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Recent in situ measurements by the MMS and Parker Solar Probe missions bring interest
to small-scale plasma dynamics (waves, turbulence, magnetic reconnection) in regions
where the electron thermal energy is smaller than the magnetic one. Examples of such
regions are the Earth’s magnetosheath and the vicinity of the solar corona, and they are
also encountered in other astrophysical systems. In this brief review, we consider simple
physical models describing plasma dynamics in such low-electron-beta regimes, discuss
their conservation laws and their limits of applicability.
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INTRODUCTION

Astrophysical plasmas (e.g., the Interstellar medium, solar wind, etc) are often in a state of a rough
equipartition between the kinetic energies of the particles and the energy of the magnetic fields.
However, there are important astrophysical and space environments, such as the Earth’s
magnetosphere and magnetosheath, and the solar corona and its vicinity, that are characterized
by low electron plasma beta, that is, low ratio of electron thermal to magnetic energy, βe � 8πneTe/B2

(e.g., Cranmer et al., 2009; Štverák et al., 2015; Bale et al., 2016; Chen et al., 2014), where ne and Te are
the electron density and temperature, and B is the magnetic field strength. Such plasmas are also
nearly collisionless in that the characteristic times of turbulent fluctuations are much shorter than the
Coulomb collision times. The interest in plasma dynamics in low-beta regimes is also fueled by recent
in situ measurements by NASA’s MMS and Parker Solar Probe missions, as well as by the
measurements expected from the Solar Orbiter spacecraft (e.g., Phan et al., 2018; Chen et al.,
2020; Bale et al., 2019; Kasper et al., 2019). In this contribution we briefly review the theoretical
frameworks for studying collisionless low-electron-beta plasma dynamics.

In a weakly collisional plasma, the electrons and the ions do not exchange energy efficiently due to
the strong difference in their masses. Therefore, it is a common situation that the ion temperature is
different from the electron one. In our treatment of the problem we will, therefore, distinguish
between the ion and electron betas βs � 8πnsTs/B2, where s � {e, i}. While we will concentrate on the
case of small electron beta βe ≪ 1, we will not necessarily assume the same for the ion beta, and will
consider the cases of βi ≪ 1 as well as βi ∼ 1. For example, the Earth’s magnetosphere is characterized
by βi ≪me/mi, βe ≪me/mi, the solar corona and its vicinity correspond to βe(0.01 and βi(0.1, the
Earth’s magnetosheath βe ∼ 0.1, βi(1. Other environments with low electron beta include
downstream regions of collisionless shocks and magnetospheres of accretion discs (e.g.,
Quataert, 1998; Vink et al., 2015; Ghavamian et al., 2013).

The most rigorous treatment of a collisionless plasma is provided by the kinetic framework.
However, kinetic framework presents considerable challenges for theoretical and especially
numerical treatments (but see some examples in e.g. (Schekochihin et al., 2009; Servidio et al.,
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2012; Valentini et al., 2017; Grošelj, 2019; Roytershteyn et al.,
2019; Franci et al., 2020)). In many important cases, a simplified
fluid-like description is possible that is much more physically
transparent and allows for efficient numerical studies of plasma
waves, turbulence, magnetic reconnection, structure formation,
etc. The derivations of such simplified models can be performed
using various approaches (reduced two-fluid, gyrofluid,
gyrokinetic, kinetic, etc.), and such derivations are scattered in
the literature. In this brief review, we discuss several models
which we believe are relevant for the above mentioned space
physics applications. Our goal is to present a unifying physical
derivation of the governing equations, describe the corresponding
conservation laws, and discuss the limits of applicability of each of
the models. We hope our presentation will be useful for space
physicists or astrophysicists who are not necessarily experts in
plasma physics.

Model Equations
In this section we present a general derivation of the model
equations, and then consider the limits of βi and βe mentioned
in the introduction. As it is generally the case in magnetized
plasma turbulence, we assume the presence of a uniform
magnetic field (the guide field), which mimics the magnetic
field of external sources (i.e., magnetospheric field) or the
magnetic field generated by large-scale turbulent motions. At
small scales, the magnetic fluctuations are small, so we separate
them from the guide field B � B0ẑ + δB.1 We consider the case
of small electron beta, so it will be easy to start with the
equations describing the electron dynamics where we can
neglect the effects related to the electron gyroradius. There
are analytical and observational reasons to believe that small-
scale fluctuations are oblique in that their wavenumbers along
the guide field are much smaller than the wavenumbers in the
perpendicular direction, k‖ ≪ k⊥ (e.g., Shebalin et al., 1983;
Chen, 2016). Moreover, in the case of strong developed
turbulence, the magnetic fluctuations tend to approach the
so-called critical balance state (e.g., Goldreich and Sridhar,
1995; Perez and Boldyrev, 2010), which can be expressed by
the following self-consistent ordering of the perturbation
parameters,

k‖/k⊥ ∼ |δB|/B0 ∼ δn/n0 ≪ 1. (1)

Our general approach in this section is similar to that adopted in
(e.g., Chen and Boldyrev, 2017; Milanese et al., 2020), while more
refined derivations can be found in (Passot et al., 2017; Passot
et al., 2018) where finite Larmor radius corrections are taken into
account. In a collisionless plasma, the electron gyro orbits drift in
the field-perpendicular direction. The modes we are interested in

have frequencies that are much lower than the electron cyclotron
frequency Ωe. To the zeroth and first orders in the small
parameter ω/Ωe, this motion consists of the standard E × B
drift and the polarization drift,

v⊥ � vE −mec
eB2

B × dE
dt
vE, (2)

where vE � c(E × B)/B2 is the E × B drift, the total time
derivative is dE/dt ≡ z/zt + vE · ∇, and e is the modulus of the
electron charge. (Obviously, for ω≪Ωi an equation similar to
Eq. 2 can be written for the ions as well.) In the zeroth-order
term (the vE velocity) we need to substitute the magnetic field
expanded up to the first order, that is, B � B0 + δB and
B2 ≈ B2

0 + 2B0δBz , while in the polarization drift (the second
term in Eq. 2) we keep only the zeroth-order magnetic field. The
magnetic field does not constrain the electron motion in the
field-parallel direction, so that the fluctuating parallel electric
field will drive the electric current J‖. It is easy to see, however,
that due to their large masses, the ions will respond to the
fluctuating electric field with much smaller velocities, so that the
current will be dominated by the electrons, J‖ � −nev‖. Since,
due to small fluctuations, the magnetic-field lines deviate from
the z-direction only slightly, the field-parallel components of the
vector fields are very close to their z-components, i.e., J‖ ≈ Jz .
This, however, is not true for nearly field-perpendicular wave
vectors, so that k‖ ≠ kz . For this reason, the gradient in the field-
parallel direction will be given to the first order in magnetic field
fluctuations by

∇‖ � B
B
· ∇ � z/zz + (δB⊥/B0) · ∇, (3)

which is also consistent with the adopted ordering (1). In the
same approximation, the field-perpendicular gradients are the
same as gradients in the horizontal coordinate plane, ∇⊥ �
(z/zx, z/zy).

Finally, we need to relate the parallel electric current to the
fluctuating magnetic and electric fields. From the Ampere-
Maxwell equation, we have

Jz � − c
4π

∇2
⊥Az + 1

4πc
z2

zt2
Az ≈ − c

4π
∇2

⊥Az , (4)

where A is the vector potential, δB⊥ � −ẑ × ∇⊥Az , the Lorentz
gauge is assumed for simplicity, and in the last line we neglected the
time derivative of the vector potential, since ω ∼ k‖vA ≪ k⊥c. Here
vA is the Alfven speed. The last condition amounts to neglecting the
displacement current in theAmpere-Maxwell equation.We can now
substitute v⊥ and v‖ expressed through the electric and magnetic
potentials, in the electron continuity equation
ztne + ∇⊥(nev⊥) + ∇‖(nev‖) � 0, and get after somewhat lengthy
but straightforward algebra (for a more detailed discussion we refer
the reader to (Chen and Boldyrev, 2017; Milanese et al., 2020):

z

zt
(δne
n0

− δBz

B0
+mec2

eB2
0

∇2
⊥ϕ) + c

B0
(ẑ × ∇⊥ϕ) · ∇⊥(δnen0

− δBz

B0

+mec2

eB2
0

∇2
⊥ϕ) � − c

4πn0e
∇‖∇2

⊥Az ,

(5)

1Such a set up is an approximation based on two properties that are believed to be
characteristic of strong magnetic turbulence. First is the locality of turbulence,
implying that significant nonlinear interaction occurs among fluctuations of
comparable scales. Second is the observation that the dynamics at a given small
scale are mediated by the presence of a guide magnetic field. However, the strongest
magnetic fluctuations are provided by the largest eddies, therefore, such a magnetic
field is almost uniform at the small scales of interest.
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where ϕ is the electric potential.
In order to proceed further, we need to specify what particular

limits we consider. We will do this in the following sections. Here,
we simply assume that the electron and ion gyroradii are
sufficiently small and we address the scales above the ion and
electron gyroradii. We also assume that the frequencies of the
fluctuations are much smaller than the cyclotron frequencies of
the plasma species. In this case, we can write an equation
analogous to Eq. 5 for the ions (by replacing me →mi,
e→ − e, and neglecting v‖ in the ion equation because of ion
inertia), and subtract one equation from the other. As a result,
we get

z

zt
(ρ − n0mic2

B2
0

∇2
⊥ϕ) + c

B0
(ẑ × ∇⊥ϕ) · ∇⊥(ρ − n0mic2

B2
0

∇2
⊥ϕ)

� c
4π

∇‖∇2
⊥Az , (6)

where ρ � (δni − δne)e is the density of the electric charge, and
we assume singly charged ions. In this equation, we have
neglected the electron polarization drift velocity as it is smaller
than the ion one byme/mi. By using Gauss’s law ρ � −(1/4π)∇2

⊥ϕ,
and normalizing the variables as

~ϕ � ϕc/B0, ~Az � Az/ 						
4πn0mi

√
, (7)

one rewrites this equation as a charge continuity equation:

z

zt
∇2
⊥ϕ + (ẑ × ∇⊥ϕ) · ∇⊥∇2

⊥ϕ � − vA
1 + v2A/c2∇‖∇2

⊥Az , (8)

where for simplicity we have omitted the overtilde signs. In this
equation, vA � B0/

						
4πmin0

√
is the Alfvén velocity and, in the

normalized variables (7), the parallel gradient has the form

∇‖ � z/zz − v−1A (ẑ × ∇⊥Az) · ∇⊥. (9)

The term v2A/c
2 � Ω2

i /ω
2
pi reflects the deviation from quasineutrality

of the plasma.Here, Ωi is the ion cyclotron frequency andωpi is
the ion plasma frequency. When this term is small, Ω2

i /ω
2
pi ≪ 1,

we have |δni − δne|≪ δn, and the charge density fluctuations can be
neglected in the charge continuity equation, zρ/zt≪∇⊥ · J⊥.
Interestingly, even a mild breakdown of the analogous
quasineutrality condition for the electrons, Ω2

e /ω
2
pe ≪ 1, leads to a

difference between the electron and ion density fluctuations, which
may be significant for the plasma dynamics (e.g., Roytershteyn et al.,
2019). We will assume in our consideration that the quasineutrality
condition holds for both species as it is a common situation in many
natural applications (obviously, it always holds better for the heavier
particles). We however mention that when this condition is broken
for the electrons, that is, Ω2

e /ω
2
pea1 (we will call this case the low

plasma density case), our derivation has narrower limits of
applicability. Indeed, from Eq. 4 for the electron parallel current,
we can estimate for the electron velocity fluctuations at scale λ ∼ 1/k⊥,
v2‖,λ/c

2 ∼ (k⊥de)2(δBλ/B0)2(Ωe/ωpe)2 Here de � c/ωpe is the
electron inertial scale. As our case is nonrelativistic, we therefore
have to require

(k⊥de)2(δBλ/B0)2 ≪ω2
pe/Ω2

e , (10)

which imposes an additional restriction on the fluctuations
amplitudes and scales in the low-density case. When
restriction (10) is not satisfied, we cannot neglect the
relativistic effects and the displacement current, and cannot
assume the ordering k‖ ≪ k⊥.

We need to supplement the charge continuity Eq. 8 with the
equation for the parallel component of the electron velocity field,
which reads

zv‖
zt

+ (vE · ∇⊥)v‖ � − e
me

E‖ − 1
men0

∇‖pe. (11)

Expressing the parallel velocity field through the electric current,
and substituting for the electric field E‖ � −∇‖ϕ − zAz/zt (where
we use the previously discussed approximation A‖ ≈ Az) we
obtain using the same normalization for Az and ϕ as in Eq. 7,

z

zt
(1 − d2e∇

2
⊥)Az + (ẑ × ∇⊥ϕ) · ∇⊥(1 − d2

e∇
2
⊥)Az

� −vA z

zz
ϕ + di

n0mi
∇‖pe. (12)

In general, there is no rigorous closure for the pressure term pe in
hydrodynamic-type equations describing a collisionless plasma.
One, however, can consider several limiting cases, when
approximate expressions may be obtained.

Case of βe <<me/mi and βi <<1 (Cold
Electrons and Ions)
First is the case of cold electrons, when the typical phase velocity
of the fluctuations is larger than the thermal velocity of the
electrons, ω/k‖ ≫ vTe; the equations that we discuss in this section
have been considered in (Loureiro and Boldyrev, 2018; Milanese
et al., 2020). Assuming that the fluctuations are of the Alfvén type,
this condition means that βe ≪me/mi. For the ions, it means
βi ≪ 1. In this case, we may neglect the electron pressure in
Eq. 12. We can therefore use the following system of equations in
the case of cold plasma:

z

zt
∇2
⊥ϕ + (ẑ × ∇⊥ϕ) · ∇⊥∇2

⊥ϕ � −vA∇‖∇2
⊥Az , (13)

z

zt
(1 − d2

e∇
2
⊥)Az + (ẑ × ∇⊥ϕ) · ∇⊥(1 − d2e∇

2
⊥)Az � −vA z

zz
ϕ. (14)

The linear modes supported by this system of equations have the
dispersion relation

ω2 � k2zv
2
A

1 + k2⊥d
2
e

, (15)

and are known as the inertial Alfvén modes. At large scales
k⊥de ≪ 1, they turn into the magnetohydrodynamic shear Alfvén
modes as the governing system (13), (14) itself turns into the
reduced MHD equations (e.g., Kadomtsev and Pogutse, 1974;
Strauss, 1976; Biskamp, 2003; Tobias et al., 2013). The term
containing the electron inertial scale de should be kept if this scale
is larger than the ion gyroscale, ρi. Since d

2
e /ρ

2
i � (me/mi)/βi, the

electron inertial effects are, therefore, relevant when βi ≪me/mi.
In the opposite limit, the electron inertial terms are negligible and
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Eqs. 13, 14 turn into the reduced MHD equations in the whole
range of scales k2⊥ρ

2
i ≪ 1. It is interesting to point out the

conservation laws of these equations, the energy and
generalized helicity

E � ∫[(∇⊥Az)2 + d2
e(∇2

⊥Az)2 + (∇⊥ϕ)2]d3 x, (16)

H � ∫[∇2
⊥ϕ(1 − d2e∇

2
⊥)Az]d3 x. (17)

The generalized helicity conservation law for this case has
been considered in Loureiro and Boldyrev (2018) and
Milanese et al. (2020). The latter paper also discusses its
nontrivial role in the turbulent energy cascade at kinetic
scales k⊥de > 1, in particular, in establishing the so-called
dynamic phase alignment of magnetic and velocity
fluctuations at small scales.

Case of me/mi << βe << 1 and βi <<1 (Hot
Electrons, Cold Ions)
In the considered limit, the systems of equations have been
derived in e.g., (Camargo et al., 1996; Terry et al., 2001;
Boldyrev et al., 2015). In this case the electrons are hot in that
their thermal velocity is much larger than the phase velocity
of the waves. The electron could thus be expected to quickly
adjust to the electric potential ϕ′ built in a plasma,
δne/n0 ≈ eϕ′/Te with Te � const. However, this is the electric
potential existing in a fluid element drifting with the E ×B
velocity. Such an electric potential is different from the
electric potential ϕ measured in the lab frame, therefore,
the above formula is not very helpful. Instead, we express
the pressure as pe � nTe, and use Eq. 5 for the electron
density. We notice that in this equation, the magnetic
fluctuations δBz/B0 are smaller than δn/n0 in a low beta
regime. Indeed, from the plasma momentum equation (the
sum of the electron and ion momentum equations), one can
derive to the leading order the (total) pressure balance
condition ∇⊥p � 0, which gives (δBz/B0) � −(βe/2)(δn/n0).
We can, therefore, neglect the magnetic fluctuations in Eq.
5. We also neglect the electron polarization drift, and obtain

z

zt
(δn
n0
) + (ẑ × ∇⊥ϕ) · ∇⊥(δnn0) � −di∇‖∇2

⊥Az , (18)

which, together with Eqs. 12, 13, forms a closed system of
equations for the considered case.

The dispersion relation for the linear waves in this case is:

ω2 � k2zv
2
A(1 + k2⊥ρ

2
s )(1 + k2⊥d

2
e ) , (19)

where ρ2s � v2s /Ω2
i is the ion-acoustic radius and v2s � Te/mi is the

ion acoustic speed. Since ρ2s /d
2
e � βe/(me/mi), this formula shows

that depending on the value of the electron beta, either the ion-
acoustic scale or the electron inertial scale becomes dominant.

The quadratic conservation laws for this case are the energy and
generalized enstrophy:

E � ∫[(∇⊥Az)2 + d2
e(∇2

⊥Az)2 + (∇⊥ϕ)2 + ρ2s(δnn0
)2]

 

d3x, (20)

Ω2 � ∫ (δn
n0

− 1
Ωi
∇2
⊥ϕ)

2

d3x. (21)

In fact, there are infinitely many conserved integrals of the
form

Ωn � ∫ (δn
n0

− 1
Ωi
∇2
⊥ϕ)

n

d3x, (22)

which simply reflects the fact that the two-dimensional E × B flow
is incompressible, and the integrand in Ωn is passively advected
by such a flow.

Case of me/mi << βe << 1 and βi(1 (Hot
Electrons and Ions)
We now consider the case of relatively high temperatures of the
electrons and the ions. In this case, the ion gyroscale is not small.
At scales close to the ion gyroscale, fluid-like models are
generally not accurate, and one has to use full kinetic
treatment. However, at larger and smaller scales one can
formulate simplified models. Obviously, at hydrodynamic
scales k2⊥ρ

2
i ≪ 1, a good description is provided by the

reduced MHD model. Here we will be interested in scales
smaller than the ion gyroscale, k2⊥ρ

2
i ≫ 1. In this limit, the

system of equations has been derived in (Chen and Boldyrev,
2017; Passot et al., 2017; Passot et al., 2018). As can be checked
later, in this case the ions can be considered hot, ω2 ≪ k2v2Ti, and
nonmagnetized. Therefore, their density, and by quasineutrality
the density of the electrons, will adjust to the electric potential
existing in a plasma according to the Boltzmann law,
δn/n0 ≈ − eϕ/Ti. Similarly to the previous case, the magnetic
intensity fluctuations can be evaluated from the momentum
equation, where both the ion and the electron temperatures can
be easily taken into account as both species are now hot:

(δBz/B0) � −(βe/2 + βi/2)(δn/n0) ≈ − (βi/2)(δn/n0). (23)

We can now remove the density and magnetic field
fluctuations in the electron Eqs. 5, 12 in favor of the electric
potential, and obtain:

z

zt
(1 + 2

βi
− d2e∇

2
⊥)ϕ � vAd

2
i ∇‖∇2

⊥Az , (24)

z

zt
(1 − d2e∇

2
⊥)Az + (ẑ × ∇⊥ϕ) · ∇⊥(1 − d2

e∇
2
⊥)Az � −vA z

zz
ϕ.

(25)

The linear modes described by this system have the dispersion
relation:
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ω2 � k2zv
2
Ak

2
⊥d

2
i(1 + k2⊥d

2
e )(1 + 2/βi + k2⊥d

2
e ); (26)

such modes were termed the inertial kinetic-Alfvén modes in
Chen and Boldyrev (2017). A particular case of these waves,
corresponding to the limit 2/βi ≫ 1 + k2⊥d

2
e , has been previously

analyzed in Shukla et al. (2009), Agarwal et al. (2011); such an
additional constraint obviously implies a more limited region of
applicability of the model, namely, k2⊥ρ

2
i ≪mi/me. The considered

system has two quadratic conservation laws, the energy and
generalized helicity (Boldyrev and Loureiro, 2020):

E � ∫[ϕ(1 + 2
βi
− d2e∇

2
⊥)ϕ − d2i (∇2

⊥Az)(1 − d2
e∇

2
⊥)Az]

 

d3x,

(27)

H � ∫ (1 + 2
βi
− d2e∇

2
⊥)ϕ (1 − d2

e∇
2
⊥)Az d

3x. (28)

The derived conservation laws play an important role in turbulent
cascades as well as in the formation of current sheets that may
become subject to the tearing instability and magnetic
reconnection (e.g., Boldyrev and Loureiro, 2019; Vega et al.,
2020). Interestingly, this system of equations turns out to be
rather universal. It is structurally identical to the system
describing the nonlinear whistler modes at sub-ion scales
(Chen and Boldyrev, 2017), moreover, at scales
k2⊥d

2
e ≫ 1 + 2/βi it is also applicable to a nonrelativistic pair

plasma (Loureiro and Boldyrev, 2018) as well as to rapidly
rotating non-conducting fluids, see, e.g., (Milanese et al., 2020).

CONCLUSION

We have described several physical models of nonlinear plasma
dynamics at low electron beta, which are relevant for space physics
applications ranging from the Earth’s magnetosphere to the
magnetosheath to the solar corona. These models may be helpful

for understanding turbulent cascades (that are generally nontrivial in
the presence of two conserved quantities (Loureiro and Boldyrev,
2018;Milanese et al., 2020), processes ofmagnetic reconnection (e.g.,
Boldyrev and Loureiro, 2019; Loureiro and Boldyrev, 2020), and
other linear and nonlinear wave phenomena. Our fluid-like models
do not include dissipation effects, like Landau damping, that cannot
be rigorously treated in fluid-like models and that require kinetic
approach (e.g., Chen et al., 2019; Horvath et al., 2020). The kinetic
dissipation effects are especially relevant when the scales of
fluctuations approach the gyroscales of plasma species or when
the phase velocities of the waves are comparable to the thermal
velocities of the particles, see, for instance the kinetic
treatment developed for the case βe ∼ me/mi in Zocco and
Schekochihin (2011). However, it should be noted that the
ordering assumed in our models implies that the linear and
nonlinear terms are on the same order (the co-called critical
balance condition), which means that dissipative kinetic terms
may be included as linear terms in our equations (e.g., Li et al.,
2016; Passot et al., 2017; Passot et al., 2018), which should not
qualitatively alter the nonlinear dynamics captured by the
discussed models.
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