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ABSTRACT

This tutorial provides a review of the state-of-the-art research and
the applications of Artificial Intelligence and Machine Learning
for malware analysis. We will provide an overview, background
and results with respect to the three main malware analysis ap-
proaches: static malware analysis, dynamic malware analysis and
online malware analysis. Further, we will provide a simplified hands-
on tutorial of applying ML algorithm for dynamic malware analysis
in cloud IaaS.

CCS CONCEPTS

« Security and privacy — Malware and its mitigation; Intru-
sion detection systems; - Computing methodologies — Ma-
chine learning algorithms.
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1 INTRODUCTION AND MOTIVATION

The war between malware analysts and malware writers is an ev-
erlasting fight considering the growing complexity and innovative
techniques of evolving malware. Security analysts has been strug-
gling with the amount of malware introduced everyday. In the year
2019, around 948 government agencies, educational establishments
and health-care providers got hit with a barrage of ransomware
attacks at a potential cost of $7.5 billion [1]. We can anticipate
that such attacks on mission critical infrastructure will continue
to grow in coming years. This is largely due to the techniques like
polymorphic malware which is able to change and evolve while
preserving code semantics. In addition, malware writers try to com-
plicate the task of security analysts by using techniques such as
obfuscation, where binary and textual data is unreadable or hard
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to understand and packing, where a malware is modified using a
run-time compression (or encryption) program.

As such, the need for automated ways to counter such a vast
amount of newly developed malware has become necessary. In par-
ticular, current research has dominantly focused on the application
of Artificial Intelligence (AI) and Machine Learning(ML) techniques
for malware detection largely because of their ability to keep pace
with malware evolution. This tutorial provides a description of the
state-of-the-art approaches in a traditional AI/ML assisted malware
detection workflow in cloud Iaa$, including malware samples gath-
ering from the cloud testbed, feature identification and collection,
and AI/ML models training.

2 TUTORIAL DESCRIPTION
2.1 Outline

Overview and Categorization of AI/ML based Malware De-
tection: We will begin our tutorial with an overview of the ap-
plication of AI/ML for malware detection in cloud Iaa$, including
it’s benefits and motivation. We then provide an overview of the
broad categories of AI/ML assisted malware detection approaches,
mainly static, dynamic and online with respect to their usage, aims,
advantages and disadvantages.

Malware Sample Gathering and Feature Identification: In
order to combat malware-based attacks, security researchers need
to have a databank of executable and workable malware sam-
ples to conduct the experimentation work necessary. As such, we
will discuss how security researchers, to prevent and detect these
malware-based attacks, retrieve malware samples from the “wild”
In samples gathering, we will discuss ways of acquiring malware
executable including honeypots (active and passive) and malware
public databases such as VirusTotal! and VirusShare?. In system
features identification, we will discuss commonly used static fea-
tures like binary n-grams, Control Flow Graphs (CFGs) and static
API calls, along with behavioral features like performance metrics,
memory information, and system calls. For the data collection, we
will discuss the usage of isolated environments such as sandboxes
(e.g., Cuckoo Sandbox) and online virtual machines (VMs) in cloud.
We will also discuss the limitations of using isolated environments
(referred to as dynamic) and other alternatives including the use of
a live testbed for real-world use cases simulation. Further, we will
discuss host-based and network-based collecting agents as well as
virtual machine introspection.

State-of-the-Art AI/ML assisted Malware Detection Tech-
niques: We will start with file classification techniques including
static and dynamic analysis. In static analysis, we will discuss three

!https://developers.virustotal.com/reference#public-vs-private-api
Zhttps://virusshare.com/
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major classes of features including: Binary N-grams [2-5], Control
Flow Graphs (CFGs) [6—-8] and Static features/Disassembling [9, 10].
Although static analysis techniques are efficient, most recent mal-
ware are sophisticated and has polymorphic nature, which hin-
der the effectiveness of static analysis. To overcome this, we will
also discuss AI/ML based dynamic analysis techniques, which fo-
cus on behavioural aspects of malware. To that end, we will dis-
cuss various tools needed to monitor system processes, filesystem
and registry changes and network activity. We will provide a use
case that focuses on running executables in a controlled environ-
ment and observing their behavior, where system/API calls [11-
15] are mainly used. In addition, we will discuss online detection
approaches, which will help understand the need and ability to
continuously monitor the entire cloud IaaS system for detecting the
presence of malicious activities. This includes approaches that rely
on different features which are more dynamic and time dependent
such as performance metrics [16-21], memory features [22, 23] or
run-time system/API calls [24-26].

2.2 Live Demo

We will do a live demo that will be part of the tutorial and include
training a machine learning model for malware detection. This
particular model will focus on dynamic analysis by extracting be-
havioral features from malware analysis reports generated using
Cuckoo sandbox. The demo will go through the steps of gathering
malware samples, using Cuckoo sandbox to generate the reports,
parsing the reports to acquire the data needed, and finally, pre-
processing and training the ML model.

2.3 Target Audience

This tutorial aims to target and spark the interest of computer
science audience at the introductory and intermediate levels. This
includes students, faculty, industry representatives and researchers
who are interested in the intersection of malware analysis and
AI/ML. In addition, this will encourage cybersecurity professionals
who are interested in expanding their skill set by including the
application of AI/ML, and help towards producing next generation
of cyber warriors.

2.4 Learning Outcomes

After attending this tutorial session, we expect the attendees will
be able to:

e Explain the importance and need for AI/ML skill set for
malware analysis.

e Understand the broad spectrum of AI/ML based malware
detection approaches and their categorization.

e Describe the overall common steps required for researchers
and professionals to develop AI/ML assisted malware detec-
tion techniques.

e Understand and deploy various data collection and feature
identification techniques for malware analysis.

e Use Cuckoo sandbox to generate dynamic analysis reports.

e Train simple ML model for malware detection using behav-
ioral malware data.
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