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Abstract—The implementation of Internet of Things (IoT)
devices in medical environments, has introduced a growing list of
security vulnerabilities and threats. The lack of an extensible big
data resource that captures medical device vulnerabilities limits
the use of Artificial Intelligence (AI) based cyber defense systems
in capturing, detecting, and preventing known and future attacks.
We describe a system that generates a repository of Cyber
Threat Intelligence (CTI) about various medical devices and
their known vulnerabilities from sources such as manufacturer
and ICS-CERT vulnerability alerts. We augment the intelligence
repository with data sources such as Wikidata and public medical
databases. The combined resources are integrated with threat
intelligence in our Cybersecurity Knowledge Graph (CKG) from
previous research. The augmented graph embeddings are useful
in querying relevant information and can help in various Al
assisted cybersecurity tasks. Given the integration of multiple
resources, we found the augmented CKG produced higher quality
graph representations. The augmented CKG produced a 31%
increase in the Mean Average Precision (MAP) value, computed
over an information retrieval task.

Index Terms—Artificial Intelligence, Cybersecurity, Knowledge
Representation, Knowledge Graphs, Cyber Threat Intelligence

I. INTRODUCTION

The medical industry actively adopts automated systems
to assist with health data processing and sharing. These
automated systems are considered medical Internet of Things
(IoT) devices. The role of IoT in the healthcare sector has
been especially useful in creating big data resources for
patients, hospitals, and practitioners. Medical data is typically
extracted from various sources, transformed into machine-
readable formats, and fed into systems that use the transfor-
mations for various automated tasks. Automation through IoT
Devices allows for convenient, fast, and larger data collection.
In a traditional setting, data is typically collected manually
or through hard-to-reach integrated systems. Examples like
these make it difficult to provide practitioners with the latest
information at all times. Through IoT devices, practitioners are
able to continuously monitor patients, as well as receive the
latest data from exterior sources. In addition, data collected
from medical IoT devices can be remotely monitored which
can bring many advantages, but also many serious security
risks. For example, attackers can gain access to sensitive
medical and financial data passing through hospital networks
or even disable life-supporting assistive devices.

Medical and financial data is especially valuable to attackers
as it sells well on the black market and can be used to

commit targeted attacks. The Medjack attack is a well known
attack allowing a breach on a secure hospital network, by
using a compromised medical device as a backdoor. Once
in the network, the attacker can deploy malicious software
like ransomware to disrupt the ability of the hospital to
function leaving all patients at risk, in order to steal sensitive
data [17]. Another famous medical device vulnerability is the
SweynTooth vulnerability, which affected bluetooth enabled
devices that utilized Bluetooth Low Energy (BLE) for wireless
communication. Allowing it to crash, deadlock, and bypass
security on the impacted devices [31].

Medical IoT devices are especially prone to these attacks
due to the lack of open big data resources specific to healthcare
security. Our goal is to create a collection of medical device
security vulnerabilities that can be used in knowledge aug-
mentation tasks. Previously various systems have been built
on top of cybersecurity specific natural language pipelines
to create Cybersecurity Knowledge Graphs [19], [20]. These
systems focus on collating scattered Cyber Threat Intelligence
(CTD mined from disparate sources to create a centralized
repository of various threats and vulnerabilities [30]. Such
analyst augmentation systems aid security operations center
(SoC) workflows. We are motivated by the complicated nature
of medical device vulnerabilities.

In this paper, we describe our data collection, processing,
and augmentation methodologies for medical device vulnera-
bilities. We first parsed the web to gather information about
medical devices with known security vulnerabilities. Using the
collected data, we assert it in the Cybersecurity Knowledge
Graph (CKG) and generated graph embeddings. Graph em-
beddings have been used to represent large graphical networks
with the aim of improving tasks like: node classification, link
prediction, community detection, network similarity and many
others. Using our augmentation techniques we improve the
quality of graph embeddings created.

The main contributions of this paper are -

o Creation of a knowledge graph that stores Cyber Threat
Intelligence (CTI) about various medical devices. The
CTTI was collected using security alerts published by var-
ious manufacturers, CISA ICS-CERT, etc. (See Section
1D.

e We augment the available CTI using knowledge
from sources like Wikidata, and FDA’s AccessGUDID
database (See Section III).



e We show that augmenting the CTI using these other
sources improves the quality of graph embeddings gen-
erated. We test these different graph embeddings on
information retrieval tasks (See Section 1V).

The rest of the paper is organized as follows - Section II
discusses some related work and background research. We
describe our knowledge graph augmentation techniques and
processes in Section III. We showcase improvement in the
quality of graph embeddings as a result of our knowledge
graph augmentation in Section IV. We conclude and discuss
possible furture work in Section V.

II. RELATED WORK

In this section we describe some related work in medical
knowledge representations and relevant cybersecurity con-
cerns. We also discuss cybersecurity threat intelligence, knowl-
edge graphs and graph representational learning.

A. Medical Knowledge Representations

Medical professionals have developed various semantic lan-
guages like SNOMED CT [10], ICD-10 [9], and PubChem
[24], etc. to communicate important diagnoses, medical pro-
cedures, and medications to each other. These languages serve
as a back bone communication consensus among millions
of physicians, nurses, researchers across various hospitals
and countries. An important collection of medical documents
that use these semantic languages is the PubMed' database
maintained by the United States National Institutes of Health
(NIH), National Center for BloTechnology Information.

Xu et al. [35] using the PubMed database crated the PubMed
knowledge graph (PKG) using the BioBERT Named Enntity
Recognizer (NER). Other work by Wang et al. [33] and
Muller et al. [22] further developed knowledge representation
techniques for medical procedures, medicines, devices. U.S.
Food and Drug Administration maintains a comprehensive
database of medical devices [1]. The Global Unique Device
Identification Database (GUDID)? lists device identification
information and other details submitted to the FDA. Wikidata3
[16] is a curated knowledge graph of the Wikimedia Founda-
tion (WMF) and contains various details about medical device
manufactures, which are accessible through it’s SPARQL
endpoint [32].

We have used some of these medical knowledge represen-
tation techniques to augment our Cybersecurity Knowledge
Graph (See Section III).

B. Medical Devices & Cybersecurity

Medical devices are increasingly connected to the Internet,
hospital networks, and other medical devices to provide fea-
tures that improve health care. These features also increase the
risk of cybersecurity threats. United States FDA is responsible
for issuing cybersecurity guidance and safety communications.

'https://pubmed.ncbi.nlm.nih.gov/
Zhttps://accessgudid.nlm.nih.gov/
3https://www.wikidata.org/wiki/Wikidata:Main_Page

It also conducts multiple activities to inform medical profes-
sionals and patients about cybersecurity threats.

The Cybersecurity and Infrastructure Security Agency
(CISA)* maintains the ICS-CERT Alert® which is intended to
provide timely notification about critical infrastructure includ-
ing some medical devices. For example, ICS Medical Advisory
(ICSMA-18-123-01)° details various cybersecurity threats in
the Philips Brilliance Computed Tomography (CT) System.
Most medical device Manufacturers also maintain a repository
of cyber threat intelligence. These are used to convey various
technical details about cyber security threat. These alerts are
generally available as HTML pages and need to be converted
to raw files. These raw files can then be used as an input to
a Natural Language Processing (NLP) Pipeline and output a
knowledge graph.

Another popular method of representing various security
vulnerabilities of a medical device is to create an attack
trees and graphs for the device. Attack trees help security
professionals determine how a device might be attacked and
can show where stronger protection is needed [34] [15].

C. Cybersecurity Knowledge Graphs

A knowledge graph is a set of semantic triples, which
are pairs of ‘entities’ with ‘relationships’ between them.
Knowledge graphs allow for easy identification of related
information. Having all of the data interconnected allows
querying for related information to be done easily, specially
for multiple cybersecurity applications [11], [12], [20], [23].
Knowledge graphs allow the user to find all of the entities that
have a Uniform Resource Identifier.

Cybersecurity Knowledge Graphs (CKGs) have long been
used to represent Cyber Threat Intelligence (CTI). To represent
CTI in a CKG, the first step is to identify what entities and
relationships need to be asserted. We also use an ontology
called ‘Unified Cybersecurity Ontology’ (UCO 2.0) [25] to
provide our system with cybersecurity domain knowledge.
UCO 2.0 is based on Structured Threat Intelligence Language
(STIX 2.0) [4] which provides a schema to represent cyber-
threat intelligence. CKGs have also been developed from other
open-source information by Mittal et al. [19], [20], [26]. In
Section Il we augment the CKG with external information
and use it to generate rich graph embeddings in Section IV.

D. Graph Representational Learning (GRL)

Graphs are a powerful mathematical abstractions that can
describe complex systems of relations and interactions. There
are multiple types of graph representational techniques which
are largely application dependent and differ if the application
requires a static or a dynamic graph [2], [3]. Techniques
usually either focus on individual nodes in the graph or on the
entire graph and are similar to convolutional neural networks
used in image analysis and computer vision. Popular software

“https://us-cert.cisa.gov/about-us
Shttps://us-cert.cisa.gov/ics/alerts
Shttps://us-cert.cisa.gov/ics/advisories/ICSMA- 18-123-01



libraries such as node2vec [6], PyTorch Geometric’ or Deep
Graph Library® (DGL) are used to train and generate graph
representations. In our work we encounter a static graph
discussed in Section IV.

In cybersecurity, graph representational learning has been
used for malware detection [7], intrusion detection [14], [36],
event extraction [8], [13], [29], relationship extraction and
threat intelligence [21], [25]-[28]. In this paper, we show-
case the use of knowledge augmentation learning approaches
to improve cybersecurity graph embeddings. We augment
our Cybersecurity Knowledge Graph with other knowledge
sources to train more robust embeddings (For more details
see Section IV).

III. CYBERSECURITY KNOWLEDGE GRAPH
AUGMENTATION

In this section we will describe our knowledge graph
augmentation techniques. Figure 1, showcases our knowledge
augmentation architecture. The process starts with the mined
Cyber Threat Intelligence, collected from various manufactur-
ers and security bulletins. We use a cybersecurity named entity
extractor to extract cybersecurity knowledge and threat intel-
ligence. We augment this knowledge from other data sources.
These are then collated and asserted in our Cybersecurity
Knowledge Graph (CKG) [21], [25], [26].
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Fig. 1. Knowledge Augmentation Architecture Diagram.

Knowledge graphs use ontologies to describe various do-
main specific concepts through classes and properties. These
properties include relationships between various classes and
their attributes. These classes generally have sub-classes, and

"https:/pytorch- geometric.readthedocs.io/en/latest/
8https://www.dgl.ai/

parent classes. Parent class relations are inherited by its
children. Instances are individuals that are a type of a class.
These have different data properties and can be associated
with other instances by asserting object properties. These
attributes are vital so as to differentiate between two different
concepts. Knowledge graph augmentation is the process of
adding from disparate sources, information to the knowledge
graph to increase it’s use fullness and adaptability.

For our CKG we used the Unified Cybersecurity Ontol-
ogy (UCO) [25] to provide cybersecurity domain knowledge.
An Intelligence ontology [19] was used to represent threat
intelligence. We also create a medical device description
ontology based on various medical domain knowledge and
FDA’s AccessGUDID.

Next we describe various medical data sources that help
us with knowledge augmentation. We discuss how medical
device security vulnerability data was gathered and augmented
with knowledge from manufacturers, ICS-CERT, US FDA, and
Wikidata (See Section II).

A. Data Sources

1) Manufacturer Cyber Threat Intelligence (CTI): To
gather security vulnerability data for medical devices we built
multiple crawlers for different medical device manufacturers.
Crawlers were created for Phillips, GE, ICS-CERT, etc. using
the python library Beautiful Soup. Once collected CTI was
converted from HTML to raw text files. For example we
collected the following CTI for a Phillips Ultrasound Machine
(dated August 29, 2019)°:

Philips has become aware that if the Philips
HDI 4000 Ultrasound system is running on
outdated, unsupported operating systems,
such as Windows 2000, an unauthorized
user may be able to access ultrasound
images or compromise image integrity.

The resulting CTI for each medical device was processed
for assertion in the CKG. We extracted issues that consisted
of terms related to various vulnerabilities using a Security
Vulnerability Concept Extractor (SVCE) [19], [26]. The SVCE
was able to tag each sentence with the following concepts:
Means of an attack, Consequence of an attack, affected
software, hardware and operating system, version numbers,
network related terms, file names and other technical terms.
The extracted concepts were used to generate an RDF [5]
stored in the queryable CKG. RDF statements for the CTI
about Phillips Ultrasound Machine can be seen in Figure 2.

2) Wikidata Knowledge Graph: To gather additional knowl-
edge about various intelligence components extracted form
the available CTI, we retrieve more information about these
from the Wikidata Knowledge Graph [16]. Wikidata is an
open source knowledge base that is machine processable.
It contains all of the structured data for various Wikimedia

9https://www.usa.philips.com/healthcare/about/customer-support/
product-security



@prefix uco: <http://accl.umbc.edu/ns/ontology/uco#> .
@prefix intel: <http://accl.umbc.edu/ns/ontology/intelligence#> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix xml: <http://www.w3.0org/XML/1998/namespace> .
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .
@prefix owl: <http://www.w3.0rg/2002/07/owl#> .

<Int24678359436> a intel:Intelligence ;
intel:hasVulnerability <unsupported_operating_systems> .

<Philips_HDI_4000_Ultrasound_system> a uco:Product ;
uco:hasVulnerability <unsupported_operating_systems> .

<unsupported_operating_systems> a uco: Vulnerability ;
uco:affectsProduct <Philips_ HDI_4000_Ultrasound_system> ;

Fig. 2. RDF for the cyber threat intelligence about the Phillips ultrasound
machine.

projects'®. Wikidata API endpoints'! allow users to issue
complex SPARQL [32] queries. SPARQL is a RDF [5] query
language. Wikidata has its own endpoint for SPARQL queries.
SPARQL allows for a querying of Wikidata in a (Subject,
Predicate, Object) format and returns various results as a
JSON object.

To generate a Wikipedia SPARQL query we first select
an entity extracted using the SVCE from CTI collected from
manufacturer websites. This entity is then placed in either the
subject, predicate, or object field of the SPARQL query. The
query is then executed on the Wikidata Knowledge Graph.
Each entity in Wikidata has its own universal identification
number and is connected to other entities through the use of
predicates. By specifying a predicate identification number and
either a subject or an object tag in a query we can retrieve all
of the Wikidata entities that have a specified relation to the
imput entity.

3) US FDA AccessGUDID Database: To gather more
knowledge about various insecure medical devices we also
used the Global Unique Device Identification Database (GU-
DID). The GUDID contains all of the devices that have Unique
Device Identifiers (UDI) that have been submitted to the FDA
and is available publicly. To gather the required data we wrote
a program to parse through each device in the database and
turn it into a device object. The information that we considered
useful from the available data was the unique device id,
device’s manufacturer name, brand name, description of the
device, type of device, and purpose of the device. Here is the
data mined about GE’s ultrasound machine:

UID 00840682146944;

Manufacturer GE Medical Systems (China)
Co.,Ltd.;

Brand Name LOGIQ;

Type General-purpose ultrasound imaging
system;

Description : A stationary or mobile (e.g.,

on wheels)
to collect,

assembly of devices designed
display, and analyse

10https://www.wikidata.org/wiki/Wikidata:Main_Page
Uhttps://www.wikidata.org/wiki/Wikidata:Data_access

ultrasound images during a variety of
extracorporeal and/or intracorporeal

(endosonography or endoscopic) ultrasound
imaging procedures (e.g., cardiac,
OB/GYN, endoscopy, breast, prostate,
vascular, and intra-surgical imaging). It

consists of a mains (AC-powered) data
processing unit with integrated software
and a monitor. It is typically presented
as a mobile assembly which may support a
wide variety of transducers and related
application software packages; an
ultrasound transducer (s) may be included.

The manufacturer and brand name data were used to collate
known Cyber Threat Intelligence (CTI) about various devices.
We were able to link CTI from manufacturers website and
devices on FDA’s AccessGUDID database. Table I, lists the
number of known vulnerabilities in popular medical devices.

Next we collate all these data sources and assert them in
our Cybersecurity Knowledge Graph.

B. Cybersecurity Knowledge Graph Assertions

After we have mined the knowledge from various data
sources discussed above, we assert it in our cybersecurity
knowledge graph. We then associated the extracted entities
and concepts with Uniform Resource Identifiers (URIs). These
URIs are then converted to nodes in our CKG.

Using Wikidata SPARQL queries (See Section III-A2), we
fetch the sub-graph for each URI. This helps in including more
global knowledge about an entity in our CKG. For example
we can use Wikidata to map the URI for “GE Healthcare” to
wiki:Q1152374"2. This external knowledge graph help us map
our entities to real world conceptual instances.

We also created a light medical device description ontology
based on FDA’s AccessGUDID database fields (See Section
II1-A3). We stored the linked data as RDF triples in our CKG.

We collected 5,843 CTI from manufacturers like Phillips,
GE, Medtronic, CISA ICS-CERT Alerts, etc. The Security
Vulnerability Concept Extractor (SVCE) [19]-[21] was used to
convert these into RDF [5] linked data format and asserted it in
our broad Cybersecurity Knowledge Graph (CKG) [21], [25],
[26]. The CTI linked data was augmented with 1739 Wikidata
objects and information about 163 medical devices listed
on the AccessGUDID database. To evaluate the impact of
knowledge augmentation on embedding quality improvement
we first evaluate our knowledge augmentation process and then
it’s impact on embedding generation.

We used the ‘owl:SameAs’ assertion to ‘connect’ differ-
ent knowledge obtained from manufacturer CTI, Wikidata,
and AccessGUDID. Assertions were dependent on the match
between manufacturer’s/brand name and the device name. If
there was a complete match the entities were linked directly.
However, in case, there is no exact match, we calculate the
term frequency inverse document frequency (tf-idf) scores to
calculate similarity and connect nodes. A similar technique

Zhttps://www.wikidata.org/wiki/Q1152374



was used by Piplai et al. [26]. The augmented CKG can handle
complex queries using the SPARQL query language [20].

Evaluating the knowledge augmentation process: In order
to ensure that knowledge from different sources was connected
correctly, we used a group of 3 annotators to manually check
150 randomly selected connections. Out of the 98 (these were
the ones with and inter-annotator agreement higher than 0.66),
68 were marked correct, 15 were marked somewhat correct
and the rest were marked incorrect.

IV. CKG EMBEDDING GENERATION

A

vector
i o IIIIII‘I
\ —
Rd
representation
sub-graph embedding

Fig. 3. Graph Embedding generation process.

Graph embeddings have been used to represent large graph-
ical networks with the aim of improving tasks like, node
classification, link prediction, community detection, network
similarity and many others. The goal is to map each node
into a low-dimensional space, while preserving most of the
network information. Given a graph G, with nodes V', and
relations F, the task is to learn -

fin—RineV

We want to learn the feature representation that is predic-
tive of nodes in n neighborhood N (n). The neighbourhood
is generally defined depending on the use-case where the
representations are being utilized. For a global macroscopic
view, Depth First Search (DFS) can be used to define the
neighbourhood. In tasks where a local microscopic view is
needed Breadth First Search (BFS) can be used to describe
the neighbourhood.

To generate the graph embeddings for our CKG, we use the
Breadth First Search to define a local neighbourhood for the
node. Once the neighbourhood has been defined we generate
the embeddings using the node2vec algorithm [6]. We next

Brand Number of CTI
EchoPAC 7
Versana (all except for Versana Essential) 5
ViewPoint product line 6
Vivid product line 32
LOGIQ (all except for LOGIQ 100 Pro) 45
Voluson product line 38
Invenia ABUS Scan station 6
Venue (all except for 40 R1-3, 50 R4-5) 7

TABLE I
SOME POPULAR MEDICAL DEVICE BRANDS AND NUMBER OF KNOWN
THREAT INTELLIGENCE ABOUT THEIR PRODUCTS.

Knowledge Augmentation MAP score
Level
CTI 0.54
CTI + Wikidata 0.66
CTI + Wikidata + 071
AccessGUDID ’
TABLE II

MAP VALUES FOR EMBEDDING MODELS CREATED USING DIFFERENT
LEVELS OF KNOWLEDGE AUGMENTATION.

evaluate the impact of our knowledge augmentation on the
process of embedding improvement.

Evaluating impact of augmentation on embedding quality:
We used node2vec [6], to generate our embeddings. In our
generation process, we define empirically the neighbourhood
size of a node to be at-most 4 degrees of separation and
embedding size of 200 dimensions. Each node in the CKG
was represented as a vector of 200 dimensions. This evaluation
task was converted to an information retrieval task, where
similar nodes to an input vector are compared to a predefined
set of known similar entities. This process has been used in
evaluating the word2vec model suggested by Mikolov et al.
[18] and Mittal et al. [21]. OWASP!® maintains groups of
similar vulnerabilities'* and attacks'>. We created 14 groups
of similar vulnerabilities, 11 groups of similar attacks, and
15 groups of similar medical products. For the experiment
one entity from these group was set up as an input to the
embedding model, and similar entities to this input were com-
puted. To evaluate the impact of knowledge augmentation on
the quality of embeddings created as an information retrieval
task, we used the Mean Average Precision (MAP) metric.
MAP is a popular metric used to measure the performance of
models doing document/information retrieval. MAP values are
between 0 and 1 and higher is better. In our case, we created
3 levels of knowledge augmentation which are, Just the CTI,
CTI augmented with Wikidata, CTI and Wikidata augmented
with AccessGUDID. Table II, shows the different MAP values
obtained. CTI and Wikidata augmented with AccessGUDID
performed the best in the experiment by about 31% (over the
base MAP score of 0.54 with CTI only).

V. CONCLUSION AND FUTURE WORK

In order to better protect users of medical devices and those
with information in the hospital ecosystem it is necessary
to create a repository of known security vulnerabilities for
medical devices. For medical devices to become more secure
there needs to be a well developed machine understandable
knowledge repository for current and past vulnerabilities. In
this paper, we collect Cyber Threat Intelligence (CTI) about
various medical devices from sources like manufacturers,
CISA ICS-CERT, etc. We augment this intelligence with data
from the Wikidata knowledge graph and medical databases
like FDA’s AccessGUDID. These data sources are integrated
along with the threat intelligence in our Cybersecurity Knowl-
edge Graph (CKG). The augmented CKG helps produce better

Bhttps://www.owasp.org/index.php/Main_Page
4https://www.owasp.org/index.php/Category: Vulnerability
Shttps://www.owasp.org/index.php/Category:Attack



quality node graph representations. We were able to get a
31% increase in the Mean Average Precision (MAP) value
as computed over a information retrieval task. These graph
embeddings have been used to represent large graphical net-
works with the aim of improving tasks like, node classification,
link prediction, community detection, network similarity and
many others. In the future, we will be able to augment the
CKG with other data sources further improving the quality of
the graph embeddings. These augmented graph embeddings
will help further improve various natural language processing
tasks on cybersecurity text data.
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