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ABSTRACT

In object-oriented languages, constructors often have a combina-
tion of required and optional formal parameters. It is tedious and
inconvenient for programmers to write a constructor by hand for
each combination. The multitude of constructors is error-prone for
clients, and client code is difficult to read due to the large number of
constructor arguments. Therefore, programmers often use design
patterns that enable more flexible object construction—the builder
pattern, dependency injection, or factory methods.

However, these design patterns can be too flexible: not all com-
binations of logical parameters lead to the construction of well-
formed objects. When a client uses the builder pattern to construct
an object, the compiler does not check that a valid set of values was
provided. Incorrect use of builders can lead to security vulnerabili-
ties, run-time crashes, and other problems.

This work shows how to statically verify uses of object con-
struction, such as the builder pattern. Using a simple specification
language, programmers specify which combinations of logical ar-
guments are permitted. Our compile-time analysis detects client
code that may construct objects unsafely. Our analysis is based on a
novel special case of typestate checking, accumulation analysis, that
modularly reasons about accumulations of method calls. Because
accumulation analysis does not require precise aliasing information
for soundness, our analysis scales to industrial programs. We eval-
uated it on over 9 million lines of code, discovering defects which
included previously-unknown security vulnerabilities and potential
null-pointer violations in heavily-used open-source codebases. Our
analysis has a low false positive rate and low annotation burden.

Our implementation and experimental data are publicly avail-
able.

CCS Concepts: « Software and its engineering — Software
verification; Automated static analysis; Data types and struc-
tures.

Keywords: Pluggable type systems, AMI sniping, builder pattern, light-
weight verification, Lombok, AutoValue
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1 INTRODUCTION

This paper concerns verification of flexible object construction pat-
terns in Java-like languages. Objects in such languages often have
a combination of required and optional properties. For example, an
API for a point might require x and y values, with color being op-
tional. It would be legal for a client to supply {x, y} or {x, y, color},
but not {x, color}. As another example, a bibliographic entry for a
book might require title and either author or editor.
Ideally, an object construction API should:

o Only permit clients to supply permitted sets of values, ensuring
at compile time that only well-formed objects can be created.

o Make code that constructs objects readable.

o Allow flexibility in client code, e.g., re-use of common initial-
ization code in different scenarios.

The standard API for Java object construction contains one con-
structor for each combination of possible values that results in a
well-formed object. This API satisfies the first requirement: if some
combination is nonsensical, the API does not include the corre-
sponding constructor. For example, every constructor for a point
might require both an x and a y argument. At a constructor call
site, invalid argument combinations are rejected by the compiler.
However, this strategy fails the other two criteria. For readability,
it is often difficult for clients to determine how an object is being
constructed from the constructor invocation, particularly if mul-
tiple object properties have the same type. For complex classes, a
constructor is needed for every possible combination of optional
parameters, leading to a combinatorial explosion in constructor
definitions. Finally, constructors provide little flexibility, as all pa-
rameters must be provided at once in a single call.

Due to these drawbacks of constructors, alternate patterns for ob-
ject construction have been devised, such as the builder pattern. To
use the builder pattern, the programmer creates a separate “builder”
class, which has two kinds of methods:

o setters, each of which provides a logical argument—a value that
ordinarily would be a constructor argument, and

e a finalizer (often named build), which actually constructs the
object and initializes its fields appropriately.

The builder pattern is easy for clients to use: at a client call site, the
name of each setter method that is invoked indicates what is being

1447



set. The builder pattern avoids the combinatorial explosion problem
of constructors, since one method exists per parameter, not per
combination of parameters. Builders enable client-code flexibility,
as code that calls a subset of setters can be abstracted into methods?.
Popular frameworks like Lombok [63] and AutoValue [15] ease
creation of builders by automatically generating a builder class
from the class definition of the object to be constructed.

The builder pattern is important and widespread. The builder
pattern is one of the original design patterns in the seminal “Gang
of Four” book [31]. It was already a common design pattern in
Smalltalk-80 [51]. Open-source projects that automatically generate
builder classes are popular: Lombok has 8500 stars on GitHub, and
AutoValue has 8200. The codebase of Amazon Web Services has
over 769,000 uses of builders in non-test code, and both the Azure
and AWS SDKs for Java provide builder-pattern-like APIs.

Unfortunately, usage of the builder pattern sacrifices some of the
static safety provided by constructors. A client using a builder object
can invoke any subset of the setter methods. Effectively, the builder
supports all 2" possible constructors. Not all such combinations
are valid, and a client can mistakenly use an illegal combination,
which can lead to serious problems. Section 2.1 describes a security
concern associated with improperly configured requests submitted
to a public AWS API [45].

In other cases, the builder finalizer method throws an exception
if a client invokes an invalid combination of setters. Programmers
(and users!) find run-time crashes from builders frustrating. Hence,
it would be highly desirable to have a tool that could statically
verify builder usage, i.e., that clients only call valid combinations of
setter methods. Such a static verifier for correct usage of a builder
object b must perform two tasks:

(1) Track which setter methods have been invoked on b at each
program point.

(2) When b’s finalizer is invoked, ensure that all required setter
methods have been invoked on b.

Typestate analysis [61] may seem like a natural fit for verifying
such a property, as it is capable of tracking changes to object state
across different program points. However, setters can be invoked
in any order, and accommodating all orders causes a blowup in
the finite-state-machine representation used by typestate analyses.
More seriously, typestate analysis can be difficult to scale to large
programs, as it relies heavily on precise alias analysis [27].

Our key contribution is accumulation analysis, a special case of
typestate analysis that can be performed modularly without an alias
analysis. Verifying builder usage is an example of an accumulation
analysis. An accumulation analysis is free to only do partial reason-
ing about aliasing, or no reasoning at all. Ignored aliases can cause
imprecision and false positive warnings, but never unsoundness.

An accumulation analysis, then, can be expressed as a standard
type system. We implemented our verifier, called the Object Con-
struction Checker, as a pluggable type system [50] that estimates
which methods have been called on an object. This formulation
enables type-based verification of the builder pattern, which yields
a number of advantages, including scalability, modularity, and un-
derstandability. As explained in section 7, accumulation analysis is

IFor example, see the setCommonFields method in google/gapic-generator: https://
tinyurl.com/vhtyblw

DescribeImagesRequest request = new DescribeImagesRequest();
request.withFilters(new Filter("name", "RHEL-7.5_HVM GA"));
api.describeImages(request);

Figure 1: Vulnerable client code that does not properly construct a
request to the DescribeImagesRequest API, resulting in a potential
“AMI sniping” concern.

applicable to problems beyond the builder pattern, such as depen-
dency injection and some instances of typestate.

This paper describes the design and implementation of our type
system and the Object Construction Checker. Flow-sensitive type
refinement can usually determine which setters have been invoked
on a builder object automatically, without developer-written anno-
tations. Our system can express disjunctions of required methods,
crucial for handling cases like the AWS security vulnerability (sec-
tion 2.1). We present a type-based extension to our system that
captures aliasing caused by the fluent API programming style fre-
quently used with builders, where setter calls are chained (e.g.,
b.setX().setY()....build()). For common frameworks that gen-
erate builder classes, like Lombok and AutoValue, our tool automat-
ically determines which logical arguments are required and which
are optional, further reducing the need for manual annotation.

Our typechecker found 16 security vulnerabilities with only
3 false positives in over 9 million lines of industrial and open-
source code. In open-source case studies, our typechecker found
null-pointer violations and permitted the deletion of hundreds of
lines of manually written, inflexible, error-prone builder code. In a
small user study, users found the tool dramatically more useful and
usable than the state of the practice.

The contributions of our work are:

o the identification of three real-world problems stemming from
unsafe object construction (section 2),

e accumulation analysis, a special case of typestate analysis that
can be checked soundly without precise (section 3),

e an accumulation analysis for reasoning about unsafe object
construction (section 4),

e an implementation of that analysis for Java (section 5), and

e an evaluation of the type system on the three problems pre-
sented in section 2 (section 6).

The paper concludes with a discussion of applications of accu-
mulation analysis beyond the builder patterns (section 7) and a
discussion of related work (section 8).

2 UNSAFE OBJECT CREATION

To motivate our work, this section illustrates three real-world exam-
ples of unsafe object construction: a security vulnerability caused by
improper use of a builder in code that calls an AWS API (section 2.1),
and buggy usage of Lombok-generated builders (section 2.2) and
AutoValue-generated builders (section 2.3). Our approach soundly
detects all the problems described in this section.

2.1 AWS AMI Sniping

A client of a cloud services provider can create virtual computers
programmatically, using the provider’s public API. An image is the
virtual computer’s file system; it includes an operating system and
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package com.amazonaws.services.ec2.model;

public class DescribeImagesRequest {
public DescribeImagesRequest() {...}
public DescribeImagesRequest withOwners(String...
public DescribeImagesRequest withFilters(Filter...
public DescribeImagesRequest withImageIds(String...

}

owners) {...}
filters) {...}
imagelds) {...}

Figure 2: The DescribeImagesRequest API. A client constructs a
DescribeImagesRequest, modifies it via the with* methods, then sends
it to AWS to obtain a machine image.

additional installed software, and so it determines what code runs
on the virtual computer.

For example, a client of Amazon Web Services indicates what
image to use via the DescribeImagesRequest API (like the client in
fig. 1). This API (fig. 2) requires clients to carefully create requests
to avoid a potential operational security risk [45].

There are three safe ways to select which image to use when
sending a request to the API:

e Use the withImageIds method to specify a globally unique
image ID.

e Use the withFilters method to set some criteria (such as the
name of the image, its operating system, etc.), and use the
withOwners method to restrict the images searched to those
owned by the requester or some other trusted party.

Use the withFilters method to set criteria that restrict the
image to one that is owned by a trusted party using the “owner”,
“owner-id”, “owner-alias”, or “image-id” filters.

The unsafe example in fig. 1 uses the “name” filter without an owner
filter, which causes the API to return all the images that match the
name. This introduces the potential for a so-called “AMI (Amazon
Machine Image) sniping attack” [45], in which a malicious third
party intentionally creates a new image whose name collides with
the desired image, permitting the third party to surreptitiously
inject their own code onto newly allocated machines. Any call that
searches the public database without specifying some information
that an adversary cannot fake is potentially vulnerable to a sniping
attack and should be forbidden.

The vulnerability is an unsafe use of the builder pattern. Describe-
ImagesRequest is a builder: the with* methods are setters and the
describeImages() call is the finalizer. Because the compiler per-
mits all combinations of method calls, a client can accidentally fail
to set the owner when setting the name, as in fig. 1.

Misuse of the API must be prevented, even though a client-side
coding concern is not ordinarily eligible for a CVE [46, 49]. Revok-
ing or changing the behavior of this widely-used API incompatibly
could be a breaking change for customers, so AWS’s proposed miti-
gation is for “customers to follow the best practice and specify an
owner” [9]. An independent security researcher published instruc-
tions on how to detect if running virtual machines were impacted,
but agreed that following best practices was the best available miti-
gation [52]. Our sound static analysis is better: it does not depend
on programmers to remember to use the best practice.

@Builder

public class UserIdentity {
private final @onNull String name;
private final @onNull String displayName;
private final @onNull ByteArray id;

}

Figure 3: A class that has a builder. The @Builder annotation causes
Lombok to generate a builder at compile time. This example is sim-
plified code from the Yubico/java-webauthn-server project.

UserIdentity.builder()
.name (username)
.displayName (displayName)
.id(generateRandom(32))
.build()

Figure 4: A client of the UserIdentity builder defined in fig. 3, from
the same project. This builder use will not cause a run-time excep-
tion, because all fields whose type is @NonNull have been set.

2.2 Lombok builders

Lombok [66] is a widely-used Java code generation library that
allows developers to avoid writing boilerplate code. Writing an
@Builder annotation on class C generates a builder class for C. A
client creates a builder object, incrementally adds information to
it by calling setter methods corresponding to C’s fields, and then
calls the finalizer method build() to construct a C object. If some
fields of C have types that are annotated as @onNul1, then build()
throws a null-pointer exception if any such field has not been set.

A common cause of frustration for clients of such libraries is the
addition of new @NonNul1l fields. For example, consider an applica-
tion developer who depends on a library like Yubico/java-webauthn-
server?, which includes the class in fig. 3. Figure 4 is an example of
such code, from java-webauthn-server’s included demo. As defined,
this code works correctly. However, suppose that a developer of
java-webauthn-server adds another field to UserIdentity. If this
field’s type is annotated as @NonNull, then the code in fig. 4 will
begin to fail—at run time!—when the library dependency is updated.
Even if this is caught during testing, debugging the cause can still
be painful because the bug will manifest as a null-pointer exception
in the unmodified client code. These sorts of bugs could be avoided
by checking—at compile time—that the setter for each field whose
type is non-null has been called before build is called.

Clients prefer compile-time checking that mandatory fields are
set on builders; it is one of Lombok’s most requested features [6, 16—
18, 29, 38, 39, 44, 48, 53]. Reinier Zwitserloot, leader of the Lombok
project, says “We get this feature request every other week: A way
to have @Builder generate code such that things that are mandatory
to set cause compile-time errors if you forget to set them” [65].

2.3 Google AutoValue

AutoValue [12] is a Java annotation processor that generates much
of the boilerplate code for immutable Java classes, such as accessor
methods for fields, equals(), hashCode(), and toString(). Like
Lombok, AutoValue can also generate builder classes [15], which
contain run-time checks to ensure that when build() is called on

Zhttps://github.com/Yubico/java-webauthn-server
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the builder, all required properties have been set. AutoValue gen-
erates builders as new subclasses of user-written abstract classes,
whereas Lombok directly adds the builder to user-written code.

Run-time failures due to unset properties of AutoValue builders
lead to pain points similar to those described for Lombok builders.
Users desire a compile-time check that required properties are set,
because in complex code this property can be difficult to test for [59].
Further, it can be difficult to discover which properties have default
values and which need to be set by a client, complicating builder
usage [47]. And, library upgrades can lead to run-time failures
when properties in AutoValue types become required.?

3 MODULAR ACCUMULATION ANALYSIS

This section describes how verifying object construction is an in-
stance of an accumulation analysis, a special case of typestate analy-
sis that can be computed soundly without performing alias analysis.

When a builder’s finalizer is called, every required logical argu-
ment must have been supplied to the builder. Our analysis maintains
a compile-time estimate of which arguments have been provided.
More specifically, our implementation estimates what methods have
been called on every object. This compile-time estimate can only
increase. At a call to the finalizer, if the receiver object might not
satisfy the finalizer’s specification, our tool issues an error.

A typestate system permits the type of an object to change as
a result of operations in the program, so it is a natural candidate
for expressing which logical arguments have been provided to a
builder. For example, in a typestate system, a chess piece’s type
might change from Pawn to Queen, or a file’s type might change
from UnopenedFile to OpenedFile to ClosedFile. File operations
like read() are permitted only on an OpenedFile.

We define an accumulation analysis as a program analysis where
the analysis abstraction is a monotonically increasing set, and some
operation is legal only when the set is large enough—that is, the
estimate has accumulated sufficiently many items. Accumulation
analysis is a special case of typestate analysis in which (1) the order
in which operations are performed does not affect what is subse-
quently legal, and (2) the accumulation does not add restrictions;
that is, as more operations are performed, more operations become
legal.

For builders, each typestate stands for a different set of logical
arguments that have been provided so far. The finalizer operation
is permitted in all typestates whose set is a superset of the required
logical arguments. Builders therefore satisfy the definition of accu-
mulation analysis.

We have devised a modular typestate analysis, for the special
case of an accumulation analysis. An arbitrary typestate analysis
requires alias analysis for soundness. Suppose that two OpenedFile
references f1 and f2 might refer to the same file object. Calling
f1.close() must change the estimate of the type of f2, or else the
analysis would permit the program to perform the possibly illegal
operation f2.read().

This problem does not arise for an accumulation analysis, which
can soundly disregard aliasing. Suppose that al and a2 are must-
aliased, and their estimate of logical arguments supplied is {x, y}.
The operation al.z() changes al’s estimate to {x, y, z}. The valid

3E.g., see https://github.com/spotify/docker-client/issues/635.

operations on the old type are a subset of the valid operations on
the new type. It would be sound to update the estimate of a2’s type,
but it is not necessary: the old estimate for a2 remains valid, but
imprecise. This imprecision might lead to false positive warnings.
In our case studies, we observed a need to track aliasing created
by fluent method returns to avoid false positives (section 4.3); we
observed no other false positives due to aliasing.

Ignoring aliases does not mean ignoring side effects. Whenever a
side effect, such as an assignment, might change the object that an
expression evaluates to, the refined estimate for that expression is
discarded, and the analysis uses its specification (that is, its declared
type) instead.

The secondary reason that our analysis does not require whole-
program analysis is that our analysis checks rather than infers
method specifications. Even so, our implementation requires pro-
grammers to write few annotations, and these annotations serve
as valuable machine-checked documentation. If a user wished to
eliminate the source-code annotations, whole-program inference
could do so without requiring a heavyweight alias analysis.

Because of its special properties, an accumulation analysis can
be expressed as an ordinary flow-sensitive type system—it does not
require a full typestate analysis. Our implementation is a pluggable
type system, layered on top of a host language.

A pluggable type system decorates each basetype from the host
programming language with a type qualifier that mixes in more
information. Our implementation is for Java, whose type annota-
tion syntax expresses a qualifier as a symbol preceded by @. For
example, @NonNull String and @Nullable String are types. Our
type system uses the @CalledMethods type qualifier. An example
Java variable declaration is @CalledMethods ({"setX", "setY"})
PointBuilder b;.

4 A TYPE SYSTEM FOR BUILDERS

This section presents our type system that guarantees required
methods are always invoked on builder objects. Suppose there is a
builder for this example Book class:

class Book {
String title; // required
String author; // required

}

A client using the builder must call methods that set both the title
and author fields, as in this example of safe code:

BookBuilder b = Book.builder();

b.title("Effective Java");

b.author("Joshua Bloch");
b.build();

To prove this code is safe, an analysis needs two kinds of facts:

o After each call to a setter s, the analysis must estimate that s
has definitely been called on the receiver. Further, the analysis
must also incorporate the previous estimate of called methods:
after the call to b.author () above, the analysis must estimate
that both title and author have been called on b (section 4.1).

e build must have a specification to indicate that both title and
author must have been called on its receiver (section 4.2).

Two facts allow us to treat the object construction problem with
builders as an accumulation analysis:
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Figure 5: A type qualifier represents which methods have been
called. “@CM” stands for @CalledMethods, for brevity. If an expression’s
type has qualifier @CalledMethods ({"withFilters", "withOwners"}),
then the methods withFilters and withOwners have definitely been
called on the expression’s value. Arrows represent subtyping rela-
tionships. Section 4.1 formalizes the subtyping relationship. The di-
agram shows a part of the type hierarchy; the full hierarchy is a
lattice of arbitrary size.

o The order in which the client calls the setters is not important
to enforce the specification on the finalizer.

o The analysis only accumulates method calls: it is always safe
to forget that a method has been called on an object, even if it
may be imprecise.

Because an accumulation analysis can verify that a client of a
builder provides all required arguments, we can use a modular,
flow-sensitive, pluggable type system to solve it, as detailed in the
remainder of the section.

4.1 Estimating the methods called on an object

Our type system processes types of the form @CalledMethods (A)
T, where T is a Java basetype and @CalledMethods(A) is a type
qualifier. An expression with this type must evaluate to an instance
of T (or a subclass of T) which has definitely had each method in
A called on it. For example, after the call to b.title() above, the
type of b is @CalledMethods ({"title"}) BookBuilder. Our type
system computes @CalledMethods types for every expression and
method in the program, not just builders and setter methods.

Figure 5 shows part of the type qualifier hierarchy for @Called-
Methods types. The subtyping rule for two @CalledMethods anno-
tations, with sets of methods A and B, is:

ADB
@CalledMethods(A) E @CalledMethods(B)

Our type system is flow-sensitive: a particular expression may
have different types on different lines of the program, but must
always be consistent with (a subtype of) the expression’s declared
type. Our type system relies on local type inference to compute
updated expression types after method calls, e.g., updating b’s type

qualifier to @CalledMethods ({"title"}) afterthecalltob.title().

Though the type hierarchy has size up to 2™ where m is the
number of methods in the program, the dataflow analysis (i.e., local
type inference) is guaranteed to terminate: there are no unbounded
ascending chains, which also means that there is no need to define
widening operators (approximate LI operators).

Inlocal type inference, processing of method calls is polymorphic.
Say b has an inferred qualifier @CalledMethods (M) before a call
b.m(). After the call, the inference computes b’s new qualifier as
@CalledMethods (M U m), independent of M.
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Local type inference means that programmers need not write
annotations within method bodies, but only on method signatures
when there is inter-procedural flow of partially-completed builders.

In such cases, the specifications (the type qualifiers) serve as valu-
able, machine-checked documentation.

As an example of a needed source-code annotation, consider
this call to describeImages() in file LatestImageProvider.java
in https://github.com/iVirus/gentoo_bootstrap_java:.

public Optional<Image> get() {
DescribeImagesResult result =
ec2Client.describeImages (getRequest());

For each of the three overriding definitions of getRequest(), we
added an @CalledMethods annotation to the return type that indi-
cated that withOwners () had been called.

@CalledMethods ("withOwners") DescribeImagesRequest getRequest() {..

-}

After adding those three annotations, the Object Construction
Checker verifies the project. This also guarantees that each im-
plementation of getRequest () does call withOwners(), since the
Object Construction Checker verifies, not trusts, each annotation.

4.2 Specifying finalizer methods

Verifying correct use of a method requires a specification of that
method. Consider the finalizer for the BookBuilder example:

interface BookBuilder {
Book build(@CalledMethods({"title", "author"}) BookBuilder this);
}

Its specification states that the receiver for a call to build must be
an object on which title and author have been called.

At each call to the finalizer (build), the typechecker checks that
the builder argument passed as the receiver has an @CalledMethods
qualifier that is a subtype of the declared receiver qualifier in the
method signature. From our subtyping rule, this check ensures
that at least the methods listed in the receiver qualifier have been
invoked on the builder. If the check fails, the checker issues a type
error, indicating possibly-defective code.

4.3 Fluent setters

Many builders are fluent: each setter method returns the builder
again (i.e., the method returns this), so that calls can be chained.
Consider the following client code for the running Book example:

BookBuilder b = Book.builder();
b.title("Effective Java").author("Joshua Bloch");
Book theBook = b.build();

The local inference described in section 4.1 is insufficient to verify
this code. After the second line, the inferred types are:

b : @CalledMethods({"title"}) BookBuilder
b.title("Effective Java") : @CalledMethods({"author"}) BookBuilder

The inferred type for b does not satisfy the specification of build.
The key issue is aliasing: the return value of a fluent call is aliased
with its receiver, but our system as described thus far is unaware
of this fact. This lack of alias reasoning can lead to false positives,
as discussed in section 3.



To verify this code, it is necessary to know that each fluent setter
method returns its receiver. To express this specification, we intro-
duce a new type annotation: @This. When written on a method’s
return type, it indicates that the return value of the method is always
exactly the receiver object (this in Java). For the Book example, the
setters should be specified as:

interface BookBuilder {
@This BookBuilder title(String title);
@This BookBuilder author(String author);
}

We verify @This annotations by ensuring the corresponding meth-
ods always return this.*

Given a call e.m(), the inference of section 4.1 computes an
updated type for e. Given @This annotations, the inference performs
two new types of updates. If m’s return type has an @This qualifier,
the inference also updates the @CalledMethods qualifier of e.m() to
be the same as the qualifier for e after the call. If e itself is a method
call e’.n() with an @This return type, the inference also updates
the type of e’ after the call, and recurses into e’ as appropriate.”
For the expression b.title(...).author(...), since both title
and author have @This annotations, the inference computes the
types of b, b.title(...), and b.title(...).author(...) to all be
@CalledMethods ({"author","title"}).

4.4 Disjunctive types

Sometimes, a builder’s specification requires one of two methods be
called. For example, suppose that the Book class also has an editor
field, and that a well-formed Book has either an author, an editor,
or both. Then, clients like the following would be permitted:

Book b = Book.builder()
.title("Advanced Topics in Types and Programming Languages")
.editor("Benjamin Pierce")
.build();

There is no corresponding @CalledMethods annotation that the
API designer can write to specify the receiver type of the build
method. We therefore introduce disjunctive types. Each of these
types is a disjunction of @CalledMethod types. This means that,
every set of @CalledMethod types has a perfectly precise least
upper bound. (It already has a perfectly precise greatest lower
bound: @CalledMethods(X) M @CalledMethods(Y) = @Called-
Methods (X U Y).)

For user convenience, we implement these disjunctions as a sim-
ple Boolean expression language which users write as an argument
to a new type annotation called @CalledMethodsPredicate. The
specification language uses the following grammar:

S — method name | (S) | SAS|SVS
This permits the user to construct a specification like “author v
editor”, expressed in Java as @CalledMethodsPredicate("author
|| editor").

4.4.1 Using @CalledMethodsPredicate to specify the AWS API. As
a practical example, the specification for the AMI sniping example
(section 2.1) requires a disjunction. The corresponding specification

4Our checker also checks for valid method overriding, using standard support from
the Checker Framework.

5Since chains of fluent calls are not overly long in practice (we did not observe any
larger than about 20 methods), this recursion has negligible performance overhead.

is written on the parameter to the describeImages API in the AWS
SDK (for presentation, the full specification has been shortened):

DescribeImageResponse describeImages (
@CalledMethodsPredicate("withImageIds || withOwners")
DescribeImageRequest request);

Given this specification for describeImages, the typechecker re-
jects any call whose receiver has not had either withImageIds or
withOwners called on it. This specification is sound: it prevents all
AMI sniping attacks.

4.4.2 Subtyping for disjunctive types.

@CalledMethods(A) C @CalledMethodsPredicate(P)
If the set of methods A in the @CalledMethods annota-
tion causes the predicate P to evaluate to true, then the
@CalledMethods annotation is a subtype:

AP
@CalledMethods(A) C @CalledMethodsPredicate(P)

@CalledMethodsPredicate(P) C @CalledMethodsPredicate(Q)
If =-(P=0Q) is unsatisfiable.

@CalledMethodsPredicate(P) C @CalledMethods (A)
If =(P=0Q) is unsatisfiable, where Q is the conjunction of the
methods in A.

4.5 Method effects

Sometimes programmers write methods that are wrappers for one
or more calls to setters, to re-use common initialization logic. For
example, suppose a programmer wrote this client code for the Book
class:

void setEjBookData(BookBuilder b) {
b.title("Effective Java");
b.author("Joshua Bloch");

}

BookBuilder b = Book.builder();
setEjBookData(b);
b.build();

The programmer needs to be able to specify the behavior of the
setEjBookData method, which calls methods on its formal param-
eter. Without this specification, our checker will report an error at
the build call, as it does not perform inter-procedural inference.

To specify such code, our implementation supports a method
annotation @EnsuresCalledMethods. Its arguments are an expres-
sion and a set of methods that are called on that expression. So,
setEjBookData() can be specified as:

@EnsuresCalledMethods("b", {"title", "author"})
void setEjBookData(BookBuilder b) {
b.title("Effective Java");
b.author("Joshua Bloch");
}

As with all annotations, it is checked, not trusted. The method
annotated with @EnsuresCalledMethods typechecks only if b’s
type at each exit point of the method is a subtype of @Called-
Methods ("title", "author").
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4.6 Implicit specifications

So far, this section has described how a programmer can specify
methods. Our implementation infers most specifications for setter
and finalizer methods, so programmers do not need to write them.

An @This type annotation is added to return types of setter
methods in Lombok and AutoValue builders, as the generated code
of such methods always returns this.

An @CalledMethods type annotation is added to builder finalizer
methods generated by Lombok and AutoValue. For Lombok the
methods in the annotation are the setters for any field whose type
is @NonNull, except fields with an @Singular annotation and fields
with an @Builder.Default annotation. For AutoValue, the methods
in the annotation are the setters for each field whose type is not
nullable, Optional, or a Guava Immutable type.

The Lombok authors are so excited by our work that Lombok
now supports it directly. Lombok releases 1.18.10 and later can auto-
matically insert @This and @CalledMethods annotations in Lombok-
generated builders. This eliminates the need for our tool to add
specifications in those classes.

5 IMPLEMENTATION

We implemented the Object Construction Checker for Java atop
the Checker Framework [50]. Our implementation is 1,397 non-
comment, non-blank lines of code.

The current version of our tool is available at https://github.com/
kelloggm/object-construction-checker. The version of the tool used
for the evaluation in section 6, including the open-source portion
of our scripts and data, is publicly available at https://doi.org/10.
5281/zenodo.3634993.

5.1 Limitations

Our type system guarantees that some methods are called before
others. It does not guarantee that those methods are called with
valid parameter values. For example, a programmer might pass an
integer value that is out of the range required by the setter method’s
specification, or a programmer might pass a null value to a setter
method requiring a non-null value. Existing type systems for the
Checker Framework already verify these properties [22, 40, 50] and
can be run together with the Object Construction Checker. Or, a
user could use a different analysis (e.g., NullAway [5]). A benefit of
our approach is that it permits a user to use an arbitrary analysis
for validating method arguments.

Other analyses can also be used to enhance reasoning about
method arguments within the Object Construction Checker. Con-
sider the AMI sniping example in section 2.1. A common false
positive when applying only the @CalledMethods type system to
code that calls the describeImages () APIis that it is also possible
to specify an owner using a particular filter, without actually call-
ing withOwners (). We plugged the Checker Framework’s constant
propagation analysis [19] into the @CalledMethods type system to
eliminate these false positives, by treating calls that set an owner
via a filter the same as direct calls to withOwners ().

Another limitation is that accumulation analysis does not handle
guaranteeing that a method is not called, nor can it enforce a spec-
ification “either both methods are invoked or neither” Handling
these cases soundly requires a sound alias analysis.
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Table 1: Detection of AMI sniping vulnerabilities.

Open Closed

source  source

Projects 36 509
Non-comment non-blank lines of Java code 427K 8.7M
Manually-written annotations 5 29
True positives 3 13
False positives 2 1

DescribeImagesRequest request = new DescribeImagesRequest();
if (imageIds != null) {
request.setImagelds(Arrays.asList(imagelds));

}

DescribeImagesResult result = ec2Client.describeImages(request);

Figure 6: A true positive AMI sniping concern in Netflix’s Simian-
Army project.

6 EVALUATION
Our evaluation aims to answer these research questions:

e RQ1: Is the Object Construction Checker sufficiently scalable
and effective to find previously-unknown AMI sniping attacks
in real-world programs (section 6.1)?

o RQ2: Is the Object Construction Checker useful to program-
mers when they work with frameworks that provide flexible
builders at the cost of compile-time checking (section 6.2)?

6.1 Finding AMI sniping bugs
We evaluated our approach to detecting AMI sniping attacks on
two corpora of codebases:

e 36 open-source codebases from GitHub (about 427,000 lines of
Java code). This corpus was collected by searching GitHub for
projects that use the describeImages API, and then filtering
out (for technical reasons) projects whose root directory did
not contain a Gradle or Maven build file and those that did not
build with a Java 8 compiler. We also discarded every copy or
fork of the AWS Java SDK or a project already in the corpus.

® 509 codebases from Amazon Web Services that contain calls
to the describeImages() APIL These codebases contain about
8.7 million lines of Java source code.

The results appear in table 1. The Object Construction Checker
found 13 AWS codebases potentially vulnerable to third-party abuse
via AMI sniping. The developers fixed each potential vulnerability.
Each of the 29 annotations was written on a helper method that
wraps setter calls, similar to those discussed in section 6.3.2.

Including both sets of experiments, the tool overall achieved 84%
precision, and required one annotation per 268,000 lines of code.

One true positive we discovered in the open-source evaluation
was in the project Netflix/SimianArmy; the relevant code appears
in fig. 6. If the list of image ids is null, then the code (by design)
fetches every AMI available. Though the method’s documentation
does not say so, it is incumbent on any caller of this code to filter
the result after the fact.

Both false positives in the open-source experiments (cases
where our type system could not verify safe code, even with addi-
tional annotations) were due to a single project which wraps the
describeImages API with methods that take alist of Filter objects.



public static StartRegistrationOptionsBuilder.MandatoryStages
builder() {
return new StartRegistrationOptionsBuilder.MandatoryStages();

}

public static class StartRegistrationOptionsBuilder {
public static class MandatoryStages {
private final StartRegistrationOptionsBuilder builder = new
StartRegistrationOptionsBuilder();

public StartRegistrationOptionsBuilder user(UserIdentity user)

{

return builder.user(user);

Figure 7: Code from the project Yubico/java-webauthn-server which
uses a complex Java type to force programmers to set required fields
in a builder. This code is from the StartRegistrationOptions class.
Note that this code replaces generated code, so with our approach it
can be safely deleted.

Our type system cannot express that a list of Filter objects must
contain the correct filters. The false positive in the closed-source
code was due to a similar code pattern.

6.2 Usefulness to programmers

There are two ways that programmers interact with the Object
Construction Checker:

e When a programmer begins using our tool, they need to on-
board their project by running the checker and possibly writing
annotations or changing their code.

e When a programmer change to a project, the tool might issue
a warning.

To evaluate the usefulness of our tools to programmers in each of
these scenarios, we did two corresponding kinds of evaluation:

o Case studies: we ran the Object Construction Checker on exist-
ing programs. The case studies demonstrate the typical effort to
find issues or to confirm the correctness of an existing project
that was developed without our tools (section 6.3).

o A user study: we presented industrial engineers with common
tasks related to modifying existing builders. The user study
demonstrates that our tools ease editing existing code (sec-
tion 6.4).

6.3 Case studies

The case studies (table 2) demonstrate the costs and benefits of on-
boarding an existing project. We sampled the projects from GitHub
by searching for projects with significant builder usage that could
compile with our infrastructure, preferring more popular projects
where possible (based on number of GitHub stars). The paper au-
thors (who performed the case studies) were not familiar with the
projects or their use of Lombok or AutoValue.

6.3.1 Lombok.

Code to force order of initialization. The java-webauthn-server
project contained complex manually-written code to statically en-
force that required fields are set in a specific order. This is called
the Mandatory Stages Pattern. If there are n mandatory fields, the

class StartAssertionOptions {
private final @NonNull Optional<Long> timeout;

static class StartAssertionOptionsBuilder {
private @onNull Optional<Long> timeout = Optional.empty();

public @his StartAssertionOptionsBuilder timeout(long t) {
return this.timeout(Optional.of(t));
}
}
}

Figure 8: Manually-written timeout() setter method from the
project Yubico/java-webauthn-server which requires an @This anno-
tation.

static @CalledMethods({"baseDirectory","inPlace"}) Builder builder() {
return new AutoValue_ErrorProneOptions_PatchingOptions.Builder()
.baseDirectory("")
.inPlace(false);

Figure 9: Example AutoValue builder code, adapted from
google/error-prone, that sets default values.

code introduces n — 1 new builder types, each of which has a setter
for only one field that returns the next builder type in the chain.
The last one returns a standard builder instance that can be used
to set optional fields. Figure 7 gives a simple example with just
one required argument. When employing this pattern with multi-
ple required arguments, the programmer must impose an order in
which the arguments are to be set, or else create an exponential
number of builder types. With our approach, none of these classes
are necessary. In the case studies, we were able to delete them.

Initializing fields of Optional type. Lombok permits users to man-
ually write parts of the builder that Lombok would otherwise gen-
erate. The java-webauthn-server program used this facility exten-
sively to permit fields with Optional<T> to have both a setter that
takes a T as an argument and a setter that takes an Optional<T>, like
the code in fig. 8. When writing a setter manually, the user also
has to manually write the @This annotation. All 48 annotations in
java-webauthn-server were @This annotations on manually-written
setters for Optionals. The use of Optional is a questionable design
decision [23]. The Lombok authors advocate using null to indicate
an optional value when using Lombok builders [58], and doing
so avoids the need for either manually-written setters or @This
annotations. This pattern also required us to add some code that
Lombok would normally have generated, but which the original,
hand-written code elided—showing the danger of hand-writing
code in this way.

6.3.2 AutoValue.

Need for annotations. The most common code pattern requir-
ing manual annotation was setting of default values when creat-
ing a builder [13]. Figure 9 shows an example, adapted from the
google/error-prone benchmark. Here, the builder() method used
to construct a new builder sets the baseDirectory and inPlace
properties to default values before returning the builder. Hence,
client code need not explicitly set these properties before calling
build(). A @CalledMethods annotation documents this fact.
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Table 2: Verifying uses of the builder pattern. Throughout, “LoC” is lines of non-comment, non-blank Java code. “Annos.” is number of
manually-written annotations to specify existing methods. “TPs” is true positives. “FPs” is false positives, where the Object Construction
Checker could not guarantee that the call was safe, but manual analysis revealed that no run-time failure was possible.

Project Framework LoC Finalizer calls | LoC added LoC removed Annos. TPs FPs
Yubico/java-webauthn-server Lombok 7,153 42 52 426 48 0 3
javagurulv/clientManagementSystem Lombok 5,134 65 0 0 0 0 0
google/error-prone AutoValue 74,180 9 0 0 2 0 2
googleapis/gapic-generator AutoValue 49,054 442 2 0 58 1 1
google/nomulus AutoValue 71,627 95 0 0 23 0 8
model
.getInterfaces(productConfig)
.stream()

.filter(productConfig: :hasInterfaceConfig)
.map(InterfaceModel: :getFullName)
.findFirst()
.map(name -> pathMapper.getOutputPath(name, productConfig))
.ifPresent(path -> packageInfo.outputPath(path +
File.separator + "package-info.java"));
[...]
return packageInfo.build();

Figure 10: Excerpt of real bug discovered in googleapis/gapic-
generator by the Object Construction Checker.

AutoValue users have discussed the difficulty of finding which
properties have default values when the above pattern is used [47].
Our introduced @CalledMethods annotations ease this problem by
making the defaulted properties evident from the method signature.

The second most common need for annotations was when a
builder is passed to a method that sets several required proper-
ties. We annotated the method with @EnsuresCalledMethods (sec-
tion 4.5). We believe these annotations in particular are useful
documentation, as it was non-obvious in many such cases why the
code was safe.

In the future, we plan to extend the Object Construction Checker
to suggest these annotations to users.

Added code. We added a default case for one switch statement
(two lines of code), capturing the fact that the other cases were
exhaustive and enabling the Object Construction Checker to reason
that a property was always set.

Bug found. The Object Construction Checker found a de-
fect in googleapis/gapic-generator (fig. 10). The packageInfo
variable holds the relevant builder, and required method
packageInfo.outputPath() is only invoked if the Optional re-
turned by findFirst() is present. If the Optional is absent, then
the call to packageInfo.build() will throw a run-time error. We
reported the bug to the developers, who promptly verified and
fixed the issue, saying “your static analysis tool sounds truly amaz-
ing!” [60] For the one false positive in gapic-generator, a non-trivial
global invariant ensures the relevant property is always set.

False positives. The Object Construction Checker reported 10
total false positive warnings in google/nomulus and google/error-
prone. In all cases, the false positives were due to use of AutoValue
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features that our tool does not yet automatically support, like man-
ually writing a builder’s build () method with delegation to a gen-
erated autoBuild () method [14]. We plan to add support for such
patterns in the future.

6.4 User study

To further explore the usefulness of the Object Construction
Checker, we undertook a small user study.

6.4.1 Participants. Each participant was employed as a software
engineer, regularly uses Java, and was familiar with Lombok. Partic-
ipants were not familiar with our tool. We recruited 6 participants;
all were at the same level but worked on different teams.

6.4.2 Methodology. The task for the study was to add a new re-
quired field to a class with an existing Lombok-generated builder,
and then update all call sites to provide a reasonable value (each
call site, if not updated, will throw an exception if executed).

The task was carried out on java-webauthn-server, one of
the case studies in section 6.3. Participants started with a fully-
annotated codebase that type-checks with the Object Construction
Checker; they were not required to onboard the tool. The original
project has some tests written in Scala; we removed those, because
our tool does not handle Scala code. This also allowed us to simulate
another class of problems: changes to classes whose builders are
not covered by tests.

We chose two different classes for participants to add a new field
to. One task’s class had a test case written in Java; the other class
had no test. We used a factorial design: each participant executed
the task for both of these classes; for one, they had access to our
tool, and for the other, they did not. To control for learning effects,
both the order of the tasks and the order of tool/not-tool were
randomized independently for each participant.

No training on our tool was provided. Its messages came to
participants via the standard compiler interface.

6.4.3 Measurement. We recorded how long it took each participant
to complete each task (participants were capped at one hour per
task, though most were much faster). We also measured whether
they completed each task correctly—defined by running the held-
out Scala tests. We also surveyed the participants after they had
completed the tasks. We asked the following questions:

e How often do you encounter tasks like those in the experiment
in your day-to-day work?

e Did you find compiler messages indicating where required
fields had not been set useful?



6.4.4  Results. 3/6 participants failed to complete the task without
our tool (two in the condition lacking a failing test), but all 6 suc-
ceeded with our tool. There was a difference in means in the time
taken when considering only those who finished both tasks: using
our tool was about 1.5x faster (%200 seconds vs. ~306 seconds).

In the surveys, 5/6 users said they encountered tasks like these at
least monthly. The subjects were also convinced that the compile-
time warnings were useful. For example, one subject said “It was
easier to have the tool report issues at compile time.” Several also
mentioned the tool’s value in localizing where to make changes:
for example, one said the tool “allowed me to immediately hone in
on the problem.”

6.5 Threats to validity

The analyzed projects are written in Java, so our results might not
generalize to other languages.

Our small user study uses only a few developers from a single
company, and therefore may not be representative.

There is a threat to construct validity in the user study: the
subjects may have guessed that we were evaluating the Object
Construction Checker, since they were familiar with Lombok but
not with our work.

7 BEYOND BUILDERS

This paper has shown how a modular accumulation analysis can
verify objects constructed via the builder pattern are well-formed.
We see promise in applying accumulation analysis to other types
of object construction, and to typestate properties more generally.

7.1 Setters for multiple fields

As presented in this paper, the accumulation analysis assumes that
every setter operates on disjoint fields. If this assumption is violated,
then the accumulation analysis should accumulate the set of fields
rather than the method calls. This is how the dependency injection
analysis of section 7.2 works. In Lombok and AutoValue builders,
there is a one-to-one correspondence between methods called and
fields set, so the accumulation analysis can accumulate the set of
methods called, as a proxy for the fields set.

7.2 Dependency injection

Like the builder pattern, dependency injection is a way of creating
objects that is more flexible and expressive than constructors, but
also more error-prone. For example, in a framework like Guice [34],
there are multiple ways to provide a logical argument:

o A class provides a single logical argument via the @Provides
annotation on a method.

e A call to bind(requiredArgument).to(provider) behaves
like @Provides in that it provides a value, but that value is
obtained from elsewhere than the current class.

e Each call to this.install(someClass) within configure()
provides the receiver with every logical argument of someClass.
This may provide multiple logical arguments.

o The values required by a class are typically its logical construc-
tor arguments. However, its superclass may impose require-
ments, which the class must also satisfy. The superclass may
also provide values, relieving the subclass of that requirement.

The exit of install is the finalization point.
We believe that these, and other features of Guice and its ilk, can
all be expressed as an accumulation analysis over logical arguments.

7.3 Typestate

A typestate analysis is an accumulation analysis (section 3) if the
set of legal operations only grows as an object transitions through
typestates. That is, if typestate TSz is reachable from TS;, then
enabled(TS2) 2 enabled(TS1). More generally, the properties of
TS, are stronger than those of TS;.

Our modular accumulation analysis cannot handle cyclic type-
state graphs (discounting self-loops). Doing so requires an alias
analysis, and an imprecise alias analysis may lead to an unaccept-
able number of false positives. Few typestate examples require a
cyclic graph, especially in well-structured code. File or Socket ob-
jects, e.g., are rarely closed and re-opened: new objects are created
instead.

Similarly, few real-world typestate problems have complex order-
ing restrictions on operations. Real-world problems are often of the
simple form "Always call m before n," involving a single operator
(e.g., requiring a call to an initializer method). The requirement
can be a longer sequence, e.g., "Call m1, then m2, and then m3."
Our type system can handle such cases with an @CalledMethods
annotation at each intermediate method to enforce the ordering.

8 RELATED WORK

Object Construction: There is scant related work directly on static
analyses to ensure that all mandatory setters are called before a
finalizer in the builder pattern. However, this issue motivates some
language design choices such as named and default parameters in
languages like Python. The closest works are tools that generate in-
terfaces that enforce the mandatory stages pattern (section 6.3), and
only permit calls to finalizers from interfaces which have all manda-
tory fields set. Examples include the AutoValue Step builder [57]
and the Jilt library [56]. Type-safe builders can also be encoded
using phantom types [28] or in the Scala type system [26]. Recent
work shows how to generate a fluent API encoding a deterministic
context-free language in Java while preserving type safety [33],
which could in principle be used to generate a type-safe builder. All
these techniques require either an exponential number of classes
in the number of logical parameters, setting parameters in a pre-
defined order, or both; none of them can be applied to legacy code
without modifying it. Our analysis neither requires programmers to
rewrite their builders nor requires methods be called in a particular
order or exponentially-many classes.

Others have addressed problems in object construction. Types
have been used in functional languages to enforce that unmar-
shalling objects is safe [35]. Specialized analyses for languages that
permit mix-ins or aspects to enforce that objects under construction
are not provided with conflicting method definitions also exist [8].

Object Initialization: Another category of related approaches
are type systems and other static analyses for detecting nullness
errors, especially those caused by object initialization. For example,
freedom before commitment [62] type systems for reasoning about
the initialization of objects defend against null pointer exceptions
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generally, but require significantly more annotations than our more-
specialized approach, and are also less general in that they cannot
be used for errors that will not throw a null-pointer exception,
like our AMI sniping example. Similar type systems exist for Java
bytecode [37]. Delayed [25] and mask [54] types track the fields
that have been initialized on an object, and permit specifications
on methods that require certain fields to be set before the method
is invoked. Their approach is designed around the internal state of
an object, while ours uses externally visible properties (i.e. method
calls) that correspond to how clients will actually use an object.

Typestate: Our type system can be viewed as a limited form
of typestate [61] in which objects can only accumulate method
calls. This limited form can be efficiently implemented without an
expensive, potentially imprecise alias analysis. Our system also
permits only downward refinement, whereas full typestate systems
permit arbitrary changes to state. Our approach is simpler, but,
as we have shown, is sufficient for the problem of constructing
well-formed objects.

Fihndrich and Leino defined heap-monotonic typestates [24],
which have similarities to our notion of accumulation and can
also be verified without alias analysis. Their work defines heap-
monotonic typestate systems as those in which “statically observ-
able object invariants only become stronger as objects evolve.” It
then formalizes heap monotonicity within a general system for
specifying typestates, transitions, and object invariants. Our focus
is only on checking correctness of client code, not enforcing data
structure invariants. Hence, we can define accumulation analysis
purely in terms of available operations on an object (section 3), with-
out formalizing its internal invariants. The Fahndrich-Leino system
cannot express properties where methods may be invoked in an arbi-
trary order, like the required methods property for builders. Finally,
the Fahndrich-Leino system was not implemented and evaluated.

Modular typestates using access control abstractions have been
proposed [10]. Their system handles arbitrary typestate properties
but forces programmers to reason about aliasing. Typestate specifi-
cations can be converted to working Java programs and checked if
all objects with typestates are linear [41]. Using a mix of static type-
state checking and dynamic typestate checks, arbitrary typestate
properties can be enforced [11]. Our approach is more targeted but
entirely static. Fully typestate-oriented languages have also been
proposed [3], but they cannot be applied to legacy code.

Gradual typestate [64] is an unsound technique that inserts run-
time checks where the static analysis cannot prove a fact. The pro-
gram crashes if it attempts to perform an unsafe operation. Gradual
typing is of no benefit in our context, since incorrect operations
already lead to a crash. The goal of our static verification is to avoid
such crashes.

There has been significant work on inferring the correct type-
state model for a program based on its implementation. Both
static [21, 32, 36] and dynamic [4, 20, 30, 43] approaches to this
problem exist. For the builder case, the correct specification is read-
ily apparent: all required methods must be called. Our approach is
therefore complementary to these: it is concerned with efficiently
enforcing properties, not inferring them.

Static Analysis for Security: Several static analyses exist that
are designed to detect security problems. Coverity is a heuristic
bug-finding tool that is commercially available and heavily used
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in industry [7] that can find some security vulnerabilities. Cog-
niCrypt [42] and CryptoGuard [55] are tools for finding unsafe
uses of cryptographic APIs; CogniCrypt is based on abstract inter-
pretation, while CryptoGuard is based on program slicing. None of
these tools contains rules for finding image sniping attacks.

9 CONCLUSION

Flexible object construction via the builder pattern is superior to
manually writing constructors for complex classes in most ways.
However, it has one glaring flaw: it permits any combination of
logical arguments, so malformed objects that would never have
been possible if all constructors were written by hand become
possible. These malformed objects can lead to run-time errors or,
worse, security vulnerabilities—adding a dramatic cost in bugs to
the readability and flexibility benefits of builders.

We have proposed a limited form of typestate checking that only
tracks which methods have been invoked on an object that verifies
that legacy code using builders never produces malformed objects.
Our system requires few code changes or annotations, scales to
real-world Java programs, and warns programmers at compile-time
about possible violations with few false positives. It found real
security bugs and enthused the programmers that tested it. With
our system, programmers gain all the flexibility and readability of
the builder pattern, without the risk of malformed objects.
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