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Abstract

Consider a collection of particles whose state evolution is described through a system
of interacting diffusions in which each particle is driven by an independent individual
source of noise and also by a small amount of noise that is common to all particles.
The interaction between the particles is due to the common noise and also through the
drift and diffusion coefficients that depend on the state empirical measure. We study
large deviation behavior of the empirical measure process which is governed by two
types of scaling, one corresponding to mean field asymptotics and the other to the
Freidlin—-Wentzell small noise asymptotics. Different levels of intensity of the small
common noise lead to different types of large deviation behavior, and we provide a
precise characterization of the various regimes. The rate functions can be interpreted
as the value functions of certain stochastic control problems in which there are two
types of controls; one of the controls is random and nonanticipative and arises from
the aggregated contributions of the individual Brownian noises, whereas the second
control is nonrandom and corresponds to the small common Brownian noise that
impacts all particles. We also study large deviation behavior of interacting particle
systems approximating various types of Feynman—Kac functionals. Proofs are based
on stochastic control representations for exponential functionals of Brownian motions
and on uniqueness results for weak solutions of stochastic differential equations asso-
ciated with controlled nonlinear Markov processes
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1 Introduction

In this work we study large deviation properties of interacting particle systems that are
described through a certain collection of stochastic differential equations. Our main
interest is in diffusions interacting through the empirical measure of the particle system
with both individual and common sources of noises, given by a system of equations
of the following form:

dX} (1) = b(X} (1), n" (1) dt + o (X} (1), " (1)) dW; (1) + k(M (X7 (1), w" (1)) dB (1),

n
X0 =x!", u'@) = %ZSX;L(,), 1<i<n, tel0,T],

= (1.1)
where {W;,i € N} are independent m-dimensional Brownian motions, B is a k-
dimensional Brownian motion, independent of {W;,i € N}, b : RY x PRY) — R4,
o :RYx PRY) — R and « : R? x P(RY) — R?*¥ are appropriate maps, and
{x"h<i<n C R (see Sect. 2.1 for precise conditions on the coefficients and the initial
conditions). However, in order to motivate the questions of interest, we begin with the
following elementary setting. For fixed x € R™ consider the empirical measure

LIy
Wt = ;Z;S{,H_Wi}.
1=

By Sanov’s theorem, {1} satisfies a large deviation principle (LDP) on P(C([0, T'] :
R™)) with rate function I (-) given as

I(y) = R(y16x), v € P(C(0, T]: R™)). (1.2)

Here, C([0, T] : R™) is the space of continuous functions from [0, 7'] to R equipped
with the uniform topology, and for a Polish space S, P(S) denotes the space of prob-
ability measures on S that is equipped with the topology of weak convergence. Also,
0, denotes the Wiener measure with initial value x, and the quantity R(y ||6,) denotes
the relative entropy of y with respect to 6. A precise definition of a large deviation
principle is given in Sect. 1.1; however, formally such a result says that, for large 7,

P(u" € A) = exp {—n in{x I(y)} for Borel sets A C P(C([0, T]: R™)).
ye

There is another representation for the rate function which, although notationally
more demanding, is useful when studying more general settings. For a Polish space
S, we will denote by B(S) the Borel o-field on S. Let R denote the set of all finite
measures » on B(R™ x [0, T']) such that r(R™ x [0, ¢]) = ¢ for all ¢t € [0, T]. This
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space is equipped with the topology of weak convergence. Let R C R be defined as

Rlﬁ{reR: ||y||r(dydt)<oo}.

Rmx[0,T]

Then, R is a Polish space when equipped with the Wasserstein-1 metric. Under
this metric, r, — r in R; if and only if r, — r as a sequence in R and

meX[O,T] yrp(dy dt) — fR’"x[O,T] yr(dydt). Let
ZI =X xR xW, where X =W =C([0, T]: R™),

and denote by (X, p, W) the three coordinate maps on this space. Define

Pa(Zy) = {@ € P(2): Eo [/R | ||y||2p<dydr>} < oo} ,

mx[0,T

where E g denotes expectation on (21, B(Z1), ). Let £ denote the subset of P»(Z})
consisting of probability measures ® such that, under ®, W(¢) is a standard Brownian
motion with respect to the canonical filtration F; = o {X (s), W(s), p(A X [0, s]); A €
B(@R™),s < t},and a.s.

X(t)=x+/ y p(dyds) + W(), t € [0, T]. (1.3)
R x[0,]

Then, the rate function 7 (-) in (1.2) has the following alternative representation:

1
I0)= it E@[— f ||y||2p<dyds)], (1.4)
RMmx[0,T]

Ok [O]1=y 2

where [®]; is the marginal of ® on the first coordinate. Viewing p as a (relaxed)
control, the right side of the above display gives a representation for the rate function as
the value function of a stochastic control problem in which the goal is to produce a state
process X with a specified law y using the state dynamics (1.3) and a (nonanticipative)
control process p which has the least cost, where the cost is given by the expectation
on the right side of (1.4).

The above interpretation is a useful point of view and analogous stochastic control
representations can be given more generally. Consider for example the case where we
are given an iid collection of d-dimensional diffusions {X;};cn described through the
stochastic differential equations

t

t
X; (1) =x+/ b(X,-(s))ds—i—/ o(X;(s)dW;(s), tel0,T], ieN, (L5)
0 0

where x € R is an initial condition, and where for simplicity we assume that the
coefficients b : RY — R? and o : RY — R?*™ are Lipschitz functions so that the
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equations have a unique pathwise solution. Letting
1 n
"=—-% 8y, 1.6
W= ;‘ X, (1.6)

the rate function associated with the LDP for u”" on P(C([0, T] : R?)) takes the same
form as (1.4) except X = C([0, T] : R?) and the class &; is now the collection of all
probability measures in P> (Z1) under which W is as before and (X, p, W) are related
as

X(t)=x+f
0
tel0,T]

t

t
b(X(S))dS+/ G(X(S))dW(S)+/ o (X(s))y p(dyds),
0 R™x[0,2]

The system of equations in (1.5) have no interaction. We now introduce a small amount
of coupling between the equations given through a Brownian motion that is common
to all particles as follows:

t t
X7(1) =x+/ b(Xf’(s))ds—i—/ o (X7 (5)) AW (s)
0 0

t
+ K(n)/ a(X!(s))dB(s), t€[0,T], i€eN, (1.7)
0

where B is a k-dimensional standard Brownian motion independent of {W;};cn, « :
RY — RI*k is a Lipschitz map, and x(n) — 0 as n — oo. In this case, since
{X!}1<i<n are not independent, the large deviation behavior of

1 n
i=1

cannot be deduced from Sanov’s theorem, and in fact this behavior crucially depends
on the manner in which «(n) — 0. The measures ¢ in (1.6) and in (1.8) converge
to the same limit, but the rates of convergence as measured by the large deviation rate
function are different. Indeed, as an elementary corollary of Theorems 2.1 and 2.3 we
give a complete characterization of the convergence rate for different choices of the
small noise coefficient k (n) (see Remark 2.3). Specifically, when k (n) = n~1/2 therate
function is governed by a different type of stochastic control problem than (1.4) that
can be described as follows. For ¢ € L?([0, T] : R¥), the space of square-integrable
functions from [0, 7] into R¥, let £ [¢] denote the subset of P»(Z) consisting of all
probability measures under which W is, as before, a m-dimensional Brownian motion
with respect to the canonical filtration {F;}, and the coordinate processes X, p, and
W are related to ¢ through the equation
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X(t)=x+/
0

t
+ / a(X(s)e(s)ds, tel0,T].
0

t

t
b(X(s))ds +[ o (X (s))dW(s) +/ o(X(s))y p(dyds)
0 R™ x[0,1]

Then, the rate function /(-) associated with the empirical measures ©” in (1.8), with

k(n) =n"12is given as
1
I1(y) = inf { inf Eo [-/ IvlI? p(d dt)]
4 0eL?([0,T]:RF) | @e&ilpl:[@li=y 2 Jrmx(0,7] Y Y
1 (T 5
+§/ lo()] dr}. (1.9)
0

The right side of (1.9) is once more the value function of a stochastic control problem;
however, this time there are two types of controls. One of the controls, represented
by p, is random and nonanticipative and arises from the aggregated contributions
of the individual Brownian noises, whereas the second control, represented by ¢, is
nonrandom and corresponds to the small common Brownian noise that impacts all
particles.

We will also study large deviation asymptotics for a second class of models that
are given as particle approximations for Feynman—Kac functionals of the form

£ [efOT c(Xl(S))dsg(Xl (T)):I , (1.10)

where g and ¢ are bounded and continuous functions and X is given by (1.5) (with
i = 1). Denote by M (R?) the space of finite measures on R? equipped with the
topology of weak convergence (see Sect. 1.1), and consider the C([0, T'] : M+(Rd))-
valued random variables v" defined as

V(1) = - Zefotc(xi (s))ds+x(n) fy BX! (A))dB(é)SX;l(Iﬁ tel0,T], (1.11)

i=1

where { X'} are given by (1.7) and B is a bounded and continuous function. Then, as
n — oo, (g, Vi(T)) = f g(x)v"(T)(dx) converges to the Feynman—Kac functional
in (1.10) for all choices of sequences k(n) — 0. As a special case of Theorems 2.2
and 2.4 we obtain large deviation principles for v", for different choices of « (n).

The above results correspond to the simple setting where the law of large number
behavior of the system of particles is the same as that for an iid particle system. As
noted previously, our main interest in the current work is in interacting diffusions
of the form in (1.1). The law of large number behavior of such systems of particles
is described by nonlinear equations of McKean—Vlasov type (cf. [22,28]). The large
deviation behavior of the associated empirical measure process is governed by two
types of scaling: one corresponding to mean field asymptotics (as the number of
particles n — 00) and the other to the Freidlin—-Wentzell small noise asymptotics (as
the noise intensity « (n) — 0).

Models as in (1.1) are often referred to as weakly interacting particle systems
and have been extensively studied, see [6,9,10,17,22-24,26,28,30] and many others.
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Originally motivated by problems in statistical physics, in recent years such systems
have arisen in many applied probability problems such as stochastic networks [1,18],
information theory [3,4], mathematical neuroscience [2], population opinion dynamics
[16], nonlinear filtering [11,21], and mathematical finance [14,15], among others.

In the setting where there is no common Brownian motion, i.e., k (n) = 0, large
deviation principles for the empirical measure have been studied in [10]. A different
approach, based on certain variational representations for exponential functionals of
finite-dimensional Brownian motions [5] and weak convergence arguments, was taken
in [8]. The latter paper, in contrast to [ 10], allowed for degenerate diffusion coefficients
and for a mean field interaction in the diffusion coefficient. Large deviation properties
of a system related to (1.1) were studied recently in [25], in which there is no common
noise term, but the independent Brownian motions {W;} are made to be small and
vanish in the limit. In the systems with common noise that are considered in the
current work, one needs to analyze the interplay between the contributions of two
distinct sources of noise to non-typical behavior of the empirical measures. In the
rate function [see (2.3)], this interplay is manifested through certain stochastic control
problems in which there are two types of controls that play somewhat different roles
in the dynamics. As already noted below (1.9) in a simpler setting, the control that
arises from the individual noises is random and nonanticipative, whereas the control
from the common Brownian motion is nonrandom. In game theoretic terminology, the
first control arises from the aggregated actions of the n individual players, whereas
the second control corresponds to the action of a single major agent that impacts the
dynamics of all n players.

Our results give a complete characterization of the asymptotic behavior for different
choices of « (). Specifically, taking « (n) = n~!/?, Theorems 2.1 and 2.3 show that
rates of decay of P(u"" € A) for non-typical events A are of the form e ™*/(4), where
the exponent I (A) is described through a stochastic control problem with controls for
both the aggregated player and the major agent. However, when « (n)n'/?> — 0, the
contribution of the common Brownian motion to deviations in the empirical measure
becomes negligible and the rate function only involves the aggregated player control.
Finally, when « (n)n'/ 2 5 o0, the decay rates of P(u" € A) are slower , given as
ek~ () "and this time the dominating contribution to deviations to the empirical
measure are due to the common Brownian motion and the corresponding stochastic
control problem is described in terms of nonlinear Markov processes with deterministic
controls.

In order to study rates of convergence of Feynman—Kac functionals analogous to
those in (1.10), we consider the following system of coupled equations:

dX7? () = b(X} (1), " () dt + o (X} (1), " (1)) dW; (1) + k (M (X (1), w" (1)) dB (1),
dA7 () = AT (Oc(X] (1), w" (1) di + AF Oy T (X} (0), 1" (1) dWi (1)
+ cMAF 0BT (X] (1), " (1) dB (),
X{O0)=x', A/O)=a’, p"®)= ! XHZG(A?(t))BXm), l<i<n, tel0,T],
n :

i=1

(1.12)
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where ¢ : R x P(RY) — R,y : R x P(R?) — R™,and B : R x P(RY) — R¥ are
suitable maps and {(x}', a!')}1<j<n C R? x R, (see Sect. 2.2 for precise conditions).
Note that in the special case where 6(x) = x, y (x, 1) = 0, and the coefficients do not
depend on the empirical measure (i.e., b(x, u) = b(x), and similarly for o, @, c, B),
w' reduces to (1.11) (with ¢ replaced by ¢ — k(n)?BT B/2). In the general case the
finite weighted empirical measures " (¢) take the form

Wiy =L ie <ej‘(§ en (X () 1™ () ds+ ¢ 7T (XD (), (5)) AW (s)+re () [ /3T<x;’<s>.,u"<s>>d3(s>> S

n i—1 1
(1.13)
where ¢, = ¢ — yTy/2 — k(n)*>BT B/2, which covers a broad family of interacting
particle models for Feynman—Kac distribution flows (cf. [11]). Our main result is
Theorem 2.2, which gives a large deviation principle for {z*} in C([0, T'] : M+ (R%))
under appropriate conditions on the coefficients and the initial conditions.

The LDP results herein have a somewhat similar flavor to those for two-scale
stochastic systems, see for example the recent works [19,27] which analyze the large
deviations behavior of reaction—diffusion equations with slow and fast time scales in a
particular limiting regime of the parameters, as well as [13] which considers multiple
regimes in a finite dimensional problem. As in the problems studied here, in two-
scale systems as well there are two natural parameters of interest: one (denoted as §)
representing the speed of the fast system and the other (denoted as ¢) representing the
magnitude of the noise in the slow system. Depending on the manner in which é and
¢ approach 0 in relation to each other, one expects different forms of large deviation
behavior. Specifically the papers [19,27] considered the regime §/,/¢ — 0, while
the other regimes, namely §/4/¢ — ¢ € (0, 00) and §//¢ — oo, were left open
and are expected to be more challenging. Although there are formal similarities with
the problem studied here, it is not immediately clear whether the methods developed
in the current paper can be directly used to study the harder regimes that were left
unaddressed in [19,27].

We now make some comments on proof techniques. For an LDP for u”" associ-
ated with the system in (1.1), the goal is to characterize the asymptotics of Laplace
functionals of the form on the left side of (3.4). Since 1" is a functional of individual
Brownian motions W; and the common Brownian motion B, using the variational
formula for exponential functionals of finite-dimensional Brownian motions [5], one
can give a stochastic control representation for the Laplace functional of interest (see
Theorem 3.1) that involves two types of controls. The first type, denoted as u], cap-
tures the deviations from the individual Brownian motions W; (one control for each i)
and the other type, denoted as v”, is associated with the common Brownian motion B.
The two types of controls are scaled differently in the representation, and the analysis
of this scaling, which depends on « (n), is key to understanding the different types of
large deviation behavior for various choices of « (n). In proving the large deviation
upper bound one needs to argue the convergence of the cost on the right side of (3.4)
associated with near optimal choices of control sequences and to characterize the lim-
its. For this, following [8], we consider certain augmented empirical measures Q" that
include, in addition to particle states, the associated controls and the driving individual
noises. The convergence of the costs (along subsequences) is shown by establishing
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the tightness of the collection (Q", v"). Tightness properties depend crucially on the
rate at which k (n) — 0, and the forms of the limit points under different conditions on
k (n) reveal the different types of large deviation behavior. Next step is to characterize
the form of the limit cost. This is done by establishing that the limit points of Q" solve
certain nonlinear controlled martingale problems. The controls arise from two sources:
One is from the limits of v (this is the control associated with the common noise), and
the other is from the second marginal of Q". This characterization leads to the forms
of rate functions described previously. In order to prove the lower bound one needs
to construct a suitable collection of controls for which the associated costs converge
to certain near optimal costs for the limiting stochastic control problems. This time
tightness is not enough as one needs to prove convergence of (augmented) empirical
measures to a specific limiting measure. The key step in the proof of the lower bound
is establishing uniqueness of weak solutions of stochastic differential equations asso-
ciated with certain controlled nonlinear Markov processes. Such results are given in
Lemmas 3.3 and 4.3. With such a uniqueness result one can then construct the desired
sequence of controls and controlled processes on certain infinite product path spaces
such that the associated state processes and costs converge in an appropriate manner.

Proof for large deviation asymptotics of Feynman—Kac measures as in (1.12) rely
on analyzing the properties of 8. One may attempt to deduce this result as a corollary of
large deviation results for (1.1) by first establishing an LDP for the empirical measure
of (Xf’(-), A?(-)). However, with this approach, the conditions needed appear to be
too restrictive [see Remark 2.2(a)]. We will instead analyze the weighted empirical
measure u” in (1.13) directly via variational representations for Laplace functionals
associated with p”*. We prove the result under two different types of conditions. The
first set of conditions requires in particular that y = 0 and 6 is a Lipschitz function
(e.g.,0(x) = x). When 6(x) = x, and y = 0 is violated, a large deviation principle is
not available even in the most elementary settings [see Remark 2.2(c)]. The second set
of conditions allows y to be more general but imposes logarithmic growth conditions
on6.

The paper is organized as follows: Section 2 introduces the models, gives our
precise assumptions, and presents the main results. In particular, Sect. 2.1 considers
the empirical measure problem, while Sect. 2.2 presents results for interacting particle
models for Feynman—Kac functionals. The first two sections consider the case where
the common noise intensity « (n) is of order n~ 12 andin Sect. 2.3 we present results
for other choices of k (n) (i.e., of larger or smaller order than n~1/2). Sections 3 through
5 contain the proofs of our main results. The two appendices contain proofs of some
auxiliary results.

1.1 Notation and Conventions

We will denote by C([0, T'] : ]Rd) the space of continuous functions from [0, 7] to
R, equipped with the sup-norm topology corresponding to the distance

AW, ¥2) = sup |ly1 (1) —va ()| for 1,92 € C(O0, T]1: RY).

0<t<T
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For a Polish space S, C(S) will denote the space of continuous functions from S into
R, and Cp(S) will denote the space of continuous and bounded functions from § into
R. We denote by L>([0, T'], R¥) the space of functions from [0, 7] into R¥ that are
square integrable with respect to Lebesgue measure. Let P(S) denote the space of all
probability measures on S equipped with the usual weak convergence topology. If S
is a product space of the form Sy x - - - x S, thenfor ® € P(S)andi =1, ..., k, we
denote by [@]; the ith marginal of ®, which is a probability measure on S;. Notations
[@lgy,...iy.forl <r <kand1 <i; <ip <--- < i, <k, will be interpreted in
a similar manner. Let M (S) denote the space of finite positive measures on S, also
with the topology of weak convergence. In particular, for y,,, y € M4(S), ¥ = v
under this topology if and only if for every f € Cp(S), [ fdy, — [ fdy. For
y € M (S) and a y-integrable function f : S — R, we will denote fs f(x)y(dx)
as (f, y). ck (R") [resp. Cf(Rd )] will denote the space of functions [resp. functions
with compact support] from R? to R that are continuously differentiable up to order
k. For a bounded map f : S — R, we denote sup, g | f(x)| as || flco-

We call a function I : § — [0, oo] a rate function if it has compact level sets,
i.e., foreach a € [0, 00), {x € § : I(x) < a} is compact in S. A collection {X}, },eN
of S-valued random variables is said to satisfy the Laplace principle on S with rate
Sunction I (and speed a(n) — o0) if for every F € Cp(S),

1
lim —— log E [e_“(”)F(X")] = — inf (F(0) +1(x)). (1.14)
xe

n—oo a(n)

The Laplace upper bound (with rate function I and speed a(n)) refers to the inequality
(for every F € Cp(S))

1
lim inf (—— log E [e—“("WXn)]) > inf (F(x) + 1 (x)),
n—00 a(n) xes

and the Laplace lower bound (with rate function I and speed a(n)) refers to the
complementary inequality

1
lim sup ——logE[e_“(”)F(X”)] < inf (F(x) + 1(x)).
n—o00 a(”l) xes

It is well known [12] that the Laplace principle (resp. Laplace upper bound, Laplace
lower bound) holds with rate function / (and speed a(n) — o0) if and only if the large
deviation principle (resp. large deviation upper bound, large deviation lower bound)
holds with rate function / (with the same speed function), where the large deviation
upper bound refers to the inequality

1
lim sup ——log P(X,, € F) < — inf I(x) for each closed F C S,
n— 00 a(”l) xeF
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the large deviation lower bound to the inequality
. 1 .
liminf ——log P(X,, € G) > — inf I(x) for each open G C S,
n—oo a(n) xeG

and the large deviation principle to the validity of both sets of inequalities. In view of
this equivalence, throughout this work we will only consider Laplace asymptotics.

2 Main Results

In this section we introduce the models of interest, state our precise assumptions, and
present the main results.

2.1 Diffusions Interacting Through the Empirical Distribution

Consider a filtered probability space (£2, F, P, {F;}) where the filtration satisfies the
usual conditions. Let {W;}?°, be aniid collection of m-dimensional Brownian motions
on this space. Also, let B be a k-dimensional Brownian motion that is independent of
the collection {W; }?il . We assume that, for every s, {W; (¢) — W;(s), B(t) — B(s),i >
1,t > s} is independent of F;, so that W; and B are {JF;}-martingales.

Consider, for n € N, a collection of stochastic processes {Xfl}l’.’:1 with sample
paths in C([0, T'] : RY) given by the system of equations in (1.1) where x : N — R
satisfies k (n) — 0 asn — o0, and b, o, and « are suitable coefficients.

We will make the following assumption on the initial conditions.

Condition 2.1 There exists & € P(R?) such that for all &y-integrable f : R¢ — R,
l n
im — m =
Jim_ Zl FO) = (f o)
=

Furthermore, sup,,- | %ZLI Ix? < oo.

We will require the coefficients b, o, and o to be Lipschitz continuous. In order to
state this condition precisely, we recall the bounded Lipschitz metric on the space
of measures. Recall that M (R?) denotes the space of positive measures on R¢
equipped with the weak topology. This topology can be metrized by the bounded
Lipschitz metric

dgL(vi,v2) = sup [{f,vi)—(f.v)l, vieMiRY), i=1,2,
feBL(RY)

where

BL(R‘]) = { fecC (]Rd) : I flloo <1 and f is Lipschitz with Lipschitz constant bounded by 1} .

The following is the main condition on the coefficients.
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Condition 2.2 The map b is Lipschitz and the maps o, o are bounded and Lipschitz
from R4 x M (R?) to RY, R4¥™ and Rk, respectively. Namely, there is a K €
(0, 00) such that for each x,y € R and ju, v € M+(Rd),

L lo (e, ) I* + lle(x, wI* < K2, and
2. lb(x, ) —b(y, )|+ llo (x, 1) — o (v, VI + lla(x, W) —ay, VI < K (lx -y
+ dBL (i, V)).

For Theorem 2.1 we can replace M (R9) with P(R?) in the above condition; however,
it is convenient to formulate the condition as above in order to have a common set of
conditions for Theorems 2.1 and 2.2. For the LDP we will assume in addition that the
diffusion coefficient o depends on the state of the system only through the empirical
measure:

Condition 2.3 For x € R? and p € M (RY), o (x, 1) = o ().

Under Condition 2.2 it follows by standard arguments that for each n there is a
unique pathwise solution of (1.1). Abusing notation, let u” be a random variable
with values in P(C([0, T] : R?)) defined as pu" = %Z?:l dxn. Note that u(s)
is the (random) marginal distribution at time instant s associated with w". We will
occasionally denote the map ¢ — " (¢), as ;" (-) which is viewed as a P(R?)-valued
stochastic process with continuous sample paths or, equivalently, a random variable
with values in C([0, T] : P(R?)).

Our first main result gives a large deviation principle for u” in P(C([0, T'] : R%)).
We begin by introducing the associated rate function. This function will be described
in terms of solutions to certain controlled McKean—Vlasov equations which we now
introduce. Recall the Polish spaces R and R of relaxed controls from the Introduction.

Given ¢ € L2([0,T] : R¥) and a continuous map v : [0,T] — PRY),
consider the controlled nonlinear SDE S [, v], on some filtered probability space
(.(_2, F , P, {.7:", 1), equipped with an m-dimensional .7:",-Br0wnian motion W:

dX(t) = b(X (1), v(t)) dt + <[

R

o (X (1), v(t))y pz(dy)> dr

Silg, v] = + o (X(1),v(1)dW (1) 2.1)
+ a(X (@), v(t))p(t) dt,
X(t) ~v(t), tel0,T], v(0)=é&,

where £ € P(RY) is as in Condition 2.1. In the above equation p is an R-valued
random variable such that p([0, t] x A) is F;-measurable for every A € B(R™) and
t €[0,T], and X is an }_‘,-adapted stochastic process with sample paths in C([0, T'] :
R?). The notation X (¢) ~ v(r) signifies that X (7) has probability distribution v(#),
i.e., PoX(t)~! = v(r). We note that S1[¢, v] is driven by two types of controls, the
control ¢ is a deterministic function, whereas p represents a random control in the
dynamics.
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A triple (X, p, W) that solves Si[g, v] for a given ¢ and v can be viewed as a
Z-valued random variable, where

ZI =X xRy xW, X =C([0,T]:RY), and W = C([0, T] : R™).

The distribution of (X, p, W) on Z; is an element of P(Z;) and is called a weak
solution of the controlled SDE S [, v]. Define

P(2y) = {@ € P(Z1) : Ep [/

||y||2p<dydr>} < oo},
R x[0,T]

where in the above display Eg denotes expectation on (21, B(Z;), @) and, abusing
notation, p is the second coordinate map on (2, B(Z))), i.e.,

plx,r,w)y=r, (x,r,w)e Z.

Note that, the above expectation can be written as

Eo [ / Iyl p(dy dr)} = / / IylI* r(dy dr) [@]2(dr).
R x[0,T] R1 JR™x[0,T]

For ©® € P(Z)), letve : [0, T] = P(R?) be defined as
vo()(B) = O {(x,r,w) € Z; :x(t) € B}, B e BR?Y).

Note that if ® is a weak solution of S;[¢, v], then v(t) = v (¢) forall ¢t € [0, T']. For
agiven ¢ € L2([0, T : R%), let £ [¢] denote the subset of P2 (Z1) given as

Eile] = {O® € P>(Z)) : O is a weak solution to S[¢, vel}. (2.2)

Then, the candidate rate function for the LDP for " is

1 1 (7
I (v) = inf { inf Eo [f/ 1% p(d dt)]+—/ 1) Zdt}, 2.3
1 perrnl o Loee o= %€ |2 oo, IylI* p(dy 2z ), le@l (2.3)

forv € P(X), where A € (0, 0c0) is introduced below.

The following is the first main result of this work. It gives an LDP in the case « (n)
is of the order n~!/2. Later in Sect. 2.3 we will consider the large deviation behavior
when « (r) is of smaller or higher order than n~'/2_ Part 1 below gives a law of large
numbers result, while part 2 establishes a large deviation principle. Denote the element
8i0y(dy) dt of R as r.

Theorem 2.1 Suppose that Conditions 2.1, 2.2 hold and that k (n) — 0 as n — oo.

1. There is a u* € P(X) such that " — u* in probability. Furthermore, u* can
be characterized as the first marginal [O]1 of ®, where © is the unique element
in P(2)) that is a weak solution of S1[0, ve] and satisfies [©]> = §o.
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2. Suppose in addition that Condition 2.3 is satisfied and that \/nik (n) — A € (0, 00).
Then, {1 }eN satisfies a large deviation principle on P (X)) with speed n and rate
function I.

Proof of Theorem 2.1 will be given in Sect. 3.

Remark 2.1 Since the map v — {t — v(r)} from P(X) to C([0, T] : P(RY)) is a
continuous map, we have by the contraction principle that " (-) regarded as a sequence
of random variables with values in C([0, T] : P(RY)) satisfies an LDP as well.

2.2 Interacting Particle Systems for Feynman-Kac Functionals

In this section we consider a setting where the interaction term is given in terms of a
weighted empirical measure of the states of the particles and where the weights are
governed by another system of stochastic equations. Let (2, F, P, {F;}), {W;}, B be
as in Sect. 2.1. Consider for n € N, a collection of stochastic processes {(X}', A?)}"_,
with sample paths in C([0, 7] : R? x R,.) given by the system of equations in (1.12).
Here6 : Ry — R4,k : N — R, ,andb, o, ¢, ¢, y, and B are suitable maps. Note that
w" () in this set of equations can also be represented as on the right side of (1.13). In
addition to Condition 2.2 on the coefficients, we will assume the following condition.

Condition 2.4 The maps c, y, B are bounded and Lipschitz from R? x M4 (R?) to R,
R™, and RX, respectively. Namely, there is a K € (0, 00) such that for each x, y € R?
and j, v € M, (R?),

L fleCe, il + Ny (e, i) 12 + 1B, 1> < K2, and
2. lleGe, ) — e Il +1ly (e, 1) —y o, W+ 1B, ) — B vl < K (Ix — vl
+dpL (1, v)).

The weights in the random measure " (¢) are determined through the map 6 on which
we make the following assumption.

Condition 2.5 Either one of the following hold:

(a) 0 € C*(Ry) and
sup 160" (x)x| + sup 0" (x)x?| < oo. (2.4)

xeR4 xeR4

(b) Thereisa L € (0, 00) such that |60(x) —0(y)| < L|x — y|forall x,y € Ry.

Condition 2.5(b) simply says that 6 is a Lipschitz function. It is easily checked that
under Condition 2.5(a), 6 is Lipschitz as well. The latter condition, in addition, implies
an (at most) logarithmic growth on 6.

Under Conditions 2.2, 2.4, and 2.5, there is a unique pathwise solution to the system
of equations in (1.12). Although the proof is standard, we provide a sketch in Sect. 7.
The object of interest is the stochastic process {u" (¢)};c[0,7] Which is regarded as a
random variable with values in C([0, T'] : M+(]R‘1 )). Our second main result gives
a large deviation principle for ©”(-) in this path space. We introduce two additional
conditions that will be needed for this result. For the initial values {(a], x}')} in (1.12)
we will assume the following in addition to Condition 2.1:
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Condition 2.6 There exists ng € P(R? x R.) such that for all ny-integrable g -
RY xRy — R,

lim —Zg(x, Laf') = (g, m0).

n—oon

Furthermore,

sup — Z(a")2<oo and sup — Z(loga”) < 0.

n>11 n>11

Note that when both Conditions 2.1 and 2.6 hold, we have [no]; = &y, where [n9]; is
the marginal distribution of 79 on R¥.

Finally, for the large deviations result, in addition to Condition 2.3, we will assume
that the diffusion coefficient y depends on the state of the system only through the
empirical measure, namely

Condition 2.7 For x € R? and i € M (RY), y(x, n) = y(w).

We now present the rate function that will govern the LDP for {u"(-)}. Given ¢ €
L*([0,T]: R¥y and v € C([0, T : M+(Rd)) as in Sect. 2.1, consider the controlled
nonlinear SDE S)[¢, v] given on some filtered probability space (S_Z, F., P, {]_-',}),
equipped with an m-dimensional ;-Brownian motion W'

dX (1) = b(X (1), v(r)) dt + (/ o (X (1), v(1)y ,ot(dy)> dr 4+ o (X (1), v(1)) dW (1)
R

+ a(X (1), v()e(t) dt,

SAeVI=N 4A0) = AeR (), v di + ( f A0y (X@), vy px(dy)) d
]Rm

+ A0y X0, v@) dW (@) + ANBT (X (0). v()e () dr,
(f () = E0(A@) f(X@)] forevery f € Co@RT), 1 €[0T, (X(0), A©0)) ~ np.
2.5
where E denotes expectation with respect to P. Here p is as in Sect. 2.1, and X
and A are F;-adapted stochastic processes with sample paths in C([0, T] : Rd) and
C([0, T] : Ry), respectively, such that

E|: sup 9(A(t))i| < 00
0<t<T

A quadruple (X, A, p, W) that solves Sp[g, v] is a Z;-valued random variable,
where

Z=XxYxRixW, Y=C(0,T]:R;),

and X', W, R are as before. The distribution of ()_( LA, p, W) on Z; is an element of
P(Z,) and is called a weak solution of Sp[¢, v]. Let
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Pa(2y) = {@ € P(22): Eo U}; . 1Y% p(dy df)} < o0, Eg [ sup G(A(t))} < OO} .

" x [0, 0<t<T

Note that if ® € P,(Z;), then vg € C([0, T] : /\/l+(]Rd)), where vg is defined as
(f.vo®) = Eo [0(A@) f(X@)] for feCyRY), 1€[0,T],  (26)

and if such a ® is a weak solution of S>[¢, v], then, forevery r € [0, T], v(t) = ve (1).
Given ¢ € L2([0, T] : R?), let

&le]l ={O € P2(2,) : O is a weak solution to Sa[@, ve ).

The candidate rate function is given as

1 1 T
inf inf Eo |- 12 p(d dt}+—/ (t Zdt}, 2.7
%Lz(mﬂm{@E&W@:v 0[2 /R op PP e+ 2 [Cieol 2.7)

forv € C([0, T : M+(Rd)). The following is the second main result of this work.
As in Sect. 2.1 here we only consider the case where « (1) is of order n~!/2. Values
of «(n) of higher or lower order than n~!/? will be considered in Sect. 2.3.

Once more, the first part of the theorem below gives a law of large numbers (LLN)
and the second part establishes an LDP. The proof is given in Sect. 4.

Theorem 2.2 Suppose that Conditions 2.1,2.2,2.4,2.5, and 2.6 hold and that k (n) —
Oasn — oo.

1. There is a u* € C([0,T] : My (R%)) such that " — * in probability. Fur-
thermore, u* can be characterized as the map t — vg(t), where © is the unique
element in P (2,) that is a weak solution of 53[0, ve] and satisfies [@]3 = ;.

2. Suppose that o and y satisfy Conditions 2.3 and 2.7, and either (i) 0 satisfies
Condition 2.5(a), or (ii) 0 satisfies Condition 2.5(b) and y = 0. Also suppose that
Jnk(n) — A € (0,00). Then, {1"},en Satisfies a large deviation principle on
C([0, T1 : M(R?)) with speed n and rate function I».

Remark 2.2 (a) Consider the empirical measure of { X7 (s), A¥(s)} on RY x R, given
as

L) =

A~ - 1 :
M) = Y B (x4 )

i=1

Then, the system in Eq. (1.12) can be written in form of a system as in (1.1) in
which X7 is replaced by the pair (X}, A"). With such a rewriting, one may attempt
to deduce Theorem 2.2 as a corollary of Theorem 2.1. However, with this refor-
mulation, the conditions needed for Theorem 2.1 are too restrictive. In particular,
conditions assumed in the statement of Theorem 2.2 will, in general, not imply
the conditions of Theorem 2.1 (with the new coefficients obtained through the
reformulation). Specifically, requiring Conditions 2.2 and 2.3 for the reformulated
system will say that 6 is bounded and y = 0.
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(b) A minor modification of the proof of Theorem 2.2 shows in fact that the joint
empirical measure % Z?:] 5(x;’,A;') satisfies an LDP on P(C([0, T] : R? x R,)).
Note that since & may be unbounded, the map ® — vg is not continuous (in fact
in general not even well defined) on all of P(C([0, T'] : R? x R4)) and so one
cannot deduce an LDP for i from that of the joint empirical measure by a direct
application of the contraction principle. In any case, the amount of work needed
to establish the LDP for " is about the same as that needed for the LDP for the
joint empirical measure.

(c) In Theorem 2.2, for the case where 0 satisfies Condition 2.5(b), we require that
y = 0. The reason for this restrictive requirement on y can be seen as follows.
Consider the simplest example of a 6 satisfying Condition 2.5(b), namely 6 (x) =
x. Consider also the simplest form of a nonzero y in (1.12), namely y (x, n) =
y € R"™\{0}. Also suppose that 8 = 0, c(x, u) = ¢ € R, and that a]' = 1 for all
i, n. Then, the second set of equations in (1.12) reduces to

dA? (1) = cAl (1) di + y Al (1) dW; (1), AM(O)=1, 1<i<n.

Namely,

2
Al(r) = exp{(c — 7) t+ )/W,-(t)} )

In this case, an LDP for u" (-) will in particular say (by the contraction principle)
that the sequence {u"* (1) (R4 )} satisfies an LDP. However, the latter is just an LDP
for the empirical mean of iid random variables, {Af’(l)}, namely % Z?:l A? (1),
which is the subject of Cramér’s theorem. However, the key condition for this the-
orem, namely the finiteness of the moment generating function in a neighborhood
of the origin, fails to hold in this case.

2.3 Intensity of the Common Noise

The LDP in Theorems 2.1 and 2.2 are established under the condition that the common
noise intensity « (n) is O (1/+/n). If this intensity approaches 0 at a different rate, the
form of the rate function is expected to be different. In this section we discuss such
results. We will consider two cases: Case I: \/nk (n) — 0, and Case I1: /nk (n) — oo.
Let & [¢] for a given ¢ € L2([O, T]: Rk) be as in Sect. 2.1. In order to define the
rate function in the second case, we consider, for a ¢ as above and a v € C([0, T'] :
P(Rd)), the controlled nonlinear SDE 31 [¢, v], on some filtered probability space
(fz, F, P, {.7:',}), equipped with a m-dimensional f}—Brownian motion W:

dX (1) = b(X (1), v(t)) dt + o (X (1), v(1)) dW (1) + a(X (1), v(1))p(t) dt,

Silg, vl = { _
X(@) ~v(), tel[0,T], v(0)=E&.

(2.8)

The difference between the above equation and the equation in (2.1) is the absence

of the control term p; on the right side of (2.8). The distribution, on X x W, of a pair

()_( , W) that solves (2.8) for a given ¢ and v will be called a weak solution of 5’1 [p, v].
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Fora ¢ € L%([0, T] : R%), let
Eile) = {@ € P(X x W) : @ is a weak solution to &1 [g, 1@]} . 2.9)

For v € P(C([0, T] : R?)), we denote the map ¢ — v(f), once more as v. The
following result gives an LDP when « (n) is different from O (1/4/n). Recall that we
assume « (n) — 0 as n — o0. Also recall the space X = C([0, T'] : R%).

Theorem 2.3 Let {u"},en be as in Sect. 2.1. Suppose that Conditions 2.1 and 2.2
hold.

(i) Suppose in addition that Condition 2.3 is satisfied. If /nik(n) — 0 asn — oo,
then {i"'} satisfies an LDP on 'P(X) with speed n and rate function 11 o given as

I 1
o= it ke |:_/ > p(d dt)} , v ePWX).
OcE[010]1=v 2 Jam o Iyl= p(dy
(2.10)

(i) If /nk(n) — oo asn — 00, then {u"} satisfies an LDP on P(X) with speed
i (n)~2 and rate function I 1.oo given as

T
I1.0o(v) = inf { inf 1/ ||¢(r)||2dz}, Ve PX).
0

@eL?([0,TIRN) | o0& [p):[@]1=v
2.11)

The proof of Theorem 2.3 is very similar to that of Theorem 2.1, and therefore, we
will only provide a sketch and leave the details to the reader. This sketch is given in
Sect. 5.

Remark 2.3 Consider the special case discussed in the Introduction [see (1.7)] in which
the interaction only comes through the common Brownian motion. For this special
case the results in Theorems 2.1 and 2.3 (by some minor proof modifications) say
the following. Suppose that the coefficients b, o and « in (1.7) are Lipschitz. Also,
suppose first that \/nk (n) — A € (0, 00). Then, {1"} as introduced in (1.8) satisfies
an LDP in P(X) with speed n and rate function / defined in (1.9). If \/nx (n) — 0,
then {1} satisfies an LDP with speed n and rate function I 1,0 as in (2.10) and where
&1[]1 is as introduced below (1.8). Finally, when +/nk (n) — oo, then {1} satisfies
an LDP with speed « (n) 2 and rate function /, 1,00 given simply as

- . 1 T )
I1,00(v) = inf —/ oI~ dz ¢,
¢ 2 0

where the infimum is taken over all ¢ € L2([0, T'] : R¥) such that the solution {X} of
the controlled SDE

t t t

X(t) = x + / b(X(s)) ds + / o (X(s)) dW(s) + / a(X(s)e(s)ds, 1e0,T],
0 0 0

has probability law v.
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One can also give an analogue of Theorem 2.3 for Feynman—Kac weighted measures
of the form in Sect. 2.2. We state such a result and leave proof details to the reader.

Consider, fora ¢ € L?>([0,T]:R¥yandav e C([0, T] : M+(Rd)) the controlled
nonlinear SDE S, [, v], on some filtered probability space (£2, F, P, {F;}), equipped
with a m-dimensional J;-Brownian motion W:

dX (1) = b(X(r), v(1)) dt + o (X (1), v(t)) AW (1) + (X (1), v())@(r) dt,

Slg. vl = dA(1) = ADc(X (@), vt dt + Ay T (X (@), v(1) dW (1) + AN BT (X(0), v(1))p(r) dt,
(f.v() = E[0(A() f(X ()] forevery f € Cy[RY), 1€[0,T], (X(0), A(0)) ~ 1o,
(2.12)

where E denotes expectation with respect to P. The distribution, on X x Y x W,
of (X, A, W) that solves (2.12) for a given ¢ and v will be called a weak solution of
Slp, v]. Forag € L2([0, T] : RF), let

52[(,0] = {(H) e P(X x Y x W) : ® is a weak solution to 5’2[<p, 1@]} .

Theorem 2.4 Let {iu"},,ery be as in Sect. 2.2. Suppose that Conditions 2.1,2.2,2.3,2.4,
2.6, and 2.7 hold. Also suppose that either (i) 0 satisfies Condition 2.5(a), or (ii) 0
satisfies Condition 2.5(b) and y = 0.

(i) If /nk(n) = 0asn — oo, then {"} satisfies an LDP on C([0, T1] : M (RYY)
with speed n and rate function I o given as
~ . . 1 2 . d
bo(v) = (~)e£21[18]f:uw=u Ee¢ [2 /RWX[O‘“ lyll” p(dy dt)] , vecl(o,T]: My@RY)).
(2.13)

(i) If /nk(n) — oo asn — oo, then {,u”} satisfies an LDP on C([0, T] : M, (R%))
with speed k (n)~ ~2 and rate function 12 oo glven as

T
D.oo(v) = inf { inf %/0 ||<p(t)||2dz}, v ec(0,T]: ML(RY)).

WELZ([O TIRY) [ ©eéilp)ve=v
(2.14)

3 Proof of Theorem 2.1

Part 1 follows by a standard argument (cf. [29]); however, for completeness we give
a sketch in Sect. 6. We now consider part 2.

From the well known equivalence between an LDP and a Laplace principle (cf.
[12]) it suffices to show that the function /1 introduced in (2.3) is a rate function and
for every F' € Cp(P(X)) the following upper and lower bounds are satisfied.

Laplace Upper Bound

hmlnf——logE[ *"FW")] = dnf [FO)+ )T, 3.1)
ve

n—00
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Laplace Lower Bound

1 n
limsup —— log E [e_’lF(“ )] <

n—oo n ve

i7g1(fX) [F(v) + Li(»]. (3.2

The upper bound is shown in Sect. 3.1 and the lower bound is treated in Sect. 3.2.
The upper bound proof does not require Condition 2.3 and we present an argument
assuming only Conditions 2.1 and 2.2. The proof of the statement that /; is a rate
function is very similar to that of the upper bound and thus we only give a brief sketch
which appears in Sect. 3.3. Proofs rely on a certain stochastic control representation
for the Laplace functional on the left side of (3.1) and (3.2) which we now present.

Given some filtered probability space (£2,F, P, {F;}) that supports iid m-
dimensional Brownian motions {W;}{°, and a k-dimensional Brownian motion B
that is independent of the collection {W;}?°, and such that for every s, {W;(¢) —
Wi(s), B(t) — B(s),i > 1,t > s} is independent of Fy, denote by AL the class of
Fi-progressively measurable processes u : [0, T] x £2 — R™" such that

T
E [/ ||u(s)||2dsi| < 0.
0

Foru € A", we will write u = (uy, . .., u,), where u; is the ith component of u and
is m-dimensional. For M € (0, 00), let

T
Sy = {v e L*([0, T]: RN : f lo(s)||?ds < M}.
0

This space will be equipped with the weak topology under which it is a compact space.
Note that

J Sm=L%q0.71: RY.
MeN

Also let

Aﬁ,l = {Progressively measurable R¥-valued processes v such that v € Sy, P-a.s. } ,
and

~ T
A% = {Progressively measurable R¥ -valued processes v such that £ |:/ Hv(s)ll2 ds:| < oo} .
0
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For (u,v) € A" x A2, consider the controlled analogue of the system in (1.1),
driven by controls (u, v):

dX} (1) = b(X] (1), 1" (1) dr + o (X} (1), @" (0)ui (1) dr + (X} (1), 7" (1)v(1) 1
+ o (X} (1), 1" (1)) dW; (1) + k (M (X (1), 1" (1)) dB(1),
)_(f'(O) =x', 1<i<n,

(3.3)
where 1" (t) = % >_i=18%n (- Using the Lipschitz and boundedness conditions on the
coefficients it is easy to check that the above system of equations has a unique solution.
We also consider the empirical measure " = }l Y iy 8%» which is a P(X)-valued
random variable. A form of the following representation was first shown in [5]. The
representation given below that allows for an arbitrary filtered probability space on
the right side was given in [7] (see also [8]). All expectations will be denoted by E
unless specified otherwise.

Theorem 3.1 Forany F € Cp(P (X)) and for eachn € N,
1 n
1 E[ —nF(u >]
" ogE |e
1 n T ) 1 T )
= inf E|— ui(t dt+—/ v~ dr+F@") | .
wnd®e o E| 3 ; /0 lui I di + 722 ) vl (")
(3.4)
Furthermore, for every § > 0, there is an M < oo such that for each n € N,
_ l —nF(u'")
o log E [e ]

1 n T 1 T
> inf E —Z/ g (D)) dt + / lv@?dt + F(@") | —s. (3.5)
2)1 iz 0 0

T woweAlnx Al 2ni (n)?

We now use the above result to complete the proof of (3.1) and (3.2).

3.1 Laplace Upper Bound

Throughout this section we assume that Conditions 2.1 and 2.2 are satisfied. As noted
previously, the upper bound proof does not require Condition 2.3 and so this condition
will not be used in this section.

Fix F € Cp(P(X)) and § € (0, 1). From Theorem 3.1 there is an M < o0 such
that for each n € N, one can find (u”, v") € A" x Aﬁ,, such that

_l log E [e—nF(u")]
n

1 n T 1 T
>E|—) "(1))) de / " de + F(") | -6,
> |:2n 1—1/0 [l ()1~ dr + e Jo o™~ dr + F (™)

(3.6)
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where 1" = % i 85%n and )_(f’ are given by (3.3) (replacing (u, v) with (1", v")).
We will next show that

1 n T l T
liminf E | — m())|* dr —/ ") dr + F(R"
imin [%2/0 I O di + 22205 | I O dr 4+ PR

> inf inf 3.7)
9eL2([0,T):Rk) O l¢]

1 ) 1 [T ) §
(E@ [5 /Rmxm Iyl p(dydt)]+m/0 o)l dr+F<[011)>.

Since § € (0, 1) is arbitrary, the inequality in (3.1) is immediate from (3.7) on using
the definition of 7 in (2.3).
We now prove (3.7). From (3.6) it follows that

1 < [T 1 T
L HOle / "()|1>de | < 2||F 1. 3.8
sup |:2n ;/0 [z (D] + 2 J, v ()| <2|Flloo+1. (3.8)

neN

The following lemma shows that under such a uniform boundedness property, one has
the tightness of certain key occupation measures.

Lemma 3.1 Suppose for some M € (0,00), {(u", v")},en is a sequence with
", v e Abr X.A%,[foreach n, and suppose {u" },eN satisfies, for some L € (0, 00),

n T
sup E B Zfo ||ufl(t)||2dt:| <L. (3.9)
i=1

neN

Define P(Z1)-valued random variables

Q"(AxRxC)= %ZS@(A)SM(R)SW,.(C), Ax RxCeB(Z), (3.10)
i=1

where )_(;’ is defined as in (3.3) (replacing (u, v) with (u”, v")), and
p(E x B) = / BM:;(I)(E) dr, E € BR™), B € B([0,T])). (3.11)
B

Then, {(Q", vV")},eN is tight as a sequence of P(Z1) x Sy-valued random variables.

Proof Since Sj; is compact, tightness of {v"} is immediate. The third marginals of
Q" are clearly tight since W; are iid. The first marginal of Q", namely [Q"];, equals
. For each n let y" = E[u"]. For tightness of {{"}, N, it suffices to prove that the
family {y"},en of measures on X is relatively compact.

@ Springer



Journal of Theoretical Probability

By using the growth properties on the coefficients it follows that, for some ¢ €
(0,0)and alln € N,

T
E [ sup IIX?(S)IIZ] =c <1 + 1P+ E [/ IIM?(S)IIZdSD : (3.12)
0<s<T 0

Thus,

1 & _
sup /X sup ||w(t>||2dy”(w)=sup—ZE[ sup ||X;’(r>||2}

neNJAX 0<r<T neN 7 0<t<T
1 n
2
<cisup [ 14 => x|
neN e

n T
+E EZ/ ||u:?<s>||2dsD<oo, (3.13)
i=170

where the last inequality is from (3.9) and Condition 2.1.
Next note that for any € € (0, 1) and 7 € [0, T — €],

2

e _
/ b(X} (s), 1" (s)) ds
t

IX1(t+e) — X'DI* < 2 <‘

tte
+ ‘ / o (X7 (s), 1" (s)u? (s)ds
t

t+e
H [ @ o6 b
t

e
+ f o (R1(s), @"(5)) Wi (s)
t

t+e€ _
Fi(ny? / (X" (s), " () dB(s)
t

2)
Thus for any stopping time t taking values in [0, T — €], using the Cauchy—Schwarz
inequality, the linear growth of b, and the boundedness of & and o,

T
E[|%i@+ e - Xr@|*] = e (1 +E [ sup ||5f;’<s)|2} +E [/ ||u:-’<s)||2ds]) :
0

0<s<T

where the constant ¢3 does not depend on n, €, or the stopping time 7. Denoting by 7¢
the collection of all stopping times 7, with respect to the canonical filtration generated
by the coordinate process on X, taking values in [0, T — €], we now have
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sup/ lp(z +€) — o> dy" (¢)
el J X

l & _ 1 [T
< c3e (1+;ZE[ sup ||X?(s)||2} +E [;Z/ ||u;’<s>||2ds}>
i=1 i=170

0<s<T

0<t<T

< c3€ (1 + /X sup |1y (0)* dy" () +L> :
Using (3.13) in the above display,

lim sup sup sup /X lp(z +€) — o()[1* dy"(¢) = 0.

e—>0 neNrteT,

Thus from the Aldous—Kurtz tightness criterion, we have that the collection y” is
relatively compact which, as noted previously, gives the tightness of the collection
{n"} ={[Q"I1}.

Finally we consider the second marginals of Q". Define
g(r) = f IylI?r(dydn), r € Ry
R™ x[0,T]

We note that g has compact level sets. Indeed, forc € Ry, let L, = {r e Ry : g(r) <
c} denote the corresponding level set. By Chebyshev’s inequality,

d g(r) c
sup r {yeR :||y||>M}><[O,T] <sup &< S o
reL, ( ) relL, M? M?

as M — oo. This shows that L. is relatively compact in R. Let {r,} C L. be a
sequence that converges in R to some r*. By Fatou’s lemma, g(r*) < ¢, and so
r* € L.. Also, by the uniform integrability that follows from

SUP/ 111> ra(dy ) = sup g(ra) < c,
R x[0,T]

n>1 n>1

the moments of r,, also converge to the moments of r*. Thus, r, — r* in R, estab-
lishing compactness of L. in R1. Let G : P(R1) — [0, oo] be given as

G@O) = / g(r)o(dr).
Ri

Then, G is a tightness function on P (R ) (namely it has relatively compact level sets),
and thus to establish the tightness of the second marginals {[ Q" ],}, it suffices to show
that

sup E[G([Q"]2)] < oo. (3.14)

n>1
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Foreachn e N,

1 n
EIG(Q"h)] = E UR 8() [Q"]z(dr)] = E [; >
! i=1
=E 1i/T luf @)% de | < L.
nigh -

This proves (3.14) and completes the proof of the tightness of {[Q"]»}. The result
follows. O

IylI* of (dy dt)}
mx[0,T]

The next lemma characterizes the weak limit points of the sequence (Q”, v").
Recall the collection & [¢] from (2.2).

Lemma 3.2 Suppose, for some M € (0,00), {(u",v")},eN is a sequence with
", v e AV x .A%,, for each n, and such that {u"},cn satisfies (3.9) with some
L € (0, 00). Let Q" be defined as in Lemma 3.1. If (Q", v") converges in distribution,
along some subsequence, to (Q, v), then Q € &E([v] a.s.

Proof Let (Q, v) be a weak limit point of (Q", v") given on some probability space
(2%, F*, P*). Note that by Fatou’s lemma,

E* [ f / IylI* r(dy dr) [Q]z(dr)]
Ri mx[0,T]

1 n T
< liminf E [— Z/ lu? (1)1 dt:| <L, (3.15)

Thus, Q € P>(Z1), P*-a.s. Also, since fOT lv(s)|2ds < M, v € L%([0,T] : RK)
P*-a.s. To complete the proof, we need to argue that for P*-a.e. w € 2%, Q(w) is a
weak solution to S1[v(w), Vo(w)l-

Denote the canonical coordinate variables on Z| by (z, r, w). By Condition 2.1,
[0"]10(z(0))"! — & weakly, which shows that, for P*-a.e. w, under Q (w), z(0) has
distribution &y. Denote by {H;}o<;<r the canonical filtration on (21, B(Z)), namely

H, = o{z(s), w(s), r(A x [0, 5]), A € BR™), s <t}. (3.16)

For f € CCZ(Rd x R™), ¢ € L?([0, T] : R¥), and ©® € P(Z}), consider the process
{M?w(t)}of,ST defined on the probability space (21, B(Z}), ®) by

M (¢, (2, r,w) = f (1), w(®) = £(2(0).0)
t
_ o LY, s(dy)d
/0 me O (F)(2(s), . w(s)) r(dy) ds (3.17)

t
—'/0 {a(z(s), vo (s))9(s), Vi f(z(s), w(s))) ds,
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where

LY (f)(x, y,w) = (blx, ve(5)) + 0 (x, ve(5))y, Vo f (x, w))

d 2 m a2
1 . 92 f 1 o 32f
+ 3 ~Z:1(UG )1y o D) g (o w) + §j§la—wi<x,w)
JoJ = =

d 2

> ojjr(x. v (s))

1j/=1

+

J

, 3.18
oy ) (3.18)

for x € R? and y,w € R™ Let, for B € (0, 00), g : R — R™ be such that ¢ is
a continuous function with compact support satisfying ¢p(y) = y for ||y|| < B and
eI < Iyl + 1 for every y € R™. It will be convenient to also consider, along
with Ef) , the operator ES@’B which is defined by replacing y on the right side of (3.18)
with £5(y). Similarly, define Mﬁ . by replacing £ in (3.17) with £

It suffices to show that for each f € Cf(Rd x R™), any time instants 0 < fy <
t; < T, and any ¥ € Cp(2)) that is measurable with respect to the sigma field H,,
we have,

Eow) [w (Mjggagg,)(m - Mjgg‘zi,)(to))] —0 for Prae.we Q2% (3.19)

In the rest of the proof we suppress w from the notation. Fix a choice of (¢, t1, ¥, f)
and define @ : P(Z1) x Syy — R by

(O, ¢) = Eo [qf (Mj:{w(tl) - M(?w(to)ﬂ . (3.20)

Also, forevery B € (0, 00), define @ p by replacing M.}(Z)’ o with M?”(pB in the definition
of @. We will now show that (a) forevery B € (0, 00), @ p is abounded and continuous
maponP(Z1) xSy, (b)sup, E*|@p(Q", v")—®(Q",v")| — Oand E*|Pp(Q, v)—
®(Q,v)| > 0as B — 00, and (c) (0", v") — 0 in probability as n — oco. The
statement in (3.19) is an immediate consequence of (a)—(c).

We first show (a). Let (@, ¢,) — (O, ¢) in P(Z1) x Sy as n — oo. Note that
this means fOT<¢,,(s) — @(s), h(s))ds — O forall h € L%([0, T] : R¥). Thus,

|¢B(@v (pl‘l) - (pB(@s (p)l

n
< W oo | [ {a(0) 106 0n(5) = ¢(5). Vel G0). w) ds

fo

T
— Wlocko | [ 0109 (006 =0(5)). 07 (61, v () Ve F(2(5), w(5D) ds
—- 0 (3.21)

as n — 00, where the last convergence follows from the dominated convergence
theorem upon observing that h(-) = ol (z(), Vo ( NV f(z(), w(-)14,41() s in
L([0, T : ]Rk). Next note that
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sup |Eo, [ (ML) - ME P @w)]
@eSy i

—Eo [w : (M?_”f (1) — MOE (to)):H -0 (3.22)

as n — oo. This convergence is a consequence of the following facts: (i) Continuity
and boundedness of the map (z, 7, w) — f(z(t), w(t)) — fot Jrm LB (), y,
w(s)) rs(dy) ds, (ii) the continuity and boundedness of the map (z, w) +— al (z(s),
ve ($))Vy f(z(s), w(s)), (iii) the property that supgcg,, fOT l@(s)]?ds < M, and

Cauchy—Schwarz inequality. Next, for some c¢; € (0, co) (possibly depending on
B),andallt € [0, T], ¢ € Sy

‘M%B(t) - M@’B(t)‘

1@
T
<1
0 Jrm

T
+/O (e (z(5), ve, (5)) — a(z(s), vo ())@(s), Vi f (2(s), w(s)))| ds

1/2

LB E(s), v w(s) = L7 F ()6, v, w(s))

rs(dy)ds

T
<e ( /0 dsL (ve, (5), V6 (5))? ds)

Since, for every s € [0, T'], vp, (s) — Ve (s), we now have

sup |Eo, [@ - (M%) - M§%P @) ]
veSM

_Ee, [w : (MJ%B(II) — Mj:ff(zo))]’ -0 (3.23)
as n — o0o. Combining (3.22) and (3.23)

sup [@p(@n, 9) — Pp(O,9)| - 0
oSy

as n — oo. Together with (3.21), the above display completes the proof of (a).
In order to see (b), note that, for some ¢; € (0, 00), and every n € N,

dl

E|®p(Q",v") — @(Q", v")|

T
<cFE |:EQn |:/
1 & OT
= 0F [7, ; fo llult(s) — s“s(u,”(s))llds]
4er(L +T)

n T
<2 B gl /0 21} )1l + 1)||u?(s)||ds} =—5 - 06

/ (v — £5() re(dy)
Rm
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The first statement in (b) is now immediate. The second statement in (b) is shown
similarly by using (3.15).
Finally we consider (c). By the definition of Q" and since vgn (s) = " (s),

Q0" v")
= Egr [w (M) = MP,,0) ]

1 & _ n _ 0 _
=~ YW o Wi - (M (R ol W) = M (0. (X o W)
i=1
I~ _ i}
= =~ D W o W) - (FRP ). Wit) = £(X (10). Wito)
i=1

1 . _
- / L2 ()X (s), u (s), Wi(s)) ds
0]

1 _ _
- / (o (R (s), A ()" (), Vi £ (R (5), Wi (5)) ds) ,

fo

By It6’s formula, for each i, a.s.

FXE(t), Wi(t) — f(X!(t0), Wi(t0))
f n =

_ / LO(F)ED(s), u(5), Wis)) ds
o

141 _ _
+f (e (X7 (). @" ()" (), Vi f (X[ (5), Wi(s))) ds

fo

5l _ _
+ / [Vief (X[ (s). Wi (S))]T o (X} (s), " (s)) dW;(s)

]

151 _
+ / [V £ (X2 (s), Wets)]" dWis)

fo
1 _ _
+K(n)f [Vif (X[ (s), Wi(S))]Ta(X?(S), " (s)) dB(s)
to

/c(n)2

T3

1 _ _
[ (e 6D DR Wits) .
0]

Writing ¥/" = lll()_(;’, o, W;), we then have

1 g _ _
@(Q", V") = - Z Wi”/ [Vef(X](s), Wi(s))]T o (X} (s), 1" (s)) dW;(s)
i=1 fo

1 d -
+ ;Zw/ [Va (X2 ), Wis))]" dWi(s) + T,
i=1 fo
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where using the fact that ¥ (n) — 0 as n — oo, we have that 7" — 0 in probability
asn — oo.

Denote the first two terms on the right side of above display as Jnl and an, respec-
tively. Using the boundedness of ¥/", o, V. f, the independence of the W, the fact that
Wi” are H;,-measurable, and Itd’s isometry, E[(Jnl)2] < c3/n for some c3 € (0, o0)
and all n € N. Thus, J! — 0 in probability as n — oo. Similarly, an — 0 in prob-
ability as n — oo. Combining the above observations we have that @ (Q", v"*) — 0
in probability, completing the proof of (c) and therefore of the lemma. O

Finally we complete the proof of the Laplace upper bound (3.1) by proving (3.7).
By the definition of Q",

1 n T ; 5 1 T ., 5 .
E [%;/(‘) fluz @)l dl—i—m/o [v" @) |17 dt + F (i ):|

1
= E[/ (5/ ||y||2r<dydr>) [Q"]2(dr)
R R™ x[0,T]

T
n 2 n
+—2n/c(n)2/0 [V ()7 dt + F([Q ]1)]

Recall the uniform bound (3.8). Then from Lemmas 3.1 and 3.2, (Q", v") is tight and
if (Q, v) is a weak limit point, then Q € &[v] a.s. Assume without loss of generality

that (Q", v") — (Q, v) along the full sequence. Then by Fatou’s lemma and since

Jnk(n) = A,
liminf £ | ifT Il @))|* dt + LI /T W @)% dt + F (™)
n—00 2n = Jo ! 2nk ()2 Jo

1 1 (T
>E / (*/ I\yl\zr(dydt)> [Ql2(dr) + j/ @)1 dr + F([Q11)
R \2 JrRmx[0,T] 2X= Jo

. . 1 1 T
> it it (Ee [f/ ||y\|2p<dydt)] 5 [ oo+ Faen).
peL2([0,T]:Rk) @& [¢] 2 JrRmx[0,1] 2x= Jo

where the last inequality uses the fact that Q € &£;[v] a.s. This completes the proof of
the Laplace upper bound. O

3.2 Laplace Lower Bound

Throughout this section we assume that Conditions 2.1, 2.2, and 2.3 are satisfied. Fix
e>0and F € Cp(P(X)). Choose a ¢ € L>([0, T] : R¥) and a ® € &[¢] such that

1
SEo [ / IyI2(dy dr)}
R x[0,T]

1 ! 2 .
+ ﬁ/o lo®|~dr + F([®])) < ve%l(f)c) [Fw)+ L(n]+e (3.25)
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We will show that there is an M € (0, co) and a sequence (", v") with u" € A"
and V" € .Ajzw constructed on some filtered probability space such that

1 n T 1 T
li E|— n(1)||% dt —/ )||>dt + F ("
im sup |:2”§/0 luf O dr + 22 | " @1 dr + F (@)

n—o0

, (3.26)
1 1
< -~Eg 2 ddt}—i——/ D> dt + F([O1).

. O[/Rmx[o,n IPp@yan|+ 55 [ Ieol 1o

The Laplace lower bound (3.2) is then immediate from Theorem 3.1 on noting that
& > (is arbitrary. The key ingredient in the proof of (3.26) is the following uniqueness
result. Define the map 9 : Z; — Z? =RY x Ry x Was 9 (z, 7, w) = (z(0), , w).
For ® € P(Z)), let ©y = O o ¥ ! be the probability measure on Zf induced by ®
under ¥.

We will say that weak uniqueness holds for (2.1) if, for any given ¢ € L>([0, T] :
R¥yand ©, ©@ e &[], whenever @él) = G)éz), we have that @) = @@,

Lemma 3.3 Weak uniqueness holds for (2.1).

Proof Fix ¢ € L2([0,T]: Ry and ©V, 0@ ¢ & [¢]. Suppose that (H)él) = @52) =
A. Note that ® @, i = 1,2 can be disintegrated as

eDdx, dr, dw) = O, w, xg, dx) A(dxg, dr, dw).
Consider Z; = X x X x R? x Ry x W. Define & € P(Z)) as

(:)(dx(]), dx(z), dxo, dr, dw)
= @(1)(}", w, X, dx(l))@(z)(r, w, X, dx(z))A(dxo, dr, dw)

and denote the coordinate maps on 21 as (X 0, x@ Xo, p, W). Note that the process
W is a Brownian motion with respect to the canonical filtration

H =0 {X<1>(s), X (s), p(A x [0, 5]), W(s), Ac BR™), s € [0, z]} 1[0, T].

and fori = 1,2, X® satisfy (2.1) with X replaced with X® and v(¢) replaced with
v (1) = vy (1). Also, XD (0) = X fori = 1, 2. In order to prove the lemma it
suffices to show that XV = X@ as. Let u(r) = me yp:(dy), t € [0, T]. Then,
Eg fOT lu(r)||?dr < oc. By the Lipschitz properties of b, «, and o, the property that
o(x,v) =0 (v), and since ¢ € L2([0, T] : R¥), we have that, for some ¢ € (0, 00)
and for any ¢ € [0, T],
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Eg { sup [|X D (s) — X‘2>(s)||2}

0<s<t

t
= Cl/ (Eé”X(l)(s) _ X(Z)(s)||2 +dBL(V(1)(S), v(Z)(S))Z) ds (3.27)
0

2

T
+c1Eg < / dgL (v (5), 1P () - lu() | ds) :
0
Since
t 2
Eg ( / dpL (v (5), v (9)) - u(s)]| ds)
0

t T
< / dp (v (s),v@ (s))?ds - Eg [ / ||u(s>||2ds}
0 0

and E fOT lu(s)||*>ds < oo, we have, forall ¢ € [0, T,

0<s<t

E; [ sup | XD (s) — X@(s)nﬂ

t
<o [ (EalxVe) - XD +dar (D 6) 57 0)7) .
0

Furthermore, for each ¢,
g (1), v (1))

—  sup <Esl XV — xP ).

feBL(RY)

F(xD@))dé — /  f(xP@)dé
Z

Zy

Thus, for some c3 € (0, c0), we have, forall r € [0, T'],

0<s<t 0<s<t

t
Eg [ sup ||X<“(s)—x(2>(s)||2] <c /0 Eg [ sup ||X“>(s>—x(2>(s)||2} dr.

By Gronwall’s inequality, this shows that X1 and X ® are indistinguishable on [0, T']
and completes the proof of the lemma. O

Now we return to the construction of (1" ,_v”) that satisfy (3.26), where recall that
® and ¢ are chosen to satisfy (3.25). Let (X, p, W) be the coordinate maps on the
space (Z1, B(Z}), ®) equipped with the canonical filtration H;, defined in (3.16),
namely

He =0 {X(s), p(A x [0,5]), W(s) : A € BR™),s <t}.

Since ® € &[], Eq. (2.1) is satisfied with v(f) = vg (¢) and ve (0) = &.
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Disintegrate ®y as
Oy (dx, dr, dw) = &(dx) [@]3(dw) Ag(x, w, dr).
Let V = C([0, T] : R¥) and define
Q'= R x W™ xV, F =DB(2).
Elements of 2 are of the form (r,w, B), where B € V,r = (r1,r2,...), w =

(wy, wa,...),r; € Ryandw; € W foreachi € N. On the measurable space (2, F")
define the random variables

Wi, (r,w, p)) = wi(®), B, (r,w,B)) =p), pir,w,p)=ri,

foreacht € [0, T] and i € N. Let I be the standard Wiener measure on . Recall
the initial values {x]'} introduced in Sect. 2.1. For each n € N, define the probability
measure P" on (2, ') by

dP*(r,w, B)

= [(X) [013(dw;) Ao(x, wi, dri) (X) [@]<2,3><dri,dwi>] ® I'dp).

i=1 i=n+1
Under P", {W;}1<i<» and B are mutually independent Brownian motions. Define the
sequence {A"}, N of P(R? x R x W)-valued random variables on (£2/, F') by
1 n
A"AXxRxC)= - Z(an(A)Spi(R)SW,.(C), AXRxCeBR! xR xW).
n 13
i=1
Then by Condition 2.1,
P o (A7 = 5, . (3.28)

Let, for n € N, v" = ¢. Denoting fOT lo(s))|>ds = M, we have that v" € Sy for
every n. Next, for each i € N, let

wi(t) = /ﬂ; ¥ (o), £ € [0, T], (329)

where (p;); (dy) dr = p;(dy dt), and foreachn € N, let (X", .. ., )_(ﬁ) be the solution
on (£2', F', P™) of the system (3.3), where "' (t) = % Y Sxn foreachr € [0, T].
Unique solvability of the above equation is a consequence of our assumptions on the

coefficients, namely Condition 2.2.
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For each n, define the occupation measure Q" by (3.10), replacing p;' with p;. That
is,

Q"(B x R x D) = %Za)—w(B)api(R)awi(D), B x R x D € B(Z)).
i=1

Let E" denote expectation over the probability measure P”. Then,
I (T
limsup E" | — ()] dr
up [n Z/O i (1) }

n—oo
/m

= lim su
’1_>00p n Z /7‘21><W/
2
dr | < Eo [ / ||y||2p<dydr>} < 00, (3.30)
R™x[0,T]

T
=Ep [/ / y o (dy)
0 Rm

where the second equality is from Condition 2.1. It follows from Lemma 3.1 that
{(Q", v")}nen is tight. If (Q, v) is a limit point of this sequence defined on some
probability space (2,F, P), thenv = = ¢ P-as., and, by Lemma 3.2, Q € El[v] =
Eile] P-a.s.Recallthat ® € & [¢]as well. By (3.28), for P-a.e.w € 2, Oy (w) =

Thus by the weak uniqueness established in Lemma 3.3, 0 = ©® P-as., and NY)
Q" — O in probability. Finally,

1 n T 1 T
li E"| — ((1)||% dt / "(1)||>dt + F(R"
im sup [2}1;/0 i@ d 4+ 722 | IO dr + FG)

n—o00

1 n 1 . r 2 1 r n 2 n
= limsup £ [%2/0 flu; @) dt+W/o V" (O dr + F([Q ]1)i|

n—oo

dt A(x w, dr) [@]3(dw)

1 1 (7
< 1k [/ ||y||2p<dydt>} +—2/ lo) 2 dr + F(O1)),
2 m%[0,T] 2A 0

(3.31)
which follows from (3.30), the equality v = ¢, the weak convergence Q" — ©®, and
the assumption that /nk (n) — A. This proves (3.26) and completes the proof of the
lower bound. O

3.3 Rate Function Property

In this section we sketch the proof of the fact that I; defined in (2.3) is a rate function.
The proof is very similar to the Laplace upper bound and so some details are left to
the reader. We will assume Conditions 2.1 and 2.2 are satisfied. Like with the proof
of the upper bound, Condition 2.3 is not needed.

Fix L € (0,00), let I'y = {v € P(X) : I1(v) < L}, and let {v,} be a sequence
in I'1. We need to show that the sequence has a limit point that lies in I'y. From the
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definition of 1, we can find, for each n, a ¢ € L>([0, T] : R¥) and a ©®" € &£ [¢"]
with [@"]; = v" such that

1 1 (7 1
Eon [—/ IyI? p(dy dr)} 4 —2/ I ORd <L+ (332)
2 mx[0,T] 21 0 n

In particular, {¢"} C Sy where M = 2(L 4+ 1)A%. An argument similar to the proof
of Lemma 3.1 shows that the sequence (", ¢") is relatively compact in P(2;) x
Syr. Suppose that (7, ") — (O, ¢) along some subsequence. Then (along the
subsequence), v — v = [@];. Sending n — oo and using lower semicontinuity,

1 I
te ['/ 11 pdy df)} + —/ lo@) 2 dr < L.
2 Jrmxpo,7] 222 Jo

Furthermore, since ®" € £1[¢"], @ (O", ¢") = 0 for each n, where @ is as in (3.20).
As shown in Lemma 3.2, for each B < 00, @5(O0", ¢"") — @p(O, ¢). Also a similar
argument as in (3.24) shows that, as B — o0,

sup |®B(@n’ (Pn) - ¢(@n’ (pn)l - 07 |¢B(@7 (p) - ®(@7 (/7)| — 0.
neN

It then follows that @ (®, ¢) = 0, proving that ® € &([¢]. Thus, since v = [O];,

1 1 (7
L(v) < Ee [—/ ||y||2p(dydr)] + —2/ lp@)|>de < L.
2 Jrm 10,71 227 Jo

The result follows. O

4 Proof of Theorem 2.2

In this section we prove Theorem 2.2. Proof of part 1 follows by standard arguments and
is therefore left to Sect. 7. Proof of part 2 follows similar steps as that for Theorem 2.1.
Namely, we prove the Laplace upper and lower bounds and show that the function
I introduced in (2.7) is a rate function. The upper bound is established in Sect. 4.1,
while the lower bound is given in Sect. 4.2. The rate function property is verified in
Sect. 4.3.

For (u", v") € AL x A2 we consider the following system of controlled SDEs:

dX7 (1) = b(X] (1), " (1)) dt 4+ o (XP (1), @ (@)ul (1) dt + (X7 (1), 7" ()" (1) dt
+ o (X} (), 1" (1)) dWi (1) + k() (X (1), 7" (1)) dB(1),

dA% (1) = AT ()X (0), /")) dt + APy T (X[ (), @ ()ul (1) dt
+ AT BT (X (1), @M ()" () dt
+ Ay T (XP@), @) dW; (1) + k() AT BT (X1 (1), 1" (1) dB (1),
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X'0)=x]', Al(0)=a!, 1<i=<n, (4.1)
where 1" (¢) is the weighted empirical measure
| N
J(t) = - Z O (A} (1)1 - (4.2)
i=1

The existence and uniqueness of strong solutions of the above system of equations is
argued in the same way as for the uncontrolled system in (1.12) (see Sect. 7).
The following representation follows along the lines of Theorem 3.1. Let K =

C([0, T] : M (RY)).

Theorem 4.1 For any F € Cp(K) and for eachn € N,
1 _nF(u"
— —logE[e nEu )]
n

1 " r 1 T
T i (1 2dt+—/ v dr + F(a" | .
(u,v)eAbn x A2 |:2n ;/0 llui (O] 2 Jo o)l n")

4.3)

Furthermore, for every § > 0, there is an M < oo such that for eachn € N,

1 n
— -1 E[*nF(M )]
. og e

, 1 (7 17 _
> inf E —Z/ ||u,-<t>||2dt+—/ oI dr + F(a") | = 6.
@meAlnx Ay | 2n = Jo 2Jo

4.4)
4.1 Laplace Upper Bound
In this section we show that for every F' € Cp(K)
lim inf —% log E [ef"”“’”] = inf [FO) + L), (4.5)

where I is as in (2.7). Throughout the section we assume that Conditions 2.1,2.2,2.4,
2.5, and 2.6 are satisfied. We will not make use of Conditions 2.3 and 2.7 for the upper
bound proof.

Fix F € Cp(K) and § € (0, 1). From Theorem 4.1, there is an M < oo and, for
eachn e N, (u",v") € A" x A%,, such that

1 n I (7 1 T
— —logE e P> E| — / HOIRET / % dt + F(a") | — 8.
~logE [e |= Zn; O S | @ e+ PG

(4.6)
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We will next show that

1 & T 1 T
liminf E | — "t 2dt+7/ VIO dr + F(i"
im inf [M;fo et OF di+ o2y |l @"

1 1 T
> inf inf |(Ee [—/ ||yn2p<dydt)}+—/ lp@I%dr + F(ve) |,
wem([o,r]:Rk)@eEzw}( 2 JRm x[0,T] 222 Jo

4.7
where vg is as in (2.6). Since § € (0, 1) is arbitrary, the desired bound in (4.5) is
immediate from the above inequality on recalling the definition of /5 in (2.7). In the
rest of this section we prove (4.7).

We begin by observing that from (4.6) we have, as in Sect. 3.1, that (3.8) is satisfied.
The next two lemmas are analogues of Lemmas 3.1 and 3.2. In Lemma 4.1, the result
under Condition (ii) in (4.10) will be used for the proof of the LLN sketched in Sect. 7.

Lemma 4.1 Suppose for some M € (0,00), {(u", v")}en is a sequence with
u", ") e Aln X.A%,[foreach n, and suppose {u" },eN satisfies, for some L € (0, 00),

neN

1 [T
sup E [— Z/ llu? (1)]|* dt:| <L. (4.8)
o
Define the P(2,)-valued random variable Q" as
1 n
O"AxRxC)=— Zam iy (A8, (R)8w, (C), Ax R x C e B(Z), (49)
n [ | i
i=1
where p! is as in (3.11). Suppose that
either (i) y =0, or (iij) u} =0 foralli,n, or (iii) Condition 2.5(a) holds. (4.10)

Then, {(Q", vV")},eN is tight as a sequence of P(Z,) x Syr-valued random variables.

Proof Tightness of {v"} is immediate from the compactness of Sy;. The tightness of
[Q"]3 and [Q"]4 follows as in the proof of Lemma 3.1. Finally we show the tightness
of [Q"]1 2. If (i) or (ii) in (4.10) hold, this tightness follows as the proof of the tightness
of [Q"]; in Lemma 3.1 on recalling Condition 2.6, the linear growth property of 6,
and using the following estimate instead of (3.12):

E [ sup (11%7 (I + (A?(s))z)]

0<s<T

T
<c <1 + X2+ @)+ E U ||u?(s)||2ds]) ) 4.11)
0
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For case (iii) in (4.10), we cannot ensure the above square integrability property.
However, one can proceed as follows. By It6’s formula,

1
0L (@) = 0@+ [ 0/ AN aD]()
0
1 ! 1" AN AN ()2
+1 / 0" (A1 () AN (s)
2 Jo
x (I (R ), /" GDIP + @B ), 7 6)]2) ds,

where
D} (1) = /0 t (X[ (s), 1" (s)) ds + fo t y (X (5), " (5)) Wi (s)
e /0 BT (R0 s). 1 (5)) dB(s)
+ fo T RI), A )l (s)ds + fo BT (R2 ), B () s)ds.

By the boundedness of the coefficients and using (2.4), i.e., sup, |6'(x)x| +
sup, |0”(x)x?| < 0o, we then have, for some ¢; € (0, 00),

E [ sup (1%} ()12 + (G(Aﬂs»)z)}

0<s<T
T
<c (1 + 2+ @+ E U ||u7(s)||2ds]) . (4.12)
0

Using the above integrability, the tightness of [Q"]; follows as in the proof of
Lemma 3.1. In order to show the tightness of [Q"], we will use the fact that the
map ¢(-) — e?") is a continuous map from C([0, 7] : R) to C([0, T] : Ry ). With
this fact, it suffices to show that the collection {1 37| B0g A7(» 1 € N} s tight as a

sequence of P(C([0, T] : R))-valued random variables. This tightness follows, once
again as in the proof of Lemma 3.1, from Condition 2.6 and the estimates

T
E|: sup |10g(A;‘(s))|:| < c3 (1 +|logal’| + E [/ ||u;?(s)||2dsD (4.13)
0<s<T 0
and
_ - 2 T
E [|1ogA;1(r +e) —log A% ()| ] < ¢3¢ (1 +E [/ lu? (5)]2 ds]) ,
0

where 7 is a stopping time taking values in [0, T — €], and the constant c3 does not
depend on n, i, €, or the stopping time 7. O
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Lemma 4.2 Let {(u", v")},en be as in Lemma 4.1. Suppose that one of the conditions
in (4.10) is satisfied. Also suppose that (Q", v"") converges, in distribution, along a
subsequence to a P(Z,) x Sy-valued random variable (Q, v). Then, Q € &[v] a.s.

Proof Suppose that (Q, v) is given on the probability space (§2*, F*, P*).In a similar
manner as in the proof of Lemma 3.2 [in particular using (4.11) and (4.12)] we see that
Q0 € P2(2,) P*-a.s. We need to show that Q (w) is a weak solution to S>[v(w), vo (w)]
for P*-a.e. w € £2*. Note that [Q"]1 2 o (z(0), ¢(0)~! — 5o weakly, which shows
that, for P*-a.e. w, under Q(w), (z(0), ¢(0)) has distribution g, where (z, ¢, r, w)
denote the canonical coordinate variables on 2.

Thus to prove the result, it suffices to show that for every f € C2(R" x Ry x RY),

fora.e. w, M?g(z)) is a martingale under Q(w) with respect to the canonical filtration
Hy = ofz(s). (s), w(s), r(A x [0,5]), A € BR™), s <1}, € [0, T], where for
each ¢ € L2([0,T] : R*) and ©® € P1(Zy), the process {M?w(t),o <t <T}is
defined on (2;, B(2,), ®) by

MO o2z, 6, r,w)) = f(z(1), c(1), wt)) — f(2(0), 5(0), 0)
_ /0 fR LE(D@®), 56, v, ws) ry(dy) ds

t
—/0 (a(z(s), vo (s)9(s), Vi f(2(s), 5 (s), w(s))) ds

! d
— /0 s()B7 (z(s), ve (s))cp(s)%(z(s), 5(s), w(s))ds,

(4.14)
and where

L (f)(x,a, y, w)
= (b(x,v0(s)) + o (x, vo ()Y, Vi f(x,a, w))

9
(aC(x vo (5) +ay’ (x, vo(S))y) l(x a, w)

52
1 20°f
(x a,w) + >a 2y (x, vo )|l ™ 5 (x,a,w)

+7 Z (GU )//’(VO(Y))
JJ—l

+3 Za(ay) (x, Vo ()7 —=— f ~(a,w) + 5 i TS eaw)
Jj=1 ’ 2/ 1a w

+ZZ%’(X Y06 e w>+2ay,<x vo ()5

j=1j'=1 j=1

(x,a, w),

(4.15)

for (x,a,y,w) € RY x Ry x R™ x R™.
In order to prove the martingale property, as previously, it suffices to show that for
any time instants 0 < t9p < f; < T, and any ¥ € C,(Z>) that is measurable with
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respect to the sigma field 7—2;0, we have,

Egu [# (MES0, @00 = M) (10)) ] =0, for Prac.we 2 (416)

fiv(w)

We suppress w in the notation of the remaining proof. Fix a choice of (¢, t1, ¥, f)
and define @ : P»(2Z) x Sy — R by

(0., 9) = Eo [W (MP,01) = M, () ]. (4.17)

Fix B € (0, 00). For ® € P,(2;), define [,S@’B by replacing y on the right side of
(4.15) by ¢p(y) and ve by v5, where ¢ is as in the proof of Lemma 3.2 and v5 € K
is defined as

(f v6®) = Eo [(0(s()) AB) f(zt)], 1 €[0,T], f€CpyRY).  (4.18)

Similarly define M by replacing LQ w1th £88 and vy with vg in (4.14). Finally,

define @p by replacmg M})’ 0 with M9 , B on the right side of (4.17). Then, as before,
we will argue (a) for every B € (0, 00), @p is a bounded and continuous map on
P2(22) x Sm, (b) sup,, E[|®Pp(Q", v") —P(Q", v")|A1] — Oand E*[|®p(Q, v) —
@(Q,v)[A1l] > 0as B — o0, (c) @(Q", v") — 0 in probability as n — oo. The
statement in (4.16) is immediate from (a)-(c).

Part (a) is shown exactly as in the proof of Lemma 3.2. Next consider (b). Using
the Lipschitz property of the coefficients, for some ¢; € (0, c0) and all n € N,

|@p(Q", V") — @(Q", v")]

1 & T
<cy sup dpL (in(t) v (1) (H;Z/O [} ()| ds)
i=1

0<t<T (4.19)

nooaT
+%Z£nWwﬁwmwm
i=1
Also,

sup dpL (V n(t), v n(t)) < - sup O(A (1)1 n
0<r<T ¢ Q ;O<t<T {supo<, <7 6 (A} (1))> B}

1 n B
<— Z [oAr )] (4.20)

0<t<T
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Combining this with the bounds in (4.11), (4.12), we have, for some ¢, € (0, co) and
every B < oo,

sup E | sup dpL (in (1), vgn (t)) < c—2
neN 0<t<T B
Fix € € (0, 1) and using (4.8) choose m| € (0, 0o) such that

1 [T
sup P <; Z/o llu (s)]Ids > m1> <e.
i=1

neN

Then using the inequality E[(UV) A 1] < P(V > my + 1) 4+ (m; + 1)E[U] for
nonnegative random variables U and V, we have

n_ooar
E Hcl OZI;ET dpL (in (1), Vgn (t)) <1 + % ;/0 ||u?(s)||ds>} A 1:|

(my1 + Dcyea
<€+ B .

Using this estimate in (4.19), for some ¢3 € (0, 00),

sup E [|@5(Q", v") — @(Q", V") A 1] <

C l+l?l
3( 1) )

Sending B — oo and since € is arbitrary, we have the first statement in (b). The second
statement in (b) follows in a similar manner on noting the properties
2
ds < 00,

T
E* |:EQ |:Osup Q(g(t))z]:| <oo, E* |:EQ |:/0 /R yrs(dy)
<t<T "

which follow from analogous (uniform in ) bounds when Q is replaced by Q" and
E*by E.
Finally we consider (c). Foreachn € N,

D(0",v")
= Egr [v (MZu ) = MZ, (0]

=D WXL AL o W)
i=1
(M er, (R0 AL p2 W) = M0, (R, AL pl, W) )

I o, -
= =D WXL AL o] W)
i=1
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1
<f(5f;1(t1), AL (t), Wi (1) — f(X!(t0), Al (o), W;(t9)) — / U"(S)dS> ,
10

where, noting that vor (s) = 1" (s),

U(s) = L2 (F)(X1(s), Al(s), ul(s), Wi(s))
+ [V £ (X (5), AL(s), Wi ()T (X7 (5), " (5))v" (5)

+ ANBT (X (), A" ()" (5) f(X"(S) A} (5), Wi()).

By It&’s formula, for each i and n, we have a.s. that

FXF @), A} (rr), Wien) — £ (X[ (10), A (10), Wi (to))
Uy ds + / 1 FREG), AL, W) T o (RD(s), " (5)) dWi(s)
+ K(n)/ [V f(XP(s), A7 (s), Wis)I (X} (), it (5)) dB(s)
/ LRI, AL, W) AT )y T (R 0), 15 AW )
_—) / LX), A7), WD AL )BT (R75), 7(5) dBs)

+ / [V £ (X2 (), A2(s), Wi(s)1T dWi(s) + T,
]

where, for some ¢y € (0,00), |7"| < cik(n)? for all n,i. Letting vl =
lI/(X” A" e, W), fl'(s) = f(X”(s) A”(s) Wi (s)), and using similar notation
for derlvatlves of f, we have a.s. that

@(Q",v")
1 & f _
= ;E :‘1’,'"[/ (Vo £ )1 o (X1 (), @ (5)) AW (s)
i=1 1o

t n _ _
+ / 8g;s)A?(s)yT<X?<s),ﬂ"(s))dwi(s)
1

3l
+ / [vwﬁ"(sanWl-(s)} + 7",
4]

where as in the proof of Lemma 3.2, 7" — 0 in probability. Now by the same
argument as in Lemma 3.2, @(Q", v") — 0 in probability, proving (c). Thus, we
have @(Q, v) = 0 a.s., which proves (4.16) and completes the proof. O
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We now complete the proof of (4.7). In addition to the standing assumptions of this
section (namely Conditions 2.1, 2.2,2.4,2.5 and 2.6 ) suppose that if Condition 2.5(a)
is not satisfied, then y = 0.

Since 1" = von, we have

1 n T ; 5 1 T ., 5 .
E {E;/O fluz @)l dt—i—m/o [v" @) I7dt + F (i )]

1
=E[/ (5 / ||y||2r(dydt)> (0" (dr)
R R™x[0,T]
+;/T|| O de + F( )}
2nk(n)? Jy v ver

where [Q"]> denotes the second marginal of Q". Recalling the bound (3.8), we have
from Lemmas 4.1 and 4.2 that (Q", v™) is tight and if (Q, v) is a weak limit point,
then Q € &[v] a.s. Assume without loss of generality that (Q",v") — (Q, v)
along the full sequence. We claim that (Q", v", vgn) — (Q, v, vp), in distribution,
in P(Z) x Sy x K. For ® € P(Z;) and B € (0, o0), define vg € K as in (4.18),
ie.,

VB (1)(C) = Eo [(0(s (1) A B) 1c(z(1))], C € BRY).

Then, it is easy to check that, since 8(-) A B is a bounded Lipschitz function, ® +— vg

is a continuous map from P(2,) to K for every B. Also, from (4.20), for some
c1 € (0, 00),

sup E |: sup dpL (qu @), vgn (t)):| < % sup E |:l Z sup (9(5?(r)))2:| -0

neN | 0<t<T neN | T 0<r<T

as B — o0, since sup,, .y E[% Z?:l supOSIST(Q(A?(t)))Z] < 00, which follows
from (4.11) and linear growth of & when property (i) of (4.10) holds and from (4.12)
when property (iii) in (4.10) is satisfied. Combining the above uniform convergence
with the fact that (Q", v", vg,,) = (0, v, vg) for every B proves the claim.

Finally by Fatou’s lemma and since v/nk (n) — A,
iminf £ 3 [ o+ —— [ M) de + F (")
im in 2n§j(; llu? ()] +2nl{(n)2/0 " @Ol Iz

1 1 (7
>E [/ (5[ IIszr(dydt)) [Q]2(dr) + 27/ Hv(t)llzdl-i-F(VQ)]
Ry R x[0,7] 2% Jo
>t (E [1f ¥ pd dr)]+ 1 an 1) dr + F( ))
mn m - - ) — Ve .
_weLz([O,T]ZRk)@E‘SZ[W] @ 2 R™ x[0,T] Y piey 2}\,2 0 ¢ @

This proves (4.7) and completes the proof of the Laplace upper bound. O
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4.2 Laplace Lower Bound

Throughout this section we assume that Conditions 2.1-2.7 are satisfied. Additionally,
we assume that if Condition 2.5(a) does not hold, then y = 0. We will proceed as in
Sect. 3.2.

Fix ¢ > 0 and F € C(K). Choose a ¢ € L%([0, T] : R¥) and a ©® € &[¢] such
that

1 1 (T
Lo [/ ||y||2p<dydr>] + —2/ lo)I2 dt + F(ve)
2 RmX[O’T] 2)\. 0

< inf [F(v) + L(v)] +e.
velkC

We will show that there is a M € (0, co) and a sequence (1", v") with u” € ALm and
V" e A?M constructed on some filtered probability space such that

n—o00

llmsupE[El;‘/O lle; @)l dt+W/O V" ()|~ dt + F(x )i| )

1 I
<50l [ wieaan |+ o5 [Clewiar+ Foo.
2 R x[0,7] 2x% Jo
The Laplace lower bound
. 1 —nF(u") .
lim sup —— log E [e * ] < inf [F(v) + L (v)]
n—»00 n velkl

is then immediate from Theorem 4.1 on noting that ¢ > 0 is arbitrary. We begin with
the following uniqueness result. Analogous to Sect. 3.2, define the map ¢ : Z, —
Zg =RY xRy x Ry x Was 9(z, ¢, r, w) = (z(0), c(0), r, w). For ® € P(Z),
let @y = O o ~! be the probability measure on Zg induced by @ under ¢. We will
say that weak uniqueness holds for (2.5) if, for any given ¢ € L%([0, T] : R¥) and

oM o? ¢ & [¢], whenever @1(9]) = @1(92), we have that @V = @@,
Lemma 4.3 Weak uniqueness holds for (2.5).

Proof Fix ¢ € L2([0, T]: R¥) and @D, ©@ ¢ &]¢]. Suppose that O = 0 =
A. Note that @@ j = 1,2 can be disintegrated as

D dx, da, dr, dw) = @V (dx, da, x¢, a9, r, w)A(dxo, dag, dr, dw).
Consider 2:’2 =X xYxXx)Yx Z? and define 6 e P(é’g) as

@(dx(l), da(l), dx(z), da(z), dxo, dag, dr, dw)
= 0W@xW, da'V, xo, ag, r, w) OP(Ax?, da?, xo, ao, r, w)
A(dxg, dag, dr, dw),
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and denote the coordinate maps on 2, as (X, A, X@  AD X4, Ag, p, W). Note
that {W(¢), ¢t € [0, T']} is a Brownian motion with respect to the canonical filtration

H =0 {X“)(s), AD(s5), p(A X [0,5]), W(s), i = 1,2, A e BR™), s € [0, r]} ,
te[0.T1,

and for i = 1,2, (X, AD) satisfy (2.5) with (X, A) replaced with (X©, A®)
and v(z) replaced with v(’)(t) = Vg« (¢). In order to prove the lemma it suffices to
show that (X1, AD) = (X@ A@) as. Letu(t) = [gm y pr(dy), t € [0, T]. Then,

Ey fOT lu(t)||>dt < oo. By similar estimates as in the proof of Lemma 4.1 we see
that

0<s<T

when Condition 2.5(a) is satisfied, E 4 |: sup <||X(i)(s)||2 + (O(A(i)(s)))2)1|
<oofori=1,2, (4.22)

and

wheny =0, E, [ sup (||X<">(s)||2 + (A<">(s))2)} <oofori=1,2. (4.23)

0<s<T
Consider first the case y = 0. For ¢ € [0, T'], define

g(t) = E, [ sup [|X1(s) — X<2>(s)||2} ,

0<s<t

2
h(t) = (EO [Osup 1AM (5) — A(z)(s)|:|) )
<s<t

Since 6 is a Lipschitz function under Condition 2.5, we have

dgr (v 5), v ()
04D FX D) = 04D () f XD (9))|

< sup E(_)
feBL(RY)

< Eg [6AV6)IX V) = XD o)l + LEg

AD(5) — AP (s)

’

where L is the Lipschitz constant for 6. Then by the Cauchy—Schwarz inequality and
(4.23), for some ¢1 € (0, 00),

sup dpr (v(l)(s), @ (s))2 <ci(g(t) +h(n) forallt € [0,T].  (4.24)

0<s<t
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By the Lipschitz properties of b, o, and «, the property o(x,v) = o(v),
the Burkholder-Davis—Gundy and Cauchy—Schwarz inequalities, and the fact that
fOT ||(,a(s)||2 ds < oo, there are ¢3, ¢3 € (0, 00) such that, for all ¢ € [0, T'],

t
g = kg [ /0 sup (nX“)(r)—x<2)<r>||2+dBL (v<1><f),v<z>(f))2) ds]

0<t<s

2
t
+ek, (/O sup dBL(v<”(r>,v<2>(r>)-||u<s>||ds>

0<t<s

t
<c3 / (g(s) + h(s))ds. 4.25)
0
Furthermore, since y =0, for j = 1, 2, A(j)(t) = eY(j)(’), where

t t
YD) =vY(0) + / (XD (s), v (s))ds + / BT (XD (), v (s))p(s) ds.
0 0

Using the inequality |e* —e”| < (e* Vv e¥)|x — y|, the Lipschitz property of ¢ and j,
(4.24) and (4.23), and the Cauchy—Schwarz inequality, there is ¢4 € (0, 0o) such that

0<s<t

2
h(t) < (EO [ sup (AN (s) v A@ ()Y D (s) — Y<2>(s)|D

0<s<t 0<s<t

<E, [ sup (AM(s) v A(z)(s))2:| E, [ sup YD (s) — Y(z)(s)|2:| (4.26)

t
=< 64/ (g(s) + h(s)) ds.
0

Thus,
t
g®)+h(@) <(c3+ 04)/ (g(s) 4+ h(s))ds foreveryt € [0, T],
0

and hence by Gronwall’s inequality, g(7") 4+ h(T) = 0, from which it follows that
(XM, AMy and (X?, A®) are indistinguishable on [0, T'].
Consider now the case where Condition 2.5(a) is satisfied. Define

2
h(t) = (E@ [ sup |logA(1)(s)—logA(z)(s)|:|> )

0<s<t
Since ¢5 = SUP,cR, |8/ (x)x| < oo, we have

0(*) — 0| < sup |8'(2)z| - |x — y| =cs5|lx — y| forallx,y e R.

zeR4
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Thus,

dpr (v ()72 )

= s Eg 04V X)) = 04 () f (XD (5))|
feBL(RY)

< Eg [0AV6)IX V() = XD @)l + esEg

log AV (s) — log A(z)(s)‘ .
Hence, using (4.22), for some c¢ € (0, 00),

sup dpr (v(l)(s), v<2>(s))2 < ce(g(t) + i) forallt € [0, T].

O<s<t

Now exactly as in (4.25), we have that for some ¢7 € (0, 00),

t
g(t) < m/ (g(s) + h(s))ds foreveryr € [0, T].
0

Note that, for some cg € (0, 00),

! T
(E@ [ /0 (r0® ) -y @ 6)) u(s)dsD

¢ 2
< CSf dpL (v(”(S), v(z)(S)) ds.
0

2

Using this estimate and Lipschitz properties of ¢, y, and 8, we now have that, for some
c9 € (0, 00)

t
h(r) < C9/ (g(s) + h(s)) ds for every t € [0, T].
0

Thus,
t
2O+ () < (€7 + o) / (g(s) + i(s)) ds for every 1 € [0, T,
0

which shows the indistinguishability of (X1, log A®) and (X ®, log A®) and hence
the indistinguishability of (X', AMY) and (XU AMW) on [0, 7. O

We now complete the proof of the lower bound by constructing (u", v") that sat-
isfy (4.21). Let (X, A, p, W) be the coordinate maps on the space (22, B(23), ©)
equipped with the canonical filtration H; defined as in the proof of Lemma 4.2. Since

O € &¢l, Eq. (2.5) is satisfied with v(r) = v (¢). Disintegrate @y as

Oy (dx, da, dr, dw) = no(dx, da) [@]4(dw) /io(x, a,w,dr).
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Let V, £2/, 7' and coordinate processes W;, B, p; be as introduced in Sect. 3.2. As
before, let I" be the standard Wiener measure on V. Next, for each n € N, define the
probability measure P" on (£2/, F') by

dP"(r,w, B) = [@ [O1a(dwi) Ao(x]', af, wi, dri) (X) [O].4)(dri, dwn]
i=1 i=n+1
® I'(dB).

Under P", {W;}1<i<, and B are mutually independent Brownian motions. Define the
sequence {A"},cNn of PRY x Ry x Ry x W)-valued random variables by

n l .
A"(Ax Bx RxC) == 8 (A)dq (B)Sy, (R)3w, (C),
n 1 1
i=1
AxBxRxCeB(Rde+xR1xW).

Then by Condition 2.6, P o (A" = 50, 4.27)
Let, forn € N, v" = ¢. Then, v"* € Sy, for every n, where M = fOT llo(s)]I>ds. Next,
define u; by (3.29) and for each n € N let (X", A’I’ R )_(,’1’, AZ) be the solution on
(82", F', P") of the system in (4.1) (with u! replaced with u;).

Define the occupation measure Q" by the right side of (4.9), replacing p;" with p;.
Let E™ denote expectation over the probability measure P”. Then, as in (3.30) (using
Condition 2.6 instead of 2.1), we see that

2
/ v p(dy) dt:| < 00.

1 n T T

lim sup E” —Z/ lu; ()2 dt | = Ee f

n— 00 ni:l 0 0
(4.28)

It now follows from Lemma 4.1 that {(Q", v"*)},en is tight. If (Q, v) is a limit point
of this sequence defined on some probability space (£2, F,P), thenv = ¢ P-as.,
and, by Lemma 4.2, Q € &[v] = &[¢] P-as. Also, © € &[¢]. By (4.27), for P-
ae . w € £2, Qy(w) = Oy. Thus by the weak uniqueness established in Lemma 4.3,
Q = © P-as. Thus, we have Q" — © in probability. A similar argument as in
Lemma 4.2 now shows that (Q", vg») — (O, vg) in probability. Finally,

1 n T 1 T
li E"| — H(0)]|* de —/ "(0))|* dt + F ("
im sup [2"2/0 lui @I de + 5o | 0" O1 dr + F (A"

n—oo
tim sup &7 | - ian 0 dr + — /Tn ")) di + F(von)
= 1ums -— i n
n—)olél)p 2}’[ o 0 uj 2}’”((”)2 0 v l)Q

1 1 (7
< :Eo [/ IyII°o(dy dr)] + —2f le)II* dt + F(ve),
2 R x[0,T] 22= Jo
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which follows from (4.28), the equality v" = ¢, the convergence (Q", vgr) —
(@, vp), and the assumption that /nk (n) — A. This proves (4.21) and completes the
proof of the lower bound. O

4.3 Rate Function Property of I,

The proof is very similar to the argument in Sect. 3.3 and so we omit the details and
note only that we use the argument in Lemma 4.2 to show that if for ®", ® € P> (2,),
®" — @, and a bound as in (3.32) is satisfied for every n, then under the conditions
of Theorem 2.2, von — vg in K. |

5 Proof Sketch of Theorem 2.3

In Sect. 5.1 we sketch the proof of part (i) of the theorem, while part (ii) is sketched
in Sect. 5.2.

5.1 Casel: J/nk(n) — 0

Recall that we assume Conditions 2.1, 2.2, and 2.3 hold. For the Laplace upper
bound we start with the inequality in (3.6) for some (u",v") € A" x ,Ajzw. This
inequality gives the uniform bound in (3.8). With this uniform bound, the tightness of
the sequence of P(Z)-valued random variables Q" defined in (3.10) is shown as in
Lemma 3.1.

Furthermore, the inequality in (3.8) also shows that

T
E U ||v”(t)||2dtj| <2nk(n)*Q2||Flloc + 1) — 0 asn — oo,
0

since nk (n)> — 0. Thus, v — 0in L>([0, T] : R), in probability.

Now a similar argument as in Lemma 3.2 shows that if Q is a weak limit point of
Q" then Q € &[0] a.s. Finally, with (u", v™*) as above and " defined as below (3.3),
taking the limit as n — oo along any convergent subsequence of {(Q", v")},

C 1 - ’ n 2 1 ’ n 2 -n
liminf £ [ﬂ ;_1/0 llu (N de + an(n)zfo V" ()7 de + F(i™)
1« [T
C. o n 2 -n
lenlggéfE[zn 51/0 llui (OII7 dr + F(f )]
=

1
>E [f <—/ lIylI* r(dy dl)) [Ql2(dr) + F([Q]l)i|
Ry \2 Jrmxo,7]

. 1
inf (E@ [— / Ilyllzp(dydt)}+F([@]1)),
Oe&110] 2 Jrmx(0,7]

v
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where the last inequality uses the fact that Q € £[0] a.s. Since § € (0, 1) in (3.6) is
arbitrary, recalling the definition of I 1,0 in (2.10), the above inequality completes the
proof of the Laplace upper bound.

For the proof of the lower bound we proceed as follows. Fix ¢ > 0 and F €
Cp(P(X)). Choose ® € £[0] such that

1 2 . T
S Eo [ / L dr)} FE(OI < nt [FO) + how] +e.
(5.1

Using this ©, define (£2', F', P™"), as in Sect. 3.2. Also, take v" = 0 for every n.
Then with u; defined as in (3.29) and 1" and Q" constructed as below (3.29), we have
exactly as in (3.31) that

1 n
limsup —— log E [e_”F(" )]

n—00 n

. | 1 r a
shmsupE”[ZE /0 ||ui<z>||2dt+mfo ||v"(r>||2dr+F<u”>]
i=1

n—0oo

. o L 1 n
= limsup E [%E'/O llu; (1)|)* dt + F([Q ]1)i|

n—oo

1
< 5 Fo [/ ||y||2p<dydr>} + F([O]).
R x[0,T]

In particular, in obtaining the last equality we have used the uniqueness result in
Lemma 3.3 (applied to the case where ¢ = 0). Combining the above inequality with
(5.1) and since ¢ > 0 is arbitrary, we have the desired lower bound.

Finally, the proof that I 1,0 1s a rate function can be carried out as in Sect. 3.3. We
omit the details. O

5.2 Casell: \/nk(n) - oo

For this case we assume Conditions 2.1 and 2.2. Condition 2.3 is not needed. In a
similar manner to Theorem 3.1 it can be shown that for any F € C,(P (X)) and for
eachn e N,

__1_ n
_ K,(n)z IOgE |:e )2 F(u )]
n

inf | E K(")ZZ/TH <t>||2dt+1/T|| ()2 dr + F(i")

= in Uj 5 v ’

(u,v)eAlnx A? 2 - J0 ' 2 Jo "
(5.2)
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where 1" is as introduced below (3.3). Furthermore, for every § > 0, there is an
M < oo such that for eachn € N,

_ 1 n
_ K(n)2 IOgE [e )2 F(u ):|

n

: k(m)? ! 2 e 2 -n
> inf E Z/ lui (0] dr+—/ o) dr + F (")
(wv)eAlnx A2 2 = 2 Jo

— 4.

(5.3)
Fix F € C,(P(X)) and § € (0, 1). Select, for each n € N, (u",v") € A" x A%,,
such that

. n
_ K(n)z log E [e )2 F(u )}

> E Kn)zilelu”(t)llzdtJrl/T V" ()17 df + F(a") | =28, (5.4)
_ O 2/, I . G

where " = %221:1 8% and X7 is given by (3.3) (replacing (u, v) with (u", v")).
The uniform bound in (3.8) now gets replaced by

K(n)2 - r n 2 1 r n 2
sup E Yo omf@oirde+ = | 'O de | < 2(1Fllo + D). (5.5)
i=170 2Jo

neN 2

This in particular says that

1« (T 4(|IF 1
E [— Zf ||uf’(t)||2dt:| <Aoot D o6n o o, (5.6)
= o

nk (n)?

since nk (n)? — oo. Define 0" by (3.10), where ,ol.” are as in (3.11). The tightness
of (Q", v") is shown as in Lemma 3.1. Let (Q, v) be a weak limit point (along some
subsequence) given on some probability space (£2*, F*, P*). Then using (5.6), we
see that

E* [ / / llylI* r(dy dr) [Q]z(dr)}
Ry JR"%[0,T]

I [T
< liminf E [— Z/ PROIE dt] =0.
n—o00 n P 0

Thus, we have that [Q]> = 8,0, where we recall that 7°(dy dt) = 80, (dy) dt. Also, as
in Lemma 3.2, it can be seen thgt Q0 € &i[v] a.s. Combining this fact with [Q]» = 8o
and recalling the definition of £; given in Sect. 2.3, we now see that [Q](1,3) € £1[v]

@ Springer



Journal of Theoretical Probability

P*-a.s. Taking the limit as n — 0o along a convergent subsequence

n— 00 2

2 n T T
1iminfE|:K(n) > [ wganas [ IIU"(t)Ilzdt+F(/1"):|
i=1 0 0
* 1 g 2
> E [5/0 o) dr+F([Q]l>}

T
> inf inf (% / |I¢(t)I|2dt+F([@]1)),
0

 9el2([0,TIRY) 9ef [g]

where the last inequality uses the fact that [Q](1 3) € & 1[v] P*-a.s. Combining this
with (5.4) and recalling that § € (0, 1) is arbitrary completes the proof of the Laplace
upper bound.

Now, we consider the lower bound. Fix ¢ > 0 and F € Cp(P(X)). Choose a
@ E LZ([O, T]: Rk) and a ®° € 51 [¢] such that

1 ’ 2 o : T
3 | e a s Ferny < int [Fo)+ hot] v 67

where il,oo is as in (2.11). Define ® on (2, B(Z))) as O(dz, dr, dW) =
©°(dz, dW) 8,0(dr). Using this @, define (£2/, F', P") as in Sect. 3.2. Also, let
V" = ¢ for every n. Note that u; defined through (3.29) satisfies u; = 0 P"-a.s. Now
with 1" and Q" constructed as below (3.29), we have as in (3.31) that

1 n
lim sup —« (n)* log E |:e oz P )i|

n—oo
2 n T T
k(n 1
< lim sup E" LZ/ ||ui(r)||2dr+—/ 0" @117 dt + F (")
n— 00 2 i=1 0 2 0

. 1 T 2 n n
= lim sup (5/(; le®|~dt + E [F([Q ]1)])

n—o00

1 T
= 5/ o> dt + F([O1).
0

The last equality uses a uniqueness result of the type in Lemma 3.3 which is shown
in the same manner. In particular, since [@ ]2 = §,0, the proof does not require Con-
dition 2.3 since the analogue of the last term on the right side of (3.27), namely

T 2
Eo [( /O (1XD6) = XD @+ dor 0V (), V@ 5))) u(s)] ds) ]

is simply zero. Combining the above inequality with (5.7) and since ¢ > 0 is arbitrary,
we have the desired lower bound.
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Finally, the proof that I l.00 in (2.11) is a rate function is carried out as before and
is omitted. o

6 Proof Sketch of Theorem 2.1(1)

Let p/' =r°foralli =1,...nandn € N. With this choice of p}', define Q" by (3.10)
by replacing )_(;’ with X'. By Lemmas 3.1 and 3.2, {Q"} is tight and any weak limit
point Q satisfies Q € £1[0]. This in particular shows that the nonlinear SDE

dX (1) = b(X (1), () dt + o (X (1), fi(1)) dW (1),

- (6.1)

X(@)~p@), =0, ) =&,
has a weak solution, namely on some filtered probability space (.(_2, F P, {.7?,})
equipped with an m-dimensional ;-Brownian motion W, there is an J;-adapted
process X with sample paths in C([0, 7] : R?) which satisfies the above equa-
tion. Furthermore, using standard Lipschitz estimates, martingale inequalities, and
Gronwall’s lemma, we see that pathwise uniqueness holds for (6.1). Thus, by the
Yamada—Watanabe results (cf. [20, Chapter IV]) there is a unique weak solution to
(6.1). Denote this weak solution [namely the probability law of ()~( , W)] as 8(*1,3)'
Let ®* € P(Z)) be defined as ®*(dx, dr, dw) = @("‘1,3) (dx, dw) 8,0(dr). Then, any
weak limit point Q of Q" must equal ®* a.s. As argued above, ®* is the unique
element in P(Z;) that is a weak solution of S1[0, ve] and satisfies [@*], = §,0. The
result follows. O

7 Proof Sketch of Theorem 2.2(1)
It was noted in Sect. 2.2 that the system of equations in (1.12) has a unique strong
solution under Conditions 2.1, 2.2, 2.4, 2.5, and 2.6. This can be seen as follows. Note
that, with ¢ = b, o, «, the maps

(x,a) = (X1, ..., Xp, Aty ..., ay) > (C(x1, u(x,a)), ..., c(x,, u(x,a))),
and with ¢ = ¢, yT, ﬂT, the maps

(.x, a) = (alg(XI, /L(.x, Cl)), M ang(xna /-’L(xv a)))1

where pn(x,a) = %ZLI 0(a;)d,,;, are locally Lipschitz functions with (at most)
linear growth from R x R’ to appropriate Euclidean spaces. For example, for

(x,a), (¥,a) e R" x R,

|b(xi, (x, a)) — b(x;, u(x,a))l
< K(llxi — Xi |l + deL((x, a), n(x, a)))
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1 n
=K (”xi — X+ > (0Gai) = 0G@)| + 0 (a)xi —iill)) .

i=1

The local Lipschitz property of (x, a) — b(x1, u(x, a)) is immediate from the above
estimate on recalling that under Condition 2.5, 6 is a Lipschitz function. Properties
on other coefficients can be verified in a similar manner. Existence and uniqueness of
strong solutions of (1.12) follows from this.

We are interested in the asymptotic behavior of  — ©" (¢) regarded as a sequence of
C([0, T] : M (R%))-valued random variables, where u" (r) is defined as in (1.12). In
order to characterize the limit of u”, we consider the nonlinear SDE S;[0, fi] in (2.5)
with p(dydr) = r(dy)dz, namely the following equation given on some filtered
probability space (2, F, P, {F;}), equipped with an m-dimensional J;-Brownian
motion W:

dX (@) = b(X (1), 1)) dt + o (X (), 4(1)) AW (1)
dA®) = A@e(X (@), 1(0) di + A0y (X (@), @) dW (1),
(f, () = E[0(AD) f(XaN],  f € CRY), 120, (X(0), A0)) ~ no.
(7.1)

Let 22 X x Y x W, and denote the canonical coordinate maps on this space as
(X, A, W). Let H, = o {X(s), A(s), W(s), s < t} be the canonical filtration on this
space. By a weak solution of (7.1) we mean a probability measure ® on Z, such that,
under ®, W is a standard H,-Brownian motion and the system of equations (7.1) are
satisfied a.s.

As before, let p!' = r? foralli = 1,...,n and n € N. Define Q" by (4.9)
by replacing (X7, A7) with (X7, A"). By Lemmas 4.1 and 4.2, {Q"} is tight and
any weak limit point Q satisfies Q € &[0] (we use (4.10)(ii) here). In particular,
this shows that [Q]; 2.4 is a weak solution of (7.1). The following result shows the
equation in fact has a unique weak solution.

Lemma 7.1 Under Conditions 2.1,2.2,2.4,2.5, and 2.6, Eq. (7.1) has a unique weak
solution.

Proof 1t suffices to show that the equation has a unique pathwise solution, namely
that if (X©, A®, ,u(’)) i = 1,2 are two solutions of (7.1) given on some filtered
probability space (£2, F, P, {F;}) equipped with an m-dimensional J;-Brownian
motion W (namely (XD, AD)Y are continuous {F;}- adapted processes and (7.1) is
satisfied with (X, A, 2) replaced with (X, AD, 7@) i = 1,2), and such that
(XD (0), AD(0)) = (XP(0), A?(0)) P-as., then

XD AD 1D = (XD, A9, 51®) Peas, (7.2)

Using Conditions 2.1 and 2.6 on the initial random variables and Conditions 2.2 and 2.4
on the coefficients, it is easy to check by Gronwall’s inequality that

E| sup (||)2<f>(t)||2+A<i>(t)2) < oo fori=1,2. (1.3)
0<t<T
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Let

gt)=E [ sup [|XP(s) — X<2>(s>||2} and

0<s<t

2
h(t) = <E [ sup |[AW(s) — A@)(s)q) .
0<s<t

Then, exactly as for (4.24), there isa c; € (0, co) such thatforall0 <s <t < T,

2
dpL (ﬂ(l)(s), ;1%)) < c1(g(1) + h(1)).

By the Lipschitz property of b and o, we then have that for some ¢ € (0, co) and all
0<t<T,

'
g(1) = 02/0 (g(s) + h(s)) ds.

Writing AO (1) = e””® for i = 1,2 and using the bounded Lipschitz properties of
c and y, we see as in (4.26) that for some ¢3 € (0,00) andall0 <z < T,

t
h(t) < 63/ (g(s) + h(s)) ds.
0

Thus, g(t) + h(t) < (c2 + ¢3) fot (g(s) + h(s)) ds for all # € [0, T] which, by Gron-
wall’s inequality, then shows that g (T)+A(T) = 0. Thus, (XD, AD)and (X@®, A@)
are indistinguishable on [0, T'] which proves (7.2). O

We now complete the proof of Theorem 2.2(1). Denoting the unique weak solution
of (7.1) as Q?l,2,4) we now have that [Q"](12,4) — Q?l,2,4) in probability as n —
oo. Let Q*(dx, da, dr,dw) = QZ‘l 2.4y(dx, da, dw)é,o(dr). Then, Q" — Q* in
probability. Note that Q* is the unique element ® in P(Z;) that is a weak solution of
$,[0, ve] and satisfies [@]3 = §,0. Using the estimate

1 n
sup E —Z sup A:-l(t)2 < 00,
neN T 0<t<T

which follows by the argument in (4.11), it now follows exactly as in the proof of the
Laplace upper bound (see arguments below the proof of Lemma 4.2) that vpr — v«
in /C, in probability, where for @ € P,(2,), vg is defined as in (2.6). O
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