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ABSTRACT
This manuscript is concerned with the development and the imple-
mentation of a numerical scheme to study the spatio-temporal solution
profile of the well-known Kuramoto–Sivashinsky equation with appropri-
ate initial and boundary conditions. A fourth-order Runge–Kutta based
implicit–explicit scheme in time alongwith compact higher-order finite dif-
ference scheme in space is introduced. The proposed scheme takes full
advantage of the method of line (MOL) and partial fraction decomposition
techniques, therefore, it just needs to solve two backward Euler-type linear
systems at each time step to get the solution. Performance of the scheme is
investigated by testing it on some test examples andby comparing numeri-
cal resultswith relevant known schemes. Thenumerical results showed that
the proposed scheme is more accurate and reliable than existing schemes
to solve Kuramoto–Sivashinsky equation.
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1. Introduction

The nonlinear time-dependent partial differential equations naturally arise frommathematical mod-
elling of chemical, physical or biological problems and these include dispersive and dissipative
nonlinear equations. One of the well-known dissipative equations is the Kuramoto–Sivashinsky
equation (KSE). The KSE is the equation governing in the frame of the weakly nonlinear approxima-
tion for the shape of the free surface of thin film of viscous liquid falling down a vertical plane when
the capillary forces are substantial. Kapitza in his pioneering work [20] first investigated the role of
viscosity on the capillary flow in thin layers. Benny [6] carried out the boundary-layer simplifications
for the viscous case andHomsy [18] developed the long-waveweakly nonlinear approximationwhose
consistent application allows one to derive the following dimensionless equation for the evolution of
the scaled film thickness u, after rescaling the variables

ut + uux + αuxx + βuxxxx = 0, (1)

where α and β are non-zero constants. Equation (1) is usually referred as KSE which is of great fun-
damental interest just in the same way as its famous counterparts Korteweg–de Vries (KdV) and
Burgers equations are. The alternative form of KSE was obtained in [25] while deriving it as a phase
equation for the complex Ginzburg–Landau equation for the evolution of reaction fronts. The KSE
also describes flame-front instabilities [13,37,38] as well as the dynamics of viscous-fluid films flow-
ing along walls [36,39]. For more details associated with the rich phenomenology of this flow, we
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refer the reader to [4,34] for comprehensive reviews of the experimental and theoretical approaches,
respectively.

The KSE is a nonlinear evolution equation which is capable of demonstrating chaotic behaviour in
both time and space. It contains nonlinearity, fourth-order dissipative term uxxxx and second-order
source term uxx (anti-dissipation). In fact, the KSE represents the extreme case when the dispersion
is negligible in comparison with dissipation while the KdV equation [23] demonstrates the other
extreme situation. The sole nonlinearity in the KSE is the convective term, which is also known as
‘eikonal’ nonlinearity [12,19] in the framework of deriving Equation (1).

Over the years, large numbers of numerical studies have been devoted to the KSE; the readers
are referred to the review paper [19] where a study consists of a thorough investigation of different
regimes is presented. Among the earlier works, two numerical studies are worth mentioning – one
by Frisch et al. [16] where a detailed multiple-scale analysis of the KSE with 2π-periodic boundary
conditions is presented, and the other by Christov and Bekyarov [11] where a new Fourier–Galerkin
method with a complete orthonormal system of functions in L2(−∞,∞) is applied to the solitary
wave problem for theKSE.At about the same time (1992 onwards), the attention has also been focused
on developing theoretically sound space and time discretization. In [1], Akrivis applied a finite dif-
ference scheme to Equation (1) with periodic boundary condition. Akrivis also reported in [2] a
consistent numerical approach to solve the KSE by employing a finite element Galerkin method with
extrapolated Crank–Nicolson scheme. In both cases, rigorous error analysis has been carried out in
order to derive a refined error bound.

Over the last few decades, a computational approach based on orthogonal spline collocation (OSC)
methodwhile seeking a numerical solution to the KSE has turned out to be quite popular. It wasMan-
ickam et al. [29] who first attempted to solve the KSE by using the orthogonal cubic spline collocation
method in conjunction with a second-order splitting method. Later, different types of OSCmethods,
such as quintic B-Spline collocation (QBSC)method [30], Septic B-spline collocation (SBSC)method
[44] have been successfully implemented to seek a numerical solution to the KSE. Furthermore, a
numerical scheme based on the B-spline functions is introduced in [27] for solving the general-
ized Kuramoto–Sivashinsky Equation (gKSE) where one test example is devoted to discussing the
nonlinear stability with convergence for Equation (1) subjected to Gaussian initial condition.

In addition, numerous other methods including the discontinuous Galerkin method [43], the
implicit–explicit BDF method [3], radial basis function (RBF) based mesh-free method [42], etc.
have been proposed to find the numerical solutions of the KSE. In another study [33] reported very
lately, a lattice Boltzmann model for the KSE is modified to achieve an enhanced level of accuracy
and stability. Here, the model’s enhanced stability enables one to use larger time increments which is
more than enough to compensate the extra computational cost due to high lattice speeds – a sub-
stantial improvement over the existing model. Another lattice Boltzmann model (LBM) with the
Chapman–Enskog expansion has been proposed for the gKSE in [26] where numerically obtained
results are found to be in good agreement with the analytical results. The gKSE is also studied with
the aid of Chebyshev spectral collocationmethods in [22] where the resultant reduced system of ordi-
nary differential equations have been solved by employing the implicit–explicit BDFmethod depicted
in [3]. Very recently, Mouloud et al. [32] have numerically studied the KSE equation with an addi-
tional dispersive term, arising in turbulent gas flow over laminar liquid and Singh et al. [35] have
introduced a compact finite difference scheme in space and optimal four-stages, third-order strong
stability preserving (SSP) time-stepping Runge–Kutta scheme to solve the KSE.

1.1. Contribution

In this manuscript, a fourth-order Runge–Kutta based implicit–explicit scheme in time along with a
compact fourth-order finite difference scheme in space is proposed to study the spatio-temporal solu-
tion profile of the KSE with the periodic and Dirichlet boundary conditions. The proposed scheme
takes full benefit of MOL and partial fraction decomposition techniques, therefore, it just needs to
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solve two backward Euler-type linear systems at each time step to get the solution. In addition, for the
efficient implementation of the scheme it just requires to compute two LUdecompositions outside the
time loop. Several numerical experiments on the KSE were run in order to study an empirical conver-
gence analysis and the accuracy of the proposed scheme by comparing with other existing schemes.
The numerical results exhibit that the proposed scheme provides better accuracy in most of the cases
than the existing schemes considered in this manuscript. In addition, the linear truncation error and
stability analysis of the proposed scheme is also discussed.

1.2. Organization of themanuscript

The remainder of the paper is organized as follows: in Section 2, compact fourth-order schemes
are described to approximate ux, uxx and uxxxx. In Section 2, the fourth-order Runge–Kutta based
implicit–explicit scheme is briefly explained. The linear truncation error and stability analysis of the
proposed scheme are discussed in Section 3. In Section 4, numerical experiments are performed on
KSE to test the accuracy and reliability of the proposed scheme. The conclusions are presented in
Section 5.

2. Fourth-order compact finite differencing schemes

In order to approximate spatial derivatives in the KSE, we partitioned the computational domain
� × [0,T] = {(x, t)| a ≤ x ≤ b, 0 ≤ t ≤ T} into uniform grids described by the set of nodes {(xi, tj)},
in which xi = a + (i − 1)h, i = 1, . . . ,N + 1, h = (b−a)

N , tj = jk, j = 0, 1, . . . ,M, and k = T
M , where

h and k are spatial and temporal step sizes, respectively.
There are several methods which are used to generate a compact finite difference formula to

approximate the first-, second- and fourth-order spatial derivatives. The readers are referred to [28]
and references therein for more details on how to generate compact finite difference formula (CFDF).
In this study, the spatial derivatives in the KSE are approximated by utilizing the following CFDF:

2.1. Approximation of the first derivative with periodic boundary conditions

If u′
i represents an approximation of the first derivative of u(x) at xi, then an approximation of first

derivative may be written as

u′
i−1 + 4u′

i + u′
i+1 = 3

h
(ui+1 − ui−1), i = 1, . . . ,N. (2)

The truncation error for formula (2) isO(h4).
The matrix representation of the scheme (2) is given as

L1U′ = M1U, (3)

where

L1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4 1 0 · · · 1

1 4 1
... 0

0
. . . . . . . . . 0

... 1 4 1
1 · · · 0 1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
N×N

, M1 = 3
h

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · −1

−1 0 1
... 0

0
. . . . . . . . . 0

... −1 0 1
1 · · · 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
N×N

, U =

⎡
⎢⎢⎢⎢⎢⎣

u1
u2
...

uN−1
uN

⎤
⎥⎥⎥⎥⎥⎦
N×1

.

Hence the fourth-order CFDF with periodic boundary conditions for ux is given by

U′ = L−1
1 M1U. (4)
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2.2. Approximation of the second derivative with periodic boundary conditions

If u′′
i represents an approximation of the second derivative of u(x) at xi, then an approximation of

second derivatives of u(x) may be written as

u′′
i−1 + 10u′′

i + u′′
i+1 = 12

h2
(ui−1 − 2ui + ui+1), i = 1, 2, . . . ,N. (5)

The matrix representation of the scheme (5) is given as

L2U′′ = M2U, (6)

where

L2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

10 1 0 · · · 1

1 10 1
... 0

0
. . . . . . . . . 0

... 1 10 1
1 · · · 0 1 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
N×N

, M2 = 12
h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 · · · 1

1 −2 1
... 0

0
. . . . . . . . . 0

... 1 −2 1
1 · · · 0 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
N×N

.

Hence the fourth-order CFDF with periodic boundary conditions for uxx is given by

U′′ = L−1
2 M2U. (7)

2.3. Approximation of the fourth derivative with periodic boundary conditions

If u(iv)
i represents an approximation of the fourth derivative of u(x) at xi, then an approximation of

fourth derivative of u(x) may be obtained by replacing U in (6) by U′′, that is

L2U(iv) = M2U′′,

where L2 andM2 are coefficient matrices defined above.
Hence the fourth-order CFDF with periodic boundary conditions for uxxxx is given by

U(iv) = L−2
2 M2

2U. (8)

2.4. Approximation of first derivative with Dirichlet boundary conditions

In this case, uniform grid xi = a + (i − 1)h, i = 1, . . . ,N, h = (b−a)
N−1 is assumed. The standard

compact finite difference formula for first derivatives of u(x, t) at interior points is

u′
i−1 + 4u′

i + u′
i+1 = 3

h
(ui+1 − ui−1), i = 2, . . . ,N − 1, (9)

where ui ≈ u(xi) and u′
i ≈ du(xi)

dx . The truncation error for formula (9) isO(h4). At boundary, when
i = 1 the formula is

4u′
1 + 12u′

2 = 3
h

(
−34

9
u1 + 2u2 + 2u3 − 2

9
u4

)
, (10)

and when i = N, the formula is

4u′
N + 12u′

N−1 = 3
h

(
34
9
uN − 2uN−1 − 2uN−2 + 2

9
uN−3

)
. (11)
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The truncation errors in the formula (10) and (11) areO(h4).
We can write (9)–(11) into matrix form as

L1U′ = M1U, (12)

where

L1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4 12 0 · · · 0

1 4 1
... 0

0
. . . . . . . . . 0

... 1 4 1
0 · · · 0 12 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
N×N

, M1 = 3
h

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 34
9 2 2 − 2

9 0 · · · 0

−1 0 1 0 0
...

0 −1 0 1 0
. . .

...

0 0 −1 0 1
. . . 0

...
...

. . . . . . . . . . . .
0 0 −1 0 1

0 0 0 2
9 −2 −2 34

9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×N

.

Hence the fourth-order CFDF with Dirichlet boundary conditions for ux is given by

U′ = (L1)
−1M1U. (13)

2.5. Approximation of second derivative with Dirichlet boundary conditions

The standard compact finite difference formula for second derivatives of u(x, t) at interior points is

u′′
i−1 + 10u′′

i + u′′
i+1 = 12

h2
(ui−1 − 2ui + ui+1), i = 2, 3, . . . ,N − 1, (14)

where u′′
i ≈ d2u(xi)

dx2 . The truncation error for formula (14) isO(h4).
At boundary, when i = 1, apply

10u′′
1 + 100u′′

2 = 12
h2

(
725
72

u1 − 190
9

u2 + 145
12

u3 − 10
9
u4 + 5

72
u5

)
, (15)

and when i = N,

10u′′
N + 100u′′

N−1 = 12
h2

(
725
72

uN − 190
9

uN−1+
145
12

uN−2 − 10
9
uN−3 + 5

72
uN−4

)
. (16)

The truncation error in both of the formulae is alsoO(h4).
Writing (14)–(16) in matrix form yields

L2U′′ = M2U, (17)

where

L2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

10 100 0 · · · 0

1 10 1
... 0

0
. . . . . . . . . 0

... 1 10 1
0 · · · 0 100 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
N×N

,
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M2 = 12
h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

725
72 − 190

9
145
12 − 10

9
5
72 · · · 0

1 −2 1 0 0
...

0 1 −2 1 0
. . . 0

...
...

...
... 0 1 −2 1 0

0 0 1 −2 1
0 · · · 5

72 − 10
9

145
12 − 190

9
725
72

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×N

.

Hence the fourth-order CFDF with Dirichlet boundary conditions for uxx is given by

U′′ = (L2)
−1M2U. (18)

2.6. Approximation of the fourth derivative with Dirichlet boundary conditions

If u(iv)
i represents an approximation of the fourth derivative of u(x) at xi, then an approximation of

the fourth derivative of u(x) may be obtained by replacing U in (17) by U′′, that is

L2U(iv) = M2U′′, (19)

where L2 andM2 are coefficient matrices defined above.
Hence the fourth-order CFDF with Dirichlet boundary conditions for uxxxx is given by

U(iv) =
(
(L2)

−1M2

)2
U. (20)

3. Fourth-order time-stepping scheme

This section presents a brief derivation procedure of the fourth-order implicit–explicit (IMEX4)
scheme based on a fourth-order exponential time differencing Runge–Kutta (ETDRK4-B) [24] time
integrator to solve the following equation with periodic boundary conditions:

∂u
∂t

+ Lu = F(u, t), u(x, 0) = g(x), (21)

where L and F represent the linear and the nonlinear operators of the KSE, respectively. Approxi-
mating Lu = αuxx + βuxxxx with schemes (7) and (8), and F(u, t) with scheme (4), we arrive at the
following system of ODEs:

∂U
∂t

+ LU = F(U, t), (22)

where L = L−2
2 (αL2M2 + βM2

2) and F(U, t) = − 1
2L

−1
1 M1U2. Here, L is a sparse matrix having only

a few diagonals occupied with non-zero elements and easily generated by using ‘spdiags ’, an inbuilt
function inMatlab for the computational purpose. The termF(U) in (22) is a nonlinear termwhichwe
do not want to integrate implicitly because the Jacobian of F(U) is non-symmetric and non-definite,
therefore an iterative solution of the implicit equation is desired. To avoid this issue, the simplest solu-
tion would be integrating F(U) explicitly. The linear term LU in general is a stiff term which should
be integrated implicitly to avoid sufficiently small time steps. Hence, for problems of the form (22), it
usually makes sense to integrate LU implicitly and F(U) explicitly. In order to achieve that, we obtain
the following recurrence formula by using the variation of constant formula by letting k = tn+1 − tn:

Un+1 = e−kLUn + k
∫ 1

0
e−kL(1−τ)F(U(tn + τk), tn + τk) dτ , (23)
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where Un = U(tn). Expression (23) is an exact solution of system (22) and the approximation of
its integral term leads to various ETD schemes. This paper considers a popular ETD scheme of
Runge–Kutta type, namely ETDRK4-B [24] and presents its implicit–explicit version for its general
applicability.

The ETDRK4-B [24] scheme is given as

Un+1 = ϕ0(kL)Un + kϕ1(kL)Fn + kϕ2(kL)
(
−3Fn + 2Fan + 2Fbn − Fcn

)

+ 4kϕ3(kL)
(
Fn − Fan − Fbn + Fcn

)
, (24)

where

Fn = F(Un, tn), Fan = F
(
an, tn + k

2

)
, Fbn = F

(
bn, tn + k

2

)
and Fcn = F(cn, tn + k),

an = ϕ0(kL/2)Un + k
2
ϕ1(kL/2)Fn,

bn = ϕ0(kL/2)Un + k
2
ϕ1(kL/2)Fn + kϕ2(kL/2)

(
Fan − Fn

)
,

cn = ϕ0(kL)Un + kϕ1(kL)Fn + 2kϕ2(kL)
(
Fbn − Fn

)
.

Note that the scheme (24) contains matrix functions of the form

ϕ0(kL) = e−kL, ϕμ(kL) = (−kL)−μ

⎛
⎝e−kL −

μ−1∑
j=0

(−kL)j

j!

⎞
⎠ , μ = 1, 2, 3. (25)

If eigenvalues of L are close to zero, the direct computation ofϕ functions in (25) is a challenging prob-
lem in numerical analysis due to disastrous cancellation error in the computation. To overcome this
and other numerical issues associated with it, many researchers have proposed different techniques
to compute these ϕ functions. Some of the well-known techniques include (i) the rational approxima-
tion of ϕμ(kL) [8,9], (ii) the Krylov subspacemethod [17,41], and (iii) the polynomial approximation
of ϕμ(kL) [10,40].

This study focuses on the rational approximation of ϕμ(kL) and introduces implicit–explicit ver-
sion of ETDRK4-B schemes utilizing a partial fraction decomposition technique is given in [8]. In
order to alleviate computational difficulties associated in direct computation of ϕμ(kL), at first a
fourth-order (2, 2)-Padé approximation to e−kL is utilized, which helps to avoid the direct com-
putations of the matrix exponential and higher powers of a matrix inverse. In addition, another
advantage we found in utilizing (2, 2)-Padé approximation is that the factors L−1 and L−3 cancel
out in ETDRK4-B scheme.

Implementation of (2, 2)-Padé approximation R2,2(kL) = (12I + 6kL + k2L2)−1(12I − 6kL +
k2L2) into (24) to approximate matrix exponential functions yields:

Un+1 = R2,2(kL)Un + P1(kL)Fn + P2(kL)
(
−3Fn + 2Fan + 2Fbn − Fcn

)

+ P3(kL)
(
Fn − Fan − Fbn + Fcn

)
, (26)

where

P1(kL) = 12k(12I + 6kL + k2L2)−1,

P2(kL) = k(6I + kL)(12I + 6kL + k2L2)−1,
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P3(kL) = 2k(4I + kL)(12I + 6kL + k2L2)−1.

In addition

an = R̃2,2(kL)Un + P̃1(kL)Fn,

bn = R̃2,2(kL)Un + P̃1(kL)Fn + P̃2(kL)
(
Fan − Fn

)
,

cn = R2,2(kL)Un + P1(kL)Fn + 2P2(kL)
(
Fbn − Fn

)
,

with

R̃2,2(kL) = (48I − 12kL + k2L2)(48I + 12kL + k2L2)−1,

P̃1(kL) = 24k(48I + 12kL + k2L2)−1,

P̃2(kL) = 2k(12I + kL)(48I + 12kL + k2L2)−1.

3.1. Fourth-order implicit–explicit Runge–Kutta type scheme

Since the scheme (26) consists of high-order matrix polynomials to invert, its direct implementation
would be computationally burdensome and numerically unstable if the matrices have high condition
numbers. In addition, the round-off error while computing the power of the matrices can produce
bad approximations [31]. In order to overcome this difficulty, R2,2(kL) and R̃2,2(kL) will not be com-
puted directly. Instead, the problem of stably computing the inverse of matrix polynomials inherent
in (26) is handled by utilizing a partial fraction decomposition technique as suggested in [8]. This
decomposition does reduce the computational complexity to just two LU decompositions over the
entire time interval (provided space step h, and the time step k are held constant). In addition, this
decomposition approach is important in alleviating ill-conditioning problems because only implicit
Euler-type solvers are required. A description of the scheme upon implementing a partial fraction
decomposition technique is presented in the following algorithm and from this point the algorithm
is referenced as IMEXRK4 scheme. We named it IMEXRK4 because it solves the linear term in (22)
implicitly and the nonlinear term explicitly by using Runge–Kutta methods.

In order to implement this IMEXRK4 scheme, poles and corresponding weights were computed
for R2,2(kL), {Pi(kL)}3i=1, R̃2,2(kL), and {P̃i(kL)}2i=1 by using Maple. We called the Maple sequence
‘Convert(f, parfrac, K)’, where f is rational function, ‘parfrac’ represents partial fraction, and K is
real or complex to compute the following poles and corresponding weights:

c1 = −3.0 + i1.7320508075688772935, w1 = −6.0 − i10.39230484541326376,
w11 = −i3.4641016151377545871, w21 = 0.5 − i0.8660254037844386467,
w31 = 1.0 − i0.57735026918962576452, c̃1 = 2c1,
w̃1 = 2w1, �̃1 = w11, �̃2 = 2w21 .

Remark: Since the matrices (kL − c1I) and (kL − c̃1I) are diagonally dominant, we do not require
Gauss elimination for the LU decomposition. We can utilize the well-known Thomas algorithm
directly for their LU decomposition. For the efficient implementation of the Algorithm 1, LU decom-
position of the matrices are carried and stored outside the time loop. Here, we have illustrated how
to implement the steps given in the Algorithm 1 efficiently by showing the work involved in step 1 as
an example

(kL − c̃1I)Ra = w̃1Un + k�̃1Fn,(
k(αL2M2 + βM2

2) − c̃1L22
)
Ra = M2

2

(
w̃1Un + k�̃1Fn

)
.
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Algorithm 1 IMEXRK4 scheme.
Step 1:

Solve the linear system (kL − c̃1I)Ra = w̃1Un + k�̃1Fn.

Define an = Un + 2 Re(Ra),

and Fan = F
(
an, tn + k

2

)
.

Step 2:

Solve the linear system (kL − c̃1I)Rb = w̃1Un + k(�̃1 − �̃2)Fn + k�̃2Fan,

Define bn = Un + 2 Re(Rb),

and Fbn = F
(
bn, tn + k

2

)
.

Step 3:

Solve the linear system (kL − c1I)Rc = w1Un + k(w11 − 2w21)Fn + 2kw21Fbn ,

Define cn = Un + 2 Re(Rc),

and Fcn = F(cn, tn + k).

Step 4:

Solve the linear system (kL − c1I)Ru = w1Un + k (w11 − 3w21 + w31) Fn

+ k (2w21 − w31)
(
Fan + Fbn

)
− k (w21 − w31) Fcn.

Evaluate Un+1 = Un + 2 Re(Ru).

To solve the above system we computed the LU decomposition of the matrix (k(αL2M2 + βM2
2) −

c̃1L22) by utilizing the Thomas algorithm.

4. Linear analysis

The linear truncation error and stability analysis of the scheme (26) are presented in this section.

4.1. Truncation error analysis

It is obvious that the overall spatial discretization is of order four because a fourth-order CFDF
is applied to linear parts of the KSE. To analyse the overall local temporal truncation error of the
scheme (26) for KSE, the following linear semi-discretization system is considered:

∂U
∂t

= −LU + RU, (27)

where L represents matrices derived from the linear spatial discretization of the second and the
fourth-order spatial derivatives, R represents the linear spatial discretization of first-order derivative
term of a linear KSE, and U is a vector of unknowns.
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Applying scheme (26) to Equation (27) yields

Un+1 =
(
I + kL

2
+ k2L2

12

)−1 ((
I − kL

2
+ k2L2

12
+ Rk

)
Un

+ Rk
2

(
I + kL

6

)
(−3 + 2an + 2bn − cn)

+2Rk
3

(
I + kL

4

)
(1 − an − bn + cn)

)
,

(28)

where

an =
(
I + 1

4
kL + 1

48
k2L2

)−1 (
I − 1

4
kL + 1

48
k2L2 + 1

2
Rk

)
Un,

bn =
(
I + 1

4
kL + 1

48
k2L2

)−1 ((
I − 1

4
kL + 1

48
k2L2 + 1

2
Rk

)
Un

+ 1
2
Rk

(
I + 1

12
kL

)
(an − Un)

)
,

cn =
(
I + 1

2
kL + 1

12
k2L2

)−1 ((
I − 1

2
kL + 1

12
k2L2 + Rk

)
Un + Rk

(
I + 1

6
kL

)
(bn − Un)

)
.

Taylor expansion of Equation (28) yields

Un+1 =
(
I + (R − L)k +

(
L2

2
− LR + R2

2

)
k2 +

(
L2R
2

− LR2

2
− L3

6
+ R3

6

)
k3

+
(
L4

24
+ L2R2

4
− LR3

6
− L3R

6
+ R4

24

)
k4 + · · ·

)
Un.

(29)

Since the exact solution of Equation (27) is

U(tn+1) = e(R−L)kU(tn),

the local truncation error of the scheme (26) is

en+1 =
(
I + (R − L)k +

(
L2

2
− RL + R2

2

)
k2 +

(
RL2

2
− LR2

2
− L3

6
+ R3

6

)
k3

+
(
L4

24
+ L2R2

4
− LR3

6
− L3R

6
+ R4

24

)
k4 + · · ·

)
Un − e(R−L)kU(tn) = O(k5). (30)

Hence the scheme (26) is fourth-order in time discretization.

4.2. Stability analysis

4.2.1. Amplification symbol
In this section, the behaviour of the fourth-order (2, 2)-Padé approximation R2,2(z) = 12−6z+z2

12+6z+z2 is
compared to e−z and illutstrated in Figure 1.

Definition: A rational approximation Rr,s(z) of the exponential ez is said to be A-acceptable if
|Rr,s(z)| < 1, wheneverR(z) < 0 and L-acceptable if, in addition |Rr,s(z)| → 0 asR(z) → −∞.
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Figure 1. (a) Behaviour of function e−z , and R2,2(z) for z ∈ [0, 50]. (b) Surface plot of the behaviour of function R2,2(z) for z ∈
[0, 40] × [−10, 10].

4.2.2. Stability regions
The linear stability of the scheme (26) was analysed by plotting its stability regions (see in [7] and
references therein) for the nonlinear autonomous ODE:

ut = −cu + F(u), (31)

where F(u) is a nonlinear part and c represents the approximation of the linear parts of KSE. Let us
assume that there exists a fixed point u0 such that −cu0 + F(u0) = 0. Linearizing about this fixed
point, we thus obtain

ut = −cu + γ u, (32)

where u is the perturbation of u0, and γ = F′(u0). If (31) represents a system of ODEs, then γ is a
diagonal or a block diagonal matrix containing the eigenvalues of F. To keep the fixed point stable,
we need that Re(γ − c) < 0, for all γ (see [14]). This approach only provides an indication to how
stable a numerical method is, since in general, one cannot linearize both terms simultaneously [24].

In general, the parameters c and γ may both be complex-valued. The stability region of the
scheme (26) is four-dimensional and therefore difficult to represent [14]. The two-dimensional sta-
bility region is obtained, if both c and γ are purely imaginary or purely real [15], or if γ is complex
and c is fixed and real [7].

Utilization of the scheme (26) to the linearized Equation (32) leads to a recurrence relation
involving un, and un+1. By letting r = un+1

un , x = γ k, and y = −ck, we come up with the following
amplification factor (Figure 1):

r(x, y) = c0 + c1x + c2x2 + c3x3 + c4x4, (33)

where

c0 = 1 + y + 1
2
y2 + 1

6
y3 + 1

24
y4 + 1

144
y5 + O(y6),

c1 = 1 + y + 1
2
y2 + 1

6
y3 + 7

192
y4 + 5

2304
y5 + O(y6),

c2 = 1
2

+ 1
2
y + 1

4
y2 + 23

288
y3 + 11

768
y4 − 37

27648
y5 + O(y6),

c3 = 1
6

+ 1
6
y + 47

576
y2 + 77

3456
y3 + 5

9216
y4 − 515

165888
y5 + O(y6),
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Figure 2. Stability regions for different values of y ∈ Re− .

c4 = 1
24

+ 1
32

y + 35
3456

y2 − 1
13824

y3 − 169
82944

y4 − 457
331776

y5 + O(y6).

The boundaries of the stability regions of the scheme (26) are obtained by substituting r = eiθ , θ ∈
[0, 2π] into Equation (33) and solving for x, but unfortunately we do not know the explicit expression
for |r(x, y)| = 1. We will only be able to plot it and in this paper, we have plotted the stability regions
for the two cases. At first, this study focuses on the case where γ is complex and c is fixed and real.
The analysis begins by selecting several real negative values of y and looking for a region of stability
in the complex x plane where |r(x, y)| = 1. The corresponding families of stability regions of the
scheme (26) in the complex x are plotted in Figure 2. According to Beylkin et al. [7], for scheme (26)
to be applicable, it is important that stability regions grow as y → −∞. As we can see in Figure 2,
the stability regions for the scheme grow larger as y → −∞. These regions give an indication of the
stability of the proposed scheme.

In the second case, we assume γ is complex and c is purely imaginary and stability regions for
different values of y = −5i, 5i,−20i, and 20i are depicted in Figure 3(a–d).

5. Numerical experiments and discussions

In this section, we present the results of extensive numerical experiments carried out by implementa-
tion of the proposed scheme on four test problems in order to demonstrate the efficiency and accuracy
of the scheme. All the numerical experiments are conducted in MATLAB 9.3 platforms based on an
Intel Core i52410M 2.30GHz workstation. The accuracy of the scheme is measured in terms of max-
imum norm errors ‖·‖∞ and global relative error (GRE) at the final time t = T which are defined
as

‖·‖∞ = max
1≤i≤N

|u(xi,T) − UM
i |,

GRE = �i|u(xi,T) − UM
i |

�i|u(xi,T)| ,

where u and U are the exact and numerical solutions, respectively.
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Figure 3. Stability regions for different values of y = −5i, 5i,−20i, and 20i. (a) y = −5i. (b) y = 5i. (c) y = −20i. (d) y = 20i.

When the exact solution of the considered problem(s) is/are available, we compute the spatial
convergence rate with

order = log10
(‖u − Uh‖∞ /

∥∥u − Uh/2
∥∥∞

)
log10(2)

and the temporal convergence rate with

order = log10
(‖u − Uk‖∞ /

∥∥u − Uk/2
∥∥∞

)
log10(2)

,

where ‖u − Uh‖∞ and
∥∥u − Uh/2

∥∥∞ are the maximum error norms with spatial step sizes equal to
h and h/2, respectively. Similar description is valid for temporal convergence rate.

On the other hand, when the exact solution of the problem(s) is/are unavailable, we utilize

order = log10(Ek/Ek/2)
log10(2)

, (34)

where Ek = ‖Uk − U2k‖∞ and Ek
2

= ∥∥Uk/2 − Uk
∥∥∞ are the maximum error norms at k and k/2,

respectively, to measure the temporal convergence rate of the scheme.
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Table 1. The maximum error, rates of convergence, and CPU time of IMEXRK4 for Example 5.1 at T = 2.0.

h & k 4 & 0.025 2 & 0.0125 1 & 0.00625 0.5 & 0.003125

‖·‖∞ 6.157E−03 3.775E−04 2.396E−05 1.461E−06
Order – 4.0278 3.9777 4.0359
CPU(s) 0.2004 0.5011 1.6728 8.0996

Figure 4. Log–log plots of spatial and time rates of convergence of the proposedmethod. (a) Spatial rate of convergence. (b) Time
rate of convergence.

Example 5.1 (Benchmark Problem): In this example, the KSE with α = −1 and β = 1 over a
domain � = [−50, 50], with the analytical solution

u(x, t) = μ + 15 tanh3(ν(x − μt − x0)) − 45 tanh(ν(x − μt − x0))
193/2

(35)

is considered.

The initial and boundary conditions are extracted from the exact solution (35). This example is
considered as a benchmark problem (solved in [26,43] among others) in order to investigate the per-
formance in terms of accuracy and efficiency of the proposed method. The parameters in (35) are
chosen as μ = 5, ν = 1

2
√
19

and x0 = −25.
In order to investigate the order of accuracy and computational efficiency of the proposed scheme

IMEXRK4 for solving the KSE, a numerical test on Example 5.1 was performed. In the computation,
a simulation was run up to T = 2.0 by initially setting h = 4 and k = 0.025, then by reducing both
of them by a factor of 2 in each refinement. The maximum error and rates of convergence are listed
in Table 1. As can be seen from Table 1 that the computed convergence rates of the proposed scheme
apparently demonstrate the expected fourth-order accuracy in both time and space.

In order to visualize the space and time rates of convergence of the proposed scheme, we illustrated
them in Figure 4 with log–log scale graph. From Figure 4, it can be seen that the slopes of the regres-
sion line for maximum errors both in time and spatial directions are close to four, which corresponds
to the fourth-order scheme both in time and space.

We ran another sets of experiment in Example 5.1 with h = 0.5, k = 0.01 until time T = 10 and
captured the 3D view of the solution profile in Figure 5(a). From Figure 5( a,b), we can see that the
solution obtained via using the proposed scheme is close to the exact solution.

In Table 2, we compare the scheme IMEXRK4with other existing schemes: SBSC [44], QBSC [30],
and LBM [26] by listing GRE of u(x, t)withN = 200, k = 0.01 at different time levels t ≤ 12. Table 2
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Figure 5. Numerical solution vs. exact solution for various time t ∈ [0, 10]. (a) Numerical solution. (b) Exact solution.

Table 2. Comparison of GRE at different time with N = 200 and k = 0.01 for Example 5.1.

Time(t) 6 8 10 12

IMEXRK4 GRE 7.624E−08 8.092E−08 8.589E−08 3.188E−07
Time(t) 6 8 10 12

SBSC GRE 1.625E−07 1.940E−07 2.229E−07 5.314E−07
Time(t) 6 8 10 12

QBSC GRE 6.509E−06 7.132E−06 7.310E−06 8.776E−06
Time(t) 6 8 10 12

LBM GRE 7.881E−06 9.532E−06 1.089E−05 1.179E−05

Table 3. Comparison of GRE at different time with N = 100 and k = 0.01 for Example 5.1.

Time(t) 6 8 10 12

IMEXRK4 GRE 7.935E−08 8.444E−08 8.716E−08 9.988E−08
Time(t) 6 8 10 12

CFDS GRE 8.434E−08 8.912E−08 9.254E−08 1.692E−07

clearly indicates that the numerical results obtained via proposed scheme are more accurate than that
obtained via SBSC [44], QBSC [30] and LBM [26].

In the another set of experiments, we compare the accuracy of the proposed scheme with scheme
introduced in [35]. In this experiment, we used the sixth-order compact scheme given in [35] for
first-order derivative term and fourth-order scheme for the second and the fourth-order derivative
terms in order to compare our results with results given in [35]. From the table, we can note that our
proposed scheme yields better accuracy than the scheme introduced in [35].

Example 5.2 (The KSE with periodic boundary conditions): In this example, we consider the KSE
with α = 1 and β = 1 over a domain � = [0, 32π] along with periodic boundary conditions and
following initial condition:

u(x, 0) = cos
( x
16

) (
1 + sin

( x
16

))
. (36)

Two sets of numerical experiments on Example 5.2 were conducted. In the first set of the experiment,
the order of accuracy in the temporal direction of the proposed method with periodic boundary
conditions was measured by running an experiment until time T = 10.0 with N = 256. Initially,
k = 1

2 was set and repeatedly halved it at each time and numerical results are presented in Table 4.
The error values Ek listed for IMEXRK4 scheme in Table 4 are again calculated through a maximal
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Table 4. The maximum error, time rates of convergence, and CPU time of IMEXRK4 for Example 5.2 with N = 256 at T = 10.0.

k 1/4 1/8 1/16 1/32

Ek 9.031E−04 6.291E−05 3.922E−06 2.442E−07
Order – 3.8436 4.0034 4.0052
CPU(s) 1.1791 2.1269 3.3537 5.2132

Figure 6. Chaotic solution profile of the component u(x, t) at various time obtained via IMEXRK4. (a) t ∈ [0, 150],N = 256 and
k = 1

4 . (b) t ∈ [0, 300],N = 512 and k = 1
8 .

difference between each simulation. From Table 4, it is clear that the proposed scheme is able to
achieve the expected fourth-order accuracy in time with periodic boundary conditions.

To better understand the applicability of the IMEXRK4 scheme while simulating the long-time
behaviour of the KSE, a second set of experiments was conducted on Example 5.2 until the long-time
t = 150 with N = 256, k = 1

4 and t = 300 with N = 512, k = 1
8 . The chaotic solution profiles of the

component u(x, t) for t ∈ [0, 150] and for t ∈ [0, 300] were captured in Figure 6( a,b), respectively.
Chaotic solution profile corresponds for t ≤ 150 in the Figure 6(a) are in good agreement with the
results depicted in [21] – therefore, we are confident that the profile corresponds for t ≤ 300 is correct
and reliable.

In [5], Asante-Asanami et al. argued that for the case involving periodic boundary conditions, the
matrices of the form (kL − c̃1I) are cyclic Toeplitz matrices and LU decomposition of suchmatrices is
computationally expensive in comparison to the utilization of Fourier transformation for solving the
linear system involving the above mentioned matrix. In order to validate their observation, we ran
another set of experiments in Example 5.2 applying the fast Fourier transform and compared the com-
putational efficiency with compact finite difference scheme.We can see from Table 5 that fast Fourier
transform is computationallymore efficient than the compact finite difference scheme. Therefore, the
readers are encouraged to utilize Fourier transform in spatial direction to solve problems involving
periodic boundary conditions.

Example 5.3 (The KSE with Gaussian initial condition): Here, we consider the KSE with α = 1
and β = 1 which exhibits chaotic behaviour over a finite domain � = [−30, 30] with homogeneous
Dirichlet boundary conditions and the following Gaussian initial condition:

u(x, 0) = exp(−x2). (37)

In what follows, again on Example 5.3 two sets of numerical experiments were performed. In the
first set of the experiments, the order of accuracy in the temporal direction of the proposed scheme
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Table 5. Comparison of computational efficiency with N = 256 for Example 5.2.

k
1

4

1

8

1

16

1

32

Fourier transform CPU(s) 0.7093 0.8073 1.2973 1.9206

k
1

4

1

8

1

16

1

32

Compact finite difference CPU(s) 5.8523 12.8448 22.5964 44.4866

Table 6. The maximum error, time rates of convergence, and CPU time of IMEXRK4 for Example 5.3 with N = 101 at T = 1.

k 0.01/2 0.01/4 0.01/8 0.01/16

Ek 2.723E−08 1.976E−09 1.324E−10 8.613E−12
Order – 3.7847 3.8995 3.9422
CPU(s) 0.5543 1.0044 1.9298 3.4635

Figure 7. The aerial and 3D chaotic solution profile of the KSE with N = 101, k = 0.1 at t ∈ [0, 30] for Example 5.3. (a) Aerial view.
(b) 3D view.

with homogeneous Dirichlet boundary conditions were examined by running an experiment until
time T = 1.0 with fixedN = 101. Again the error values reported in Table 6 are calculated through a
maximal difference between each simulation which is obtained by repeatedly halving an initial time
step size k = 1

2 at each time. From the results, it can be seen that the proposed scheme is able to
achieve the expected fourth-order accuracy in time.

In the second sets of experiment, the chaotic behaviour of the component u(x, t) is simulated
for Gaussian initial condition. The simulations are accomplished in t ∈ [0, 30] with the parameters
N = 101 and k = 0.1 and captured in Figure 7 with aerial and 3D views. From Figure 7, it can be
clearly seen that the result shows same behaviour as reported in [27,30].

Example 5.4 (The KSE with different values of β): The KSE with α = 1 and different values of β

over a finite domain � = [−1, 1] along with homogeneous Dirichlet boundary conditions and the
following initial condition is considered here:

u(x, 0) = − sin(πx). (38)

For the empirical convergence analysis in the temporal direction of the proposed scheme, we ran
an experiment until time T = 1.0 with β = 1.1 and fixed h = 0.05. The error values reported in
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Table 7. The maximum error, time rates of convergence, and CPU time of IMEXRK4 for Example 5.4 with β = 1.1, h = 0.05 at
T = 1.

k 0.005/2 0.005/4 0.005/8 0.005/16

Ek 1.431E−08 9.7926E−10 6.532E−11 3.320E−12
Order – 3.8692 3.9060 4.2983
CPU(s) 1.0360 2.1329 3.7341 5.6047

Figure 8. Space-time evolution profile of the component u(x, t) obtained via IMEXRK4 schemewith various values ofβ at different
time levels. (a) β = 0.4/π2. (b) β = 0.6/π2. (c) β = 0.8/π2. (d) β = 0.4/π2 and t ∈ [0, 2].

Table 7 are computed through a maximal difference between each simulation which is obtained by
repeatedly halving an initial time step size k = 0.005 at each time. From the results, it can be seen
that the proposed scheme is able to exhibit the expected fourth-order accuracy in time.

The space-time evolution profile of u(x, t) via IMEXRK4 scheme with different values of β , h =
0.05, k = 0.001 at different time levels were depicted in Figure 8. The results in Figure 8 clearly exhibit
good agreement with results reported in [29,30].

6. Conclusions

This manuscript introduced a fourth-order scheme both in time and space to solve the KSE. The
proposed method utilized a compact fourth-order finite difference scheme for a spatial discretiza-
tion and the fourth-order Runge–Kutta based implicit–explicit scheme for time discretization. A
Compact finite difference scheme is used to transform the KSE to a system of ordinary differential
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equations (ODEs) in time, and then, fourth-order time integrator is implemented to solve the result-
ing ODEs. Calculation of local truncation error and an empirical convergence analysis exhibited the
fourth-order accuracy of the proposed scheme. The performance and applicability of the scheme have
been investigated by testing it on several test problems. The computed numerical solutions maintain
good accuracy compared with the exact solution. In addition, the numerical results exhibited that the
proposed scheme provides better accuracy in comparison with other existing schemes.

In future, the parallel implementation of the schemewill be considered to solvemulti-dimensional
nonlinear evolution equations subject to different boundary conditions.
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