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Abstract

The two dimensional incompressible Navier—Stokes equation on Dgs :=
[0,278] x [0,27] with ¢ ~ 1, periodic boundary conditions, and viscosity
0 <v <1 is considered. Bars and dipoles, two explicitly given quasi-
stationary states of the system, evolve on the time scale O(e™"") and have
been shown to play a key role in its long-time evolution. Of particular interest
is the role that ¢ plays in selecting which of these two states is observed.
Recent numerical studies suggest that, after a transient period of rapid decay
of the high Fourier modes, the bar state will be selected if  # 1, while the
dipole will be selected if 6 = 1. Our results support this claim and seek to
mathematically formalize it. We consider the system in Fourier space, project
it onto a center manifold consisting of the lowest eight Fourier modes, and use
this as a model to study the selection of bars and dipoles. It is shown for this
ODE model that the value of 6 controls the behavior of the asymptotic ratio
of the low modes, thus determining the likelihood of observing a bar state or
dipole after an initial transient period. Moreover, in our model, for all § ~ 1,
there is an initial time period in which the high modes decay at the rapid rate
O(e~"/*), while the low modes evolve at the slower O(e~"") rate. The results
for the ODE model are proven using energy estimates and invariant manifolds
and further supported by formal asymptotic expansions and numerics.
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1. Introduction

In this paper we consider the 2D incompressible Navier—Stokes equation
ou=vAu— (u-V)u—Vp
V-u=0 (1.1)
on the possibly asymmetric torus (x,y) € Ds := [0,278] x [0, 27] with § = 1, periodic bound-

ary conditions, and viscosity 0 < v < 1. Defining w = (0,0, 1) - (V x u), one obtains the 2D
vorticity equation

A
Ow = vAw —u - Vw, u= <_Bg£(_AA_3)> w. (1.2)

The relation between u and w is known as the Biot—Savart law. The periodic boundary condi-
tions force [, s w = 0, and hence A~ 'w is well-defined.

Because the viscosity is small, it is reasonable to expect that stationary solutions of the
Euler equation ((1.1) or (1.2) with ¥ = 0) would play a role in the long-time evolution of the
Navier—Stokes equation. However, the Euler equation has infinitely many stationary solu-
tions, so it is not obvious which such solutions are important. In [16], entropy arguments and
extensive numerical studies were conducted in the case & = 1 and suggested that the so-called
bar states and dipoles should be the two most important stationary solutions of the Euler
equations. Although both states were observed after initial transient periods in the evolution
of the Navier—Stokes equation, interestingly the dipole seemed to emerge for a large class
of initial data, whereas the bar state only emerged for a special class of initial data. A later
study [3] numerically analyzed (1.1) on D; with the addition of a certain type of stochastic
forcing. There, after an initial transient period, a metastable switching between the bars and
dipoles was seen, with the dipole being dominant for 6 = 1 and the bar states being dominant
for § # 1. Related analytical work was conducted in [2, 12] where the rate of convergence to
a bar state for appropriate initial conditions was shown to be (’)(e_\/;’ ), while the bar state
itself decayed at the O(e™"") background rate. In this work, we will analyze the selection of
bars and dipoles, based on the parameter . At this point, we also refer the interested reader to
[1, 7-10, 13] for steady state results and results in the asymptotic regime as time goes to
infinity.

If § = 1, any function of the form

w(x,y;m) = efu?m;’[al cos(mx/d) + ay sin(mx/§)] + e*”mz’[a3 cos(my) + ay sin(my)], meZ

(1.3)
is an exact solution to (1.2). If 6 # 1, then (1.3) is an exact solution to (1.2) if and only if
a; = ay = 0 orif a3 = a4 = 0. Bar states, also known as unidirectional or Komogorov flow,
are members of this family for m = 1 given by

Wpar(x,1) = e~ 37" sin(x/d), Wear(y,1) = e V'siny,

or similarly with sine replaced by cosine. The associated velocity fields are given by

o 0 cosy
_ Lt _ vt
ubar(x, t) - 66 s <COS(.X/6)> > ubar(y’ t) =€ ( 0 ) )

respectively. The dipoles are also members of the family for m = 1 and are given by

Waipole (X, Y, 1) = e 5! sin(x/8) + e~ siny,
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with velocity field

e " cosy
Ugipole (X, Y, 1) = —de” 3" cos(x/d) )

or similarly with sine replaced by cosine. The bar states are exact solutions of (1.2) for all
0 ~ 1, while the dipoles are only exact solutions for 6 = 1. In addition to the references men-
tioned above, the bar states were also studied analytically in [15]. Although the setting was
slightly different, their results suggest that, when § = 1 an m-bar state emvm't cos(my) (or
similarly with sine replaced by cosine or y replaced by x) is attracting if and only if m = 1.
Because the dipoles are only approximate solutions for § # 1, it may be intuitive that they
would not play a key role in the long-time evolution in that case. However, they were still
observed in the metastable switching in the appropriately stochastically forced Navier—Stokes
equation for § # 1 [3].

Because of the form of the bar states and dipoles, it is useful to study (1.2) in Fourier space,
in which it can be written

X [V IN (EJZZ} N N
om0 ol

Il

Vi 6 = IR P
= —6—2\k|§wz ~5 > G (TQ - "_2) il (1.4)
7+T:]z |l|6 l]|5
where
K3 =12 +0%3, k= (ko —k1)
and

wlx,y) = Zwl}'ei(kIX/6+k2y)’ wl_c, _ ﬁ /DW(X,y)e_i(klx/6+k2y)dxdy.
k#0

In terms of these variables, the y-bar states e ="' cosy and e"'siny correspond to solutions
with energy only in the k = (0, +1) modes, the x-bar states e~ 5" cos(x/8) and e~ 32’ sin(x/8)
correspond to solutions with energy only in the k= (%1, 0) modes, and the dipoles correspond
to solutions with energy in both the k = (0, +1) and k = (%1, 0) modes. These four modes are
the lowest modes in the system, in that they correspond to the modes with the lowest values of
|k, with |k|5 = 1 or 62. We will refer to any modes with |k|s > max{1, §2} to be high modes.

When ¢ = 1, the set {&; = 0 if k| > 1} is an exact global invariant manifold for (1.4).
However, the dynamics on it are trivial, determined by the linear terms. Therefore, even
though both the bars and dipoles lie within this manifold, if we want to understand how the
system selects between them, we must include at least some of the higher modes. To do so, we
conduct a center manifold reduction on (1.4) and project onto the lowest eight modes, which
we denote by
w ==w(1,0), wy=w(—1,0), ws:=w(0,1), ws:=w(0,-1),
ws :=w(l,1), ws:=a(-1,1), wr:=a&(l,—-1), wg:=a(—1,—1). (1.5
The variables w234 correspond to the low modes, while wsg7g represent the role of all the
high modes. Since the solution w(x, y) of (1.2) is real valued,

W) =Wy, W3 =W Ws=0ws, Ww7=Ws. (1.6)
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Thus, the resulting ODE, which is derived in detail in section 2, will be eight dimensional.

The reduction to the eight-dimensional ODE is local. In fact, since the size of the spectral
gaps for the linear operator, vA, is O(v), this reduction will only be valid in a small neighbor-
hood of 0 of size O(v). Moreover, one cannot expect to obtain a finite-dimensional model of
the full system (1.4) that describes the global dynamics [17]. However, we will still use this
finite-dimensional model to provide insight into the potential role that 6 plays in the selection
of bars and dipoles. For other examples in which finite-dimensional models have been used to
study the dynamics of the Navier—Stokes equation, see [5, 14].

The ODE derived in section 2 will be analyzed in sections 3-5. In section 3 we focus
on the case 6 = 1, which corresponds to the symmetric torus, and in section 4 we focus on
the case d # 1. In both cases, to study the relative importance of the bar states versus the

2
dipoles, we consider the evolution of the ratio R(z) := % (In the case w3z = 0, one can

study the inverse of this quantity.) Note that asymptotic convergence of R(#) — 0 or co would
correspond to convergence to a y- or x-bar state, respectively, while convergence to some
finite, nonzero value would correspond to convergence to a dipole. (We note, however, that if
R(#) = R < 1 for example, then such a state would qualitatively appear to be a y-bar state,
even though there would be nonzero variation in x.)

For the case § = 1, in theorem 3.4 we show that there is a family of co-dimension one
stable manifolds in the phase space of the ODE that determines the asymptotic limit of R(z).
The limit R(f) — 0 corresponds to exactly one of these manifolds, and hence a y-bar state
would only be observed for the special class of initial conditions starting on this manifold. (A
similar result holds for the x-bar states.) Therefore, we conclude that, for the symmetric torus,
general initial conditions will typically lead to the emergence of a dipole as the dominant
quasi-stationary state. For the case 0 # 1, the single center direction that had been present in
the system for § = 1 becomes hyperbolic, with the sign of § — 1 determining if it is expanding
or contracting. Thus, this selects the limit R(¢) — 0 or R(t) — oo, selecting an y-bar state or
x-state respectively. These results are found in theorem 4.4.

In both cases, § = 1 and ¢ # 1, we additionally show that the high modes decay at the
rate O(e~"/"), while the low modes decay at the rate O(e~*). These results can be found in
lemma 3.1 and proposition 4.2. This allows for the rapid convergence to a metastable state
as seen for the bar states in [2, 12]. We note however, that the rapid decay in [2, 12] was
O(e~V¥"), whereas here we obtain decay of the high modes at O(e~"/*). We expect that this
discrepancy is due to the fact that the ODE we study is only a model of the full PDE. The main
point is the qualitative prediction of a separation in time scales, rather than the specific rate.

In section 5, we reframe the problem as a perturbation problem, so as to confirm the
results of the earlier sections using a different method. After setting § = 1 + €pe, where
€p = £1 will determine if 6 is less than or greater than 1, relating the parameters v
and ¢ via €, and scaling the system in an appropriate way, a slow-fast system emerges.
Perturbation expansions are then used to illustrate the claims made in sections 3 and 4.
These expansions also reveal that evolution to a bar state accelerates as ¢ is moved slightly
farther from 1. This result is consistent with the work of [3] in that the simulations done
there suggest that a bar state dominates the metastable stochastic transitions only when §
is sufficiently far from 1.

Lastly, we conclude the introduction by pointing out that one could in principle scale time
and velocity from the very beginning in order to make v = 1. However, our goal here is to
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investigate the selection mechanism based on the value of ¢ and it turns out that there is an
interplay with v as well. As a matter of fact, estimates like those in lemma 3.1 and proposition
4.2 depend on v in very precise ways and if one had scaled out v in the beginning, one would
have to undo the scalings later on. Hence, we chose to keep the dependence on v as it is given
by the equation originally.

2. Center manifold

In this section, we carry out a center manifold reduction of (1.4) onto the eight modes listed in
(1.5). This is a standard calculation that can be found, for example, in [11].

The basic idea is, for any wj; with k ¢ {(£1,0), (0, £1), (£1, £1)} =: Ky, to assume that
there exists a smooth function H(wy,...,ws;k) such that the eight-dimensional manifold
defined by

-,

M ={@: @ =H(wi,...,ws;k), k¢ Ko}

is invariant for the dynamics of (1.4). We refer to this as a center manifold because it is defined
in terms of the lowest eight modes, which have the weakest linear decay rates. Based on this
assumption, one can then in principle compute the coefficients of the Taylor expansion of
H(., E) to any order, for each k . To make this precise, define

= (@1w? + -+ 4 agwd) + (browiws + . .. bigwiws) + (Caawrws + . . . cagwnrtsg)
+ (dgwawy + - - - + dagwaws) + (easwaws + . . . esgwawg) + (fsswsws + - - - + fsgwsws)
+ (g67w6w7 + gﬁgwﬁng) + hygwiwg + @(3)
= H(wi,...,ws; k), Q2.1

where O(3) is defined in definition 2.1.

Definition 2.1. Letn € N and let wy, . ..,ws be defined as in (1.5). We define ©(n) to be
the set of terms that are of the form w'w5?...wg* where ny + ... + ng > n for ny,...,ng € N.
Thus, ©(n) is the set of monomials in wy, . . ., wsg of degree n or larger.

In order to determine the values of the unknown coefficients that appear in (2.1), we will
compute Juw;, for j = 1,...,8 in two ways: 1) by using the right hand side of equation (1.4),
where we substitute H(, l?) in for wy whenever k ¢ Ko; and 2) by computing the time deriva-
tive of the expansion in (2.1), substituting in the equation for w;, j = 1,...,8 given in (1.4)
as necessary. Equating these two results, and comparing terms with equal order in powers
of wy,...,ws, will lead to equations that should in theory determine the values of the coef-
ficients. Note that the coefficients in (2.1) will depend on k , but we have suppressed this for
notational convenience.

We are only interested in computing the expansion for H(-, I?) up to and including terms
of ©(2). Therefore, when carrying out the above-described calculation, we will only need to
retain terms up to any including ©(3). This means any product of the form wpws with k,j ¢ Ko

will be of higher order, and thus we can discard it. Carrying out step 1) above, leads to
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. v 1 _ 36 R - . -
Wi = 5w + HE3) [waw; — @3ws| + Ari o) [©(2,—1)w7 —@(2,1)ws] + ©(4)
iy = vy o s — ]+ e [(1.2)5 — &(—1.2)ur] + O(4)
w3 = —lVw3 1 T (52 wiWws wiwy (1 +462)(1 n 52) w(l, 2)ws w . =)Wy
S P N Ciball V. 6B+ . 1438
ws = (52(1 +6)ws wiws + s (2, 1)y —6(1 +462)w(1,2)w3
JB=) 138
+ 00— 20500 w(2,0)w7 + 2 +62)w(0,2)w7 +0(4)
Vo (P 14382 03487
wy = 52(1+5 Jwr + w|w3+6(1+452)w(1, 2ws =~ (2~ @
362 — 1 5(52 —3)
s o w(0, - G " . (2.2)
+ B+ 62)0.)(0, 2)ws + 201 62)w(2,0)w5 +0O(4)

Note we have listed only four of the equations, due to (1.6). Therefore, we need only focus on
determining the coefficients of H(-,k) for k € K := {(£1,%2), (£2,£1), (£2,0), (0, £2)}.
Carrying out step 2) leads to

. - w; w 1+ 62 1+ 62
wp=VH(wi,...,ws;k) - [ﬂ/ <5_21’ 6—22,w3,w4, TW5, T OJg) + 6(2)} . (2.3)

Equating (2.2) and (2.3) leads to, for example, the following for the b;s coefficient of
H(wi, ..., ws; (2,1)):

v v 2 _ v 2 LB = —55
76—2b|5*ﬁ(1+6 )bIS—fﬁ(4+6 )blSi 1+52 = b15_721/(1+(52).

Continuing in this manner, we find

5

o(2,1) = Tk +©(3)
w(2,-1) = %iéz)wm +0O(3)
©(1,2) = mwm +6(3)
o(1,-2) = —m@uﬁ +003). 2.4)

Conveniently, most of the coefficients are zero. In order for the above equations to be the
unique expansion for the H’s that satisfy the invariance condition, we need to restrict the val-
ues of 4 to be sufficiently close to 1. To see why this is the case, consider, for example, the a,
coefficient of k = (2, 1). Its defining equation is given by
1+ 67 4+ ¢*
—21/( 5 )a] = —1/( 5 )al.
If § = /2, then a; = 0 is not the unique solution. To prevent such ambiguities and obtain
a unique expansion for w(2, 1), (2, —1), ©(1,2), and &(1, —2), it turns out that we should

restrict the value of ¢ to (\/- V2).
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Computing the expansions for w(£2,0) and &(0, +2) turns out to be somewhat different.
When 0 # 1, one can check that, if \/g <6< %, the coefficients are all unique and equal

to 0. However, when § = 1, a unique set of coefficients cannot be determined. In this case, for
any constants «; and ;, the following functions will satisfy the invariance condition

@(2,0) = Gy (ws,wr) = arws* + || + as(ws)? + as(@s)* + as(wr) + ag(@r)?

+ aywswy + agwswy + uswr + ajpwswr + @(3)
@(0,2) = Gop) (ws,w7) 1= Bilws|* + Bolwr|* + B3(ws)* + Ba(@s)* + Bs(wr)* + Bo(@r)?

+ Brwswr + Bywswr + Powswr + PBrowsws + O(3). (2.5)
Note that we have relabeled these functions using the letter G, rather than H as above, to
emphasize that this is a special case only when 6 = 1. Moreover, we have used (1.6) to write
these as functions of ws 7 only, for notational convenience and to highlight the fact that they
depend only on the high modes. Similar equations for &(—2,0) and w(0, —2) can be found,

based on (2.5), using (1.6). We will comment more on this issue of nonuniqueness in the § = 1
case in remark 2.2, below. Thus, we arrive at the following eight-dimensional ODE model, for

57&1and\/g<5<\/§
v 1

36°

b= =gt gy lser — @+ e e (sl + lnl?)
w3 = —vwz + o [iws — wiwr] + 307 ws(Jws[* + |wr]?)
(1+42) 2v(1+46%)(1+62)>
1+ 42 5% -1 53 +42) ) 1+ 362 )
ws = —v—g—ws = 5w — ey o o - wea v ana Tyl
1+ 62 ?2-1 553 +6%) ) 1+ 362 )
Wy = mr—a—wr + 5 wiws — 21’(44’52—)(1*‘52)0)7“01‘ T 201 1 4001 +52)w7\w3|
(2.6)
and for 6 = 1 we find the following eight-dimensional ODE model
W) = —vwy + %(w3w7 — W3ws) + %wlﬂwﬂz + Jwr]?)
w3 = —vws + l(513(415 —wiw7) + i(,«13(|w5\2 + Jwr]?)
2 40v
ws = —2vws — S%WS(WI * + |ws]?) + %(@G(z,o) —w1Go2))
iy =~ — Siquw1 2+ st + %(WG(M) ~ &5G)). 07

Remark 2.2. We suspect that the nonuniqueness of the expansions in the § = 1 case is
related to the fact that the above calculation is only local and valid in a small neighborhood
of O(v). In order to obtain continuity of our ODE model for § ~ 1, it makes sense to chose
Gop) = Gpoy = 0 in the § = 1 case. This makes (2.6) equal to (2.7) in the limit 6 — 1.
Therefore, we make this choice in the following sections, and consider only equation (2.6) for

all§ € (1/2, ﬁ )

We conclude this section with a quick observation that reflects a symmetry in (1.4) and that
can be used to simplify some of the proofs in the following sections. Its proof is omitted as it
is relatively straighforward.
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A(top), B(Bottom) for v=0.0001

L L L T
0.0001 0.0002 0.0003 0.0004 0.0005

Figure 1. Rapid decay of higher Fourier modes.

5

2
Evolution of 141> for 5= 1
2
4 |w3z |

Figure 2. Initial conditions that evolve to a dipole state.

Lemma 2.3. For any 6, the set {Im(w;) = Im(w3) = Im(ws) = Im(w7) = 0} is invariant
for (2.6).

3. Symmetric torus

We now focus on (2.6) with 6 = 1, which corresponds to the symmetric torus. The goal will
be to prove two results: lemma 3.1, which states that the high modes decay much more rapidly
than the low modes, and theorem 3.4, which states that most initial conditions will evolve
toward a dipole, rather than a bar state. We begin by rewriting system (2.6) with 6 = 1:

1 3
Wy = —vwy + E[w3w7 — 3ws| + mw1(|w5|2 + |wr?)
: e or] + s (wsf? + funf?)

= —y — — _
w3 w3 ) WiWs wiwy 40Vw3 Ws w7
1

ws = —2vws — 5—Vw5(|w1|2 + |ws)?)
. 1
w7 = 2wy — 5—Vw7(|w1|2 + |ws?). 3.1

216



Nonlinearity 32 (2019) 209 M Beck et al

It will be helpful to study the evolution of the quantities A := |w;|* + |ws|? and
B := |ws|? + |w7|?, in order to separate the evolution of the low modes from that of the high

modes, and the quantity R(f) = }: 8}2 to study whether it is a bar state or dipole that can be

expected to be observed for large time. Recall that R(f) — 0 corresponds to evolution towards
a y-bar state, R(t) — oo corresponds to evolution to an x-bar state, and R(f) — Roo € (0, 00)
corresponds to convergence to a dipole, as t — oc.

Simulations of (3.1) shown in figure 1 below suggest that there is a separation in time
scales between the evolution of A and B, consistent with previous numerical studies of the full
Navier—Stokes equation [16]. Moreover, A exhibits an initial period of growth, before it begins
to decay. Furthermore, in figure 2 we see that a variety of initial values for R lead to solutions
that converge to a dipole. These behaviors will be made more precise below, in lemma 3.1 and
theorem 3.4.

Lemma 3.1. Define A(t) :=|wi(t)]* + |ws(0)|* and B(t) := |ws(t)* + |wr(t)>. Let
to = 1/v, 6 = 1, and denote the initial data by A(0) = A and B(0) = By. We have

A(t) + B(t) < (Ao + Bo)e™®"  forall  t>0.
24
Moreover, formall 0< <1y A(t) > Age™? and B(1) < Boefﬁr. Finally, for all t > ty,
B() < Boe™ 322,
Proof. Using (3.1) we find that the dynamics of A and B are governed by

: 3
A= —20A+ ——AB
YAt So00

. 2

The first claim follows from the fact that, since A and B are both nonnegative,

d 1

—(A+B)=—-2v(A+B) —2vB— —AB < —2v(A+B).

dr v
Also, since A and B are nonnegative, A > —2vA, and so A(t) > Age "', As a result, for all
0 <t < 1y, A(f) > Age™2. With this estimate, we then see that for all 0 < 1 < 1,

24 2A
—0)B< 9B,

be—(a )
< Z/—’_51/(32 Sve?

from which the claim about B during this time period follows by Gronwall’s Inequality. Fi-
nally, note that B < 0 so B is monotonically decreasing (in fact strictly decreasing as long as
B > 0), which proves the final claim. A
Remark 3.2. Regarding the timescales predicted by the above lemma, recall that the center
manifold reduction is expected to be valid only in an O(v) neighborhood of w = 0. If we
correspondingly scale A = 1A and B = 2B, then (3.2) becomes

x ~ 3y~ ~
A= —20A+ XAB
At

B ~ 20U ~ ~
B—= —4uB — ?VAB.
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Logarithmic Decay of A{t) for #=0.01

-1.95 T T

—— L =log(A(1))

—— L= max{A(t)) - 2ut| |

205 | et
L—2.15] g
e = =

22
-2.25 r

237

-2.35

Figure 3. A(f) = |w;|? + |ws3|? decays at the background decay rate.

Note, however, that despite this rescaling with v, and due to the difference in sign of the non-
linear terms, there will (for most initial data) be an transient period when A grows, while B de-
cays, before both A and B decay to zero. We thank an anonymous referee for pointing this out.

This proposition shows that, when v is small, for a long O(1/v) transient period, B(f) is
decaying at the rapid rate O(e~'/*), while A(z) is not changing much. After this transient
period, B has become exponentially small and both A and B decay to zero at the background
rate, O(e~2""). Figures 3 and 4 below show the evolution of A(f) and B(t) on a logarithmic
scale. These plots elucidate the results of lemma 3.1. We see that following the initial period
of growth, the curve L = log(A(r)) decreases at arate very close to L = —2vt, suggesting that
the low modes indeed decay no faster than the global background decay rate. The particular
line, L = max(A(z)) — 2vt, that was graphed was an asthetic choice to clearly show the two
curves become parallel. The trend can be observed to continue for longer times. Figure 4
illustrates that for 0 < t < 1 =100, L = log(B(r)) initially decreases faster than the line
L= —Szl%t, followed by less rapid decay. The point of intersection at t = 120 was a choice
made to most clearly show the change in decay rate of the higher modes once ¢ > % An analo-
gous result will be shown for § # 1 in section 4 in lemma 4.1 and proposition 4.2.

Remark 3.3. Interestingly, one can check that if the general forms of G, ) and G(g ) given

by (2.5) were used in (3.1), A and B as defined in the statement of lemma 3.1 would still sat-
isfy (3.2). Therefore, the dynamics of A and B are exactly the same regardless of the choice of
coefficients for G2y and G ).

Next, to precisely describe the behavior exhibited in figure 2, we define the following vari-
ables (see also remark 3.5):

2 R JR—
w4 2 2 _ 2 _ 2 p_ wiwsws _ WIWSUJS.
PR w1 + fws]% w=lws|®,  z=|w]% PER PAE

(3.3)

Equation (3.1) then implies that
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Logarithmic Decay of B(t) for »=0.01

0=
= — L =log(R(1t)
\ Ty — — L=log(B,
ok - L=R{120 120)
-100
L
-150
-200 F \\
\\\
k\""‘\-\.
250 s
~——
300 . . L . . . . . .
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Figure 4. B(t) = |ws|? + |w7|* has an initial period of rapid decay.

R=(1+R)(Pr — Qr)
3

A= —2vA+ WA(W +z)
W= —4vw — iwA

Sv

2
z=—4vz— —zA
(@
Y
2 (

)

) (34)

1 P
P:—2yP+2(1—R)—5—PA+P( ~ Qi)+ 3

=[O

|~

. w
Q:_ZVQ+5(R_1)_5_VQA+Q(Pre_Qre)+

where P, = Re(P), Py, = Im(P), Q,. = Re(Q), and Q;, = Im(Q).

Theorem 3.4. There exists a family of local stable manifolds, M, =
{R=f(A,W,2, Pre, Pims Qres Qims 1) } for r = 0, corresponding to each of the fixed points of
the system (3.4). Any initial condition on M, will converge at an exponential rate to the fixed
point {R =r,A=0,w=0,z=0,P=0,0 =0} ast — oo. This family, up to and including
quadradic terms, is given by

-1 -1 r+1 r+1 r2—1 21 r+1 r+1

= <2 ——2— ——Pp ., Xre T T 71 —A APref Are
f=rt et Ter T +21/Q 16007 1604”403 70749
rr—1
+ Seg r(7r +2r 4 1wz 96 565, (4r2 ot 1)wPpe + - 56 3(3r+1)wQ,€ 768 4(3r+2)
r+1 r— r2 (r+1)?
- 56 3(3r+1)zP,F+ 96 5 (4r2 r+1)z0, + T 4(3r+2) o ,eQm— g2, FinQin:

Proof. The existence of this family of stable manifolds is given by theorem 4.1 in [4]. Be-
fore applying this theorem, it must be verified that the nonlinearity of (3.4), as well as its par-
tial derivatives, vanish at each fixed point. To see that no singularities exist, note that the do-
main of (3.4) is determined by the way the variables are defined in (3.3). It is given by the set
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2
w
{(R %,A = |wi|? + w3t w = |ws|? z = |wr]?
|ews]
p=25 0 wlwz";S) ER x C?: |ws) > 0}.
|ws| s
The vector field in (3.4) has no singular points in this domain since,
PO _ |wi[Jws|?|ws]|wr] Jws|* _
| = 1 7 = |W5||LU7|.
R |ws] |wr]

Therefore, at any fixed point of the form 7 = (r,0,0,0,0,0,0,0), it can be checked that the
nonlinearity and all of its partial derivatives vanish. Thus we obtain the existence of a local
invariant (stable) manifold M,, associated to the flow toward the fixed point at 7. The rest of
the proof is a long, but standard, computation of the family M, and will be left to the appen-
dix. A

The implication theorem 3.4 has on the originial system (3.1) for w;, ws, ws, and wy is
that for a typical initial condition, system (3.1) will not evolve to an x-bar (r = oo) or y-bar
(r = 0) state. For most r € (0,00), the asymptotic state will look like a dipole. We note,
however, that for ¥ < 1 or r > 1 the asymptotic state may appear to be more like a bar state
than a dipole, even though it is not a pure bar state. This is again consistent with the numer-
ical results of [3, 16].

Remark 3.5. Theorem 3.4 establishes the existence of locally invariant manifolds only for

initial conditions to (3.1) with |ws| # 0. The same result can be proven for initial conditions
to (3.1) with |w; | # 0 by taking instead as the change of variables R = Jl%li’ P= “Jl‘ff“;”, and
Q= % with A, w, and z unchanged. The set {w; = w3 = 0} is invariant for (3.1), so this
case is not relevant for the study of the selection of the bars versus dipoles.

Remark 3.6. The invariant manifolds M, in theorem 3.4 are defined locally near each
fixed point 7. However, lemma 3.1 implies that, for any initial condition, the solution will
eventually enter a neighborhood of this one-dimensional manifold of fixed points, and hence
its dynamics will eventually be governed by the theorem.

Remark 3.7. If we instead use the more general form of @(2,0) and &(0,2) on the center
manifold given by (2.5), one can check that, although the explicit form of M, would change,
qualitatively the same structure will prevail. There remains a line of fixed points as the one-
dimensional center manifold and a family of stable manifolds consisting of the initial condi-
tions that evolve towards each of these fixed points.

4. Asymmetric torus

In this section we study (2.6) with d # 1. In particular, we show in proposition 4.2 that again
the high modes decay much more rapidly than the low modes, and we show in theorem 4.4
that R(f) — 0 as t — oo for § < 1, thus indicating convergence to a y-bar state. A simi-
lar convergence result to an x-bar state exists when 6 > 1. We begin by rewriting (2.6) for
convenience:
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. v 1 _ 34° 2 2

wp = *ﬁwl =+ m[wgm - W3W5} + mmﬂwﬂ -+ |LU7‘ )

, » ~ 362 ) )

wy = —vw3 + m[wlws — wiw7] + (a0 +62)2w3(|oJ5| + |w7]?)

w :;Vﬂw*(ﬁ_ﬁ]ww*éﬁ(3—mw|w |2¥ ]+362 w‘w|2

> 2 0T T8 T T w@r )+ N T w1+ a1+ 07
1+ 42 -1 53+ 02) ) 1+ 362 )

= vt s s o e e a el

.1

For the remainder of this section, we will assume that § is fixed with § € (\/E, \/g),

0 # 1. It will occasionally be useful to fix a sufficiently small value of 7 > 0 and require that
|62 — 1| < 7. For such a fixed 6 and 7, some of our results will hold for all v > 0 sufficiently
small.

First, we obtain a global decay rate via the energy

1
E() == 5 (jw1 (O + lws (O + lws (O + |wr (1)).
Lemma4.1. Forallt >0, E(t) < E(0)e= 5", with K| = min(1, 1/4?).

Proof. Using (4.1) we see that

E(f) = Lo , 148 2 2 38 2 2 2
() =—v §|W1| + |ws]” + 52 (Jws|™ + |wr]7) —m|wl| (Jws|” + wr]7)

1
- m\wlz(lwsﬁ + Jwr?)

< —2vmin(1,1/6%)E,

which proves the result. O

To obtain a faster decay rate for the higher modes, we again define A = |w;|? + |ws|? and
B = |ws|* + |wy|?, and denote the real and imaginary parts of w; as w® and w!™ respectively
fori=1,3,5,7. We find using (4.1) that

. v 342 5 1
A= 2"|wl*=2 2 2 2l g
52 | v|ws|” + v(1+ 02)2 {44_ 52 Jeor | + 1+ 452 Jews |
8 -1 . . . o . N
2 W (WF — w5)  wfws (w7 — ws") — Wi es" (8" +wf) - wiws” (WS 4 wy)]

1+ 362

. 1+ 62 1 553 +4?) ) )
B=-2 i B
s v {(4+ it T Er T a o @
62 —1 re, re re re im, re im im re, .im im im im, im r r
+2 5 [wiws’ (W — wi’) + w"wi (Ws" — w7") + wi'ws" (Ws" + wy") — wi"ws" (w5 + w7)].

Proposition 4.2. Let Ay = A(0), By = B(0), and K| = min(1, 1/62). For any fixed & and 7
with 0 < |62 — 1| < n, there exists a v* > O such that for all 0 < v < v* there exists a time
t. = O(v|log(vn)|) and positive constants My, My and K», independent of v, such that

M
B(1) < Boe*fl’ for0 <t < ¢
S\ MiPrre K fort, <t
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Moreover, for all 0<t<min(1/v,1/n), A(f) =A™ and for all t>0,
A(t) + B(t) < (Ag + Bp)e~2Kuit,

Proof. By lemma 4.1, we have A(f) + B(t) < (Ag + By)e 251", Next, notice that

|w5 —w7| < ‘(,U5| + |CU7| < V2B < \/2(A+B) < \/2(A0—|—Bo)eiyklt.

Using the fact that |wiws| < (Jwi]? + |ws]?)/2 = A/2, we have
Az -2 Ll)a-1y > -2 Li)a-avalaia 1B
Zmamax (L AT 5 |ws — ws| > —2vmax 2 AT 5 (Ao + Bo)-

Thus, for all r > 0,
1
A(t) = Agexp {f <2vmax (1, ﬁ) + 4\/5%\//40 + Bo> ;] .

If we now let #; = min(1/v, 1/n), then A(r) > Ape %2 for all 0 < ¢ < 1, where

K; = (2max (1,%) +6\/§\/m> > (21/max (1%) +4\/§5%\/M) 1.

Here we used the assumption that § > \/g . To obtain the estimates for B, notice that the

above equation for B implies

B< —2%(1 LB+ 4\/5%1\/5 - %DOAB
where
U (14 362) 553 +62)
0~ 2(1+062)(1+40%) (1+062)(4+02) )"

Since § € (\/Z , \/g), Dy is bounded away from 0. Suppose first that

1281712
B(t) > B* :== ———.
52D7

(If the initial condition By < B,, then it is already asymptotically small and we will consider
this case afterwards.) Then we find that

. v 1 1
B< —2=(1+6*)B— —DyAB < ——DyAoe ®B. )
o (1469 5, Do 7 bAoe (4.2)

Thus, setting My = (DyAg)/(2eX?) we find that B(f) < Boe~ 5, at least until B(r) = B*. The
latter occurs at a time no larger than ¢, where ¢, is defined via
M v, ( 1280202

_ My,
Boe™ 7' =B, = t=——1log| —5=
0 M, By02D3

) = O(v|log(vn)|) as v — 0.
Finally, consider times for which B(f) < B,. By lemma 4.1, B(f) < Boe 2Kt for all time.

Hence, if we restart the system at time ¢ = t,, when B = (’)(1721/2), then B(r) decays at the
background rate for ¢ > t,, i.e. B(t) < Myn?v2e=2"K1"_ This completes the proof. O
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Remark 4.3. We comment on the relationship between proposition 4.2 and lemma 3.1.
Lemma 3.1 is a result in the case § = 1. In proposition 4.2, one must begin by fixing ¢ and 7
so that 0 < |62 — 1] < 5. Although one can take § arbitrarily close to 1, but fixed, and hence
7 arbitrarily close to zero, but fixed, one cannot take the limits § — 1 and 7 — 0 and obtain
something meaningful from proposition 4.2. Moreover, although 7z, — 0 as ¥ — 0, one must
also be careful with this limit, because the bound on |B(t)| also goes to zero in this limit: if we
were to choose ¢ = 7,/2 in this bound, we would have

|B(1./2)] < Boefo(llog(vn)l),

which goes to zero as v — 0. Thus, one really must keep J,7, and v fixed when considering
proposition 4.2.

We further note that the results of proposition 4.2 do not contradict lemma 3.1. Both lemma
3.1 and proposition 4.2 say that for an initial period of time, B(7) is bounded above by a term
of the order O(e‘%[), albeit with slightly different constants A > 0 in each one of the two
cases. After that initial period of time, both results say that B(f) remains small, arzlAd to be pre-
cise in lemma 3.1 we showed that for # large enough B(t) is bounded above by e~ 522, whereas
in proposition 4.2 we can prove an upper bound of the order 7?12 ~2*X1"_In the case § # 1,
we can only guarantee the upper bounds that appear in proposition 4.2, which however are
sufficient for our purposes, as theorem 4.4 below demonstrates.

o[>

Now consider again the variable, R = P Suppose § < landsety = 21/(— —1) < Cuvn.

We wish to show that R(¢) ~ O(e™"")for all t > 0, as long as R(0) = :Ry is not too big. Using
(4.1), we find

2 4
R=—vR+ 30 (5 I )RB

v(1462)2\446 1+462
2 1 : L
+ m |w3‘2 [wlrewge(w;e _ wg ) wlrewém( Im + wre) + wlrnw%e(w%m _ w;m) + wimwém(w;e + w;e)]
263 1 re, re( re re re, im (. im re im, re( im im im, im( re re
+_1+62R\w;| [Wwf (WF — W) — Wi wh" (W8 + wp) + Wi (W7 — wf") 4 wi"wd" (W5 + wF)] -

Theorem 4.4. Foranyfixed § < 1, sufficiently close to 1, and fixed n) sufficiently small, with
|62 — 1| < n, there exist R*,v* > 0 such that, for all0 < v < v* and Ry < R*, R(t) < Mpe™"
for some My > 0 and all t > 0. R, is O(min(n~', v=1)) while M, is independent of v and 1.

Proof. For ease of notation, define

5 = 34? o1 38 & +202 41
TS0+ 22 \4+ 82 1+482) (1422 \(@d+)(1+482))°
263 2
=1 ﬂ3‘5(1+52)'
With this notation,
A\/_+2\/_ﬂ2| NE RAVB
= YR+ ;BlRB +2V2B35(1 + R)VB +2V25,(1 + R)RVB

— R+ (3513 +2V2(Bs + 55)VB) R+2v25,R*VEB +2v25:VB.

R< — R+ 51RB+2x/_53| "
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Therefore, we have the bound
R(r) < e "Ry

+ / -9 Kg,é’]B(s) +2V2(Bs + Bs) B(s)) R(s) + 2V23R(s)v/B(s) + NE@M/B(S)] ds.

0

Define

[[IR][| := sup e"R(z),
0<I<T

where T is defined to the largest time such that e?’R(z) < R., and R, will be determined below.
If |||R]|| is finite, then R(r) decays like e~ . Multiplying the integral inequality above by the
exponential weight €7, we find that

[[IRIl] < Ro
+ s / e” [(g,ﬁ'lB(s) +2V2(B + 63)\/B(s)) R(s) + 2v23:R?(s)/B(s) + 2\/5/33\/3@)} ds
<< 0
< Ro+ sup (I+1I+ 1)
0<1<T
where

PRI sup [ (2605 + 2V3(6: + ) VB ) s

0<I<T
t
1= |IRIF s [ 2206 /BG)ds
0<r<T Jo
t
1l = sup / 2v283e7\/B(s)ds.
0<i<T Jo

We now estimate the three terms above using proposition 4.2, by splitting the time interval
into two pieces: 0 < ¢ < #, and t, < t. So proposition 4.2 gives for term I,

1y " .
PRI [ (268 +22(5 + 63V Boe ) as
0

t
IRl / <M1773Ve_2VKls +VMI2V2( + /53)17116_”1(”) ds
s

77@30( ) 4V\/§(52+,33)\/Bo( )
g I— — v 1— - L
IR | B0 (1 — o) 4 A2 o
My VM2V2
+IIR|Il 2}{” (672VK1t* 76721/1(];) I n 1 \/I;(ﬂz+53) (e’”K"* e”K”)}
1 1

< i+ +v)|lIRI]],

for some constant C; that is independent of v and 7. Similarly, for term II we have

1y 1
1 <2v25||IR||]? { / VBoe™ (B Hds + / mnye%vw)sds]
0 fe

_2vVBy (1-e ) 4 VM (e trmrtne — e—(umv)z)]
My + 2vy vKy + 7y

< GlIR|IP(v + ),

< 2V3B|RIIP [
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for some constant C; that is independent of v and 7). Finally, for term III we have
s t
11 < 2\/§ﬁ3 |:/ A /Boe_(’zﬂyls—’}’)sds +/ \/Imnye—(ulﬂ—ﬂ’)sds]
Iy
2\/_53 I:ﬂ ( 67(%77)’*) ’r]l/ (ef(VKlf’Y)t* — ei(VKlf'Y)t):|

2uy vK) — 27
X C3(V + Tl),

for some constant C; that is independent of  and 7. Combining the above estimates, we find
that

IIRI]] < Ro + max(n, v)C5 + max(n, v)Ci |||R[[| + max(n, v) |||

We can rewrite this as

IR (1 = max(n, »)Cy — max(n, v) C|[[R][]) < Ro + max(n, v)Cs.

Now, choose R, = 1/(2max(n, v)C,). We then find

Ry + max(n, v)Co

R||| <
R[] 1 — max(n, v)Cy — max(n, v)C|||R||| ~

< 4(Ry + max(n, v)Cy),

as long as v* and 7 are such that max(n, v*) < 4é Using the above definition of R*, the above
right hand side will be less than R* if Ry < R*/8 and max(n, v*) < 1/4/16CyC;. In this case,

sup 7'|R(1)] = [|IR]]] < R-.

SIS

Because the bound on the right hand side is independent of 7, the bound must hold for all time.
Hence, there must exist an M, > 0 such that R(¢) < Mye™ " forallz > 0. O

We emphasize again the importance of the transient period of rapid decay present in the
dynamics of the higher Fourier modes established in proposition 4.2. Without their rapid
decay to a small enough order during this initial time period, the estimates in the proof of
theorem 4.4, particularly for term I, would not have gone through. Moreover, we see that given
a small, fixed distance of 6 from 1, a sufficiently small value for the viscosity can be selected
to separate the decay rates into the two regimes established in proposition 4.2 and used in the
proof of theorem 4.4, thus driving the system toward a bar state.

Let us now define U(f) = R()~'. We see that U(¢) must satisfy

. 2 4 1
U=~U- 30 (5 - )UB

v(I+0)2 \ 4+ 1+402
2 1 re, re( re re re, im (. im re im, re( im im im, im( re re
- mUlwlP [Wwf (W5 — W) — Wi W (8" + W) + wi"wi (7" — i) + "W (WE + oF)]
253 1 re re( .re re re  im( im re im, e, im im im, . im(, re re
_mw[wlw3(w7—w5)—wlw (Wi + wi) + wi"wi (Wi — wi") + Wi (W + wh)]

The dynamics of U for § > 1 are analogous to the dynamics of R when § < 1. With similar
estimates to those in the proof of theorem 4.4, one can show that U(¢) — 0 as t — oo, which
indicates convergence to an x-bar state.
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5. Perturbation analysis

The purpose of this section is to provide further evidence of a selection mechanism through
an alternate method. The system’s domain will be viewed as a perturbation of the symmet-
ric torus. Using the approximations computed in this section, we will confirm the results of
sections 3 and 4. To ultimately view (2.6) as a perturbed system, we define the perturbation
parameter € via § = 1 + e, with ¢g = +1. Note that the sign of €y determines whether § is
greater or less than one. We begin by scaling v as an appropriate power of €, which effectively
relates v and . Subsequently, asymptotic expansions in e are computed that are connected
with the observed multiple time scales in the evolution of the vorticity. The properties of these
expansions agree with the results of sections 3 and 4. Moreover, we are again able to observe
the evolution to the appropriate bar state depending on if ¢y = £1. These expansions also have
the property, at least among the O(1) and O(e) terms, that the emergence of a bar state will
become faster as |6 — 1| = € increases. This could be related to the observation in [3] that the
bar states do not dominate the stochastic evolution (based on the stochastic forcing used there)
unless |6 — 1] is sufficiently large.

Motivated by geometric singular perturbation theory, we first scale (2.6) in a way that
reveals a slow and a fast subsystem. We must choose appropriate values for the scaling param-
eters that accomplish two main objectives. First, to reveal a slow-fast system, we aim for the
leading order terms in the scaled versions of w; and ws to be some order of magnitude in €
higher than those in the scaled versions of ws and wy. Second, to ensure that the decay rates in
the newly scaled system match those seen in the previous sections, we would like the leading
order terms, once scaled, to match the terms in (5.1) below.

14

w; = 52 w; + h.o.t.
w3 = —vws + h.o.t.
1 MG+, , 1 + 362 )
g = — e h.o.t.. GRY)
Y= o 00T ( aro It mr el ) +ho

If these correspond to the leading order terms in the scaled system, then the decay rates seen in the
asymptotic expansions that are to be computed will match those observed in previous sections.

First scale the viscoscity and time by v = €“yy and 7 = €%¢. Then scale the Fourier modes
by wi = €#Qy, w3 = €#Q3, ws = €?Qs, and wy = €?€Q;. The acceptable range of values for the
three scaling parameters v, 3, and ¢ that are relevant to this discussion will now be identified.
The clearest way to do so will be to define p and o as

c=0—«
p=0¢—«

With these initial scalings, the system (5.2) below is obtained. Note here that the coefficient
%,fordz 1 + €pe is O(e) as € — 0.
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d 1 - 36°
do , 1 B 2 2 2
dTQl 5291 +e 6(1—0—52)[9397 Q5] + € 2V0(4+52)(1+52)291(|QS| + %)
= s+ (0102 — 0] 4 3 (105 + 95P)
b=l e (507 s — i € 2o(1 1 405)(1 4 02)2 215 7
d 1+6% _ 2 -1
EQSZ_VO 5 Qs — e17PH29 Q0
3G + & 1 4302
— 0 ( 2 ) 719 ? 2 2 2 19s1°
2up(4 + 0%)(1 + 62) 200%(1 + 46%)(1 + 62)
d 1462 PRV L
597:71/0 5 Q; + ellr+2 )79193

(3 +6?)

,620 | ‘2 1+362
2@+ )1+

2 2 2 |Q3|2 :
2vp0%(1 4+ 462)(1 + 6?)

(5.2)
Looking closely at the powers of € appearing in (5.2), one notices that if the following restric-
tions on o and p hold, then the leading order terms are of the desired form given by (5.1):

1
<o <0, ora—§<ﬂ<a

<p<l, ora<op<a+l.

Remark 5.1. As mentioned in the opening paragraph of this section, we aim to compute
asymptotic expansions in € for €, Q3, Qs, and 7. If 3 and ¢ satisfy the above inequalities,
then the expansions computed have the expected properties for any value of a. No restrictions
on « frees us from being constrained to particular relative values of the viscocity and aspect
ratio of the domain. Namely, after connecting the viscocity and aspect ratio through v = €“vy,
the value of a determines which of v or ¢ is larger. Therefore the following results will hold
for small values of v and e regardless of which is bigger relative to one another.

Proceeding with the computation of the asymptotic expansions, for simplicity, set ¢ = «
andf=a— 5 L for any value of a > 1,/2. With this choice of parameter values, the final scaled
system that we work with from this point on can be obtained by substituting § = 1 + €pe into
(5.2) and using the Taylor series expansions of the ¢ dependent coefficients. The resulting
system is given below by (5.3).

44 = el—¢jr + ¢ (2 — %0 )+iQ (195 + [927]%)]
dTl. V03 T €333 L7 3345 Vols 7
20
. _ _ a
O3 = Z 61[—V()Q3 + C;}(QIQS — 9197) + V—]OQ3(|Q5‘2 + |Q7‘2)]

j20

4

dr

d o1

595 = Z 61[—6 IV—OQ5(C]6|QI|2 + C]|Q3‘2) — stl/()Q5 - C?+](ng3)]
d

dr

Jj=20
. 1 _
;= Z 61[—6 IV—OQ7(C]-6|QI |2 + C]|Q3‘2) — (,‘181/097 — CJ?+1(91Q3)], (5.3)
Jj=20
where
chef':i 3 el = ZCEJ 3— Z
>0 / 6%’ >0 / +52 2(4 + 62%)( +52 € 1+(52’
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B 302 o PB+) L 1+ 302
2 g = (1+400)(1+ 02)2 - 2= 2@+ ) (1+02) Z” 2021+ 40%)(1 + 0
j=0 Jj=0
and

Zs,_1+5 29 _.

j=0 j=0

With these scalings, it is evident that 2 and 23 are the slow variables, evolving with respect to
T, to leading order, at an O(1) rate as € — 0, while €25 and 27 evolve on the faster time scale
O(e7!) as € — 0. This matches the time scale separation we saw present in the previous sec-
tions, which can be seen below by reversing the scalings in the leading order terms.

— — — —a o —
€ Bwl,fé — QI,S ~e VT — e (e w) (™) e V!

by = g7 e & IMOPHRONT _ o 35y OF Han O — g b1 OF Hr P

€
We now proceed using methods from geometric singular perturbation theory. Setting e = 0
in (5.3) leads to the following leading order slow dynamics

%Ql —of + = (9397 Q;Qs)—l—&ﬁl(msf—k\mﬁ)
0 = i+ (00— ) + 2o (9P + )
0= 5 0s(1h + [0
0= - + [P

and so the leading order slow manifold is My = {Q2s = Q; = 0}. Observe that in the per-
turbed system (5.3), this manifold of fixed points for the € = 0 reduced slow system is no
longer invariant. This can be seen in the differential equations for {25 and ;. However, since
M, is a normally hyperbolic manifold and the vector field in (5.3) satisfies the smoothness
conditions of Fenichel’s theorems, a perturbed invariant manifold, M., exists for sufficiently
small € > 0 and is O(e) close to M. See theorem 9.1 in [6]. Any trajectory in phase space will
approach this manifold exponentially fast and then track the slow dynamics on M..

Defining the fast variable s = 7 /€ and setting € = 0 in (5.3), we find the leading order fast
dynamics to be given by

d

Lo =0

ds1

d

Lo=0

ds 3

das =~ Lasgap+ o)
L5 510 s(1$2 3
d

1
Q7 = —— (|17 + |95]3).
oY 500 7(1 7 + [92:]7)

Assuming expansions of €;(s) for i =1,3,5,7 to be of the form ;(s) = Q(s)+
€1 (s) + O(€?) away from the slow manifold, we find
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Q1o = Q40(0)
Q30 = Q30(0)

_1200@P+103OF ¢
R

QS() = Qso (O)C
_19210@ P +103 01 ¢
Q70 = Q70(0)C Svo ’

Here we see that away from the slow manifold, to leading order, the higher order modes are

1210012 +123 @12
_ . s

decaying at arate O | e 0 ), while the lowest modes are constant. This is con-

sistent with the initial rapid decay rates among the higher modes seen in the previous sections,
as seen in the calculation below:

121002 +19230(0) 2 8w P+Hwi 012 a1
- S s —a (e 1)
5 =e 5(e— %) —e

_ _ wio@ P Hewyn 2
e Pwsoq0 = Dso70 ~ € s 3

The dynamics on the slow manifold will determine whether solutions evolve towards a bar
state or a dipole. To analyze this, we consider again system (5.3) and compute formal asymp-

totic expansions of the solutions in terms of the slow variable 7. We begin by writing

Qui(1,€) = Qo(7) + €1 (7) + €Qua(7) + O(€Y)
Q3(T, 6) = Q30(7‘) + €Q3] (7') + 62932(7) + 0(63)
Qs(7,€) = Qso(7) + €Qs1(7) + €Qs2 (1) + O(€)

(7, €) = Qyo(7) + €71 (1) + EQna(7) + O(€). (5.4)

Next, we compute terms in these expansions up to and including O(e) terms. To do so, first
consider the O(e~!) terms present in (5.3) and match these terms with the derivatives taken in
(5.4). The only terms present are

1
0= ——Qs(|Q0]? + |30
S 50(|Q210]” + [£230[7)

1
0= ——Q0(|Q00) + |Q30]?
50 o(IShol” + [€230]%)
and so we find |Qs0|?> = |Q70]> = 0. Next, matching the O(1) terms, we obtain the following

system governing the dynamics of the O(1) terms of Q; and 3, as well as algebraic equa-
tions that determine the O(¢) terms of 25 and 7:

—Q0 = -1
ar 10 Vpsiio
d
d—Q30=—VoQ3o
-

1
0= —5—951(|Qlo|2 + |930/*) — 26092109230
140

| _
0= 75_1/0Q71(|QIO|2 + [9230[) + 2€0Q1082s0-

Solving these we obtain the following expressions:
Q1o = Qio(0)e™™7, Q30 = Q30(0)e ™"
10V06()Q]0(0)Q30(0) 10V060910(0)Q30 (0)

T TR+ [0 T [20(0) + [0 (0)2 (55
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Yet to be computed are the O(e) terms for the lower modes, €; and 3. The relevant
equations are

d 1 _
5911 = -1 + 5(930971 — Q30Q51) + 210608210

d | _
g S = ol + 5(910951 — Q1o8271). (5.6)

Using (5.5) to solve (5.6) we obtain

10]230(0)[*Q10(0
Q1 = Q1 (0)e™7 + vyegre ™7 [2910(0) + [230(0) o )2]

[€210(0) > + [230(0)|
10/0210(0) 2230(0)
[€210(0)[> + [©230(0) >
Together, equations (5.5) and (5.7) make the approximations to §2; and 23 up to and includ-
ing O(e), which will be denoted by €2; and €3:

Q31 = Q31(0)e™7 — vyegre ™7 (5.7

Qi (1) == Qo(0)e™™" + ¢ (Qll(o)eﬁw + vpeoTe” T {2910(0) +

10]€230(0) *€10(0) D
|€210(0)* + [€230(0)[2
10[210(0)[?|€230(0) )

€10(0)* + [Q230(0)* ) -

Of interest will be the magnitudes of the scaled low modes, which will be defined by X := |2,
and ¥ := |Q3/. In computing these, we obtain

Q';(T) = Q30(0)C_V0T +€ <Q31(0)6_V0T - I/()G()TC_VU‘F

‘ 2

X(T) — XO(O)e—2VOT + € |:X1 (0)6721/07 —+ €0V07672”07' <4X()(0) + %)} + 0(62)

B B 20X0(0)Y,(0) -
Y —Y 2u0T Y. 2v0T 29T 2
(1) = Yo(0)e +e [ 1(0)e Xo(0) + %o(0) €orpTe + O(¢%),
(5.8)
where  we have used the notation X(7) = Xo(7) + eX{(T) + O(e*) and
Y(7) = Yo(7) + €¥1(7) + O(€?). For notational convenience, let Ky, y, = %.

Now take X := X + €X; and Y := Y, + €Y, to be the approximations to |Q;|*> and |€23>.
For each 0 < € < 1, there exists a finite interval of time on which these approximations are
valid. Define 7+ and 7_ as follows

Voleo,yo (M +1 (O))

Il

T+
€

_ 1 Xo(0)
" U (K + 4%0(0)) ( . tX (0)>- (5.9)

Recall that, as approximations to the nonnegative quantities |[2;]> and |Q3]%, X and ¥ must too
be nonnegative. Observe that for ¢g = 1, X(74) = 0 and X(7) < 0 on 7 > 7. For ¢ = —1,
this property is shared by ¥ on 7 > 7_. These properties indicate that the approximations are
certainly not valid for values of 7 beyond 7.

As a direct consequence of these observations, on a finite time interval €y will determine
the bar state toward which the system evolves. This is summarized by proposition 5.2 below
and is consistent with the results in section 4. The key property of the approximations X(7)
and Y(7) in (5.8) is the linear growth exhibited by the O(e) terms. In particular, the opposite
sign on the eovoTe 207 terms allows for the evolution toward the correct bar state. This linear
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growth originates from the resonant forcing terms in the differential equations for €2, and 3,
which can be seen after substituting the expressions for 21y and 23y given in (5.5) into (5.6).

Proposition 5.2. Let 0 < ¢ < 1. Consider the approximations to | |* and |Q3|* up to
O(e) given by (5.8),

X(7,€) := Xo(7) + X (7)

Y(7,¢€) := Yo(7) + €Y1 (7).
There exists positive times T+ and T7_, defined by (5.9), for which, when
e =1, lim,,,, )-;% = 00, indicating evolution to an x-bar state, and, when ¢y = —1,

li X(r) _  indicating evolution to a y-bar state. The critical times T+ and T_ are
My 7 Y(r) —

O(1/e) as e — 0.

Proof. Using the expressions given by (5.8), consider the ratio % as it is a measure of how
close the system is to one bar state or another.

X(T) 7 XO(())e—ZVoT +€[X1 (O)e—Zuo‘r +€OVO(Kx0,yO _|_4X0(0))Te—2uor]
Y(r) Yo(0)e™207 + €[Y1(0)e ™27 — €grpKyyy,Te ™27
_ XO(O) + E[Xl (0) + GOVO(Kxo,yo + 4X0(0))7']
Yy (0) + €[Y1 (0) — EOVOKxo,yoT] ’

Observe that, if €y = 1 the denominator of the ratio in (5.10) decreases monotonically and

(5.10)

vanishes at 7 = Kl (@ +h (0)), and if ¢y = —1 then the numerator decreases mono-
X0-Y0
. . _ 1 Xo(0) _
tonically and vanishes at 7_ = PO (OT +X (0)) Hence for ¢y = 1, )}(xge)have
lim, -, % = oo (indicating an x-bar state) while for ¢y = —1, we have lim, . T:) =0
(indicating a y-bar state). O

This proposition illustrates that as time 7 increases in the finite interval on which the
approximations in (5.8) are valid, the bar state toward which )7( tends is determined solely by
€o. The fact that 7+ = O(1/¢) implies that, for larger e, there will be more rapid convergence
to the bar state. This could be related to the results of [3], which suggest that|d — 1| = € needs
to be sufficiently large before a bar state will dominate the dynamics under appropriate sto-
chastic perturbations.
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Appendix

A.1. Completion of proof of theorem 3.4

We have already showed the existence of a family of local invariant manifolds for (3.4). Here
we compute the form that this family takes. We begin by splitting (3.4) into real and imaginary
parts to get the following 8 dimensional real system of ODEs
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R= (1 +R)(Pre - Qre)

. 3
A= -20VA+—A
V. +201/ (W+Z)

2
w=—4vw — —wA

. 2
7= —4vz — S—VZA

. z 1 1 1 1 1
Pr:_2 Pre =(I =R __PreA Pre_ rePre _Pre rel__ _Pim im1 -
VPt S(1=R) = - Pud + (Pre = 0)Pre + 5PrQr(l = ) + 5PinCin(1 + 3)
. 1 1 1 1 1
Pi:_2 Pim — —PinA Pre = Ore)Pim =Pin rel__ i im1 o
VPin = 5 Pin + (Pre = Qr)Pin + 3 Pin@r(1 = 3) = 5PuQin(1 + 2)
0= 20 + 2R~ 1) ~ QA+ (P — Q)@ + 5P — 1) — 2PyQn( + 1)
r = re 2 5]/ re re re re 2 re re R 2 m m R
. 1 1 1 1 1
Qi = *ZVQim - S_VQimA + (Pre - Qre)Qim + EPimQre(E + 1) + EPreQim(E - l) (Al)

Observe that the above system has a line of equilibrium points 7 = (r,0,0,0,0,0,0,0). The
Jacobian of (A.1) at each of these equilibrium points has 7 negative eigenvalues and 1 zero
eigenvalue. Thus for each point on the line 7, there is an associated 7 local dimensional stable
manifold, W*(7), and 1 dimensional center manifold, W¢(F), which is in fact globally defined
and corresponds to the line 7 itself. Below we will proceed to explicitly compute this fam-
ily of stable manifolds, denoted M, up to and including the quadradic terms. This is a long
and tedious calculation but comes from standard invariant manifold theorems from ODE,
see theorem 4.1 in [4]. Since the linearization of (A.1) has 7 negative eigenvalues and 1 zero
eigenvalue, this theorem guarantees the existence of an 8 dimensional center-stable mani-
fold associated to each fixed point. As we can identify the line of equilibrium points, 7, as
the globally defined center manifold, we indeed know that the following computation will
result in the codemension 1 stable manifold, i.e. the center-stable manifold is the union of M,
and 7. We begin the derivation by first shifting coordinates to move the equilibrium point at
(r,0,0,0,0,0,0,0) to the origin.

R R—r
A A
w w

z b4
Pl | P
P; Pin
0, Qre
0 Oim

The resulting system with fixed point the fixed point at the origin corresponding to 7 is
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R :(1+R+V)(i)r—ér)

3
—2VA + Z_A(W +32)

w:—41/w—§wA
- .2
—*4VZ*5—VZA
. .z 1= - 1. - 1
P;~—_2VPr+§(l_ _r)_EPA'F(P _Qr) + PrQr( k+r) EPQ(1+R+I‘)
B - 1 .- - S~ 1. ~ 1 ~ o~ 1
Pie —2ubi— L BA 4 (P — 0P+ SP0(1 — ——) — LB,0(1 + ——
vPi = 5 P+ (Pr = Q)Pi+ S PiO:( R+r) 5 Q(+R+r)
2z ~ W~ 1 - - ~ S~ 1~ - 1~ - 1
Qr: 72”Qr+E(R+r7 1)7 S_VQrA+(Pr7Qr)Qr+_PrQr(~_7 1)7§PiQi(R_+r+1)
< - 1 -~ ~ - - 1 ~ 1
Qi:_ZVQi_ggiA""(Pr_Qr)Qi 3 Q(T"‘U"‘ PQ:( +r_l)'
(A.2)
The Jacobian of (A.2) at the origin is
0 0 0 0 1+r O —(1+7r) 0
0 —2v 0 0 0 0 0 0
0O 0 —4v 0 0 0 0 0
- 0 0 0 —4v 0 0 0 0
J(): 101 _ _
0O 0 0 2(1 r) 2v 0 0 0
0 0 0 0 0 —2v 0 0
0 0 (-1 0 0 0 —2v 0
0 O 0 0 0 0 0 —2v
Let us define
R
A
w
Z o
X = P | J =1J(0),
P;
Qr
0
k(iir_ér)
231/ (ﬁ}_':z)
,%24
NX) = 5 —5~ZA~ %
()= | 2R — AP, + (P, = Q)P + 1P.0.(1 — ) + 1PQI(1 + )
75VAP1 + (Pr - Qr)Pi + %PIQr(l - I_Qj»r) - %PVQI(I + “Lr)
IR — AQ + (P = Q)0 + 3P0 (5 — 1) = P01 + 75)
—55A0; + (P, = 0)0; + 3P0 (1 + =) + 3P0l — 1)

Then we can write the system as
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X = JX + N(X).

Before computing the stable manifold we must change variables and diagonalize the matrix
J. The matrix of eigenvectors of J and its inverse are given by

R
01 0 0 0 0 0 0
00 —*% 0 0 0 0 0
g_ |00 o 20 0 0 0
100 o 1 1 0 0 o]
00 0 0 0 1 0 0
00 1 0 0 0 1 0
00 0 0 0 0 0 1
rzf }’27 I I
1o 716112] 7161/-1 2t1 0 7;/1 0
0 1 0 0 0 0 0
00 -z 0 0 0 0 0
¢1_|00 0 =0 0 0 0
o0 o -z 1.0 0 o0
00 0 0 0 1 0 0
o0 =t 0 0 0 1 0
00 0 0 0 0 o0 1
So we have
0 0 0 0 0 0 0 0
0 —2v 0 0 0 0 0 0
0 0 -4 0 0 0 0 0
0 0 0 —4v 0 0 0 0
=A=5"1Js.
0 0 0 0 -2v 0 0 0 SO
0 0 0 0 0 -2v 0 0
0 0 0 0 0 0 -2v 0
0 0 0 0 0 0 0 —2v
Defining
Y =5""X,

the dynamics of Y are given by
Y = S57USY 4+ STIN(SY) = AY + STIN(SY).

So now we have

Vi y1 + SElys — Sy — Stlys 4+ oy,
» »2
3 —2ys
BE . 2y
Ys Ya+Ys
Y6 Y6
Y7 y3+y7
\YS 8
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For notational convenience, let A = y; + St y; — Ztly, — ZElys 4+ Zly, Then, we have

N(SY)
Aa+ys —ys —y7)
o=y Y2 (s = 3)
ﬁh%
75(,8_1))’2)4

=2 Ay — #yz(w +35) + (a5 —ys = y1) s +5) + 30 +35) (53 + 37 (1= 525) + pyers(1+ 55)

Lyays + y6(va +¥s — y3 — y7) + 3y6(v3 +y7) (1 - 5) — $vs0v +39) (1 + 557
-2 ys — —)2()’3 +37) 4 Ga+ys =y =y s +31) + 30 +y5) 3 +31) (535 — D — pers(1+ x5)

—2yays +ys(va + 5 —y3 — y7) + 336003 + 1) (1 + 535) + 53804 +35) (555 — 1)

After computing S~!N(SY) we see that the complete system in the Y variables is

. r+1 r+1 r+1 2
- o A+ G — o
1= A0u+ys = ys =y7) + = (3 =y A+ 532 (7 = ys) + = (va + s =y =)

+1 1 r+1 1
- — )+ s
5y 04+ ys) 03 +37) (1= =) + —=yeys(1 4+ 5=

r

+
— 2yt i~ 33)
2 2 5(r—l)y2y4 y3

i 2
V3 = —4vy; — — )3
Sv

2
V4 = —4vys — 5,004
14

1
y2(ya +ys5) + (va +ys — y3 — y7)(ya +¥s)

2
**21’)’5+5 Yays =~ 1/\Y4*5
+1(+)<+><1 ) e+ )
2)’4 Ys5)\¥3 —¥7 P 2y6y8 P

1 1 1 1 1
Yo = —2uy6 — 5ovaye +¥6(a +ys —y3 —37) + 5603 +y) (1= 5m) = 2ys0 +y5) (14 57)
2 v 1
V1= =2wyr o+ ooyays = oA = g2y 1) + (a5 — 3 = y2) (s + 1)
1 1 1 1
50 tys) 05 +37) (55— D — e+ 577)
1 1 1 1 1
V8 = —2vys — 5-yays 50 +ys =3 = y7) + 53605 +y7)(1+ py )+ 5804 +YS)()\ o 1).
(A.3)
Note that in grouping ©(2) terms in the y; equation in (A.3) we have:
.or+1 " r+1 r+1(r+1+1) JrrJrl(l_rJrl_ )
Y= 70275 T Q02721 ~ o\ T T 2 3 T 1 Y3Ys
r+1,1 r+1 rir+1) , r+1,1 r+1 r+11 r+1 1
2 (2 P 1))’3)’7+2 (r—l)y3 2 (2+ ) yays + —— (2 P r)Y4)’7
r(r+1) , -1 (r+1)?
3).
1T o Tt T, Yoys +O(3)

Now we are ready to match coefficients on the stable manifold. We know that the stable
manifold takes the form y; = h(y2, y3, 4, Y5, Y6, Y7, ys) and goes through the origin with para-
bolic tangency. So let:

8 8

h(y2, 3, ¥4 Y5, Y6, Y7, ¥8) = D Y ciyiyj + O(3).
=2 j=i

Its derivative with respect to 7 is:
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h= Zayl

= —4v(casyays + Ca6yaYs + Ca7y2y7 + C28Y2Y8 + Cs6YsVe + Cs7Y5Y7 + C58Y5Y8 + C61Y6Y7

+ ce8y6ys + C78y7Y8 + szy% + Cssyg + Cﬁﬁyé + C77y% + Css)’%) — 6v(c23y2y3 + Coay2Y4

+ €35y3Y5 + C36Y3Y6 + C37Y3Y7 + C38Y3Y8 + CasYaYs + CagYaYe + Ca7yay7 + CagYaYs)
— 8u(caaysya + €3303 + caayi) + O(3).

Matching coefficients of among the quadratic terms in h and ¥1, we obtain the nonzero
coefficients below.

_r+1 _or+1 _r+1(r+1+1) _ r+l(1 r+1 1)
BT TT T4 MA@\ -1 BT T2 o )
B r—|—1(1+r+l) B r(r+1) B r—l—l(l r—l—l)

TR S = 16v2(r —1)° I TR S
r—i—l(l r+1 l) B r(r+1) B r2—1 B (r+1)?
T T 1w 16v2(r—1)° ST Ty BT T gy
The stable manifold for the origin in the Y variables becomes:
r+1 r+1 r+1(r+1 1
h(y2,¥3, ¥4, Y5, Y6, Y7, ¥8) = 4003 032y — 2007 TR 62 \r—1 " 7 Y3y

r+1 r+1 1 r+1 1+r+l rir+1) ,
22\2 =1 )T 2 \ 2T 1) T e - 1)

rel (1l r+l (1 r+1 1 rr+1)
22 \2 " =1 T 2 2 T e — 1)
2—1 )?

(r+1
- - 0(3).
a2y YV T gy Yot (3)

In the original variables, the stable manifold can be written as:

_ r—1 r—1 r—1 2—1 r2—1
R=r+h s 4 w, 4 2, P — 4 Z, Pim, Qre W th 161/2 w+ WZ
r+1 r+1
*Tpredk Qre+®()
or, equivalently,
_ 2 _ _ 2 _
R:r+r2 1 s 1 r+1Pn+r+l -1 -1 r+1 r+1

Ly S ) S ey W iy Py ) S ey |
62" " e ¢ 2 2~ Te0 ™ T Te0i ZJr40u3 TR

,
768V4r(7r2+2r+1)wzf 96 (4r 7r+1)me+ . 3(3r+ DwQ,e + 768 4(3r+2)
r+1 r+1, 5 r2—l
3 Pre 4r° — 1 Zre 3 2 Pry re
= 53 O DePre + g5 (47 = r 4 1)20r + 768 4( r 2 - P

r+1)?
- ( 81/21‘) Piinm + (_)(3)!

concluding the proof of the theorem.
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