrén, C.E., Gardenfors, P., Makinson, D.: On the logic of theory change:

partial meet contraction and revision functions. JSL 50(2), 510-530 (1985)

. Aravanis, T.I., Peppas, P., Williams, M.: Iterated belief revision and Dalal’s opera-

tor. In: Hellenic Conference on Artificial Intelligence, pp. 26:1-26:4 (2018). https://
doi.org/10.1145/3200947.3201038

Balduccini, M., Gelfond, M.: Diagnostic reasoning with a-prolog. Theory Pract.
Logic Program. 3(4,5), 425-461 (2003)

Baral, C., Mcllraith, S., Son, T.C.: Formulating diagnostic problem solving using
an action language with narratives and sensing. In: KRR, pp. 311-322 (2000)
Borgida, A.: Language features for flexible handling of exceptions in information
systems. ACM Trans. Database Syst. 10(4), 563—-603 (1985)

Dalal, M.: Investigations into theory of knowledge base revision. In: Proceedings
of the AAAI, pp. 449-479 (1988)

Delgrande, J.P., Peppas, P., Woltran, S.: General belief revision. J. ACM 65(5),
29:1-29:34 (2018). https://doi.org/10.1145/3203409

Delgrande, J.P., Schaub, T., Tompits, H., Woltran, S.: Belief revision of logic pro-
grams under answer set semantics. In: KRR, pp. 411-421 (2008). http://www.aaal.
org/Library/KR/2008/kr08-040.php

Hunter, A., Delgrande, J.P.: Iterated belief change due to actions and observations.
J. Artif. Intell. Res. (JAIR) 40, 269-304 (2011)

Hunter, A., Delgrande, J.P.: Belief change with uncertain action histories. J. Artif.
Intell. Res. (JAIR) 53, 779-824 (2015)

Lobo, J., Mendez, G., Taylor, S.: Adding knowledge to the action description lan-
guage A. In: AAAT 1997, pp. 454-459 (1997)

Peppas, P.: A panorama of iterated revision. In: Hansson, S.O. (ed.) David Makin-
son on Classical Methods for Non-Classical Problems. OCL, vol. 3, pp. 71-94.
Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-007-7759-0_5

Pham, L., Pontelli, E., Tardivo, F., Son, T.C.: A logic programming approach to
regression based repair of incorrect initial belief states. Technical report, NMSU
(2020)

Satoh, K.: Nonmonotonic reasoning by minimal belief revision. In: Proceedings of
the FGCS, pp. 455-462. Springer (1988)

Scherl, R., Levesque, H.: Knowledge, action, and the frame problem. Artif. Intel.
144(1-2) (2003)

Shapiro, S., Pagnucco, M., Lespérance, Y., Levesque, H.J.: Iterated belief change
in the situation calculus. Artif. Intell. 175(1), 165-192 (2011)

https://doi.org/10.1145/3200947.3201038
https://doi.org/10.1145/3200947.3201038
https://doi.org/10.1145/3203409
http://www.aaai.org/Library/KR/2008/kr08-040.php
http://www.aaai.org/Library/KR/2008/kr08-040.php
https://doi.org/10.1007/978-94-007-7759-0_5

17.

18.

19.

Repairing Initial Belief States Using Regression 89

Son, T.C., Baral, C.: Formalizing sensing actions - a transition function based
approach. Artif. Intell. 125(1-2), 19-91 (2001)

Tu, P., Son, T., Gelfond, M., Morales, R.: Approximation of action theories and
its application to conformant planning. AIJ 175(1), 79-119 (2011)

Winslett, M.: Reasoning about action using a possible models approach. In: AAAT,
pp. 89-93 (1988)

