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ABSTRACT

In revolving or flapping wings, radial planetary vorticity tilting (PVTr) is a mechanism that contributes to the removal of radial (spanwise)
vorticity within the leading-edge vortex (LEV), while vorticity advection increases its strength. Dimensional analysis predicts that the PVTr
and advection should scale with the wing aspect-ratio (AR) in identical fashion, assuming a uniform characteristic length is used. However,
the authors’ previous work suggests that the vorticity advection decreases more rapidly than the PVTr as AR increases, indicating that separate
normalizations should be applied. Here, we aim to develop a comprehensive scaling for the PVTr and vorticity advection based on simulation
results using computational fluid dynamics. Two sets of simulations of revolving rectangular wings at an angle of attack of 45° were performed,
the first set with the wing-tip velocity maintained constant, so that the Reynolds number (Re) defined at the radius of gyration equals 110,
and the second set with the wing angular velocity maintained constant, so that Re defined at one chord length equals 63.5. We proposed two
independent length scales based on LEV geometry, i.e., wing-span for the radial and tangential directions and wing chord for the vertical
direction. The LEV size in the radial and tangential directions was limited by the wing-span, while the vertical depth remained invariant. The
use of two length scales successfully predicted not only the scaling for the PVTr and the vorticity advection but also the relative magnitude
of advection in three directions, i.e., tangential advection was strongest, followed by the vertical (downwash) and then the radial that was
negligible.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0024213

I. INTRODUCTION

Insect wings generate highly three-dimensional flow structures;
of particular interest are the stably attached leading-edge vortices
(LEVs)," * which are also observed over the wings of small birds’
and bats,” as well as steadily revolving wings with high angle of
attack (A0A).”*° LEVs manifest in flows with revolving wings at
Reynolds numbers (Re) on the order of 0(10%)-0(10%)""'" and post-
stall angles of attack AoA > 45°,' with a relatively low wing aspect-
ratio (AR)*" in comparison with those in helicopter propellers."
The wing’s aspect-ratio, AR = s/c (using the half-span definition'"), is
arguably the most important parameter among all of the dimension-
less numbers characterizing insect and revolving wings as it governs

the three-dimensional vortex topology and the underlying vortic-
ity dynamics. AR is also proportional to the Rossby number (Ro)
in general,‘\’“’ which is defined as the ratio of advective and Coriolis
accelerations.'*"’

Numerous studies have investigated the scaling of the vor-
ticity dynamics present in a stable LEV with AR. Lentink and
Dickinson” showed that for the insects in hover, and by analogy
revolving wings, the Coriolis and centripetal accelerations (i.e., rota-
tional mechanisms) scale inversely with AR. Therefore, since the
wing ARs of fliers in nature are only of order one (typically less than
3), these rotational mechanisms at smaller ARs promote the attach-
ment and stability of the LEV. Several subsequent studies focusing
on these rotational mechanisms further suggested that the Coriolis
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acceleration, not the centripetal, plays a major role in LEV attach-
ment and stability.l‘\”‘” In Lentink’s study, and several since then,
it was implicitly assumed that the wing chord was an appropriate
length scale for normalizing the Navier-Stokes equations likely due
to this being the common length scale used in the literature.”

Other studies have investigated advective mechanisms related
to the transport of vorticity due to the combined effect of local flow
and spatial gradients in vorticity.'® For example, the radial advection
due to the spanwise flow” (induced by the spanwise pressure gradi-
ent’’) and vertical advection (downwash) behind the wing’“"l‘/w both
drain vorticity from the LEV region after being transported from
the leading-edge into the LEV by the tangential advection.”” Several
experimental studies””** and others using simulations” "' of revolv-
ing wings at similar AR and Re to those in nature observed negligible
radial advection. Another study by Han, Chang, and Cho’” using
experimentally revolving wings also observed that the downwash
was weaker at higher ARs. Others noted that the vertical advec-
tion induced by the tip vortex (TiV) also promotes LEV attachment.
However, the effect is limited to only the most distal regions of
the wing; Jardin, Farcy, and David” and DeVoria and Mohseni’*
pointed out the size of TiV extends only up to 1.4-1.5 chord lengths
from the tip, therefore, the vertical advection is only effective in
maintaining LEV attachment for small AR wings below the aver-
age value found in nature.”'” These results suggest that the LEV
can be divided into at least two regions: the main LEV and a sep-
arate more three-dimensional tip region. Since the TiV is a highly
three-dimensional region within the LEV, the flow profiles in this
region will differ from those in the main portion of the LEV. In other
words, these flow profiles are considered to be geometrically dissim-
ilar to those found in the majority of the LEV. Geometrically similar
flow profiles are here defined as those that fall within one standard
deviation above or below the mean profile taken across the whole
wing-span within the LEV. Using this definition, the regions where
the flow profiles differ significantly from the mean will be removed
and not considered in the primary analysis.

In previous work, Werner et al.”® demonstrated that the effect
of Coriolis acceleration on the vorticity dynamics removes radial
LEV vorticity by tilting planetary vorticity'” in the opposite direction
via the vertical gradient of spanwise velocity. They called this mech-
anism the radial planetary vorticity tilting (PVTr). A set of scaling
terms was developed based on the characteristic magnitudes used by
Lentink and Dickinson® and Cheng et al.”” and applied to normal-
ize the PVTr and vorticity advection in order to understand their
global scaling behavior with AR and Re. Based on the original analy-
sis of Werner et al., it was predicted that both the PVTr and vorticity
advection would scale with AR similarly at constant Re if the same
length scale was used; however, this was shown to not be true. The
normalized PVTr was roughly constant with increasing AR, while
the vorticity advection was observed to decrease with increasing AR.
This led the authors to conclude that separate length scales should
be used for the PVTr and vorticity advection terms, and this needed
further investigation.

In the study by Lentink and Dickinson’ and many in the lit-
erature, the wing chord was used as the single characteristic length
scale for normalizing the Navier-Stokes equations, which is tradi-
tionally the length scale for translating wings.” Harbig, Sheridan,
and Thompson™® proposed the wing-span, instead of the chord,
for use as the characteristic length scale due to the intense radial

scitation.org/journal/phf

velocity in the core of the main LEV as observed by Dickinson,
Lehmann, and Sane’ and Birch, Dickson, and Dickinson,” which
enables the LEV to grow in size and in strength along the wing-span.
Specifically, they defined a span-based Reynolds number (Re;) and
showed that holding it constant better accounted for the changes in
the flow structure of the LEV as AR varies (via changing the wing
chord while maintaining a constant span). Using the span as the
single length scale results in a normalized vorticity advection that
is roughly constant with AR, while the PVTr increases linearly indi-
cating that the span is better suited for the vorticity advection but
not for the PVTr.

While one of the implicit assumptions made throughout the lit-
erature was that only one length scale was necessary for correctly
scaling the vorticity dynamics of revolving wings with an attached
LEV, we demonstrate, in this work, that at least two length scales
are required, i.e., the length scales are anisotropic. Since the wings
are finite, and the flow field is inherently three-dimensional, this can
be expected since the flows resemble those in propellers and turbine
blades near the root.””” In this study, we provide further evidence
and analyses for the proposed anisotropic scaling. We also discuss
other complexities that need to be considered when applying the
proposed scaling terms, such as non-linear effects in the local trends
and additional Re dependence.

1. METHODS
A. Numerical methods

In this work, revolving rectangular wings with three aspect-
ratios AR = s/c = 3, 5, and 7 in the range of insects and humming-
birds™'**** were investigated (where s is the single wing-span and ¢
is the chord). Each wing was rotated impulsively from rest at a con-
stant angular velocity Q for three full revolutions about a vertical
axis aligned with the wing-root at the mid-chord (Fig. 1) until the
flow reached a quasi-steady state. The wings all had a chord length
of ¢ = 1 cm and an infinitesimal thickness, where the wing-span was
changed for different ARs. Additionally, the angle of attack (A0oA) of
each wing was held constant at 45° for all three revolutions.

Two sets of simulations were performed: The first set used
all three ARs with the wing velocity at the radius of gyration U,
= Qrg (or Uyjp = Qs) maintained constant so that the Reynolds num-
ber defined at the radius of gyration (which simplifies to s/v/3 for
a rectangular wing’>"' using Ellington’s definition’’) was constant,

FIG. 1. Wing kinematics and geometry.
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FIG. 2. (a) Reg = 110, AR = 3. (b) Wings revolving at the constant wing-tip velocity:
Reg =110, AR=5and 7. (c) Wings revolving at the constant angular velocity: Re.
=63.5, AR =5 (Rey = 183) and 7 (Rey = 257).

i.e., Reg = Qrec/v = 110 [see Fig. 2(b)]. The second set used the
same ARs but instead maintained a constant wing angular veloc-
ity O with the Reynolds number at one chord length from the
root maintained constant, i.e., Re; = Qc*/v = 63.5 [see Fig. 2(c)].
These two Reynolds number definitions can be related to each other
by Reg/Re. = Ro, where Ro is the Rossby number and is defined
as the ratio of advective to Coriolis accelerations in the relative
Navier-Stokes equation.'”'” The value of Re, was chosen to be
comparable to that of fruit flies (Drosophila melanogaster),””° while
the value of Re. was chosen so that the angular velocity was the
same as that of the AR = 3 wing at Re, = 110 [Fig. 2(a)]. The
corresponding Re, and tip Reynolds number Res;p = Qsc/v val-
ues at constant Re. are given in Table I where it can be seen that
they are all of the same order of magnitude. Finally, the density p
= 850 kg/m® and kinematic viscosity v = 8 x 10~° m?/s were used in
all simulations.

A Cartesian computational grid with a stretching grid config-
uration was employed in the simulations, as shown in Fig. 3. A
minimum grid spacing of 0.031¢ was used in the dense region for
each of the three AR values, which was sufficient to resolve the near-
field vortex structures around the wing. A homogeneous Neumann
boundary condition in pressure is applied to all six boundaries of
the computational domain so that the vorticity could advect freely at
the boundaries and a no-slip boundary condition was applied at the
wing surfaces. The governing equations employed by the solver are
the Navier-Stokes equations (excluding gravity) [Eq. (1a)] and the
incompressibility condition [Eq. (1b)],

ilz—(u~V)u—%)Vp+vV2u, (1a)

V-u=0. (1b)

TABLE I. Aspect-ratios and Reynolds numbers used in simulations.

Re. =63.5
AR Reg Retip
3 110 191
5 183 318
7 257 445

ARTICLE scitation.org/journal/phf

FIG. 3. Relative size of the grid chosen (blue) with the denser region (red) com-
pared to the size of the wing. The rectangular domain has the size 50c x 10c
x 50c with a dense mesh region in the center surrounded by the stretched meshes.

Here, u is the velocity vector in the inertial reference frame, u rep-
resents the time derivative of the velocity, p is the pressure, and V
nabla is the vector gradient. An in-house, finite-difference-based,
Cartesian-grid, immersed-boundary-method solver'* was employed
to solve the above equations. In this solver, the flow simulation
with complex moving boundaries was achieved with stationary non-
body-conformal Cartesian grids to eliminate the need for a complex
re-meshing algorithm, which was otherwise used by body-conformal
methods. The solver can simulate flows of moving bodies with
intricate geometry while still achieving second-order accuracy in
both space and time. The equations were integrated in time using
the fractional step method, and the boundary conditions on the
immersed boundary were enforced by a ghost-cell procedure. This
approach has been successfully applied to revolving wings,” """
the flapping propulsion of insects,"”"* birds,"** fish,"”" and flap-
ping plates,”" and human respiratory flows.”” A detailed description
and validation of this solver can be found in the authors’ previous
Work. 16,53

A convergence test was performed using the lift coefficient data
for four separate mesh sizes. Previously, it was shown by Werner
etal.” for AR = 5 and Re, = 1400 wings, that the lift had converged
by the second half of the third revolution (at 8 = 900°, or after three
full revolutions), which corresponds to the time period where the
flow was time averaged. Additionally, it was argued that the flow had
reached a quasi-steady state by this time for Re, = 110. For the sake
of completeness, two similar convergence tests for AR = 5, Reg = 110,
and Re, = 63.5 were performed due to the minor adjustments in the
grid density from the previous study. Figures 4(a) and 4(b) show the
local lift coefficients C; = Fi/ (%pUésc) with the increasing mesh
size (where Fy is the dimensional lift force), and Figs. 4(c) and 4(d)
show the time-averaged lift Cr.

B. Vorticity dynamics

To describe the combined effect of advective and rotational
mechanisms involved in the vorticity dynamics of LEVs, the Navier—
Stokes equations [Eq. (1a)] are cast into a non-inertial rotating frame
using the velocity of the rotating wing in order to identify the role
of Coriolis and centripetal accelerations in the vorticity dynamics.
The rotating frame is defined using the relative parameters (denoted
with ’)

Phys. Fluids 32, 121903 (2020); doi: 10.1063/5.0024213
Published under license by AIP Publishing

32,121903-3


https://scitation.org/journal/phf

Physics of Fluids

Dense Mesh Size
3.93E+05
1.20E+06 | -
3.55E+06
4.31E+06

05

0 180 360 540 720 900 1080

o)

C) 2.25 T i T
—F— = 144-324°

==F-+0=900-1080"

125 R,

0.75

0o 05 1 15 2 25 3 35 4 45
No. of Nodes x10°

ARTICLE scitation.org/journal/phf

Dense Mesh Size
3.93E+05
1.20E+06 | -
3.55E+06
4.31E+06

05

0 180 360 540 720 900 1080

(")

—F— 0 = 144-324°

==F-+0=900-1080"

175

1251 \I' """""""""""""""

0.75

0o 05 1 15 2 25 3 35 4 45
No. of Nodes x10°

FIG. 4. Four mesh sizes are used with 3.93, 12, 35.5, and 43.1 x 10° nodes, respectively. The gray shaded regions correspond to the two time-averaging periods, 6
= 144°-324° and 900°-1080°, respectively. C, = Fi/ ( % pngsc) plotted against the revolution angle 6 for (a) AR = 5, Reg = 110 and (b) AR = 5, Re. = 63.5. Time-averaged
lift coefficient Cy. for (c) AR = 5, Reg = 110 and (d) AR = 5, Re. = 63.5 plotted against numbers of nodes in each mesh with error bars representing one standard deviation of
the lift coefficient from each time-averaging period. In (a), the blue curve almost overlaps with the green curve.

u =u-QxR, (2a)
v =v, (2b)
P =p. (2¢)

The Navier-Stokes equation in the rotating frame [Eq. (3)] dif-
fers from that in the inertial frame by the addition of the Coriolis
acceleration —2Q x u’ and centripetal acceleration —Q x (Q x R),

!

W =—(u V)u'- %Vp+vv2u' -20xu -Qx (QxR). (3)
A full derivation of Eq. (3) is provided by Kundu and Cohen.'®
Additionally, others such as Lentink and Dickinson’ include an
additional term for the angular acceleration (sometimes called the
Euler acceleration'’), but this term drops out since our wings are
revolving at a constant angular velocity. Next, the curl of relative
Navier-Stokes equations is taken to obtain the vorticity equation
in the rotating frame [Eq. (4)], where again a full derivation can be
found in the study of Kundu and Cohen,'®

@' = —(u'~V)w'+vV2w'+(20~V)u'. (4)

From here onward, the " is dropped from the equations, although all
the quantities represent the flow variables (velocity and vorticity) in
the rotating frame as if they were observed from the wing in motion.

For the purpose of data analysis, in addition to a fixed Carte-
sian frame (x, y, z), a rotated Cartesian frame (¢, y, r) was defined
based on the azimuthal angle ¢ of a fluid element (Fig. 5) identi-
cal to those used in the authors® previous work.””” Vectors in the
fixed Cartesian frame were transformed into those in the rotated
Cartesian frame using the Jacobian matrix

sing 0 —cos¢
Je)=f o 1 0o | (5)
cos¢ 0 sing

Using Eq. (5), the radial component of Eq. (4) was derived and is
given in Eq. (6a). The primary terms in the radial vorticity equa-
tion that are analyzed in this work are the vorticity advection A
= —(u-V)w, [Eq. (6b)] and the radial planetary vorticity tilting
(PVTr) P = -2Q0,u, [Eq. (6¢)], which are scalars since only the
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|

FIG. 5. Definition of the rotated Cartesian frame (¢, y, ) using the azimuthal angle
¢ of a fluid particle measured from the fixed Cartesian frame (x, y,z).

radial components are considered,

a)r:f(u-V)wr+(w-V)u,+vV2wr+(ZQ-V)ur, (6a)
A=—-(u-V)wr = (w0 +uy0y + u;0r ) wy, (6b)

P=(2Q-V)u, = -2Q0yur. (6¢c)

The vorticity advection [Eq. (6b)] represents the transport of
radial vorticity by the velocity field u. It can be decomposed into
three contributions representing the vorticity advection due to tan-
gential uy, vertical ), and radial u, velocities. Each of these contri-
butions represents the spatial change in radial vorticity due to the
difference in each of the velocity components from one point to
another. The PVTr is the radial component of the tilting/stretching
of planetary vorticity similar to the tilting/stretching of relative vor-
ticity [second term on the right-hand side of Eq. (6a)]. It can be
shown that this last term is equivalent to the curl of the Coriolis
acceleration,” which is known from the literature to be critical for
maintaining LEV stability and attachment.”'*’ Tt is important to
briefly point out that the centripetal acceleration has no equivalent
term in the vorticity equation [Eq. (4)] since its curl is zero. This
is similar to why there is no contribution from the pressure gradi-
ent (in incompressible flows), since both terms can be represented
as gradients they drop out in the curl.'” Consider the pressure gra-
dient Vp and centripetal term —Q x (@ x R) = Q'R = V(Q?R*)2)
from Eq. (3) and note that the curl of any gradient is identically zero
V x V¢ = 0. The other terms in Eq. (6a), such as the time derivative
of radial vorticity @, the tilting and stretching of vorticity (w- V)u,,
and the vorticity diffusion vW2wy, are not discussed in detail in this
work but have been discussed in the authors’ previous work’ " and
elsewhere in the literature.”

C. Identification of the quasi-steady period

In the authors’ previous work, Werner et al.”® identified the
quasi-steady state by first observing the temporal behaviors of the
lift coefficient C; and the vortex structure over the first three
revolutions. The same process is applied here, and more details
on the identification of the quasi-steady period can be found in

scitation.org/journal/phf
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FIG. 6. Normalized time-averaged radial vorticity iso-surfaces w,/2Q: (a) AR = 3,
Reg =110, (b) AR = 5, Reg = 110, (c) AR = 7, Reg = 110, (d) AR = 5, Re; = 63.5
(Reg =183), and (e) AR =7, Re; = 63.5 (Rey = 257).

supplementary material A. It was determined that the flow had
reached an approximately quasi-steady state by the second half of
the third revolution of the wing (at 900°) since the time-averaged
lift coefficient Cr, had become roughly constant across all AR and
Rey considered in this study [see Fig. A1(b)]. This is confirmed by
the observations of Birch and Dickinson”” who noticed that, by the
third stroke, the wake had become fully established at Re typical to
insects. Furthermore, others noted that the wake had become fully
established after 1.5-2 revolutions by observing the force coefficients
at Re between 1500 and ~8000.””"" Because the temporal features
of the flow in this period were much smaller than those at previous
time steps based on Cy, the entire flow was time-averaged during the
second half of the third revolution.

Figure 6 shows iso-surfaces of normalized time-averaged radial
vorticity w,/2Q during the quasi-steady period. The LEV control-
volume is comprised of negative radial vorticity (blue) and has a con-
ical shape over the wing surface before shedding from the tip as a tip
vortex (TiV) that is roughly aligned in the positive tangential direc-
tion (Fig. 5), while the shear layer and trailing-edge vortex (TEV)
(red) remain in-between the LEV and the suction side of the wing. In
general, the vortex structure for both sets of Reynolds number simu-
lations is very smooth due to the relatively small temporal variations
in the vorticity field because of the time-averaging process. However,
the LEV control-volume in the constant angular simulations (Re.
=63.5) is not as smooth near the wing-tip where the tip velocity is the
largest [Fig. 2(c)]. The TiV is comprised of both negative and posi-
tive radial vorticity and tangential vorticity and only forms within
approximately one chord length from the wing-tip.””"” At AR
= 5and Re, = 183, the time-averaged LEV has shed into two coher-
ent structures [Fig. 6(d)] in the TiV similar but not identical to what
has been observed in the literature.””* Additionally, at AR = 7 and
Rey =257 [Fig. 6(e)], the time-averaged LEV has completely deterio-
rated into small substructures indicating a possibly burst LEV"” and
more turbulent flow near the tip due to the higher local Reynolds
number Re(r).
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D. Averaging methods

The remainder of our analysis focuses on the averaged quanti-
ties. Before normalizing the vorticity advection [Eq. (6b)] and PVTr
[Eq. (60)], the flow variables were time-averaged during the quasi-
steady period. Because the wing is rotating in a fixed grid (although
calculations are done in the relative frame) in order to time-average
the flow, all of the time intervals for the average need to be collapsed
onto a single wing position, so the first time step was chosen corre-
sponding to the initial angle of the wing during the time-averaging
period. The overlapping meshes as a result of this process are then
spatially averaged along with the flow data onto a single 3D mesh. At
this point, the time-averaged LEV was defined using an iso-value of
W) = @;/2Q = -3 (Fig. 6). The radial vorticity was chosen to visual-
ize the LEV instead of the more common Q-criterion”"”” or vorticity
magnitude’”” since only radial vorticity dynamics are being consid-
ered. We chose this iso-value since it best identified the main struc-
ture of the LEV, although it also included a portion of the tip vortex.
Different iso-values were tested when defining the control-volume,
but these values did not significantly change the results outside of
a narrow range of —4 § w} § —2. The method for calculating the

spatial averages (local X and global X) is discussed in detail in the
Appendix of the authors’ previous work,”” but a brief summary of
the process is given here.

The local spatial average was calculated as flow variables were
spatially averaged on radial slices defined by the region of cylinders
centered at the rotation axis [Fig. 7(ii)] within the time-averaged
LEV. The flow variables at each of the discrete data points on the
grid were interpolated onto a cylindrical slice giving the average vari-
ation of each term along the wing-span within the LEV. The global
averages were calculated by taking a weighted average of the local
spatial averages along the span using the local surface area of the
cylinder within the LEV (cross-sectional LEV area) as the weight. It
should be noted that a small region of the LEV was removed along
the leading-edge due to the extremely high velocity and vorticity
gradients.”

E. Scaling methods

In the authors’ previous work,” it was predicted that the vor-
ticity advection [Eq. (6b)] and PVTr [Eq. (6¢)] should scale similarly
with AR. The original scaling prediction for the vorticity advection
and PVTr was developed by considering the work of Lentink and
Dickinson” and Cheng et al.”” Previously, the velocity was scaled
by the wing speed at the radius of gyration u* = u/U,, the vor-
ticity by the planetary vorticity magnitude w* = @/2Q"" (or twice
the wing angular velocity), and the gradients by the wing chord V*
= Vc. This results in an expected scaling for the vorticity advec-
tion and PVTr that is proportional to 207 Ro, which at constant Re,
is inversely proportional to Ro [Egs. (7a) and (7b)]. When Re, =
63.5, the values are within the same order of magnitude (Table I).
Therefore, assuming that both the normalized vorticity advection
and PVTr are approximately O(1) and constant, both the vorticity
advection and PVTr should be inversely proportional to Ro (or AR).
However, the authors’” previously demonstrated that the vorticity
advection decreased faster than the PVTr with increasing AR from 3
to 7 (maintaining a constant wing chord) at constant Re,. Therefore,
a new normalization needs to be developed that is also consistent

scitation.org/journal/phf

with the previous PVTr scaling. Harbig, Sheridan, and Thompson ™
suggested using the span s as the single length scale instead of the
chord; however, we will use the radius of gyration r, here since it is
already included in the velocity scale, and it is proportional to the
span. Applying the span instead of the chord gives an expected scal-
ing of the vorticity advection and PVTr proportional to 20, which
at Reg = 110 is inversely proportional to Ro® [Eqgs. (7¢) and (7d)].
From here onward, we will designate normalized quantities with * if
no length scale is specified, whereas ** is for when the chord is used
[Egs. (7a) and (7b)] and *** is for when the span is used [Egs. (7¢)
and (7d)],

A=A"20?Ro < A*“Ro™", (7a)
P=P*20%Ro < P**Ro™", (7b)
A=A"207 «< A™Ro ™%, (7¢)
P=P"20% « P**Ro™2. (7d)

Using the wing-span suggests that both the vorticity advection and
PVTr should scale inversely with Ro’%; however, the PVTr when
normalized using the chord P*¢ in Eq. (7b) is already known to
be approximately O(1); therefore, when the PVTr is normalized
using the span P*** in Eq. (7d), it is expected to be proportional to
Ro, ie., P** = P*Ro o Ro. Similarly, the vorticity advection nor-
malized with the span A™* can be expected to be approximately
O(1) and independent of Ro since the vorticity advection normal-
ized using the chord A*“ is already known to be roughly inversely
proportional to Ro. Assuming that both the normalized vorticity
advection using the span A™* [Eq. (7¢)] and PVTr using the chord
P* [Eq. (7b)] are approximately O(1) and independent of AR, two
length scales are required to correctly normalize the vorticity advec-
tion and PVTr, but also the vorticity dynamics in general. The PVTr
has only one spatial gradient [Eq. (6¢)] in the vertical direction 0,
while the vorticity advection [Eq. (6b)] has three spatial gradients,

(30%)
(60%)
(90%)

FIG. 7. Schematic showing the locations of slices. (i) Vertical slices cut through the
center of the wing. (i) Selected cylindrical slices at different spanwise positions.
The intersection of these cylindrical slices and the LEV control-volume is used to
calculate the spatial averages.

Phys. Fluids 32, 121903 (2020); doi: 10.1063/5.0024213
Published under license by AIP Publishing

32,121903-6


https://scitation.org/journal/phf

scitation.org/journal/phf

Physics of Fluids ARTICLE

C) v

d) e) "
@ q 5
\ A |

Constant Q

Radial Slices

Ro(r) = 0.3AR
Ro(r) = 0.4AR
Ro(r) = 0.5AR
Ro(r) = 0.6AR
Ro(r) = 0.7AR

f)

Yi

0.15 1 Re_= 110, AR=3
9
o1 —€—Re =110, AR=5
—A—Reg=110.AR=7
0.05 —P—Rec=63A5 (Reg: 183), AR =5
+Rec =635 (Reg =257),AR=7
0 : T : s
30 40 50 60 70

% AR

FIG. 8. Vertical slices of the normalized radial vorticity . /22 showing the wing and LEV, with a gray line for the LEV at w} = —3: (a) AR =3, Rey = 110, (b) AR = 5, Regy
=110, (c) AR =7, Reg = 110, (d) AR = 5, Re; = 63.5 (Rey = 183), and (e) AR =7, Re; = 63.5 (Rey = 257). (f) and (g) Normalized vertical depth of the time-averaged LEV.
(f) Vertical lines through the LEV at the center of the wing at 30%-70% span inside the LEV defined by w;* = —3. These vertical lines are drawn on the vertical plane going
through the center of the wing [Fig. 7(i)]. (g) Normalized depth of the LEV (y; — y;)/c from each case plotted against %AR. The black dashed line represents the mean of all
data points, and the dark and light gray regions represent one and two standard deviations above and below the mean, respectively. The black curve represents AR = 3, Reg
=110, while the red curves represent constant Uy, and the blue curves represent constant O following Fig. 2.

in the tangential 0;, vertical 0y, and radial O, directions. The single
spatial gradient in the PVTr suggests that the vertical direction likely
uses the wing chord. Similarly, the remaining two spatial gradients
in the vorticity advection should use the span for a length scale.

In order to quantify the scaling of the flow variables with AR,
the global averages are modeled using a power law regression of
the form X = C AR" in MATLAB for a dummy variable X. The
power n is restricted to within [-1,1] since the global averages

TABLE II. Aspect-ratio and approximate Regy for the corresponding span-based
Reynolds numbers used from the work of Harbig, Sheridan, and Thompson.*

Re, = 613 Re, = 7667
AR Re,

2.91 105 1317
5.1 60.1 752
7.28 421 527

do not appear to grow to infinity with increasing AR. Although
the range of AR (3 < AR < 7) used in this analysis is limited, it
covers the range primarily found in insects and other flying ani-
mals.”"” We argue that because this range encompasses the majority
of ARs in nature, it is adequate to quantify the primary scaling of
vorticity dynamics with AR. This nonlinear regression process is
applied to the global averages of vorticity advection and PVTr, along
with the kinematic flow variables that comprise both such as the
radial vorticity w, and the three velocity components. Inserting the
regression results for these constituent global average variables into
the definitions of the vorticity advection allows us to make predic-
tions as to how the tangential, vertical, and radial advections scale
individually with AR.

lll. RESULTS AND DISCUSSION
A. Two independent LEV length scales

Earlier, it was suggested that two length scales should be used
instead of a single scale. The motivation for this comes from the

Phys. Fluids 32, 121903 (2020); doi: 10.1063/5.0024213
Published under license by AIP Publishing

32,121903-7


https://scitation.org/journal/phf

Physics of Fluids

definition of the PVTr [Eq. (6¢)], the vorticity advection [Eq. (6b)],
and the predicted scaling of the normalized terms, respectively
[Egs. (7b) and (7¢)]; specifically, the vertical direction should scale
with the chord and the radial and tangential directions should scale
with the span. The use of two length scales is not foreign in the
literature; Blasius and Prandtl'“®" used the depth of the boundary
layer and the wing chord to scale the vertical and streamwise coordi-
nates, respectively, for the flow over a flat plate. Therefore, it seems
reasonable that a highly three-dimensional flow structure like the
LEV might also be governed by multiple length scales. The radial
vorticity of the LEV forms a conical structure growing along the
wing-span before being tilted into the wake near the tip. Further-
more, as AR increases with the wing-span (with the chord length
fixed), the LEV maintains its conical structure and stretches in the
tangential direction with the cross-sectional area (.27 gv) increasing
along the span. Here, the cross-sectional area increases uniformly
along the span until reaching the tip due to more three-dimensional
effects associated with the tip vortex meaning that the radial direc-
tion clearly scales with the span. The appropriate scale for the vertical
and tangential directions is now discussed.

1. Vertical direction

The vertical depth of the LEV is roughly constant and inde-
pendent of AR and Reg. Figures 8(a)-8(e) show vertical slices with
normalized time-averaged radial vorticity w,/2Q contours [Fig. 7(i)].

ARTICLE scitation.org/journal/phf

As AR increases [reading Figs. 8(a)-8(e) from left to right], it appears
that the vertical depth of the LEV remains constant along the span
and is of the same order of magnitude across AR and Reg. Fur-
thermore, as Re, increases at the same AR [Figs. 8(b) and 8(d),
or Figs. 8(c) and 8(e)] or at different ARs [Figs. 8(a) and 8(d), or
Fig. 8(e)], the vertical depth of the LEV is also roughly constant
along the span. It is possible that there is a minimum threshold that
the chord must exceed in order to achieve this constant depth of the
LEV, but it is unclear whether this feature is universal in all revolving
wing flows or merely those with wing chords of this size. Figure 8(f)
shows vertical lines along the vertical slice plane with circles repre-
senting the top y; and bottom y; of the LEV. Figure 8(g) plots the
vertical depth y; — yi vs %AR (or % of the wing-span). The verti-
cal depth is roughly constant from 30% to 70% of the span since the
majority of the points fall within one standard deviation from the
mean (dark gray) except for some locations at AR = 3 and AR =7 at
Reg = 110.

The observation that the depth of the conical LEV is indepen-
dent of AR and Re; can also be shown in the literature. Harbig,
Sheridan, and Thompson* visualized the LEV contour at 50% of the
wing-span where it can be seen that the depth of the LEV bisected
through the center of the wing is roughly constant at different ARs
(where the chord was changed while maintaining a constant span)
although they did not make specific mention of this. Their wings
revolved at the span-based Reynolds number Res = 613 or 7667 for
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FIG. 9. (a)—(e) Dimensional vorticity profiles —w, at each of the vertical lines from Fig. 8(d). Spline fits are used to show the vorticity profiles with white circles representing
select data points. The gray * represents the normalized vertical position of the peak y,/c in the vorticity profiles used in Fig. 9(f): (a) 30%AR, (b) 40%AR, (c) 50%AR, (d)

60%AR, and (e) 70%AR. In (a)—(f), the black curves represent AR = 3, Rey = 110,

while the red curves represent constant Uy, and the blue curves represent constant Q

following Fig. 2. (f) Normalized vertical position of the peak in the radial vorticity profile. The black dashed line represents the mean of all data points, and the dark and light
gray regions represent one and two standard deviations above and below the mean, respectively.
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AR = s/c = 291, 5.1, and 7.28; the approximate Re, values at each
AR are given in Table I using Reg = % (%), where ry/s ~ 0.5. These
corresponding Reg values were all within the laminar flow regime
common in most small flying insects,'”'"** so the three-dimensional
effects are expected to be mostly negligible except near the tip simi-
lar to the flows analyzed in this study. This feature of the LEV is also
substantiated by observing the flow structures elsewhere in the liter-
ature for revolving""** and flapping”™*" wings over similar ranges of
AR and Re.

Finally, Figs. 9(a)-9(e) show the radial vorticity profiles along
the vertical lines [Fig. 8(f)] at different %AR. The vertical location
of the peaks in the vorticity profile for each AR and Re, are in
general agreement despite the magnitude increasing along the span
and with AR and Re,. Figure 9(f) shows the vertical location of
the peaks y, normalized by the chord. The location of the peaks
increases monotonically in all cases; however, the most extreme val-
ues are still within two standard deviations from the mean (except
for AR = 3 at Re; = 110 at 30%). Therefore, the variation in the

vorticity along the vertical direction is minimal since all of the
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variation roughly occurs in the same vertical range. This is a good
reason to suggest that either the chord or possibly the average LEV
depth (which may be a function of Re, and AoA) is better choice of
length scale for the vertical direction. In this study, since we have
not rigorously investigated how LEV depth varies with other param-
eters, we will continue using the wing chord as the vertical length
scale instead.

2. Tangential direction

As was mentioned previously, the LEV stretches to match the
different ARs and the cross-sectional area (& gy) increases in order
to maintain the conical structure of the LEV [Fig. 10(a)], indicating
that the radial direction scales with the span. The length scale for the
tangential direction follows from this because of how the geometry
of the LEV cross-sectional area changes along the span increasing
in the tangential direction. Figures 10(b)-10(d) show plots of the
cross-sectional area of the LEV from the time-averaged flow with
three separate normalization schemes vs the local Rossby number
Ro(r) for different ARs and Re,. Since the LEV cross-sectional area

b) 0.08
Reg =110,AR=3
0.07 Re, =110, AR=5
Reg =110,AR=7
0.06 Re, =635 (Re_ = 163), AR=5
Re, =635 (Re, =257), AR =7

0.015

0.005

FIG. 10. (a) Five circuits around the perimeter of the LEV control-volume defined by w;* = —3 at radial positions of 20%, 30%, 50%, 70%, and 90% of the wing-span and the
LEV defined for AR = 3 and Rey = 110. The region after 80% of the wing-span is not considered in evaluating the LEV cross-sectional areas. The circuit used to calculate the
local cross-sectional area of the LEV .7 gy is defined at the intersection of cylindrical slices [Fig. 7(ii)] and the LEV control-volume. (b)—(d) Different normalized cross-sectional
areas of the LEV .7 gy plotted against the local Rossby number. The black curves represent AR = 3, Regy = 110, while the red curves represent constant Uy, and the blue
curves represent constant Q following Fig. 2. (b) o7/, = v /c* using the chord, (¢) <%, = sy /r,” using the radius of gyration, and (d) <7y, = v /rec using

both the chord and radius of gyration.
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FIG. 11. (a)—(e) Cylindrical slices [Fig. 7(ii)] of normalized radial vorticity along the span w,/2Q) at radial positions of 20%-90% span; * is shown at 80% span where the
LEV is observed to begin lifting off. (a) AR = 3, Reg = 110, (b) AR = 5, Rey = 110, (c) AR = 5, Re; = 63.5 (Rey = 183), (d) AR =7, Rey = 110, () AR = 7, Re; = 63.5 (Req
= 257), and (f) normalized spatial-averaged radial vorticity —a; /2 within the LEV control-volume (Fig. 6, w; = —3) plotted against the local Rossby number. The vorticity
was chosen instead of the circulation T since the normalization would change depending on if the velocity or vorticity definition was used. The black curves represent AR
=3, Rey = 110, while the red curves represent constant Uy, and the blue curves represent constant Q following Fig. 2.

is essentially elliptical, it must necessarily use two length scales (not
necessarily separate), one corresponding to the tangential direction
and another to the vertical.

We first investigate various normalizations of the cross-
sectional area to better isolate AR and Re, effects similar to Carr,
DeVoria, and Ringuette’s study where they normalized the circu-
lation T locally along the wing-span.”’ Here, three normalizations
are tested, the cross-sectional area &%, = /pv/c* using the
chord [Fig. 10(b)], @3y = .QfLEV/rgZ using the radius of gyration
(for the span) as proposed by Harbig, Sheridan, and Thompson™
[Fig. 10(c)], and o7y = @Ev/rec using both [Fig. 10(d)]. The nor-
malization that best collapses the curves of the LEV cross-sectional
area along the span is indicative of the appropriate length scale to
be used for the tangential direction. In Fig. 10(b), curves of the
normalized cross-sectional area 7%, using the chord are more ver-
tically displaced at separate ARs. Similarly, in Fig. 10(c), the curves
of o7, using the radius of gyration show more disparity between
ARs along the local Rossby number axis. Neither of these normal-
izations fully collapse the curves; however, the curves of 273} using
both the chord and radius of gyration in Fig. 10(d) all roughly col-
lapse onto each other. Knowing that the vertical direction scales
with the chord since the depth of the LEV is roughly constant
and that the third normalization <3y successfully collapses each
curve, the tangential direction must scale with the radius of gyra-
tion (or the span) similar to the radial direction. This makes sense of
the observed stretching of the LEV in the tangential direction with
increasing AR.

Lastly, the tangential direction can also be shown to scale in
the same manner as the radial direction by considering the defini-
tion of the coordinates in the rotated Cartesian system and motion
of the wing-tip. Starting from Eq. (5), the tangential direction is
defined as t = sin(¢)x + cos(¢)z and the radial direction as r =
cos(¢)x — sin(¢)z. Taking the derivative of ¢ with respect to ¢ gives
dt = (cos (¢)x — sin (¢)z)d¢ or dt = rdp. This suggests that a change
in the tangential direction is directly proportional to the radial
position assuming a constant sweep angle d¢. As the wing rotates,

the wing-tip sweeps out a circular arc that is proportional to the span
corresponding to the relationship derived just above. This indicates
the length scale that is used for the tangential direction is identical to
what is used for the radial in agreement with the argument from the
LEV geometry.

B. Three-dimensional effects and geometric-similarity

So far in this work, the time-averaged flow in the LEV control-
volumes (Fig. 6) has been treated as being entirely two-dimensional.
However, the presence of the tip vortex creates a region that is highly
three-dimensional compared to the main LEV. In Figs. 11(a)-11(e),
the radial vorticity is attached to the wing until ~80% of the span
(shown by *) before detaching and shedding, forming the tip vor-
tex. Additionally, some cases begin to show signs of recirculation
[Fig. 11(c)], at Reg = 110 and at Re. = 63.5 [Figs. 11(d) and 11(e)]
corresponding to the higher AR and Reg > 110 (Table I). Figure 11(f)
shows the spatially averaged normalized radial vorticity —a;/2Q
increasing monotonically until reaching ~1.5 chord lengths from the
tip, agreeing with the observations of Jardin, Farcy, and David”’ and
DeVoria and Mohseni.”* In the three-dimensional region, the trend
in the radial vorticity is distinct from that in the two-dimensional
region decreasing due to the reduced radial vorticity and is likely a
result of the tilting term in Eq. (62).” A similar abrupt change is
observed in velocity components, vorticity advection, and PVTr.

The three-dimensional effects can also be understood in terms
of geometric-similarity, where we define a region to be geomet-
rically similar if the flow profiles at different radial positions are
similar in shape. In this analysis, we will consider the profiles that
are within one standard deviation from the mean to be geometri-
cally similar to each other, whereas those outside to be geometrically
dissimilar due to three-dimensional effects. To this end, we calcu-
late a simple geometric-similarity metric (GSM), which is the per-
centage of the local flow profile that extends either above or below
one standard deviation from the mean profile. This geometric-
similarity metric is plotted vs %AR in Fig. 12 for each of the six
flow variables for each AR and Re; combination. From Fig. 12,
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FIG. 12. Geometric-similarity metric (GSM) of normalized flow profiles: (a) tangential velocity u; (r)/| max(u;(r))| (Fig. B1), (b) vertical velocity —u, () /| min (i, (r))|
(Fig. B2), (c) radial velocity , () /| max (% (r) )| (Fig. B3), (d) radial vorticity —w, () /| min (@, (r))| (Fig. B4), (€) vorticity advection —A(r) /| min(A(r))| (Fig. B5), and
(f) PVTr P(r) /| max(P(r))| (Fig. B6). The GSM is the percentage of the local flow profile that extends past one standard deviation from the mean for each of the separate
cases: AR = 3, Reg = 110; AR =5, Rey = 110; AR = 5, Re; = 63.5 (Rey = 183); AR =7, Reg = 110; and AR = 7, Re; = 63.5 (Rey = 257).

the trend that emerges is that generally, the regions near the
root [Ro(r) S 0.4AR] and tip [Ro(r) % 0.8AR] are less geometri-
cally similar having a higher GSM, whereas the central region of
the LEV is more geometrically similar having a GSM at or near
zero.

Therefore, the regions that are not geometrically similar should
be removed from the analysis because of the stronger three-
dimensional effects. This is done by removing percentages of the
LEV control-volume starting from the root and/or the tip moving
toward the center of the wing based on calculating the coefficient
of determination R® using power law regressions [see Eq. (8)]. This
process involves simultaneously maximizing R* while minimizing
the total percentage of the LEV control-volume removed from both
sides of the wing. The coefficients of determination are considered to
be functions of the percent of the LEV control-volume removed and
are expected to increase until the contributing three-dimensional
features are removed. These and the resulting global averages of
the different flow variables are both discussed in supplementary
material B.

C. Global scaling arguments of flow variables applied
to vorticity advection

At this point, we have discussed why two length scales are
needed to correctly normalize the LEV vorticity dynamics, along
with the characteristic magnitudes of the velocity and vorticity.
Recall from earlier that these characteristic magnitudes are the

velocity at the radius of gyration Uy, for the velocity and the planetary
vorticity magnitude 2Q for the vorticity. Additionally, the length
scale that is predicted to best normalize the vorticity advection is the
span s (or radius of gyration ry), while the length scale that correctly
normalizes the PVTr is the chord c. Figure 13 shows the applica-
tion of these two length scales using the global vorticity advection
A and PVTr P following Eq. (7) and power law regressions. The
values using the chord as the characteristic length are in good agree-
ment with those in the authors’ previous work™ as expected. The
normalized global vorticity advection Z/ZQZRO [Eq. (7a)] varies
roughly inversely with increasing AR [Fig. 13(a)], while the PVTr
B/20%Ro [Eq. (7b)] is approximately independent of AR [Fig. 13(b)
and Table B3], indicating that the chord should be used as the
length scale in normalizing the PVTr but not the vorticity advec-
tion. Conversely, taking the wing-span as the single length scale as
proposed by Harbig, Sheridan, and Thompson™ gives a normalized
global vorticity advection A /2(22 [Eq. (7¢)] that is roughly constant
[Fig. 13(c)]. Additionally, the power x used for the global averages of
vorticity advection [Eq. (8¢)] is approximately zero [see Fig. B6(b)
and Table B3] as predicted. At the same time, though, the PVTr
P/20° [Eq. (7d)] is roughly linearly increasing [Fig. 13(d)], sug-
gesting that the wing-span is a better choice to use for the vorticity
advection but not the PVTr. Therefore, the anisotropic characteris-
tic length scales based on the LEV geometry successfully predicted
the scaling of vorticity advection and PVTr.

Notably, in Fig. 13(c), the global averages of vorticity advec-
tion are lower at AR = 7 than the other cases. This can primarily
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be accounted for by the fact that the vorticity advection is made up
of three separate contributions associated with the tangential, verti-
cal, and radial directions. In other words, it is more consistent for
the vertical advection to have the chord as its length scale, while
the tangential and radial advections should use the span. To better
understand the individual contributions of the tangential, vertical,
and radial advections to the vorticity advection, we derived scaling
relationships for each by combining the nonlinear regression equa-
tions based on the individual velocity components [Egs. (8b)-(8d)]
and the radial vorticity [Eq. (8a)]. Additionally, power law regres-
sions for the vorticity advection [Eq. (8¢)] and PVTr [Eq. (8f)] are
also derived. Greek letters are used for the powers and subscripts
for the leading coefficients, and each global variable is normalized so
that the effect of the characteristic magnitudes for the velocity and
vorticity and length scale does not artificially affect the coefficients,

~ @,
=—" 8
O T 2QCAR (8a)
~ iy
T — 8b
' UgCsARP (80)

5 = Ug(;lyyARY’ (8)
= UgcuZARB’ 59
A*S = ﬁ, (8e)
P ZQZRZ;ARW' (5

Starting from the definition of the vorticity advection [Eq. (6b)]
and normalizing using the established length scales and characteris-
tic magnitudes, we insert the scaling equations for the vorticity and
velocity components [Egs. (8a)-(8d)]. This procedure is the same as
what is discussed by Kundu and Cohen'® regarding the boundary
layer approximation. They start with the Navier-Stokes equations
and insert the characteristic magnitudes for the different velocity
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components and the length scales for the gradients to arrive at rela-
tionships that describe the order of each term. For example, the
tangential velocity i; = Ug(CﬁARﬁ )u; [Eq. (8b)] is used in the tan-
gential advection along with the radial vorticity [Eq. (8a)] and the

J

scitation.org/journal/phf

span for the tangential length scale. This gives combined coefficients
and powers that allow for the prediction of relative magnitudes and
variation with respect to AR for each advection term. The process
for all three advection terms is shown in the following equation:

A 1 [_0a, _0&, _ o, 1 U, ARP20AR \ ~ dw; U,AR"2QAR" \ ~ dw;
A= =G b g i | = —— | CuCp| B | CsC *
202 202 I:ut a T Oy Baar™ ] ZQZ[ ﬁ( s “ s ’ c gl Oy*=<
UsAR2QAR* ~ dw; ~ dwf arpry % Ow0F ard) % O0F
+ CD,C(;(%)L{, aw] - {c,(AR )ut st Gy (AR )iz st c,(AR )u, e | ©9)

The combined coefficients and 95% confidence intervals are tabu-
lated in Table 111, and the method for calculating them starting from
the original coefficients is discussed in supplementary material B.
From examination of Eq. (6b), it is expected that each of the indi-
vidual contributions to the vorticity advection should all be of the
same order as the vorticity advection.'® Since the vorticity advection
normalized using the span A% = 4 /207 is expected to be roughly of
order one across the different ARs as a consequence of our normal-
ization, the same can be assumed for the individual contributions in
Eq. (9). Since each of the individual terms will be of order one as
a consequence of our normalization, their products and derivatives
should as well.'© Therefore, it can be reasoned that the relative size
of each normalized vorticity advection term in Eq. (9) is determined
by the presence of a multiplying factor involving AR.

It is still relevant to consider their relative magnitudes before
addressing the combined powers (Table II1). Clearly, the tangential
advection C; is the largest of the three, followed by the vertical Cy and
then the radial C,, which is actually an order of magnitude smaller
than the others [see Fig. 14(a)]. This is in good agreement with that
reported in the literature.”” ' Cheng et al.”’ noted that the tangen-
tial and vertical advections were both much larger than the radial
advection, which was essentially negligible at similar Re, to those
considered in this study. Chen, Wu, and Cheng’' also observed that
during the developmental phase of the LEV, the tangential advection
was largest, followed by the vertical and then the radial, which they
also noted to be negligible.

Figure 14(b) shows the combined and total powers for the
vorticity advection. In general, the level of agreement between the
combined and total powers (which are y ~ 0) indicates the relative
strength of the individual terms in the vorticity advection as AR
changes. The combined power for the tangential advection (« + f3)
and the total power y are both approximately zero. For Re, = 110,
both powers are of the same sign, while the signs are different for Re,
= 63.5. Since the tangential advection power is approximately zero,
this indicates that the tangential advection is relatively invariant with
AR. On the other hand, the vertical (« + y + 1) and radial (« + §)
combined powers are an order of magnitude larger. This indicates
that in the limit of AR — oo, both the vertical and radial advections
will increase. However, from Fig. 14(a), it is seen that the tangen-
tial advection is still likely to be the dominant term at larger ARs
since C; > Cy, and C; > C;. This coincides with Lentink’s” obser-
vation that revolving wings of higher ARs approximate translating
wings. The vorticity advection associated with translating wings is
primarily chordwise oriented or in the tangential direction and is the
main source of vorticity transported into the boundary layer. How-
ever, it should be noted that Han, Chang, and Cho’” observed that
the downwash varied inversely with AR for revolving wings at Re,
an order of magnitude larger than those used in this study. Since
our simulations were all at constant or approximately constant Re,
across the different ARs, this could suggest that the downwash varies
inversely with Re,, but this was not investigated here. It is known
that revolving or flapping wings with smaller ARs exhibit more

TABLE lll. Combined coefficients (absolute value) and 95% confidence intervals in parenthesis for the tangential, vertical, and radial advections for Req = 110 and Re. = 63.5.
The method for calculating these coefficients and confidence intervals is discussed in supplementary material B.

uf (9w 01) iy (97 |0y™) uf (9w 0r™)
C a+f C, a+y+1 C, a+d
Re. = 110 2.686 —0.1264 0.8598 1.025 0.2394 0.7176
C (—15.61, 20.98) (—2.403, 2.150) (—1.647, 3.336) (0.09799, 1.952) (—0.4898, 0.9686) (—1.559, 2.994)
Re. = 63.5 1.993 0.0867 0.7636 1.121 0.1317 1.317

(—13.02, 17.01) (—2.126, 2.299)

(—14.11, 15.63)

(—1.911, 4.153) (—3.307, 3.571) (—2.776, 5.410)
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three-dimensional flow mechanisms on top of the main tangential
flow, which is in agreement with what we have observed.

D. Additional observations: Global scaling application
and localized exceptions

In Sec. 111 C, but also Secs. II E and III A, we describe addi-
tional details regarding the application of the scaling of the vorticity
dynamics in previous sections. This scaling is described in Eq. (8)
from Sec. I1I C, that is, the terms in the denominators except the
power law relations. The radial vorticity [Eq. (8a)] was normalized
by the planetary vorticity magnitude 20 and all three velocity com-
ponents [Egs. (8b)-(8d)] by the velocity of the wing at the radius of
gyration U,. Next, the vorticity advection [Eq. (8¢)] was normalized
by 20 since the span was used as the length scale [Eq. (7¢)]. Finally,
the PVTr [Eq. (8f)] was normalized by 2Q°Ro due to the chord being
used for the length scale in the gradient [Eq. (7b)]. The inclusion
of the power law relations in the denominator of the normalized
vorticity dynamics equations allows us to quantify the accuracy of
these scaling terms in predicting the global behavior of the vortic-
ity dynamics (these powers are provided in supplementary material
B: Table B3). If the power is approximately zero, then the original
scaling term accurately represents the global variation across AR at
constant Re, typical to insect flight. This applies to the global advec-
tion A* [Fig. 13(c)] and PVTr P*< [Fig. 13(b)]. Contrastingly, when
the power is not approximately zero, this indicates that the original
scaling should be adjusted to include some dependence on AR.

One example of this is the normalized global radial velocity.
The power § = 0.4789 at Re; = 110 and 0.7673 at Re. = 63.5, which
are both more than 100% larger in magnitude compared to the pow-
ers y for the advection or y for the PVTr, indicating that the radial
velocity scale should be adjusted accordingly. This is similarly true
for the radial vorticity where there is clearly a non-linear depen-
dence on AR not currently accounted for. Finally, the tangential
and vertical velocity scales should likewise be adjusted although to
a lesser degree. Additionally, the powers given in Table B3 show
some dependence on Re. Upon comparing the powers between the

Reg = 110 and Re; = 63.5 cases (which are actually Re, increasing
with AR due to the increasing tip velocity, Fig. 2), it is apparent
that the majority of these powers change in magnitude by more than
60%. However, the change in the leading coefficients always remains
below roughly 30%. Despite this, combining the two length scales
appropriately, along with the predicted velocity and vorticity scales,
still accurately predicts the global behavior of the vorticity advection
and PVTr.

Moreover, there are non-linear effects that should be addressed;
these are most clearly seen in the radial velocity and PVTr. Recall
for the predicted scaling of the PVTr, 20°Ro¥*" ~ 2Q7Ro since the
power y ~ 0. This scaling term for the PVTr is derived with the
original velocity scale.” However, as has just been established,

the radial velocity scale should be adjusted to be UgRo‘S based on
Eq. (8d). Using this adjusted velocity scale in place of the previous
velocity scale results in 20*Ro°*!, where the power & is different
by upwards of 300% compared to the power y as measured for the
PVTr. The reason for this difference is due to how the global aver-
ages were calculated. Specifically, when calculating the global aver-
age of the PVTT, the global average of the vertical gradient of radial
velocity was considered, i.e., (Our/dy). However, when including
the radial velocity scale, it is the vertical gradient of the global aver-
age of radial velocity that was considered, i.e., 9i;/dy. This implies
that the non-linear effects in the local radial velocity [particularly
near the tip likely due to higher tip velocities at Re. = 63.5, Fig. 15(a)]
are not removed when using the component based adjusted scale for
the global average. This is despite taking advantage of geometric-
similarity to remove some 3D effects near the tip, which was partially
successful for the global advection and PVTr.

There is also evidence that the anisotropy is not exclusive to the
length scales but may also apply to other scaling terms for the vor-
ticity dynamics. This suggests that seeking a single scaling term may
be inappropriate; instead, the scale may depend on the spatial direc-
tion being considered. Specifically, a scaling term can be derived for
each of the two gradients in the radial vorticity, i.e., w, = Ou,/0t
— Out/0y. Using the length scales and updated velocity scales, the
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represent constant Uy, and the blue curves represent constant ) following Fig. 2.
The gray regions represent one standard deviation above and below the mean.

first gradient should be proportional to QRo”, while the second gra-
dient is expected to scale with QRoP*!. Neither of the powers in these
terms agree well with the measured scaling for the radial vorticity
QRo%, although f + 1 is closer than y. However, if a single vortic-
ity scaling term is required, then the appropriate choice may depend
on which of the two gradients is more dominant similar to the scal-
ing derived by Blasius for the 2D boundary layer.'® Additionally, any
non-linear effects should be considered as well.

Finally, it is important to note that the global applicability of
any scaling term does not necessarily carry over to the local trends.
For example, the trends observed in the local PVTr [Fig. 15(b)] after
being normalized by 2Q°Ro do not all collapse onto each other.
When Reg = 110 where the tip velocity remains constant across AR,
the slopes of the curves decrease with increasing AR, whereas when

ARTICLE scitation.org/journal/phf

Re. = 63.5 and the angular velocity is constant, the slopes are similar.
A comparable observation is seen for the trends in local radial vor-
ticity [Fig. B9(d)], and all of the normalized local trends are provided
in supplementary material B. This is likely due to some combination
of the effects mentioned previously and should be considered when
developing future normalizations of the vorticity within the LEV.

IV. CONCLUSIONS

The primary focus of this study was to identify the correct
global scaling for the vorticity advection and PVTr with AR. Dif-
ferent definitions of the Reynolds number also allowed us to sep-
arately examine the effects of the tip velocity and angular veloc-
ity on the vorticity advection, PVTr, and three-dimensional effects
independently.

We first time-averaged the flow within the LEV control-volume
and then normalized the vorticity advection and PVTr global aver-
ages using both the span and the chord separately. From there, we
identified that the span was better suited for normalizing the vortic-
ity advection, whereas the chord was better for the PVTr, i.e., using
the span to normalize the vorticity advection and the chord for the
PVTr resulted in both terms being roughly constant with increasing
AR. Therefore, at least two length scales need to be applied to cor-
rectly normalize the vorticity dynamics for revolving wings at these
AR and Re. We verified that the tangential and radial directions scale
with the span, while the vertical direction should scale with a shorter
orthogonal length scale based on the geometry of the LEV cross-
sectional area and vertical depth, namely, the chord. The tangential
length scale was confirmed by applying different length scale combi-
nations when normalizing the local cross-sectional LEV area, where
it was found that normalizing the area by the product of the radius
of gyration and the chord collapsed all of the curves onto each other
outside of the tip region.

It was observed that simply applying the span and chord sepa-
rately as individual length scales was not enough to normalize the
vorticity advection global average due to the three contributions
to the vorticity advection requiring different length scales. Addi-
tionally, because the flow profiles near the tip region are geomet-
rically dissimilar to those within a range roughly corresponding to
40%-80% of the wing-span in nearly all cases, portions of the LEV
control-volume were removed calculating the global averages. The
exact size and location of these regions were determined by fitting
power laws and removing pieces of the control-volume from the
root, tip, or both until the coefficient of determination was optimized
for each flow variable. Once the geometrically dissimilar regions
were removed, and the separate length scales and power laws were
applied to each term, several trends were observed in the different
contributions to the vorticity advection.

Using the power law scaling equations for each of the flow
variables, we were able to predict the scaling behavior and rela-
tive strength of the different contributions to the vorticity advec-
tion with increasing AR (3 < AR < 7) covering the majority of the
range found in natural fliers. The tangential advection was shown
to be the strongest of the three contributions, followed by the verti-
cal and radial. The tangential advection was roughly independent of
AR, while the vertical and radial advections are expected to increase
with AR at constant Reg. However, due to the tangential advection
being dominant, it is expected that at larger AR, the flows will be
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more comparable with translating wings® where the flow is primar-
ily shed into the wake and not recirculated above the wing form-
ing the LEV. Furthermore, the relative magnitudes of each vorticity
advection term are in good agreement with those reported in the
previous literature.”” ”' However, we do understand that this set
of AR is limited, since it only includes three values. Therefore, we
plan on developing a more comprehensive scaling analysis using
more AR values (using different chord lengths) covering a similar
range in the future, including other terms from the relative vorticity
equation.

Finally, it was observed that the normalization used was not
consistently able to remove the combined effects of AR and Reg on all
of the flow variables locally. All the normalized local velocity and the
vorticity advection curves collapsed onto each other within one stan-
dard deviation from the mean. However, both the normalized local
radial vorticity and PVTr curves did not collapse onto each other,
indicating that the normalization for these terms should be revis-
ited. The same trend that was observed in the dimensional radial
vorticity was still apparent after normalization. The slopes of the
normalized curves decreased when the tip velocity was held con-
stant as expected, but the slopes increased with AR when the angular
velocity was constant despite the local wing velocities being the same
at the shared radial positions. On the other hand, although the slopes
of the normalized curves of the PVTr were in good agreement when
the angular velocity was constant, but when the tip velocity was held
constant, the slopes continued to decrease.

Although we have successfully determined the proper length
scales involved in flows over rotating wings at these AR and Reg by
testing the normalization of the global vorticity advection and PVTr,
more work needs to be done to understand the vorticity dynamics
involved since the current normalization failed to eliminate the AR
and Re, effects on the local radial vorticity and PVTr. Further experi-
ments or simulations should be performed to thoroughly investigate
the vorticity dynamics involved in the PVTr and vorticity advection
at different AoA to develop a more comprehensive and refined set
of scaling laws involving all of the relevant parameters. Finally, it
remains unclear exactly what role the PVTr plays in LEV stability. It
is clear that the PVTr works to remove radial vorticity, but whether
this contributes to LEV stability and attachment still needs to be con-
firmed. Therefore, we also intend to perform additional experiments
that will directly identify this role by perturbing the PVTr.

SUPPLEMENTARY MATERIAL

For additional information, see supplementary material A
regarding the identification of the quasi-steady period and sup-
plementary material B regarding the geometric-similarity, global
averaging, nonlinear regressions and the statistical analysis.
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