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Abstract—The implementation of Internet of Things (IoT)
devices in medical environments, has introduced a growing list of
security vulnerabilities and threats. The lack of an extensible big
data resource that captures medical device vulnerabilities limits
the use of Artificial Intelligence (AI) based cyber defense systems
in capturing, detecting, and preventing known and future attacks.
We describe a system that generates a repository of Cyber
Threat Intelligence (CTI) about various medical devices and
their known vulnerabilities from sources such as manufacturer
and ICS-CERT vulnerability alerts. We augment the intelligence
repository with data sources such as Wikidata and public medical
databases. The combined resources are integrated with threat
intelligence in our Cybersecurity Knowledge Graph (CKG) from
previous research. The augmented graph embeddings are useful
in querying relevant information and can help in various AI
assisted cybersecurity tasks. Given the integration of multiple
resources, we found the augmented CKG produced higher quality
graph representations. The augmented CKG produced a 31%
increase in the Mean Average Precision (MAP) value, computed
over an information retrieval task.

Index Terms—Artificial Intelligence, Cybersecurity, Knowledge
Representation, Knowledge Graphs, Cyber Threat Intelligence

I. INTRODUCTION

The medical industry actively adopts automated systems

to assist with health data processing and sharing. These

automated systems are considered medical Internet of Things

(IoT) devices. The role of IoT in the healthcare sector has

been especially useful in creating big data resources for

patients, hospitals, and practitioners. Medical data is typically

extracted from various sources, transformed into machine-

readable formats, and fed into systems that use the transfor-

mations for various automated tasks. Automation through IoT

Devices allows for convenient, fast, and larger data collection.

In a traditional setting, data is typically collected manually

or through hard-to-reach integrated systems. Examples like

these make it difficult to provide practitioners with the latest

information at all times. Through IoT devices, practitioners are

able to continuously monitor patients, as well as receive the

latest data from exterior sources. In addition, data collected

from medical IoT devices can be remotely monitored which

can bring many advantages, but also many serious security

risks. For example, attackers can gain access to sensitive

medical and financial data passing through hospital networks

or even disable life-supporting assistive devices.

Medical and financial data is especially valuable to attackers

as it sells well on the black market and can be used to

commit targeted attacks. The Medjack attack is a well known

attack allowing a breach on a secure hospital network, by

using a compromised medical device as a backdoor. Once

in the network, the attacker can deploy malicious software

like ransomware to disrupt the ability of the hospital to

function leaving all patients at risk, in order to steal sensitive

data [17]. Another famous medical device vulnerability is the

SweynTooth vulnerability, which affected bluetooth enabled

devices that utilized Bluetooth Low Energy (BLE) for wireless

communication. Allowing it to crash, deadlock, and bypass

security on the impacted devices [31].

Medical IoT devices are especially prone to these attacks

due to the lack of open big data resources specific to healthcare

security. Our goal is to create a collection of medical device

security vulnerabilities that can be used in knowledge aug-

mentation tasks. Previously various systems have been built

on top of cybersecurity specific natural language pipelines

to create Cybersecurity Knowledge Graphs [19], [20]. These

systems focus on collating scattered Cyber Threat Intelligence

(CTI) mined from disparate sources to create a centralized

repository of various threats and vulnerabilities [30]. Such

analyst augmentation systems aid security operations center

(SoC) workflows. We are motivated by the complicated nature

of medical device vulnerabilities.

In this paper, we describe our data collection, processing,

and augmentation methodologies for medical device vulnera-

bilities. We first parsed the web to gather information about

medical devices with known security vulnerabilities. Using the

collected data, we assert it in the Cybersecurity Knowledge

Graph (CKG) and generated graph embeddings. Graph em-

beddings have been used to represent large graphical networks

with the aim of improving tasks like: node classification, link

prediction, community detection, network similarity and many

others. Using our augmentation techniques we improve the

quality of graph embeddings created.

The main contributions of this paper are -

• Creation of a knowledge graph that stores Cyber Threat

Intelligence (CTI) about various medical devices. The

CTI was collected using security alerts published by var-

ious manufacturers, CISA ICS-CERT, etc. (See Section

II).

• We augment the available CTI using knowledge

from sources like Wikidata, and FDA’s AccessGUDID

database (See Section III).



• We show that augmenting the CTI using these other

sources improves the quality of graph embeddings gen-

erated. We test these different graph embeddings on

information retrieval tasks (See Section IV).

The rest of the paper is organized as follows - Section II

discusses some related work and background research. We

describe our knowledge graph augmentation techniques and

processes in Section III. We showcase improvement in the

quality of graph embeddings as a result of our knowledge

graph augmentation in Section IV. We conclude and discuss

possible furture work in Section V.

II. RELATED WORK

In this section we describe some related work in medical

knowledge representations and relevant cybersecurity con-

cerns. We also discuss cybersecurity threat intelligence, knowl-

edge graphs and graph representational learning.

A. Medical Knowledge Representations

Medical professionals have developed various semantic lan-

guages like SNOMED CT [10], ICD-10 [9], and PubChem

[24], etc. to communicate important diagnoses, medical pro-

cedures, and medications to each other. These languages serve

as a back bone communication consensus among millions

of physicians, nurses, researchers across various hospitals

and countries. An important collection of medical documents

that use these semantic languages is the PubMed1 database

maintained by the United States National Institutes of Health

(NIH), National Center for BIoTechnology Information.

Xu et al. [35] using the PubMed database crated the PubMed

knowledge graph (PKG) using the BioBERT Named Enntity

Recognizer (NER). Other work by Wang et al. [33] and

Muller et al. [22] further developed knowledge representation

techniques for medical procedures, medicines, devices. U.S.

Food and Drug Administration maintains a comprehensive

database of medical devices [1]. The Global Unique Device

Identification Database (GUDID)2 lists device identification

information and other details submitted to the FDA. Wikidata3

[16] is a curated knowledge graph of the Wikimedia Founda-

tion (WMF) and contains various details about medical device

manufactures, which are accessible through it’s SPARQL

endpoint [32].

We have used some of these medical knowledge represen-

tation techniques to augment our Cybersecurity Knowledge

Graph (See Section III).

B. Medical Devices & Cybersecurity

Medical devices are increasingly connected to the Internet,

hospital networks, and other medical devices to provide fea-

tures that improve health care. These features also increase the

risk of cybersecurity threats. United States FDA is responsible

for issuing cybersecurity guidance and safety communications.

1https://pubmed.ncbi.nlm.nih.gov/
2https://accessgudid.nlm.nih.gov/
3https://www.wikidata.org/wiki/Wikidata:Main Page

It also conducts multiple activities to inform medical profes-

sionals and patients about cybersecurity threats.

The Cybersecurity and Infrastructure Security Agency

(CISA)4 maintains the ICS-CERT Alert5 which is intended to

provide timely notification about critical infrastructure includ-

ing some medical devices. For example, ICS Medical Advisory

(ICSMA-18-123-01)6 details various cybersecurity threats in

the Philips Brilliance Computed Tomography (CT) System.

Most medical device Manufacturers also maintain a repository

of cyber threat intelligence. These are used to convey various

technical details about cyber security threat. These alerts are

generally available as HTML pages and need to be converted

to raw files. These raw files can then be used as an input to

a Natural Language Processing (NLP) Pipeline and output a

knowledge graph.

Another popular method of representing various security

vulnerabilities of a medical device is to create an attack

trees and graphs for the device. Attack trees help security

professionals determine how a device might be attacked and

can show where stronger protection is needed [34] [15].

C. Cybersecurity Knowledge Graphs

A knowledge graph is a set of semantic triples, which

are pairs of ‘entities’ with ‘relationships’ between them.

Knowledge graphs allow for easy identification of related

information. Having all of the data interconnected allows

querying for related information to be done easily, specially

for multiple cybersecurity applications [11], [12], [20], [23].

Knowledge graphs allow the user to find all of the entities that

have a Uniform Resource Identifier.

Cybersecurity Knowledge Graphs (CKGs) have long been

used to represent Cyber Threat Intelligence (CTI). To represent

CTI in a CKG, the first step is to identify what entities and

relationships need to be asserted. We also use an ontology

called ‘Unified Cybersecurity Ontology’ (UCO 2.0) [25] to

provide our system with cybersecurity domain knowledge.

UCO 2.0 is based on Structured Threat Intelligence Language

(STIX 2.0) [4] which provides a schema to represent cyber-

threat intelligence. CKGs have also been developed from other

open-source information by Mittal et al. [19], [20], [26]. In

Section III we augment the CKG with external information

and use it to generate rich graph embeddings in Section IV.

D. Graph Representational Learning (GRL)

Graphs are a powerful mathematical abstractions that can

describe complex systems of relations and interactions. There

are multiple types of graph representational techniques which

are largely application dependent and differ if the application

requires a static or a dynamic graph [2], [3]. Techniques

usually either focus on individual nodes in the graph or on the

entire graph and are similar to convolutional neural networks

used in image analysis and computer vision. Popular software

4https://us-cert.cisa.gov/about-us
5https://us-cert.cisa.gov/ics/alerts
6https://us-cert.cisa.gov/ics/advisories/ICSMA-18-123-01





@prefix uco: <http://accl.umbc.edu/ns/ontology/uco#> .
@prefix intel: <http://accl.umbc.edu/ns/ontology/intelligence#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xml: <http://www.w3.org/XML/1998/namespace> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .

<Int24678359436> a intel:Intelligence ;
intel:hasVulnerability <unsupported operating systems> .

<Philips HDI 4000 Ultrasound system> a uco:Product ;
uco:hasVulnerability <unsupported operating systems> .

<unsupported operating systems> a uco:Vulnerability ;
uco:affectsProduct <Philips HDI 4000 Ultrasound system> ;

Fig. 2. RDF for the cyber threat intelligence about the Phillips ultrasound
machine.

projects10. Wikidata API endpoints11 allow users to issue

complex SPARQL [32] queries. SPARQL is a RDF [5] query

language. Wikidata has its own endpoint for SPARQL queries.

SPARQL allows for a querying of Wikidata in a (Subject,

Predicate, Object) format and returns various results as a

JSON object.

To generate a Wikipedia SPARQL query we first select

an entity extracted using the SVCE from CTI collected from

manufacturer websites. This entity is then placed in either the

subject, predicate, or object field of the SPARQL query. The

query is then executed on the Wikidata Knowledge Graph.

Each entity in Wikidata has its own universal identification

number and is connected to other entities through the use of

predicates. By specifying a predicate identification number and

either a subject or an object tag in a query we can retrieve all

of the Wikidata entities that have a specified relation to the

imput entity.

3) US FDA AccessGUDID Database: To gather more

knowledge about various insecure medical devices we also

used the Global Unique Device Identification Database (GU-

DID). The GUDID contains all of the devices that have Unique

Device Identifiers (UDI) that have been submitted to the FDA

and is available publicly. To gather the required data we wrote

a program to parse through each device in the database and

turn it into a device object. The information that we considered

useful from the available data was the unique device id,

device’s manufacturer name, brand name, description of the

device, type of device, and purpose of the device. Here is the

data mined about GE’s ultrasound machine:

UID : 00840682146944;

Manufacturer : GE Medical Systems (China)

Co.,Ltd.;

Brand Name : LOGIQ;

Type : General-purpose ultrasound imaging

system;

Description : A stationary or mobile (e.g.,

on wheels) assembly of devices designed

to collect, display, and analyse

10https://www.wikidata.org/wiki/Wikidata:Main Page
11https://www.wikidata.org/wiki/Wikidata:Data access

ultrasound images during a variety of

extracorporeal and/or intracorporeal

(endosonography or endoscopic) ultrasound

imaging procedures (e.g., cardiac,

OB/GYN, endoscopy, breast, prostate,

vascular, and intra-surgical imaging). It

consists of a mains (AC-powered) data

processing unit with integrated software

and a monitor. It is typically presented

as a mobile assembly which may support a

wide variety of transducers and related

application software packages; an

ultrasound transducer(s) may be included.

The manufacturer and brand name data were used to collate

known Cyber Threat Intelligence (CTI) about various devices.

We were able to link CTI from manufacturers website and

devices on FDA’s AccessGUDID database. Table I, lists the

number of known vulnerabilities in popular medical devices.

Next we collate all these data sources and assert them in

our Cybersecurity Knowledge Graph.

B. Cybersecurity Knowledge Graph Assertions

After we have mined the knowledge from various data

sources discussed above, we assert it in our cybersecurity

knowledge graph. We then associated the extracted entities

and concepts with Uniform Resource Identifiers (URIs). These

URIs are then converted to nodes in our CKG.

Using Wikidata SPARQL queries (See Section III-A2), we

fetch the sub-graph for each URI. This helps in including more

global knowledge about an entity in our CKG. For example

we can use Wikidata to map the URI for “GE Healthcare” to

wiki:Q115237412. This external knowledge graph help us map

our entities to real world conceptual instances.

We also created a light medical device description ontology

based on FDA’s AccessGUDID database fields (See Section

III-A3). We stored the linked data as RDF triples in our CKG.

We collected 5,843 CTI from manufacturers like Phillips,

GE, Medtronic, CISA ICS-CERT Alerts, etc. The Security

Vulnerability Concept Extractor (SVCE) [19]–[21] was used to

convert these into RDF [5] linked data format and asserted it in

our broad Cybersecurity Knowledge Graph (CKG) [21], [25],

[26]. The CTI linked data was augmented with 1739 Wikidata

objects and information about 163 medical devices listed

on the AccessGUDID database. To evaluate the impact of

knowledge augmentation on embedding quality improvement

we first evaluate our knowledge augmentation process and then

it’s impact on embedding generation.

We used the ‘owl:SameAs’ assertion to ‘connect’ differ-

ent knowledge obtained from manufacturer CTI, Wikidata,

and AccessGUDID. Assertions were dependent on the match

between manufacturer’s/brand name and the device name. If

there was a complete match the entities were linked directly.

However, in case, there is no exact match, we calculate the

term frequency inverse document frequency (tf-idf) scores to

calculate similarity and connect nodes. A similar technique

12https://www.wikidata.org/wiki/Q1152374





quality node graph representations. We were able to get a

31% increase in the Mean Average Precision (MAP) value

as computed over a information retrieval task. These graph

embeddings have been used to represent large graphical net-

works with the aim of improving tasks like, node classification,

link prediction, community detection, network similarity and

many others. In the future, we will be able to augment the

CKG with other data sources further improving the quality of

the graph embeddings. These augmented graph embeddings

will help further improve various natural language processing

tasks on cybersecurity text data.
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