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ABSTRACT

This tutorial provides a review of the state-of-the-art research and

the applications of Artificial Intelligence and Machine Learning

for malware analysis. We will provide an overview, background

and results with respect to the three main malware analysis ap-

proaches: static malware analysis, dynamic malware analysis and

onlinemalware analysis. Further, wewill provide a simplified hands-

on tutorial of applying ML algorithm for dynamic malware analysis

in cloud IaaS.

CCS CONCEPTS

• Security and privacy → Malware and its mitigation; Intru-

sion detection systems; • Computing methodologies → Ma-

chine learning algorithms.
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1 INTRODUCTION AND MOTIVATION

The war between malware analysts and malware writers is an ev-

erlasting fight considering the growing complexity and innovative

techniques of evolving malware. Security analysts has been strug-

gling with the amount of malware introduced everyday. In the year

2019, around 948 government agencies, educational establishments

and health-care providers got hit with a barrage of ransomware

attacks at a potential cost of $7.5 billion [1]. We can anticipate

that such attacks on mission critical infrastructure will continue

to grow in coming years. This is largely due to the techniques like

polymorphic malware which is able to change and evolve while

preserving code semantics. In addition, malware writers try to com-

plicate the task of security analysts by using techniques such as

obfuscation, where binary and textual data is unreadable or hard
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to understand and packing, where a malware is modified using a

run-time compression (or encryption) program.

As such, the need for automated ways to counter such a vast

amount of newly developed malware has become necessary. In par-

ticular, current research has dominantly focused on the application

of Artificial Intelligence (AI) and Machine Learning(ML) techniques

for malware detection largely because of their ability to keep pace

with malware evolution. This tutorial provides a description of the

state-of-the-art approaches in a traditional AI/ML assisted malware

detection workflow in cloud IaaS, including malware samples gath-

ering from the cloud testbed, feature identification and collection,

and AI/ML models training.

2 TUTORIAL DESCRIPTION

2.1 Outline

Overview and Categorization of AI/ML based Malware De-

tection: We will begin our tutorial with an overview of the ap-

plication of AI/ML for malware detection in cloud IaaS, including

it’s benefits and motivation. We then provide an overview of the

broad categories of AI/ML assisted malware detection approaches,

mainly static, dynamic and online with respect to their usage, aims,

advantages and disadvantages.

Malware Sample Gathering and Feature Identification: In

order to combat malware-based attacks, security researchers need

to have a databank of executable and workable malware sam-

ples to conduct the experimentation work necessary. As such, we

will discuss how security researchers, to prevent and detect these

malware-based attacks, retrieve malware samples from the łwild.ž

In samples gathering, we will discuss ways of acquiring malware

executable including honeypots (active and passive) and malware

public databases such as VirusTotal1 and VirusShare2. In system

features identification, we will discuss commonly used static fea-

tures like binary n-grams, Control Flow Graphs (CFGs) and static

API calls, along with behavioral features like performance metrics,

memory information, and system calls. For the data collection, we

will discuss the usage of isolated environments such as sandboxes

(e.g., Cuckoo Sandbox) and online virtual machines (VMs) in cloud.

We will also discuss the limitations of using isolated environments

(referred to as dynamic) and other alternatives including the use of

a live testbed for real-world use cases simulation. Further, we will

discuss host-based and network-based collecting agents as well as

virtual machine introspection.

State-of-the-Art AI/ML assisted Malware Detection Tech-

niques:We will start with file classification techniques including

static and dynamic analysis. In static analysis, we will discuss three

1https://developers.virustotal.com/reference#public-vs-private-api
2https://virusshare.com/
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