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Abstract
The paleomagnetic shipboard data of International Ocean Dis-

covery Program Site U1475, with a record reaching back to approx-
imately 7 Ma, allowed for the identification of major magnetic
polarity chrons and subchrons back to ~3.5 Ma. However, the natu-
ral remanent magnetization (NRM) was very weak, and transitional
intervals with unclear polarity were as thick as several meters. The
midpoints of these transitional intervals were reported in the
shipboard results without decimal places because of the poor data
quality. To evaluate and possibly refine the shipboard magneto-
stratigraphy, subsampling was performed across the polarity transi-
tions. Detailed alternating field (AF) demagnetization experiments
were conducted on these discrete samples and were complemented
by anhysteretic remanent magnetization acquisition measurements
and subsequent demagnetization. AF demagnetization data of
NRM were analyzed using anchored principal component analysis
(PCA) to obtain the characteristic remanent magnetization. These
PCA results generally confirm the smoothed signal across polarity
transitions at Site U1475. However, the midpoint depths of the top
of the Keana Subchron, the Gauss-Matuyama and Matuyama-Brun-
hes boundaries, and the base of the Olduvai Subchron were ad-
justed.

Introduction
Sediment cores from International Ocean Discovery Program

(IODP) Expedition 361 Site U1475 (41°25.61′S, 25°15.64′E; 2669 m
water depth) located at the Agulhas Plateau provide a continuous
sedimentary record of the past approximately 7 My (see the Site

U1475 chapter [Hall et al., 2017]). These carbonate-rich sediments
have a low concentration of magnetic minerals and therefore a weak
paleomagnetic signal. Although we could identify major paleo-
magnetic chrons and subchrons, the precise position of their
boundaries was difficult to determine because changes in inclina-
tions were stretched over 1–2 m and sometimes up to 5 m (Figure
F1). Such thick intervals and assumed sedimentation rates of ~3
cm/ky (see the Site U1475 chapter [Hall et al., 2017]) would corre-
spond to a duration of 30–60 ky, whereas observed reversal pro-
cesses are generally much faster in other archives. In particular, for
the Matuyama–Brunhes transition, durations between a few centu-
ries (e.g., Just et al., 2019; Macrì et al., 2018; Sagnotti et al., 2016)
and 5–10 ky (e.g., Channell, 2017; Valet and Fournier, 2016; Xuan et
al., 2016) have been observed. The polarity transition at the base of
Jaramillo Subchron was recently found to have occurred within less
than 3 ky (Just et al., 2019).

Varying durations for the polarity transitions may result from
regional expressions of nondipole components of the Earth’s mag-
netic field (Leonhardt and Fabian, 2007); however, the apparently
very long durations at Site U1475 likely result from depositional,
compositional, or analytical effects. Virtually longer transitions
could be related to the recording process in the sediment, for exam-
ple, a low potential to record field changes when magnetic mineral
concentrations are low or when the Earth magnetic field dipole
component is weak (e.g., Valet and Fournier, 2016). Moreover, a
deep lock-in zone (Shcherbakov and Shcherbakova, 1987) in combi-
nation with low sedimentation rates would result in an averaged re-
corded paleomagnetic signal within the sample volume (e.g.,
Roberts et al., 2013; Valet and Fournier, 2016). Smoothed transitions
could also result from magnetic overprint imparted by the Earth’s
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Figure F1. Characteristic remanent magnetization (ChRM) inclinations of discrete samples across magnetic polarity zone boundaries compared with shipboard 
inclination data. Polarity is based on shipboard (left) and discrete sample (right) data. Black (white) stands for normal (reversed) polarity, and transitional 
phases are indicated by hatched pattern. Inner left column shows shipboard individual measurements (dots) with a 5-point running average (line). Inner right 
column shows discrete sample ChRM inclinations with maximum angular deviations (MADs) <15° in black, joined by a line. PCA inclinations with MADs >15° 
are shown as gray crosses. Arrows point toward the midpoint depths of the two data sets. CCSF = core composite depth below seafloor.
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magnetic field or from the coring process (Richter et al., 2007). Core
halves were subjected to a soft alternating field (AF) demagnetiza-
tion treatment (25 mT) on board to minimize the latter overprinting 
effects. Smoothing could also be related to the response curve of the 
magnetometer, resulting in averaging of data across 20 cm of the 
sediment core (Richter et al., 2007), but this cannot account for the 
smearing of directions across meter scales.

To evaluate whether all viscous and coring overprints were re-
moved by the shipboard AF treatment and to refine the shipboard 
magnetostratigraphy, discrete samples from the working halves 
were taken across polarity zone boundaries and subjected to de-
tailed AF demagnetization experiments. These data were then ana-
lyzed by principal component analysis (PCA) (Kirschvink, 1980),
and the characteristic remanent magnetization (ChRM) was calcu-
lated for each sample.

Materials and methods
In total, 269 discrete 8 cm3 cube samples were collected from 

working halves of the spliced core composite. Sampling focused on 
the Gauss–Matuyama and Matuyama–Brunhes polarity transitions,
as well as on the base and top of the Mammoth, Keana, Olduvai, and 
Jaramillo Subchrons, which were identified in the shipboard mag-
netic data (see the Site U1475 chapter [Hall et al., 2017]). Cube 
samples were measured using a 2G cryogenic superconducting rock 
magnetometer at the University of Bremen (Germany). The natural 
remanent magnetization (NRM) was demagnetized using 12 AF 
steps between 5 and 100 mT peak fields. Afterward, an anhysteretic 
remanent magnetization (ARM) was imparted using a 100 mT AF 
and a 50 μT bias field, and the samples were subsequently demagne-
tized using the same 12 AF steps. PCA of NRM demagnetization 
data was performed using Puffinplot software (Lurcock and Wilson, 
2012) to compute the ChRM. Because the demagnetization data of 
some samples cluster at stable components (cf. Figure F2C), per-
forming PCA without using the origin as an anchoring point would 
result in random directions. We therefore chose the PCA anchored 
to the origin for the analyses. The number of steps included was 
adapted to data quality of individual samples and varies between 
four and six steps. The maximum angular deviation (MAD) of the 
PCA inclinations provides further quality control of the computed 
directional data. Because data were not corrected for core orienta-
tions, we present here only the inclination.

Results
Magnetic intensities of NRM (see U1457NRM.xlsx in Supple-

mentary material) are on the order of 10−1 to 10−2 mA/m, which is 
only a factor of 10–100 higher than the sample handler magnetiza-
tion. Consequently, demagnetization diagrams are of mixed 
quality and are noisy for low-intensity samples. Nevertheless, even 
some of the weak samples show clustering inclinations for 
successive demagnetization steps so that ChRM with acceptable 
MAD values <15° have been computed (Figure F2) using the an-
chored PCA approach. ARM varies between 1 and 10−1 mA/m (see 

U1475ARM.xlsx and U1475ARMdemag.xlsx in Supplementary 
material).

Figure F1 displays the shipboard split core inclination data next 
to the ChRM of discrete samples (see U1475ChRM.xlsx in Supple-
mentary material) and the inferred polarity from both data sets. 
Shipboard and refined polarity boundary midpoints are presented 
in Table T1. It should be noted that because of the noisy character 
of the data, the shipboard midpoint depths (see the Site U1475
chapter [Hall et al., 2017]) were reported in meters without decimal 
places.

Discrete samples with MAD values <15° are plotted in black and
connected by a line, and samples with MAD values >15° (poor qual-
ity) are indicated in gray. At the base of the Mammoth Subchron, 
the polarity transition in the shipboard data is reproduced by the 
discrete samples (midpoint depth = ~99 m), whereas at its top, 
subsampling was not sufficient to capture the transition. In the 
shipboard data, the transition is stretched over some meters. Addi-
tionally, the base of the Keana Subchron was not captured in the 
discrete sample measurements. At the top of the Keana Subchron, 
the polarity switch from reversed to normal polarity appears 
sharper than in the split core data (82.2–81.2 m) with a midpoint 
depth of 81.7 m. At the top of the Gauss Chron, the midpoint of the 
polarity boundary at ~64 m from the shipboard data is corrobo-
rated. For both the base of the Olduvai (~50 m) and the Jaramillo 
(~30 m) Subchrons, the ChRM parallels the change in the shipboard 
inclination. For the Olduvai Subchron, the transition appears to be 
narrower in the discrete samples (49.8–49.2 m) with a derived mid-
point depth of 49.5 m. The tops of Olduvai and Jaramillo Subchrons 
are inconclusive from the discrete samples. For the Matuyama–
Brunhes boundary, a change in inclination corresponds to the ship-
board data. The transitional interval was previously postulated be-
tween 20.8 and 17.8 m (see the Site U1475 chapter [Hall et al., 
2017]) (Figure F1). In light of the new discrete samples, it appears 
that the Matuyama–Brunhes transition only spans 21.2–20.5 m and 
has a corresponding midpoint depth of 20.8 m. However, the transi-
tional interval visible in the shipboard split core data is not wholly 
covered by the subsamples, which leaves some uncertainty.

Concluding remark
The new discrete sample demagnetization data set largely paral-

lels the shipboard data and supports the shipboard magnetostrati-
graphy. Some transitional zones appear thinner in the discrete 
sample data and lead to revised midpoint depths.
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Figure F2. Results of alternating field (AF) demagnetization for selected samples with different demagnetization behaviors. For each sample, four panels are 
shown: (1) intensity after incremental AF demagnetization; (2) intensity, inclination, and declination for each field step, as well as the field steps used for PCA 
(stars); (3) equal area projections; and (4) Zijderfeld diagrams for demagnetization data. For the latter, blue lines indicate the fitted PCA inclination and declina-
tions, which are also given in an inset together with the maximum angular deviation (MAD). A. Sample 361-U1475E-3H-3W, 142–144 cm, shows a clear demag-
netization path. B. Although data are noisy, characteristic directions with a MAD of 7° were obtained for Sample 361-U1475F-2H-2W, 54–56 cm. C. For Sample 
361-U1475E-4H-2W, 46–48 cm, data of individual field steps cluster and a ChRM direction with MAD <10° was computed. D. Sample 361-U1475B-10H-3W,108–
110 cm, shows consistent but changing directions upon demagnetization, indicating the stepwise removal of various overprints. Analyses and graphics were 
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