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ABSTRACT: Capitalizing on versatile catalytic «,f-desaturation ¢
methods, strategies that directly functionalize carbonyl compounds at l,-l - cat. M
their less-reactive f-positions have emerged over the past decade. °

Depending on the reaction mechanism, general approaches include
merging with conjugate addition, migratory coupling, and redox cascade.
This perspective provides a summary of transition-metal-catalyzed a,f-desaturation methods and in-depth discussions of each f-
functionalization strategy with their advantages, challenges, and future directions.

a, f-desaturation .
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. INTRODUCTION Scheme 1. Direct #-Functionalization of Carbonyl
Preparation and derivatization of carbonyl compounds are Compounds

cornerstones in organic synthesis. To date, rich chemistry has desaturation i conjugate

been developed to functionalize the ipso and a-positions of (sz:?:) Y)K” nuiz::i:es
carbonyl compounds via nucleophilic addition to carbonyl trad’_”ona;;pmach

carbons and enolate couplings with electrophiles. In contrast,

direct functionalization at the f position has undoubtedly been o o

a more challenging task, because the S-C—H bonds are Y)KL direct p-functionalization YJKL
significantly less acidic. To access f-functionalized carbonyl R redox and step economical - Nra

compounds, conventional methods mainly rely on conjugate =~ e
addition of a nucleophile to an a,f-unsaturated carbonyl - R-R 0
compound.” In many cases, the a@,f-unsaturated carbonyl [z’l\/l} Y)l -YJKH—"M
compounds must be synthesized in one or a few steps from the :
corresponding saturated ones via an oxidation process.3 Hence, directing group- enaminelphotoredox  via o.-desaturation
efficient approaches that directly introduce functional groups based strategy cooperative catalysis  (this Perspective)
at f-positions of saturated carbonyl compounds would be
attractive, from the redox- and step-economical viewpoints, to
streamline complex molecule synthesis (see Scheme 1).*
Methods for direct and catalytic S-functionalization of
carbonyl compounds have been extensively explored over the
past two decades (see Scheme 1).” First, directing group-based
strategies have been popular, and they typically operate by
forming a five-membered metallocycle through C—H activa-
tion at the § position.” In addition, enamine/photoredox Il. GENERAL CONSIDERATIONS
cooperative catalysis provides a creative way to achieve f-
functionalization, normally via selective homolytic C—H
cleavage to generate a radical species at the S-position.”
While effective and broadly useful, there are intrinsic

alization, given the versatile reactivity of a,f-unsaturated
carbonyls. This Perspective offers a brief overview of
transition-metal-catalyzed a,f-desaturation processes and de-
tailed discussion of f-functionalization methods enabled by
these processes. In particular, it aims to highlight merits,
pitfalls, and potentials of each strategy.

To date, numerous strategies have been developed for a,f-
desaturation of carbonyl compounds.” Conventionally, this

requirements associated with these methods, such as the Received:  April 2, 2020 i Catalysis|
capability of substrates to form five-membered metallocycles or Revised: ~ May 2, 2020 mepfs. s
to form enamines. As a complementary approach, the Published: May 4, 2020 %Y
transition-metal-catalyzed desaturation reactions allow for %
directly forming a reactive center at the fS-position of carbonyl =

compounds,® which provides a new platform for S-function-
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transformation was often achieved through multiple steps by
introducing heteroatoms, such as halides,’ sulfur,'® and
selenium,'" to the a-position of carbonyl compounds, followed
by an elimination process. Direct oxidation methods using 2,3-
dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)"* or 2-iodox-
ybenzoic acid (IBX)" have also been found broadly useful."*

On the other hand, a,f-desaturation strategies based on
transition-metal catalysis have been explored since the 1970s,"
which uses milder oxidants and less-toxic reagents. Generally,
almost all transition-metal-catalyzed a,-desaturation reactions
start with the formation of the corresponding metal enolate;
thus, according to how enolates are generated, these reactions
can be classified into three categories (see Scheme 2). The first

ketones and aldehydes via a-palladation, which leads to a series
of practical desaturation methods, including those using air as
the terminal oxidant.””** Copper was recently found to be
capable of catalyzing a,f-desaturation of diverse carbonyl
compounds through a distinct radical-mediated pathway, with
either TEMPO™* or peroxides™ as the oxidant.”

The versatility of the a,f-desaturation tactics provides rich
inspiration and foundation for developing direct f-functional-
ization of carbonyl compounds through the merger of a,f-
desaturation with various coupling approaches. The following
content is divided into three sections, and each section is
focused on a unique strategy about how functional groups are
introduced at the carbonyl S-position (see Scheme 3).

Scheme 2. Transition-Metal-Catalyzed «,f-Desaturation of
Carbonyl Compounds
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category involves stepwise enolization, in which a separate step
is used to generate an isolatable enolate precursor. For
example, the palladium-catalyzed oxidation of silyl enol ethers,
known as Saegusa—Ito oxidation, is a well-established approach
for carbonyl desaturation and has been widely employed in
total synthesis of natural products.'® Other enolate precursors,
such as enol allyl carbonates or enol acetates, could also
undergo desaturation via palladium catalysis.'” The second
category involves in situ enolization, followed by trans-
metalation, which saves one step of operation and sometimes
gives a broader substrate scope. Hard enolization via complete
deprotonation by a strong base, followed by the formation of a
zinc enolate, renders efficient «,f-desaturation of ketones,
amides, esters, carboxylic acids, and nitriles, using palladium or
nickel catalysts."*'? Soft enolization using boron Lewis acids
and weak bases has been determined to be effective for the
desaturation of ketones, lactams, imides, lactones, and esters
catalyzed by palladium or platinum.””*' The third category
involves direct formation of the reactive metal enolate.
Palladium enolates could be directly generated from saturated

6059

Scheme 3. Three Strategies for Desaturation-Enabled f-
Functionalization of Carbonyl Compounds
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lll. MERGING WITH CONJUGATE ADDITION

Perhaps the most straightforward strategy to access p-
functionalized carbonyl compounds is to directly combine
a,f3-desaturation with conjugate addition of a nucleophile (see
Scheme 4). Compared with the conventional stepwise

Scheme 4. Merging a,f-Desaturation with Conjugate
Addition

(o}
in situ v e
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approaches, merging these two processes can save at least
one step. The conjugate addition could be coupled with
desaturation through either an in situ transformation or a one-
pot sequential manner. Generally, if the nucleophiles used are
compatible with the desaturation processes, in situ conjugate
addition would be feasible and more desirable. One potential
pitfall of this approach is that the resulting products could
undergo desaturation again, leading to overoxidation. If
nucleophiles used are incompatible with the desaturation
processes, a sequential desaturation/conjugate addition must
be adopted, which, however, typically avoids the overoxidation
problem. This section summarizes reactions of these two types,
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and methods that preferentially give overoxidation products,
such as p-functionalized conjugated enones, are not
included.””*

The first Pd-catalyzed pJ-functionalization of carbonyl
compounds using an in situ addition strategy was developed
by Pihko and co-workers. In 2012, they reported a Pd-
catalyzed f’-arylation of p-keto esters using indoles as
nucleophiles (see Scheme 5).*” The higher acidity of the a-

Scheme S. f’-Arylation of fi-Keto Esters Using Indoles

o o Pd(TFA), (10 mol %)
[Q +BUOOBZ (130 mol %)
1 —_—
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94% yield
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61% yield
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63% yield
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&
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proton in 1,3-dicarbonyl compounds allows facile formation of
palladium enolates; thus, this reaction occurred in the absence
of bases. -BuOOBz was found to be the optimal oxidant. Both
cyclic and linear f-keto esters are viable substrates, and the
products predominantly possess trans configuration. It is
impressive that free indole can be directly used as a C-
nucleophile. An 8-phenylmenthyl-derived f-keto ester was also
determined to be an effective chiral auxiliary, and high
enantiomeric excess was achieved after decarboxylation of
the arylated product.”

In order to gain deeper understanding of the reaction
mechanism, mechanistic studies were performed using S-keto
ester 3 and N-methylindole as the model substrates (see
Scheme 6). First, kinetic studies supported intermediacy of the
a,f'-unsaturated B-keto ester 4. During the initial stage, the
concentration of 4 built up and then decayed, and a sigmoidal
curve was found for product formation, indicating that a,f'-
desaturation and indole conjugate addition could be separate
processes. Interestingly, the rate of «,f'-desaturation was
highly dependent on the concentration of N-methylindole, as
N-methylindole accelerated the desaturation process (see
Scheme 6a).”” Furthermore, an inverse kinetic isotope effect
was detected for the C2-deuterated N-methylindole (see
Scheme 6b). Combining the results from their computational
studies, the authors proposed an indole-assisted desaturation
mechanism, in which indole serves as an electron-rich ligand
(via 2,3-7-bond) and accelerates the desaturation process (see
Scheme 6¢).”" Starting from N-methylindole-coordinated
Pd(TFA), (5), substrate coordination and deprotonation
delivers an O-bound Pd-enolate 6. Likely due to the stronger
bidentate coordination of enolate 6, the subsequent enolate
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Scheme 6. Indole-Assisted a,f’-Desaturation of f-Keto
Esters

(a) Rate dependence of o,p'-desaturation of 3 on N-methylindole
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tautomerization to C-bound Pd-enolate 7 was calculated to be
the rate-determining step. The f-hydrogen elimination was
proposed to occur through proton-assisted electron transfer,
which generates a Pd(0) complex 8 that could then be oxidized
by t-BuOOBz to regenerate complex 5 and release a,f'-
unsaturated f-keto ester 4. During the rate-determining step,
tautomerization of the Pd-enolate leads to reduction of
electron density at the Pd center in the transition state,
which is alleviated by the tightly coordinated electron-rich
indole ligand. This also results in a partial C(sp*) to C(sp?)
rehybridization at the C2 position of the indole, which is
consistent with the inverse kinetic isotope effect. After the
a,f’-desaturation process, the accumulated a,f’-unsaturated f-
keto ester was proposed to undergo a Pd-catalyzed conjugate
addition of indole to form the product. Although it was found
that acids alone could also catalyze the conjugate addition, a
faster reaction rate was detected using the Pd catalyst.

As an interesting extension of this transformation, the same
group reported a three-component coupling reaction with -
keto esters, indoles, and arylboronic acids (see Scheme 7).*'
Kinetic studies showed that indoles first underwent fast
coupling with arylboronic acids, which accumulated C2-
arylated indoles during the initial stage. In addition, p’'-
arylation of p-keto esters with arylboronic acids was
determined to be slower than their reactions with indoles or

https://dx.doi.org/10.1021/acscatal.0c01519
ACS Catal. 2020, 10, 6058—6070
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Scheme 7. Three-Component Coupling of #-Keto Esters,
Indoles, and Arylboronic Acids
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C2-arylated indoles, which became the key for the high
chemoselectivity in this three-component coupling reaction.
Pihko and co-workers further explored the f'-arylation of f-
keto esters, using other electron-rich arenes as the
nucleophiles, such as 1,3,5-trimethoxybenzene and phenols
(see Scheme 8).” In this case, oxygen gas was employed as the

Scheme 8. f’-Arylation of fi-Keto Esters Using Electron-
Rich Arenes
0 0
:)H/U\OR . @_EDG Pd cat. (10 mol %)
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O, balloon EDG
(150 mol %) (100 mol %)
[o] jo]\ [o] jo]\ [o] ij)\ o 0o
" “OMe " SOEt Q" Y “Me Me OEt
OMe
MeO Me OH
OMe OH Mé  OH Me
w/ Pd(OAc), w/ Pd(TFA), w/ Pd(TFA), w/ Pd(TFA),
(PhO),P(O)(OH) cat. 72% yield 68% yield 68% yield
80% yield trans:cis > 20:1 trans:cis > 20:1
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terminal oxidant. The addition of electron-rich arenes was also
found to accelerate the a,f’-desaturation process, which is
consistent with the prior observation in the indole-mediated
reactions.””*

Besides electron-rich arenes, arylboronic acids were later
found to be compatible nucleophiles for -functionalization. In
2017, Li and co-workers reported a Pd-catalyzed f-arylation of
simple ketones using IBX as the oxidant (see Scheme 9).%
Control experiments showed that the ketone desaturation was

Scheme 9. Pd-Catalyzed #-Arylation of Ketones Using
Arylboronic Acids

1
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solely mediated by IBX, while the Pd complex only catalyzed
the conjugate addition of arylboronic acids to the enone
intermediates. Generation of the overoxidation side products,
i.e,, arylated enones, was minimized by adding trifluoroacetic
acid as the proton source, which promoted protonation of the
P-arylated Pd-enolate, thus minimizing the competing f-
hydrogen elimination. Cyclohexanones worked the best in this
reaction, and a wide range of functional groups on the aryl ring
were tolerated. Other cyclic and linear ketones were also viable
substrates, albeit in diminished yields.

In 2019, Kim and co-workers reported the synthesis of
flavanones from the Pd-catalyzed f-arylation of chromanones
with arylboronic acids (see Scheme 10).** While both a,f-

Scheme 10. Pd-Catalyzed f-Arylation of Chromanones
Using Arylboronic Acids

Pd(TFA), (15 mol %)
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desaturation and conjugate addition steps were catalyzed by
Pd, addition of arylboronic acids in a sequential fashion after
completion of the a,f-desaturation process was crucial for
better yields and minimal overoxidation (generating flavone).
Trifluoroacetic acid was also found beneficial for suppressing
overoxidation. Some sensitive functional groups were tolerated,
including aryl bromides, silanes, and free phenols. Natural
flavanones such as pinocembrin and pinostrobin were obtained
after deprotection of the f-arylated products.

In addition to using soft nucleophiles, Newhouse and co-
workers in 2017 disclosed a general and practical p-
functionalization method that allows for a broadened scope
of nucleophiles to be coupled (see Scheme 11).*> The new
protocol was capitalized on the allyl-Pd-catalyzed ketone
desaturation, followed by the addition of organocuprate
reagents, which enabled p-arylation, alkenylation, alkylation,
and acylation of ketones. Benefitting from the robustness of
their a,f-desaturation methods,'® various cyclic ketones with
complex fused- and bridged-ring structures were successfully
coupled, and decent diastereoselectivity was observed in most
cases. It is noteworthy that a,f-vicinal difunctionalization of
ketones could also be achieved when electrophiles other than
proton were used to quench the enolate generated after the
organocuprate conjugfte addition.

Besides palladium,”® copper catalysis has also been found
effective to merge conjugate addition and a,f-desaturation of
ketones. In 2016, Su and co-workers developed an efficient
Cu/TEMPO system that allows for direct f-functionalization
of linear ketones by merging a,f-desaturation with the addition
of soft nucleophiles (see Scheme 12a).”** In this reaction,
copper catalyzed both the ketone desaturation and the
conjugate addition steps. One merit of this catalytic system
is that overoxidation side products were only observed in a
trace amount. A wide range of nucleophiles, including amines,

https://dx.doi.org/10.1021/acscatal.0c01519
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Scheme 11. Telescoped Ketone Desaturation and Conjugate
Addition with Organocuprates
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amides, alcohols, and 1,3-dicarbonyl compounds, could be
employed. Beyond propiophenone, other linear ketones with
P-substituents and dialkyl ketones were also viable substrates.

Given that the Cu-catalyzed o,f-desaturation of ketones
using TEMPO as the oxidant was unprecedented, the authors
performed detailed mechanistic studies to understand the
reaction mechanism.”” 3-Phenylpropiophenone was found to
be a superior substrate that undergoes a,f-desaturation under
the standard conditions (without a nucleophile) in an excellent
yield, giving 2,2,6,6-tetramethylpiperidine as a byproduct (see
Scheme 12b). In addition, the involvement of ketone a-radical
species was supported by a radical clock experiment, and its
combination with TEMPO could generate a TEMPO-bound
ketone (9) that was found to be a reaction intermediate.
Consequently, a novel catalytic cycle was proposed (see
Scheme 12c¢). The reaction starts with forming Cu(II)-enolate
10 from the Cu(Il) salt and ketone, which is likely the rate-
determining step, because of the first-order kinetic dependence
on both the ketone substrate and the copper catalyst but zero
order on TEMPO. In addition, a significant primary kinetic
isotope effect was observed for the a-deuterated ketone, but
not for the f-deuterated one. The subsequent step involves
homolytic cleavage of the C—Cu bond to deliver the Cu(I) salt
and an a-radical species 11, which further recombines with
TEMPO to deliver intermediate 9. It was proposed that the
following f-elimination step is assisted by another molecule of
TEMPO, which delivers enone and TEMPOH that can further
oxidize Cu(I) to Cu(Il).

In the same year, Guo, Fang, and co-workers reported a
similar Cu/TEMPO system that catalyzed a,f-desaturation of
propiophenones, followed by conjugate addition of indoles
(see Scheme 13a).”® Later, Su and Goossen developed a f3-
arylation and alkenylation of ketones through Cu/Rh
cooperative catalysis (see Scheme 13b).”” While the Cu/
TEMPO system was still responsible for the a,f-desaturation,
the aryl nucleophile in the conjugate addition step was
generated via a Rh-catalyzed carboxyl-directed C(sp*)—H
activation. Notably, while the C(sp?)—H activation process can
also be catalyzed by palladium or other rhodium complexes
instead of [Rh(cod)Cl],, these catalyst systems predominantly

Scheme 12. Cu-Catalyzed a,f-Desaturation and f-
Functionalization of Ketones Using TEMPO Oxidant
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(b) Direct Cu-catalyzed desaturation of 3-phenylpropiophenone with TEMPO oxidant
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Scheme 13. Cu-Catalyzed f-Arylation and Alkenylation of
Ketones

(a) Cu-catalyzed B-arylation of ketones with indoles

Cu(OAc), (10 mol %)
TMEDA (10 mol %)

o) (¢}
A\ TEMPO (100 mol %)
Me + V> Ph
Ph u p-Xylene \

120 °C, Ar NH
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(b) Cu/Rh-cocatalyzed B-arylation or alkenylation of ketones with carboxylic acids

Cu(OAc); (20 mol %)
CO,H [Rh(cod)Cl]; (3 mol %)
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RJ\/ S

CsF (10 mol %)
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gave an interesting oxa-Michael addition product due to
overoxidation of the ketone.

Besides transition metals, amines can also be efficient
catalysts for direct M-functionalization of aldehydes and
ketones with soft nucleophiles. Through condensation of
amines with aldehydes and ketones, the electron-rich enamine
intermediates can undergo subsequent oxidation to realize a,f-
desaturation.">*** Moreover, the resulting iminium ion is also
an activated electrophile, which could directly react with
various soft nucleophiles to enable S-functionalization, and the
enantioselectivity could be controlled by using chiral amine
catalysts (see Scheme 14). Based on this idea, several

Scheme 14. Enamine Catalysis for Asymmetric -
Functionalization of Aldehydes and Ketones
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innovative methods on asymmetric f-alkylation of aldehydes
were developed by Wang and Li,** and Hayashi*' using an L-
proline-derived chiral amine catalyst (12). Later, Luo and co-
workers employed a powerful chiral primary amine catalyst
(13) to achieve asymmetric ﬂ C—C and C—N forming
reactions of ketone substrates.*” Among these works, IBX
was used as the oxidant in Wang/Li and Luo’s works and DDQ_
was employed as the oxidant in Hayashi’s study. Notably, Xu
and co-workers reported a dual catalytic system with both
palladium and chiral amine 12, which features the use of O, as
the terminal oxidant (see Scheme 15).*’ Dialkyl malonates
were used as effective nucleophiles, and various fB-arylpropio-
naldehydes were alkylated in excellent enantioselectivity.

IV. MIGRATORY COUPLING

The migratory coupling strategy renders a redox-neutral
coupling between aryl halides and linear esters at their f-
positions. Interestingly, such reactivity arose from an accidental
discovery. In 2002, during the study of the Pd-catalyzed a-
arylation of esters using aryl bromides, Hartwig and co-workers
observed the formation of a f-arylated ester as a side product
).** When methyl isobutyrate

in one example (see Scheme 16a).
reacted with 2-bromothiophene, the a@- and p-arylation
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Scheme 15. Pd/Enamine Dual Catalysis for Asymmetric f-
Functionalization of Aldehydes
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Scheme 16. Pd-Catalyzed f-Arylation of Esters via
Migratory Coupling

(a) Initial discovery of Pd-Catalyzed B-arylation of esters
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products were obtained in a 2:1 ratio. The authors reasoned
that the unforeseen f-arylation product was formed through
isomerization of the hindered Pd enolate to the less-hindered
homoenolate via a sequence of f-hydrogen elimination,
reinsertion, and reductive elimination.

Later, this new pathway toward M-functionalization was
systematically studied and ultimately promoted to a practical
level by Baudoin, Clot, and co-workers. In 2010, they
developed a selective f-arylation of esters through careful
optimization of the catalytic conditions.”> Both the ligand and
the structure of the aryl halide were found to have profound
influence on the f/a selectivity, as DavePhos was superior for
P-selectivity, and among the three fluorinated phenyl bromides,
only the ortho-substituted one led to exclusive p-arylation
(Scheme 16b). This structural dependence was further
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supported during the following substrate scope study (Scheme
16¢).* Satisfactory f-selectivity was mostly obtained with aryl
bromides containing an electronegative group at the ortho
position. While the ortho-methyl substituent gave poor
reactivity and selectivity, 3,4,5-trifluorophenyl bromide still
offered high p-selectivity. Moderate enantioselectivity was
achieved using chiral ligand 14, which is structurally similar to
DavePhos (Scheme 16d). The deuterium labeling experiment
showed that, when the ester with fully deuterated B-positions
was subjected to the reaction conditions, complete deuterium
transfer to the a-position of the product was detected (see
Scheme 17a).

Scheme 17. Mechanism of the f-Arylation of Esters via
Migratory Coupling
(a) Deuterium transfer experiment

Pd,(dba)s (5 mol %) ¢l pp
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(b) Proposed catalytic cycle
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To gain deeper understanding of the reaction mechanism
and how the selectivity was affected by different factors, the
same team further performed DFT studies.*** Consistent
with the deuterium-labeling and computational results, the
proposed catalytic cycle starts with oxidative addition of Pd(0)
with the aryl bromide, followed by transmetalation to give an
aryl Pd-enolate (Scheme 17b). The direct reductive elimi-
nation of the aryl and enolate groups would lead to a-arylation;
however, if a competing f-hydrogen elimination occurs, after
olefin 7z-bond rotation and reinsertion into the Pd—H bond, a
Pd-homoenolate species would be generated, which delivers
the pf-arylated product upon reductive elimination. The
possible olefin dissociation was calculated to possess a higher
activation barrier than olefin rotation, which represented a
nondissociative mechanism,*” and was in agreement with the
experimental observation that the a,f-unsaturated ester was
seldom found as a side product. Alternatively, olefin insertion
into the Pd—Ar bond could be another potential pathway, but
was found kinetically less favorable than Pd—H migration. The
rate-determining step was the Pd-enolate-to-homoenolate
isomerization process. Compared with the P-arylation, the
competing a-arylation pathway was both kinetically and
thermodynamically unfavorable using a-disubstituted esters
and DavePhos, with reductive elimination being the rate-
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determining step. Therefore, any factors that strengthens the
Pd—Ar bond (e.g., 2 more-electron-deficient aryl group) would
disfavor the a-arylation pathway by increasing the energy
barrier for the reductive elimination from the Pd-enolate, but
the f-arylation pathway is less affected by the strength of the
Pd—Ar bond. Finally, the higher reactivity of the DavePhos
ligand could be attributed to its proper steric bulkiness and the
stabilizing interaction between its biaryl backbone and
palladium, which rendered easier generation of an active
vacant site during transfer of the enolate ligand, as well as a
lower overall energy barrier for the f-arylation pathway.
Notably, the f/a selectivity was not always affected by the
electronic property of the aryl halides. Baudoin and co-workers
later discovered that @-aminoesters were superior substrates for
the highly -selective arylation reaction (see Scheme 18a)."" In

Scheme 18. Pd-Catalyzed f-Arylation of a-Aminoesters

(a) Pd-catalyzed B-arylation of a-aminoesters
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this case, the f-selectivity was not sensitive to the structure and
electronic properties of the aryl group, as a wide range of aryl
bromides could be coupled, including electron-rich ones. The
benzyl protecting group on the amine can be removed under
hydrogenation conditions (see Scheme 18b), giving free f-
arylated a@-aminoesters that are widely found in natural
products and drug molecules. It is noteworthy that, attributed
to the nondissociative mechanism, a long-range (y to ¢)
arylation of a-aminoesters was also reported using substrates
bearing longer chains. The arylation preferentially occurred at
the terminal carbon after multiple Pd migrations, although the
yield usually decreased after each migration.

The same team further managed to expand the functional
group tolerance by avoiding strong bases. To tackle this issue,
they employed silyl ketene acetals as the substrate, which
renders Pd-enolate formation simply using zinc fluoride as the
activator (see Scheme 19).*’ Indeed, more sensitive sub-
stituents on the aryl ring were tolerated, including cyano, nitro,
and acetoxy groups, as well as methyl ketones and aryl triflates.
This protocol is applicable not only to a-amino and a-methyl
esters, but also to a-siloxy esters, which further enables the
synthesis of benzo-fused o-lactones through coupling a 2-

cyanoaryl group.
V. REDOX CASCADE

In many C—C forming conjugate addition reactions, the
organometallic nucleophiles employed, such as organoboron
reagents and organocuprate reagents, are typically generated
via reduction of the corresponding organohalides in one or two
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Scheme 19. Pd-Catalyzed f-Arylation of Silyl Ketene Acetals
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steps. Given that @,f-desaturation is an oxidation process, it
would be attractive to merge the generation of organometallic
nucleophiles and a,f-desaturation through a catalytic redox
cascade (see Scheme 20). Consequently, the direct coupling of
saturated carbonyl compounds with organohalides would
provide a redox-neutral approach for the desaturation-
promoted f-functionalization.

Scheme 20. Redox-Neutral Direct f-Functionalization of
Carbonyl Compounds
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Based on this hypothesis, in 2013, Huang and Dong
proposed a Pd-catalyzed redox cascade strategy for the direct
P-arylation of ketones with aryl halides (see Scheme 21).% It

Scheme 21. Pd-Catalyzed Redox Cascade Strategy for f-
Arylation of Ketones
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starts with a Pd-mediated ketone desaturation involving
formation of the Pd-enolate, f-hydrogen elimination, and
Pd(0) formation. The subsequent oxidative addition with aryl
halides, followed by conjugate addition (or migratory
insertion) of the resulting aryl-Pd species to the enone
intermediate, introduces the f-aryl substituent. Finally,
protonation of the new Pd-enolate delivers the product and
regenerates the Pd(II) catalyst. In this catalytic cycle, the aryl
halide serves not only as the carbon source for the C—C bond
forming event, but also as the oxidant for the a,f-desaturation;
thus, the overall transformation is redox-neutral. Since several
side reactions are possible, such as overoxidation, a-arylation,
and aryl dimerization, it is crucial to balance the reaction rates
of all the steps involved.

The Pd-catalyzed f-arylation of simple ketones with aryl
iodides was found to be general (see Scheme 22).°%°'

Scheme 22. f-Arylation of Ketones via the Pd-Catalyzed
Redox Cascade
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Triisopropylphosphine was a superior ligand for this trans-
formation, and a weakly acidic environment using HFIP was
essential to suppress overoxidation and disfavor a-arylation.
The Pd-enolate formation step benefitted from a relatively
electrophilic Pd center bearing trifluoroacetate (TFA) ligands,
and silver trifluoroacetate served as an iodide scavenger to help
regenerate the active Pd catalyst. Attributed to the mild
reaction conditions, a variety of functional groups, especially
base-sensitive ones, were well-tolerated. Other cyclic and linear
ketones beyond cyclohexanones could also be smoothly
arylated. It should be noted that, during one control
experiment of the aforementioned f’-arylation of f-keto esters
with electron-rich arene nucleophiles, Pihko and co-workers
also observed the S-arylation product using iodobenzene.’”

Recently, Dong and co-workers extended this strategy to the
direct B-alkenylation of ketones using readily available alkenyl
bromides and triflates (see Scheme 23).”* Because of the lower
stability of alkenyl electrophiles, it became more crucial to
balance the reaction rates among the different steps involved.
This led them to discover an effective additive—potassium
hydrogen phthalate (KHPhth)—which likely promoted both
ketone desaturation and protonation of the alkenylated Pd-
enolate. Some reactive functional groups were tolerated, such
as aryl bromides, boronic esters, and acidic hydrogens. Both
linear and cyclic alkenyl bromides were viable substrates.
Further transformations of the alkene functionality allowed
access to various f-functionalized products, such as formal f-
aldol reaction and f-alkylation of ketones.

While these reactions were effective, the use of stoichio-
metric silver salt under the original reaction conditions not
only was less economical, but also complicated the reaction
mechanism, since Ag(I) is known to be capable of oxidizing
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Scheme 23. f-Alkenylation of Ketones via the Pd-Catalyzed
Redox Cascade
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Pd(0) to Pd(I). To enable a f-arylation method free of
stoichiometric heavy metals, in 2015, the Dong group
developed a complementary catalytic system using dlary
liodonium salts as the coupling partner (see Scheme 24a).”*

Scheme 24. Pd-Catalyzed f-Arylation of Ketones Using
Diaryliodonium Salts

(a) B-Arylation of ketones using diaryliodonium salts
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The use of mesitylaryliodonium salts as the aryl source was
beneficial because they generate an inert byproduct,
iodomesitylene, that is sufficiently bulky to avoid interfering
with the main reaction. A trifluoroacetic acid/potassium
trifluoroacetate buffer was used to balance the acidity.
Interestingly, a new bis-sulfilimine ligand 16 was found
advantageous in this transformation, likely because of its
ability to stabilize the Pd nanoparticles that were proven to be
the active catalysts in this reaction. Good functional group
tolerance was also observed. In addition, a redox count based
on the reaction operated under N, atmosphere showed that
the total amount of ketone being oxidized (the p-arylation
product plus the enone intermediate) was consistent with the
total amount of the diaryliodonium salt being reduced, which
supports the redox-neutral nature of this strategy (see Scheme

24b).

The same team further expanded the carbonyl scope to less-
reactive lactams by employing a soft-enolization strategy (see
Scheme 25).°> A combination of dibutylboron triflate and

Scheme 25. f-Arylation of Lactams via Pd-Catalyzed Redox
Cascade
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diisopropylethylamine (DIPEA) enabled enolization of lactams
under mild reaction conditions, which promoted the a,f-
desaturation process.wb’21
lactams with an acyl protecting group instead of linear amides.
The substrate scope could be expanded to seven- and eight-
membered lactams. Notably, aryl bromides were well-tolerated,
which facilitated the synthesis of an antibacterial compound 18
after protecting group removal and a Cu-catalyzed chemo-
selective C—N coupling.

Although a two-step formal f-alkylation of ketones can be
realized (vide supra), it is more desirable to develop a general
and direct f-alkylation method using widely available alkyl
halides, which forms a C(sp*)—C(sp®) bond at the unactivated
carbonyl fB-position. However, compared with the f-arylation
and alkenylation reactions, it is more difficult to activate
C(sp®)—X bonds through the typical Pd(0)/Pd(II) catalytic
cycle. In 2018, a modified redox cascade strategy was reported
by Wang and Dong to enable a redox-neutral f-alkylation of
ketones with alkyl halides (see Scheme 26).°° The proposed

The reaction selectively occurred at

Scheme 26. Radical Redox Cascade Strategy for -
Alkylation of Ketones

i
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strategy also starts with a Pd(II)-mediated @,f-desaturation to
generate the enone intermediate and Pd(0). The Pd(0) species
could then trigger alkyl radical formation from alkyl halides
and form a Pd(I) intermediate.”’” Conjugate addition of the
alkyl radical and then trapping the resulting ketone a-radical
species with Pd(I) gives an alkylated Pd(II)-enolate, which,
upon protonation, delivers the f-alkylation product.

Instead of using Pd as the sole catalyst, a Cu co-catalyst, i.e.,
Cu(OPiv),, was found to be essential for enhanced reactivity;
as with Pd alone, the reductive debromination of alkyl
bromides was the dominant pathway (see Scheme 27a). It

Scheme 27. Pd/Cu Cooperative Catalysis for the -
Alkylation of Ketones and Aldehydes

(a) Cu cocatalyst in the p-alkylation of ketones
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was reasoned that, since the enone intermediate was only
generated in a catalytic amount from saturated ketones, it
became crucial to reversibly stabilize the free alkyl radical
species generated; otherwise, side reactions, e.g, C—H
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abstraction, would be predominant. Here, one role of the Cu
co-catalyst could be to stabilize the alkyl radical intermediate.
In addition, the amount of overoxidation products also
significantly decreased in the presence of Cu, indicating that
the second role of the copper co-catalyst was likely to inhibit
the undesired f-hydrogen elimination after conjugate addition
through formation of the corresponding Cu(II)-enolate.

The involvement of the radical intermediate was supported
by both the racemization and radical-clock experiments (see
Scheme 27b). Notably, regardless of the presence of Cu
(except for lower yields), both results were consistent with the
fact that Pd is responsible for the radical generation. The
reaction conditions avoided stoichiometric heavy metals (silver
free) and strong acids/bases; thus, a wide range of functional
groups were tolerated. The substrate scope was also broad:
linear and cyclic ketones, as well as a-branched aldehydes,
were all suitable substrates; both secondary and tertiary alkyl
bromides could be smoothly coupled (see Scheme 27c).

VI. CONCLUSION AND OUTLOOK

In summary, taking advantage of the a,f-desaturation process,
three distinct strategies for direct S-functionalization of
carbonyl compounds have been developed. These strategies
are classified based on how the f-substituent is installed. First,
the conjugate addition strategy directly combines a,f-
desaturation and nucleophilic 1,4-addition. Compared with
the conventional stepwise processes, this one-pot strategy not
only is step-economical, but also avoids handling reactive or
sensitive @,f-unsaturated intermediates. One drawback is that
stoichiometric oxidants are indispensable as stoichiometric
a,f-desaturated intermediates need to be formed with this
strategy. On the other hand, the migratory coupling strategy
permits a redox-neutral fS-arylation of esters using aryl halides
as the reagent. It holds a novel mechanistic pathway through
migration of the Pd from the a-position to the more remote -
position; thus, it has potential to realize enantioconvergent
transformations from a-substituted racemic esters. The current
development of this strategy is still in its early stages. It would
be more attractive if the substrate scope could be expanded
beyond a-branched esters and if the reaction scope could be
extended beyond arylation. Finally, the redox cascade strategy
is capitalized on reusing the Pd(0) species generated after a,f-
desaturation in a subsequent carbon—halogen bond activation,
in which the electrophile serves as both the oxidant and the
source for the f-substituents. Thus, the overall process is
redox-neutral. Both f-arylation and alkylation have been
realized, and the scope has been expanded beyond more
acidic ketones and aldehydes. The current limitation of the
redox cascade approach is the requirement of excess carbonyl
compounds to avoid overoxidation of the p-functionalized
product.

As an outlook of the a,f-desaturation-based f-functionaliza-
tion, there is still plenty of room to extend the scope of
carbonyl substrates, which could likely be enabled through
creating more efficient and mild ,f-desaturation methods. In
addition, it would certainly be appealing if more and diverse
enantioselective versions of these reactions could be developed
to allow controlling the absolute stereochemistry at the p-
position. Careful catalyst and ligand design would probably be
the key to address this challenge. Moreover, from the green
chemical process and atom-economy viewpoints, it could be
highly attractive to realize a byproduct-free S-functionalization
through direct coupling with olefins, alkynes, or other
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unsaturated 27 units. This is likely going to require a new
mode of activation or a new C—C bond-forming strategy.”®
Lastly, a,f-desaturation may bring new opportunities to
functionalize the y-position of carbonyl compounds through
further allylic activation.”® Overall, the a,f-desaturation-
promoted carbonyl functionalization is a relatively young
field with much potential. The future development is expected
to enrich the carbonyl chemistry and enable more general and
efficient methods for streamlined synthesis.
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