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ABsTrACT. We study the Borel complexity of sets of normal numbers in sev-
eral numeration systems. Taking a dynamical point of view, we offer a unified
treatment for continued fraction expansions and base r expansions, and their
various generalisations: generalised Liiroth series expansions and S-expansions.
In fact, we consider subshifts over a countable alphabet generated by all pos-
sible expansions of numbers in [0,1). Then normal numbers correspond to
generic points of shift-invariant measures. It turns out that for these subshifts
the set of generic points for a shift-invariant probability measure is precisely
at the third level of the Borel hierarchy (it is a Hg—complete set, meaning that
it is a countable intersection of F,-sets, but it is not possible to write it as a
countable union of Gs-sets). We also solve a problem of Sharkovsky—Sivak on
the Borel complexity of the basin of statistical attraction. The crucial dynam-
ical feature we need is a feeble form of specification. All expansions named
above generate subshifts with this property. Hence the sets of normal numbers
under consideration are Hg—complete.

1. INTRODUCTION

Roughly speaking, a numeration system assigns to each real number an ezpan-
sion. Here, an expansion is an infinite sequence of digits coming from some at most
countable set. A real number is normal in a numeration system if all asymptotic
frequencies of finite blocks of consecutive digits appearing in the expansion are
typical for the numerations systems. To put some more content into this vague
description recall that a real number £ is normal in base 2 if in its binary expansion
every block of digits of length k appears with asymptotic frequency 1/2*. It follows
that for every integer r > 2 the set of normal numbers in base 7 is a first category
set of full Lebesgue measure. Also, the normal numbers form a Borel set. As we
explain below, the same holds true for all numeration systems we consider. For
more on numeration systems, including different views on that theory see [?, 2, ?].

Knowing that the sets of normal numbers are Borel it is natural to gauge their
complexity using the descriptive hierarchy of Borel sets. In that hierarchy, the
simplest Borel sets are open ones and their complements (closed sets). On the next
level, there are countable intersections and countable unions of sets at the first
level. These are G5 and F, sets, and the third level is formed by taking countable
intersections and unions of sets at the second level. The procedure continues and
provides a stratification of the family of Borel sets into levels corresponding to
countable ordinals. It is known that for an uncountable Polish space these levels do
not collapse: at each level there appear new sets which do not occur at any lower
level of the hierarchy. Thus to every Borel set we can associate its complexity, that
is, the lowest level of the hierarchy at which the set is visible. On the other hand,
determining the position of “naturally arising” or “non-ad hoc” sets in the hierarchy
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is a challenging problem. Only a small number of concrete examples are known to
appear only above the third level.

A. Kechris asked in the 90’s whether the set of real numbers that are normal in
base two is an example of a Borel set properly located at the third level, which was
later confirmed by H. Ki and T. Linton in [?]. More precisely, Ki and Linton showed
that the set of numbers that are normal in an integer base > 2 is a IT3-complete
set, which means that this set is a countable intersection of F, sets and cannot be
represented as a countable union of Gs-sets. Since then many authors have studied
the Borel complexity of various sets related to normal numbers, and have extended
this result in various directions [?, 7, 2, ?].

Here we study analogous problems from the dynamical system perspective. It
allows us to obtain a vast generalization of the Ki and Linton result. As our primary
motivation are applications to numeration systems we restrict ourselves to symbolic
dynamical systems (subshifts for short) and we will address more dynamical aspects
of that theory in a forthcoming paper [?].

Before stating our main theorem, let us now briefly explain the connection be-
tween normal numbers and generic points for subshifts. If .27 is a finite or countable!
set, which we call the alphabet, then the full shift space over & is the pair (&%, 0)
where o/* is endowed with the product topology induced by the discrete topol-
ogy on 7, and o stands for the shift map, which is given for (z,)necw € % by
o(%)n = Tpt1- By a subshift of @/* (or over of) we mean a pair (X, o), where
X is a nonempty closed shift-invariant subset of &7, and o is the shift map re-
stricted to X. We also write &/™ for the set all of all blocks of length n over <,
that is, /™ stands for the set of all finite sequences w = wy ... w, with w; € &
for 1 < j <nandn € N. As we will explain later, the set of sequences of digits
which are expansions of real numbers defines a subshift for each of the numeration
systems we consider. Furthermore, normal numbers in these numerations systems
always correspond to generic points for some invariant measure of the associated
subshift. Recall that a Borel probability measure p on &/“ is shift-invariant if
w(A) = u(o=1(A)) for every Borel set A C &/“. We say a shift-invariant measure
4 is an invariant measure for a subshift X if X contains the support of p, that is,
w(X) = 1. An invariant measure pu is ergodic if for every Borel set A C o/“ the
condition o~1(A) = A implies u(A) € {0,1} (this is equivalent to saying that if
A C o7(A) then u(A) € {0,1}). We say that a finite block w € @™ appears in
x € &/ at the position £ € w if xp4,_1 = w; for each 1 <i < n. Let e(w,x, N) be
the number of times w appears in x at a position £ < N. Let X be a subshift over
o/ and p be an invariant measure. A point z € X is generic 2 for p if for every
finite block w € &7™ the set of positions at which w appears in = has the frequency
equal to the measure of the set of all sequences starting with w, that is, if

im {08 ),

N—o0 N

IWe call a set countable if it has the cardinality N, where Yo stands for the smallest infi-
nite cardinal. We need this extra generality to cover continued fractions expansions and some
generalised Liiroth series expansions.

2This definition differs from the usual definition of a generic point for Polish spaces (cf. [?, p.
1748]), but it is better adapted to the symbolic setting. The equivalence of these two definitions
is easy to see (c.f. Corollary 18.3.11 of [?]).
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where [w] = {z € &% : 2o = wy,...,2,—1 = wy}. By the shift-invariance of
the measure of [w] is equal to the p-probability of the occurrence of w at any fixed
position ¢ € w, that is,

ww])) =p({z € FY : zg =wi,..., 200n—1 = Wp}).

The ergodic theorem guarantees that for every shift-invariant ergodic measure p
the set of points generic for u, denoted G, has full measure (this is well-known
for compact spaces, for the proof of this fact in the generality considered here, see
[?, Lemma 2.2]). With this vocabulary the theorem of Ki and Linton becomes
the statement that setting X = {0,1,...,r — 1}*, the set of generic points for the
Bernoulli measure p (which is the product of the countable sequence of uniform
probability measures on o/ = {0,1,...,r — 1}) is a Hg—complete set. It is then
natural to ask for which subshifts (X,T") and measures p one can prove a similar
result about the Borel set G, C X. In particular, we would like to know if the same
result holds for other numeration systems than the classical base r-expansions. In
terms of the theory of dynamical systems, this amounts to asking for which subshifts
and invariant measures the Borel complexity of the set of generic points is a Hg—
complete set. Not surprisingly, we are not the first to pose this problem. When
the present paper was being finished we learned that in the context of dynamical
systems this question was first raised by A. Sharkovsky and his disciple A. Sivak
(see [?], which quotes [?] and [?] as the primary sources, unfortunately these papers
are not available in English). Sharkovsky and Sivak worked independently of the
normal numbers community and used a slightly different language (for example,
they called G,, the basin of attraction of 1). Sharkovsky and Sivak noted that G,
is always a Borel set lying at most at the third level of the hierarchy. It is also easy to
see that G, may be empty if i is not ergodic. Furthermore, there are easy examples
with G, lying at the lowest level of the Borel hierarchy. To see that consider the
unit circle X = R/Z, o € R\ Q, and let T act as x — z + o mod 1. Then for
every point € R/Z its forward T-orbit is the sequence {na + z mod 1 : n > 0},
so each orbit is uniformly distributed mod 1, which means that every point in the
circle is generic for the Lebesgue measure A on R/Z, so Gy = R/Z is a clopen set.
The same holds for Sturmian subshifts, which are symbolic dynamical models for
irrational rotations of the circle (see [?, p. 321]). Sharkovsky and Sivak asked if
their upper bound for the complexity of G, can be reached (see Problems 3 and 5
in [?]). As we noted above this asks for a Ki and Linton type result for dynamical
systems. ® Because of the examples where G, is below the third level we see
that some assumptions on the dynamical systems are required for such a result
to hold. It turns out that it suffices to assume that the system has some form of
the specification property. The original specification property was introduced by R.
Bowen in his paper on Axiom A diffeomorphisms [?]. The specification property
has played an important role in dynamics. We refer the reader to [?] for a discussion
of the specification property and its many variants as well as their significance in
dynamics. Our main result says that for a subshift (X, o) possessing a feeble form
of the specification property the set G, of generic points is Hg—complete for every

3Note that the equivalence between normal numbers and generic points for the Bernoulli mea-
sure implies that the Ki and Linton result answers Problem 5 from [?] in the positive, but does
not solve Problem 3 from that paper.
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o-invariant Borel probability measure p. We also demonstrate that the theorem
applies to many dynamical systems generating expansions of real numbers.

Thus the main theorem, which is to our best knowledge the first result of this
type for dynamical systems, contains also several previously obtained results on
complexity of sets of normal numbers, as well as many new ones. In particular,
we extend the Ki-Linton result to continued fraction expansions, S-expansions, and
generalized GLS* expansions (of which the tent map is a special case).

In addition we note that there are subshifts, which are not so closely connected
with numeration systems, but are interesting for the symbolic dynamics community,
where our methods apply. These include hereditary subshifts (see Section 4 [?] for
a more detailed overview).

In §2 we introduce basic definitions and notation, and mention the overall strat-
egy. We introduce in this section the weak form of the specification property we
require for our main result. In §3 we state and prove our main result. In §4 we
give a number of applications of the main result including to continued fractions,
[B-expansions, generalized GLS-expansions. The enumeration system corresponding
to the tent map is a special case of a generalized GLS expansion. This then answers
a question of Sharkovsky—-Sivak [?].

2. VOCABULARY /DEFINITIONS /NOTATION

Throughout this paper w = {0,1,2,...} and N = {1,2,3,...}. The cardinality

of a finite set A is denoted by |A|. We write d(A) for the upper asymptotic density
of a set A C w, that is,

- A 1,...,n—-1

d(A):hmsup|( 0{07 Y 7” })|

n— oo n

2.1. Borel hierarchy. We now recall some basic notions from descriptive set the-
ory which gauges the complexity of sets in Polish spaces. In any topological space
X, the collection of Borel sets B(X) is the smallest o-algebra containing all open
sets. Elements of B(X) are stratified into levels, introducing the Borel hierarchy
on B(X), by defining 3! to be the family of open sets, and TI{ = {X \ A: A € 20}
to be the family of closed sets. For a countable ordinal a@ < w; we let =% be the
collection of countable unions A = (J,, A,, where each A,, € Hgn for some ordinal
o, < . Wealso let TI = {X \ A: A € X0}, Alternatively, A € II0 if A=, 4,
where A,, € Zgn and o, < a for each n. We also set A? = X2 NI for each
countable ordinal o < wi, in particular A(l) is the collection of clopen subsets of X.
Note that 39 is the collection of F, sets, and IIJ is the collection of G sets. For
any topological space, B(X) =, ., »0 = Ua<w, IT2. It is easy to see that all of
the collections Ag, 23, Hg are pointclasses, that is, they are closed under inverse
images of continuous functions. Another basic fact is that for any uncountable Pol-
ish space X, there is no collapse in the levels of the Borel hierarchy, that is, all the
pointclasses A%, 3% TI°, for any ordinal o < wy, are distinct (for a proof, see [?]).
Thus, these levels of the Borel hierarchy can be used to calibrate the descriptive
complexity of a set. We say a set A C X is X0 (resp. II°) hard if A ¢ TIY (resp.
Ad¢ Eg). This says A is “no simpler” than a 23 set. We say A is Eg—complete if

4Note that GLS stands here for generalized Liroth series, that is, the notion of a generalized
GLS expansion is an extension of the GLS expansion, see [?] for more details.
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Aecx? \Hg, that is, A € 23 and A is X hard. This says A is exactly at the
complexity level 3°. Likewise, A is TI2-complete if A € TIY \ X2,

Let us now discuss our proofs. In order to determine the exact position of a set
A in the Borel hierarchy one must prove an upper bound, that is one must write
a condition defining A which shows that it appears at some level in the hierarchy,
and then show a lower bound, that is, show that A does not belong to any lower
level in the hierarchy. To establish a lower bound we use a technique known as
“Wadge reduction”. It is based on the observation that our hierarchy levels are all
pointclasses Thus, for example, a Borel set A is Eg—hard if there are a Polish space
Y, a Borel set C C Y which is known to be Eg—hard, and a continuous function
f:Y — X such that f~*(A) = C. The same holds for the II, classes. Although
the whole idea is plain and simple, the difficulty lies in the proper choice of the
model space Y and subset C, so that it becomes possible to write down a definition
of an appropriate continuous function.

2.2. Shift spaces. For a comprehensive introduction to symbolic dynamics we
refer to the book [?] by Lind and Marcus. For a shift space X C &/ and integer
n > 1, we write .Z,(X) C ™ for the set of n-blocks appearing in X, that is
w € Z,(X) if and only if there exists some x € X and ¢ € w such that zp1;—1 = w;
for all 1 < i < n. The length of a block w over & is the number of symbols in
w and it is denoted by |w|. We agree that o7 consists of a single element, called
the empty word, that is, o7° contains only the unique block over .27 of length 0.
By &/ <% we denote the set of all finite blocks over .« (including the empty word).
We let Z(X) =,,>; Zn(X) and call £ (X) the language of X. Note that .Z(X)
does not contain the empty word. For n > 1 and a block w € /™, by [w] we
denote the cylinder consisting of those x € &% with z; = w; for 1 < ¢ < n. If
X is a subshift and w € .Z,,(X), then we define [w]x = [w] N X. When there is
no ambiguity we drop the dependence on X in our notation and write just [w] for
[w]x. Henceforth, we enumerate all nonempty blocks in 7<% in such a way that
all blocks appear before their proper extensions. Any such enumeration induces
an analogous enumeration on Z(X) for every shift space X C &/“, that is we
can always write £ (X) = {wy,wa, ...} in such a way that if w; is a proper initial
segment of w;, then ¢ < j. In any such enumeration, we always have |w,| < n for
every n > 1. Note that the whole theory of shift spaces remains the same if instead
of &7%, we consider &7V.

2.3. Frequencies of subblocks. Recall that e(w,z,N) denotes the number of
times a block w € &/ <% appears in € &% at a position £ < N. Similarly, we write
€¢/(w, u) for the number of times w appears as a subblock of u. We agree that the
empty word never appears as a subblock of a finite block. We say that a finite block
u is (m, €)-good for a shift-invariant measure p if for every 1 < j < m the fraction
of positions at which w; appears as a subblock of u is e-close to the p-measure of
the cylinder of wj, that is, we have

¢ (wy, u)

(1) p(lw;]) —e < < m([w;]) +e forj=1,...,n.

|ul

(Recall that we have fixed an enumeration of all blocks in &7<“.) We say that a
sequence (uy,)nen of finite blocks u,, € & <% with |u,| — 0o as n — oo generates a
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shift-invariant measure p if for every w € & <% we have

e (w, uy)
lim ——————— = u([w]).
Equivalently, a sequence (u,)nen of elements of &/<“ generates a shift-invariant
measure p if for every m € N and € > 0 there is an ng such that u, is (m,e)-good
for p for every n > ng.
For x € &/“, N > 1, and w € &/* we clearly have

(2) e (w,zo,n)) < e(w,z, N) < e (w,zon) +F—1,

where r(g n) = woz1...xNn_1. It follows that x € &/ is a generic point for a
shift-invariant measure y if and only if the sequence (z[o ny)ven generates fu.
For further reference note that for every u, v, w € &/ <% the following holds

(3) e (w,v) < e'(w,u) + ' (w,v) < e'(w,uv) < ' (w,u) + € (w,v) + |w| — 1.

Definition 1. A sequence (uy,)nen of elements of & <% is

o dominating if the sequence (Jui|+- - -+|un|)/|un+1| converges monotonically
to 0 as n — oo,

o asymptotically stable for a shift-invariant measure p if for every € > 0 and
m € N there is N € N such that for every n > N there is some ¢’ < |u,| so
that ¢'/|u,—1| < € and for every ¢/ < ¢ < |u,| the restriction of u, to the
first ¢ letters is (m, €)-good for p.

Lemma 2. If a sequence (uy)nen of elements o/ <% is dominating and asymptoti-
cally stable for a shift-invariant Borel probability measure u, then (un)nen generates
u and the point x = uiusus ... is generic for .

Proof. Tt is clear that |u,| — oo as n — oco. The definition of asymptotic stabil-
ity implies immediately that (u,) generates pu. Let U, = ujus...u, for n > 1.
Applying (3) to U, = U,,_1u, we have for every w € &/ <% that

¢ (w,un) Junl _ €(w,Un) _ [Unoa] | ¢/ (w,a) o]~ 1

< < +

Taking into account that the sequence (uy,) is dominating, so |Up_1]|/|un| goes to 0
and |U,|/|u,| converges to 1 as n — oo, we have for every w € o/ < that
e'(w, un)

e (w,U, .
i S = i S <
It remains to show that z is generic for u. It is enough to show that for every
m € N and € > 0 we can find K > 0 so that x ) is (m,e)-good for all k > K.

To this end fix w € &/ <% and consider the initial subblock x[o,k) Of z. It follows
that for all sufficiently large k we can write z|gx) = U,v for some n € N and a
proper subblock v of U,11. Pick € > 0 and m large enough for w to be among
W1, ..., Wn. Use m and /2 to find N as in the definition of asymptotic stability
and assume that k is large enough so that the n for which x(g ) = U,v is strictly
greater than N. For that n we can find ¢’ as in the definition of asymptotic stability.
We have two cases to consider. First, if |v| < ¢, then using (3) we get

e (w,U,) < e (w,Uyw) < e(w,Uy,) + |v| + |w| — 1.
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It follows that
(1) e (w,U,) Uyl < e(w,Uw) _ e(w,U,) 0+ |w|— 1'
[Unl  |Upv| = |Upv| Uy Uyl
Since U, is (m,e/2)-good for u we can use (4) with (1) to get

/
® () o2k < LI < e
Now the left hand side of (5) satisfies

—¢ U w - - [Un| —€ wj) —€&/4— o
o) ~=/2) g 2 o) (1 (1= iy ) ) /2 2 o) =<2

<

0+ |w| -1
|Un‘

Plugging that into (5) we obtain

|U‘ e/(w’ Upnv) 0+ |w| —1

In the second case |v| > ¢/, which implies that v is (m,e/2)-good for u. By (3) we
obtain

(7) e (w,U,) + € (w,v) < € (w,Uyv) <e'(w,Up,) + € (w,v) + |w| — 1.

Being (m,e/2)-good for p (see (1)) means that

(8) u([w)|Un| — €|Unl/2 < €'(w,Un) < p([w])|Un] + €|Unl /2
and
(9) p(lw)lol = efv] /2 < €'(w, v) < p(fw])[v] + efv] /2.
Applying (8) and (9) to (7) we obtain that
e (w,U,v) |lw] =1
10 w)) —e/2 < ——= < p([w]) +¢/2+ ——.
Now, (6) and (10) imply that for all sufficiently large n the block U, v is (m, €)-good
for p. O

Let dy stand for the normalised Hamming distance, that is, given two blocks
U =1uy...u, and w = wy ... w, of equal length we set dy(u,w) = {1 <j<n:

u; # w; /.

Lemma 3. Suppose z,y € &/* and x € G,, for a shift-invariant Borel probability
measure p on /¥
(a) Ifd(z,y) =d({j €w:z; #y;}) =0, theny € G,,.
(b) If y = ziyxi  Tiy - .. where (i)icw 5 a strictly increasing sequence of ele-
ments of w such that d(w\ {i; : j €w}) =0, theny € G, iff x € G,..
(c) Let x = ujugug ..., y = V1203 ..., where (up)nen and (Vn)nen are se-
quences of blocks in /<% satisfying |un| = |vn| for every n > 1. If
dy (un,v,) = 0 as n — 00, and

(11) |Un+1| : dH(un—i-h Un-i—l)
lur] + ...+ |un|
then d(z,y) =d({j € w:z; #y;}) = 0.
(d) For every m € N and ¢ > 0 there exists § > 0 such that if w € ™ is
(m,e/2)-good and w' € "™ satisfies dg(w,w’) < &, then w' is (m,e)-good.

—0 asn— oo,
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Proof. The first two statements can be found in [?, ?]. The proof of the fourth is
straightforward. Let us prove the third one. Fix € > 0. Let ¢, = |u1| + ... + |un]
for n € N. Since dy (un,v,) — 0 as n — 00, we find K such that

(12) dg(up,v,) <e foralln> K.
Using (11) we obtain N > K such that for every n > N we have
(13) [Ung1] - A (Ups1, Vng1) <€y

We can pick N so large that ¢k /¢y < € holds. Then for n > N and every j such
that ¢,, < j < ¢, it holds that

{o<i<jrim#wu) 1 (&
; SE' ;|Uk|'dH(uk,vk)

< 25:1 |u| ZZ:K+1 luk| - de(uk,vk) | Junga] - di(ungr, vng1)

< + + .
0, 0y, ty,

Now, note that the first term in the sum above equals ¢k /¢,, and so is bounded

by ¢k /ln < €. By (13), the third term in the sum above is also bounded by e.

Finally, the same holds for the middle term, because |ug 1|+ ...+ |u,| < £, and

(12). We have proved that for every € > 0 and all sufficiently large j it holds that

{0 <i<j:ai #yi}l
J
which is what we wanted to show. O

< 3g,

2.4. Specification for subshifts. For the general definition of the specification
property we refer the reader to [?]. We omit it here, as for shift spaces it has a
simple combinatorial reformulation. The equivalence of these two definitions is an
easy exercise.

Definition 4. A shift space X over an at most countable alphabet & has the
specification property if there is a nonnegative integer N such that if w; € £(X)

for i = 1,...,n then there are v; € &V for i = 1,...,n — 1 such that u =
WLV WV . . . Up—1 Wy, € L(X). Furthermore, we say that X has the periodic spec-
ification property if, in addition to v; € &Y for i = 1,...,n — 1 as above we can

take v, so that the periodic point z = (wiv1wavs ... wHY, )™ belongs to X.

Note that if X is a compact subshift, then the specification property and its
periodic version are well known to be equivalent. Also, when X is not compact
then the specification property is no longer necessarily an invariant for topological
conjugacy.

The classical specification property is much too strong for our purposes as it
does not apply to most [-shifts. It is then natural to replace it by a weaker as-
sumption. Looking for such a notion we found out that no existing generalisation of
the specification property is fully satisfactory. Therefore we introduce yet another
property, which we coin the right feeble specification property. It is similar to the
almost specification property, which was originally defined by Pfister and Sullivan
[?], and later modified and renamed by Thompson [?]. The reader may consult [?]
for discussion of this property. A variant of the latter property, the right almost
specification property, was considered by Climenhaga and Pavlov (for more details
we refer the reader to Definition 2.14 in [?]). We need a similar condition here to
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guarantee that the function we will define in the course of our proof of Theorem 6
is continuous.

Definition 5. We say that a subshift X has the right feeble specification property
if there exists a set G C .Z(X) satisfying:

(1) a concatenation of words in G stays in G, that is, if u,v € G, then uv € G;

(2) for any e > 0 there is an N = N (¢) such that for every u € G and v € Z(X)
with |v] > N, there are s,v’ € o/ <% satisfying |v/| = |v|, 0 < [s] < €|v],
dg(v,v') <e, and usv’ € G.

It is immediate that the right almost specification property implies the right fee-
ble specification, in particular the specification property implies the feeble specifica-
tion property (cf. [?, Lemma 2.15]). It is also easy to see that the weak specification
property (see [?, ?]) implies the right feeble specification. We do not know if the
weak specification property (or the right feeble specification property) implies the
right almost specification property. We suspect that the answer to both questions is
“no” and an appropriate example can be constructed within the family of subshifts
with the weak specification property presented in [?].

2.5. Irregular set. Given w € £(X) we define I,(X) to be the set of all x € X
such that the set of positions at which w appears in z does not have a frequency,

that is
N N
liminf Lj\f;) <timsup %
Let I(X) be the irregular set for X, that is, the union of sets I, (X) over all
w € Z(X). The quasi-reqular set for X is the complement of I(X), that is,
Q(X) = X \ I(X). Both sets are obviously Borel and belong to the third level

of the Borel hierarchy.

3. MAIN RESULTS

3.1. Subshifts with a feeble specification property. Theorem 6 below applies
to subshifts on a countable alphabet satisfying a hypothesis weaker than the (non-
periodic) specification property.

Note that we are considering subshifts which are not necessarily compact. It
forces us to assume that there are at least two shift-invariant Borel probability
measures on X. This condition is automatically fulfilled if X is compact with
|X| > 2 (granting the specification hypothesis).

Theorem 6. Assume that <7 is at most countable and X is a subshift over of
with the right feeble specification property and at least two shift-invariant Borel
probability measures. If p is a shift-invariant Borel probability measure on X, then
every Borel set B satisfying G, C B C Q(X), where G, is the set of generic
points for p and Q(X) is the quasi-regular set, is Hg—hard. In particular, B is
Hg—complete provided that B is a Hg-set. Hence, G, and Q(X) are Hg—complete,
and the irregular set 1(X) is $3-complete.

Proof. First, we note that under our assumptions the set of generic points is
nonempty for every shift-invariant Borel probability measure on X. The existence
of a generic point for an arbitrary shift-invariant measure follows from the right
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feeble specification property and Corollary 22 in [?] (formally, the quoted result re-
quires a stronger assumption, but the proof remains the same when we just assume
right feeble specification property).

Fix a shift-invariant Borel probability measure p on X and a Borel set B such
that G, € B C Q(X). Let € — N(¢) be the function as implicitly defined for X by
Definition 5. In order to apply Wadge reduction, it suffices to find a Polish metric
space X, a continuous function 7: X — X and a Hg—complete set C3 C X such
that

7N (Gu) =7 H(B) =1 HQ(X)) = Cs
and 771 (I(X)) = X\ Cs.

We take X = NN with the topology of pointwise convergence, and choose C3 C NN
to be the set of all functions a: N — N attaining any n € N only finitely many
times, that is,

C3 = {a € NV: liminf a(n) = oo}.

n—oo
It is well-known that Cz is a TI3-complete set.

In order to define m we fix a shift-invariant Borel probability measure v # p on
X. Then we fix a p-generic point x € X and a v generic point z € X.

We will also need auxiliary w-valued sequences (an)n>0, (bn)n>0, and (cp)n>0
to be defined in a moment. It is also convenient to introduce one more auxiliary
sequence (B,)n>0, so that By = 0 and By = 2(by + ... + b;) for £ > 1. Given
a € NN and using these sequences we define blocks u1, us, ... € £ (X) inductively,
defining a group of cardinality 2b,, at one step, first for 1 < j < 2b;, by

w {m[o)al), if0<j<bp, and
;=

(14) . |
2[0,c1)» if bl <j< 2bla

and then, assuming that uy, ..., u; have been defined where i = 2(by+- - -+b,) = B,
for some n > 1, we set

(15) ) T0,an41)> if Bn < ] < Bn + bn+17 and
uj = . .
Z[0,cn41) > if B, + bn+1 <j<B,+ 2bn+1.

We now want to produce finite blocks vy, v1, va, vs,... in Z(X) so that all the
concatenations vov vz - - - v, for n > 1 are in .Z(X) and for each j > 1 the block v;
is close (in an appropriate sense) to u;.

To do so we apply the right feeble specification property inductively. We start
with an arbitrarily chosen vy € G. Assume that we have defined vy,...,v;_1 for
some j > 1. Then we use the right feeble specification property to obtain v; so
that vive...v; € G and we have v; = s;u; where u’; has the same length as u;,
the length of s; is a tiny fraction of |u;|, and the Hamming distance dp (uf,u;) is
small.

We will then set m(a) = ol"l(vgvivy...) = vyvevs---. Note that m(a) € X
because X is closed and shift invariant. With the right choice of the a,’s, b,’s, and
¢n’s we will prove that the map a — 7(«) is the required reduction.

Now we will define our auxiliary sequences. For o € N, let o/ (n) = min{n, a(n)}.
Let (an)n>0, (cn)n>0 be sequences of positive integers with ag = ¢p = 1 growing so
fast that for every n € N the following conditions hold:

(16a) a, = a'(n)cy,
(16b) ¢, /n > 227,
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(16¢) ¢, > N(1/227),

or each m > ¢, the block zg ) is (m, -good for 1, an
16d) fi h he block z[g ) i 1/2nt1 df d
(16e) for each m > ¢, the block z(g ) is (m,1/2"1)-good for v.

Now define by = 0 and (b,,),>1 to be a sequence of positive integers satisfying for
every n > 1 the following conditions:

(17a) b, > 22",
(17b) anb, > 22"a, 1, and
(170) anbn > 22"((a1 + Cl)bl + -+ (an_l + Cn_1)bn_1).
Equations (14) and (15) now define the blocks u, for n > 1. For n > 1 let

’I];l = (x[o’an))b” = Z[0,an) - - - T[0,an)> and
—_——

b,, times

o bn
ufr; = (Z[O7Cn)) - Z[Ozcn) Tt Z[O;Cn) :
—_———

b, times

Note that @/, is the concatenation of the u;’s where i runs from B, 141 to By, —1+b,,
and @!’ is the concatenation of the w;’s where ¢ runs from B,,_1 + b, + 1 to B, =
B,_1 + 2b, for each n > 1. It follows that the points wjusus... € &“ and
wyufabal ... are equal.

We claim that:

(A) If « € C3, then (@), u)) is dominating and an asymptotically stable sequence
for p, which implies by Lemma 2 that the point = ujusus ... is generic
for p.

(B) If v ¢ C3, then the sequence (U},) given by

A T —/ =1 —
U, = WU Usly ... Up_1Uyp_1Uy

generates p and the sequence (U)) given by

1 =1 =1 =1 = —/
U, =t U] uylsy . ..Uy,

A T}
Uy = Unun

generates along some subsequence a measure v, which is a (nontrivial)
convex combination of p and v. Since v/ # u, we see that © = ujugug . .. is

an irregular point.

Proof of Claim (A). Assume that o € C5. We first prove the following claim:
(A’) For each m € N and ¢ > 0 the first £ symbols of the block @), are (m, €)-good
for every sufficiently large n > m and £ > ¢’ = 2"a,,.

To see that take any n > m and recall that @, = (z[,q4,))"" and b, > 2" by (17a).
Hence we can consider 2"a,, = ¢’ < ¢ < |u}| = a,b, and write @), restricted to the
first £ symbols as a concatenation i, where @;, = (2[0q,))", 7 = [{/an] > 2"
and |@!'| < a,. We have for every 1 < j < m that

rane (Wi, T(0,a,)) < € (wj, Uy iy) < rane (W), T0,a,)) + U] + [w;] — 1.

Note that |@!/| + |w;| < (1/2")ra, +m and m/a, < m/c, < 1/2?" by (16a) and
(16b). Now reasoning as in the proof of Lemma 2 and using the fact (16d) that
T[0,a,) is (M, €/2)-good for y for all sufficiently large n we see that Claim (A’) holds.
To finish the proof of Claim (A) note that

|Un| = |a;7,ﬂ’;;| = (an + cn)by = (O‘/(n) +1)enbn.
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Therefore (17c) implies that (Un)nen is a dominating sequence, and Claim (A’)

together with (17b) and the fact that o/(n) — oo as n — oo imply that (U, )nen is
an asymptotically stable sequence, so we can apply Lemma 2. (Claim (A) W)

Proof of Claim (B). Observe that Claim (A’) and (17c) imply that the sequence
(U} )nen, where U/ = wjufubaly ... a,_qall_,al, generates u. We also have that
there exists M € N so that o/(n) = M for infinitely many n’s. Passing to
a subsequence we can assume that this happens for all n. The same reason-
ing as in the proof of Claim (A’) with (16e) replacing (16d) yields that the se-
quence (U )nen, where U/ = @jafusay ... u,u" = U4l generates the measure

(1/(M + 1)v + M/(M + 1)u, which implies that * = ujuqus... is an irregular
point. (Claim (B) W)

Unfortunately, we cannot take m(a) = = ujuqus . .. because = need not belong
to X. But given x we can use the right feeble specification property to find the
sequence of blocks vg, vy, ve, . .. as outlined above so that 7(a) = alvol (vovrvg...) =
v1v2v3 ... € X and our construction will allow us to use Lemma 3 to prove that
() behaves like x.

We start with an arbitrarily chosen vg € G. Next we find v; such that vgv; €
G and v; = syuj where |[u}| = |ui], |s1] < |u1]/4, and the Hamming distance
dp(ug,uy) is small (say, dg(u1,u}) < 1/4). Note that using Lemma 3(d) and
inequality (3) (and increasing a; if necessary) we can assume that v; € G is almost
as good for p as uy. Assume wvg,vy,vs,...,v; have been defined for some ¢ > 1
so that vgvive...v; € G and B,_1 < i < Bp_1 + 2b,. Then the right feeble
specification property gives us blocks s;41 and u;,; such that

|U§+1| = |uip1| = {

and |s;41| < (1/2%")-u;| and dp (wig1, ul, 1) < 1/22" (we use here (16a) and (16¢)).
We set vj41 = sir1uj,; and let 7(a) = 0'”0|(v0v1v2 ...) = v1vvs . ... Note that the
right feeble specification property guarantees that vovivs...v;v;41 € G. Define

|x[07an)| =a,, ifi<B,_1+b,, and
|Z[O,cn)| = Cn, if B,_1+0b, < (5

I'={jew:j<|silorIn>1and 0 <i <|spq1| with j =|v1...v,] +i}.

Since [$p+1|/|vn+1] goes to 0 as n — oo we get that d(I’) = 0. Therefore Lemma
3(b) implies that m(«) is generic for p if and only if y = wjubus ... € G,. Putting
T =ujugus ... and y = wjubus . .. into Lemma 3(c) we see that y € G, if and only
if € G,,. Note that (11) holds because for every n > 2 and B,,—1 < i < B,_1+2b,
we have

[wir] - dp (i1, wipn) _ an - (1/227) _ An—1bp_1 - (1/2%772)
|’LL1UZ‘ - |U,;L/71| - (a1 +cl)b1+---+(an,1 +Cn,1)bn,1’

which clearly implies (11) (for the last inequality we have used (17b) to bound the
numerator). Similarly, we obtain that 7(«) € I(X) if and only if y € I(«*) if and
only if z € I(«7*). We conclude 7~(G,) = 771 (Q(X)) = C3, and 7~} (I(X)) =
NN\ C3. These observations together with Claims (A) and (B) prove that the map
a +— w(a) is a reduction map showing that B is Hg—hard, and so in particular
G, and Q(X) are IT3-complete and I(X) is X9-complete, provided the map = is
continuous. But the continuity is obvious as each initial segment of 7(«)) depends
only on «(1),...,a(n) for some n € N. O
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Remark 7. Theorem 6 holds for any shift-invariant G5 subset of &7 with the
periodic specification property. The proof requires only a minor modification which
we leave for the reader.

3.2. Hereditary Shifts. In §4 we present a number of applications of Theorem 6
to normal numbers defined by using various expansions including [-expansions,
regular continued fraction expansions, and generalized Liiroth series expansions. In
the remainder of this section we consider a result which does not follow immediately
as a corollary to Theorem 6, but whose proof uses the same techniques as the one
for that theorem. Namely, we show that the conclusion of Theorem 6 holds for
the class of hereditary shifts. Furthermore, we can use Theorem 10 instead of
Theorem 6 in the applications presented in §4, because every subshift considered
there is hereditary and has a generic point for each of its invariant measures®.
Actually, Theorem 10 is valid for an even broader class of subshifts having a safe
symbol (see [?]).

Hereditary subshifts were introduced by Kerr and Li in [?, p. 882] (see also [?]).
The family of hereditary subshifts includes extensively studied classes of subshifts:
spacing shifts, [-shifts, bounded density shifts, %-admissible shifts; also, many
examples of Z-free shifts. Note also that all full shifts over {0,1,...,n} or w are
hereditary, as well as many sofic shifts and shifts of finite type (golden mean shift
for example) (see Section 4 in [?] for more details and references).

Definition 8. A subshift X C &/ where & = {0,1,...,n} or & = w is hereditary
if y < x coordinate-wise and x € X imply y € X.

Definition 9. We say that v € &/ is a safe symbol for a subshift X over .o/ if for
every x € X and k > 0 we have that the point y, where

) xn, ifn#k, and
n = v, ifn=k,

also belongs to X.

Note that by definition 0 is a safe symbol for every hereditary subshift, and
a subshift over {0,1} is hereditary if and only if 0 is its safe symbol. It is easy
to see examples of subshifts over {0,1,2} which are not hereditary but have 0 as
a safe symbol. Shifts with a safe symbol seem to be more important in higher
dimensional symbolic dynamics, see [?] and references therein. Note that we again
need to assume that there are at least two shift-invariant measures on X, as even
compact hereditary shifts may have only one invariant measure.

Theorem 10. Assume that </ is at most countable and X is a subshift over of with
a safe symbol (in particular, if o = {0,1,...,n} or & = w and X is a hereditary
shift) with more than one shift-invariant Borel probability measure. If p is a shift-
invariant Borel probability measure on X such that G, # () and B is a Borel set
satisfying G, € B C Q(X), then B is Hg-hard. In particular, B is Hg-complete
provided that B is a Hg-set. Hence, the set G, is either empty, or is Hg—complete.
In particular, the set G, is Hg-complete for every ergodic measure. Furthermore,
Q(X) is a TI3-complete set and I(X) is a $3-complete set.

5But the proof of the latter fact is anyway based on the specification property.
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Proof. As in the proof of Theorem 6, we are going to define a continuous reduction
m: NV = X with 771(G,) = 77 HQ(X)) = C3 = {8 € NV: liminf, . 8(n) = oo}
and 7~}(I(X)) = NN\ C3. Without loss of generality we assume that 0 is a safe
symbol for X. By dg we denote the Dirac measure concentrated on 0 = 000... €
X. Let p be any shift-invariant measure on X. Suppose first that p # dg, that
is, p is not supported on {0°°}. Then u([y]) > 0 for some v € {1,--- ,n — 1} by
the invariance of y. Assume that G, is nonempty and take x € G,. Fix a strictly
increasing sequence of nonnegative integers (b, ) such that by = 0,

(18) im % = 0, and
n—00 Oy 1
. |{k€ [bn;bn-ﬁ-l):xk:,}/ﬂ
1 1 = .
(19) R #0D

Fix 8 € NN, Let n € N and let I,, be the set of positions in [ba, 1, b2, ) where
appears in x, that is,

[n:{]fENZan_lSk‘<b2nandl‘k:’y}.

Let ¢, = |In| Write I,, = {i1,...,iqn} where bg,_1 < i; <y < ... < iqn < bay,.
Let pn, = ¢n — lgn/B(n)| + 1 and J, = {ip,,%p, +1,-..,%q, . Note that ¢,/B(n) <
[Jal = [a(n)/B(n)] < gu/B(n) + 1. Define 1: N = X by 7(8) = y where

{0, if k € |JJ,, and
Y = .
TR, oOotherwise.

Note that we have defined y so that it agrees with = except on the positions in the

set
U Jn g U [bZn—lab2n)~

neN neN
In particular, for each n > 0 we have

(20) Llbon,ban+1) = Ylban,bant1):

Note also that for each n € N to get yo,5,,) we modify x;,,) along at most

positions. We have y € X for every 5 € NV since y = 7(f3) is obtained from » € X
by setting zj to 0 for k € |JJ,, and 0 is the safe symbol for X. The map 7 is
continuous since for each n € N it is easy to see that yjq 3,,) depends only on x and
8(1),..., B(n).

If 3 € C3 then lim,_,o, 3(n) = co so the set |JJ, is easily seen to have upper

asymptotic density zero, that is d(|JJ,) = 0 (use (18) and the bound given by
(21)). Then we have

da.y) = d({j € w:z; # y;}) = A Jn) = 0.

Using Lemma 3(a) and the fact that x € G, we see that y = m(/3) is generic for p.
Hence C3 C 7 1(G,,).

If 5 ¢ Cs then for some strictly increasing sequence of integers (ny) and some
K for each k € N we have f(n;) = K < oo. This implies that along the sequence
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(2n) the frequency of the symbol v in yp,, b, ) is at most u([y]) (1 —1/K)+e
where € can be made arbitrarily small by choosing k large enough. Thus

0<s<bay,:ys=
o 052 <m0 20

while using (18), (19) and (20) we get

iy H0= 8 <bakir:ys =7}
k—o0 2n, + 1

This implies that if 3 ¢ Cs, then y is an irregular point, y € I(X). Thus 7=1(X \
Q(X)) = 7 1(I(X)) 2 NN\ C3. We conclude 7 1(G,,) = 7= 1(Q(X)) = C5, and
77 1(I(X)) = N¥\ C3. The map 7 is therefore a reduction map proving that B is
ITJ-hard and so G, and Q(X) are IT3-complete and I(X) is X3-complete.

Now suppose p = dg. Let v be any ergodic measure on X different from g and
let z € G,. Let v # 0 be any nonzero symbol such that v([y]) > 0. Let b, be an
increasing sequence defined as before with u replaced by v in (19). Then repeat
the definition of auxiliary sets I,, and J, as above, and define the reduction map
7: NV = X by y = m(3) where

)y, ifkelUJn, and
Y= 0, otherwise.

= u())-

Reasoning as above we see that 7 is continuous, maps Cs into G, € Q(X), and
NY\ C3 into I(X) = X \ Q(X) C X \ G,,. This concludes the proof. O

4. EXAMPLES AND APPLICATIONS

We present here some rather straightforward but noteworthy consequences of
Theorem 6. Recall that Ki and Linton [?] showed that in the classical case of r-ary
expansions the set of normal numbers is Hg—complete. We consider several classes
of generalized expansions for which our theorem provides a similar result.

Consider first the case of generalized GLS expansions (a generalization of “gener-
alized Liiroth Series”). These include (generalized) Liiroth series expansions, which
in turn include r-ary expansions, as well as expansions generated by the tent map.
Note that for these applications we can also use Theorem 10 in place of Theorem 6.

4.1. Some generalities. Let Z = {I,, = [{,,7r,) C [0,1] : n € D} be a family of
pairwise disjoint intervals indexed by an at most countable set D C w. We call
D the set of digits of Z. We assume that Z is a partition of [0,1] modulo sets
of zero Lebesgue measure, that is, we assume ) _,(r, —£,) = 1. We also set
I = [0,1]\ U,,ep In- Note that 1 € I and I, may be uncountable. We also
define the address map Az:[0,1] — D U {oo} associated with Z by Az(z) = k if
and only if x € Iy, where k € DU {co}. Given any (not necessarily continuous)
map T': [0,1] — [0,1] such that Tt s, is continuous and strictly monotone for
each n € D, we define the itinerary ((x) of x € [0, 1] with respect to T" and Z by
t(z) = a1az... € (DU {oo})N, where a,, = Az(T" (x)) for n > 1. Note that T
must be Borel measurable. We say that a Borel probability measure p on [0, 1]
is T-invariant if u(B) = pu(T~1(B)) for every Borel set B C [0,1]. A sequence
(@n)n>0 C [0,1] is uniformly distributed with respect to p if

1
lim N|{O§n<N:mn€I}|:u(I)

N—o0
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for every interval I C [0, 1] with u(0T) = 0. We say that a point « € [0, 1] generates
w if the sequence (T™(x))n>0 is uniformly distributed with respect to p.

4.2. Generalized GLS expansions. For more details we refer the reader to the
book [?]. Let Z = {[ln,n) : n € D} be a family of intervals as above and fix a
function e: D — {0,1}. A generalized GLS expansion of x € [0, 1] determined by
(Z,¢) is an element ajas . .. of DY such that

T = M - _1\e(ar)+...+e(an—1) h(an) + e(an)
22 s(a1) - nZ::Q( 2 s(ar)s(az)...s(an)’

where s(n) = 1/(rn, — £,) and h(n) = €, /(rn — £,) for n € D. Note that for each
sequence ajas ... € DN the formula (22) defines a point x € [0,1]. We write ¢z
for the resulting map from DY into [0,1]. Note that 1z is continuous, but not
necessarily onto. Consider the map Tz . such that Tr (z) = 0 for each x € I
and on each interval I,, we have that Tz (|7, is a linear function with positive slope
from I, onto [0,1) if e(n) = 0, and if e¢(n) = 1 we use the linear map from I,
onto (0,1] with negative slope. This defines a map T7.: [0,1] — [0,1]. Let I%
be the set of all points € [0, 1] such that the Tr ~-orbit of = visits I, at some
iterate, that is T}‘,e(x) € I for some n > 0. The itinerary map ¢z . determines an
(Z,€)-GLS expansion for each z € [0,1] \ I%,. The resulting sequences are called
proper (Z,¢)-GLS expansions and are dense in DV,
For each z in the set

Q=) U TreUan©0,1) = 0,1\ |J T7:({0})

k=0neD k>0

the itinerary iz . is continuous and gives us the unique (Z,¢)-GLS expansion of z.
Note that Tfel({O}) = [0,1]\ U,,ep int I, is a closed nowhere dense set, hence Qz
is a dense G set. Furthermore, the function ¢z . is a homeomorphism of {27 . onto
the set ¢z (27 ) with the inverse given by iz . restricted to ¢z (Qz.). We also
have Y7 cl,; (0700 = T1,0U7 c|iz (07..)- The fundamental interval A(iy, ..., i),
where 41, ...,4; € DU {00} is the set

{x €[0,1]: tzc(2) € [i1...ix] € (DU {cc})N}.
Fix 41,...,i € D. Take x € A(iy,...,4). Writing pi/qr for the partial sum of

the (Z,¢€)-GLS expansion for z given by (22) (summing up to n = k) and setting
€ = e(AI(T%Tel(x))) for j =1,...,k we see that

TE (z
U T P A 21
K s(i1) - ... - s(ix)

Since T7 ,(x) takes any value in [0,1) if e, = 0 and in (0,1] if e, = 1 we have

[di,dy +tr), if ez =0, and
[dp — tg,dy), otherwise,

A(il,...,ik):{

where di, = pi/qr, and t = 1/(s(i1) - ... - s(ig))-

Theorem 11. Let Tz . be the generalized GLS expansion map associated with the
pair (Z,e). If p is a Tz -invariant Borel probability measure with p({0}) = 0,
then the set of x € [0,1] which generate u is Hg—complete. Furthermore, the set of
irreqular points for Tt . is Eg-complete.
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Proof. First note that D satisfies the assumptions of Theorem 6. Let p be a Tz -
invariant Borel probability measure on [0, 1] such that p({0}) = 0. It follows that
w(Qz) = 1. Furthermore, no point in [0,1] \ 2z can generate u, as all these
points are eventually mapped to 0 by 77 .. Then we can define v = Lie(,u) and
v is a shift-invariant measure concentrated on vz (S2z.¢) C DN. Since v is shift-
invariant and its support is contained in DY, which has the specification property
(c.f. [?, ?]), the set of v-generic points G, is nonempty and uncountable. On the
other hand DN\ 17 (Qz ) is at most countable, so G, Ntz (Qz.c) # 0. For each
z € G, Niz,(Qz,) we have that the o-orbit of z visits a cylinder [a; . ..ax] with
limiting frequency v([as ... ayx]) for every aq,...,ar € D. Since z € v7(Qz,) and
Yz, 00 = Tr. oz, on that set, we have that ¢™(z) € [a1 ...ax] if and only if
17 . (Yz.e(2)) € Alay, ..., ax). It follows that ¢z ((2) visits A(ay, ..., ax) with fre-
quency v([a1...ax]) = o7 (p)([a1 ... ax]) = M(Lile([al coeag)) = p(Alay, ..., ar)).
Furthermore, the boundary points of every basic interval A(aq,...,ay) are eventu-
ally mapped to 0, therefore p(0A(ay,...,ar)) = 0. Note also that, for each interval
J in [0,1] and 6 > 0 we can find a countable family 7 of disjoint basic intervals
contained in J such that p(J\ |JJ) < d. It follows that ¢z .(z) generates p.

Using that 1z . is continuous on DY and that 17 .(2) generates y if and only if
z € GyNiz,(Q7,e) we see that to finish the proof we need to show that G, Nz (Qz.c)
is Hg—complete. But this is obvious since G, is Hg—complete by Theorem 6 and
Gy \ t1,c(Qz,) is contained in the set of improper expansions, so it is at most
countable.

Now consider any point = which is irregular for 77 ., equivalently, with irregular
(Z,¢)-GLS expansion. Clearly, z € Qz ., hence the visits of the T -orbit of x to
some basic interval A(aq,...,ax), where aq,...,a;r € D, doesn’t have a limiting
frequency. It follows that z = iz (z) € I(DY). By Theorem 6, the irregular set
I(DY) of the full shift on DN is 39-complete. Therefore the set of all 2 irregular
for Tz . equals ¥z (I(DY) Ntz .(Qz.)). Reasoning as above we see that the latter
must be a Eg—complete set, which ends the proof. O

The Lebesgue measure A on [0, 1] is easily seen to be an invariant ergodic measure
for Tz . (see [?, Chapter 3]). A real z € [0,1] is normal for the (Z, €)-GLS expansion
if © generates A.

Corollary 12. For any (Z,€)-GLS expansion, the set of numbers which are normal
for this expansion is Hg-complete.

The generalized GLS expansions of Corollary 12 include several types of expan-
sions as we record in the following corollary.

Corollary 13. Each of the following sets is a Hg-complete subset of [0,1): numbers
normal for the Liiroth series expansions (see [?]), normal for Q. expansions (see
[?]), a-Liiroth expansions (see [?]), and numbers normal for r-ary expansions.

4.3. p-expansions. Our next application concerns g-expansions. Fix a real num-
ber 8 > 1. Set Dg = {0,1,...,|B]}. For n € Dg let

~ Jn/B,(n+1)/B), if0<n<][B], and
" [181/8,1), otherwise.
Define Zg = {I,,: n € Dg} and Tp(x) = Br mod 1 for z € [0,1]. A B-expansion of

oo d;

x € ]0,1] is a sequence dids ... € Dg so that © = 3,7, +. For each z € [0,1) the
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itinerary of = with respect to T3 and Zg, denoted by tg(z) = d1ds ... and given by
the formula d; = LﬂTgfl(x)J for i > 1, defines a sequence d = dyds . .. € Dg‘ which
is a f[-expansion of z. We use the same formula to define the S-expansion of 1,
denoted by 15. We let € = ejep... = 1g if 13 does not end in a tail of 0’s, and if
1g =d;i...d;00..., where dj # 0, then we let €= ejey ... be the periodic sequence
(dy...dg—1dr — 1)*°. We say a sequence of digits d=dids... € Dg is a proper
B-expansion if there exists x € [0,1) such that d= tg(x). A point z € (0,1) has a
unique [S-expansion czgiven by d= () if and only if Té(l’) # 0 for each i € N. If
z € (0,1) and Tj(z) = 0 for some i € N, then z has exactly two -expansions: one
proper, and the other we call improper. Clearly, the set of improper S-expansions
is countable.

A sequence dids ... € DS is admissible if it is a [-expansion of some x € [0, 1].
We recall the following well-known fact ([?]): a sequence dids... € D§ is a proper
[S-expansion if and only if for all ¢ € N we have that d;d;11... <jex €1€62...,
where <jox denotes the strict lexicographic ordering on ’D?. We note that the
sequence € itself also has the property that for any shift o*(&) = epepsi... we
have ak(é') <jex €. Observe that if d is an admissible sequence and d’ is obtained
from d by lowering certain digits, then d is also admissible. The set of proper
B-expansions Yz :=13([0,1)) C Dg is shift-invariant but not closed in ’DE. Let X3
be the closure of Yj in Dy, so Xp is a subshift of Dy known as a j3-shift. Every
B-shift is hereditary. We can characterise X3 as the set of admissible sequences,
or equivalently, those sequences didy... € Dg such that for all i € N we have
that d;d;y1 ... <iex €. From this it follows that the set of improper S-expansions
X3\ Y3 is countable and Y3 is a dense G5 subset of Xg. There is a continuous map
Y Xg — [0,1] given by Yg(dida...) = Y 2, g— The restriction of the map 3
to Y is a bijection onto [0, 1], but its inverse 15 = (¢3]y,) "
[0,1]. But ¢ is continuous on a subset €25 of [0,1] defined by

Qs = [0, 1)\ |J 75" ({0}).

k>0

is not continuous on

Note that every point in Qg has a unique S-expansion, 0 ¢ 23, but 0 has a unique
B-expansion, and the only other point in [0, 1] which may have a unique S-expansion
and stay outside of Q3 is 1. Let Zg be the set of unique S-expansions of points in
(0,1). We have Zg = 13(23) C Y3, more precisely

ZﬁZXB\({dldg...ED?Z(HiZl)didH_l...:Ow ordidi+1...:_'}).

Thus ¢ restricted to g is the inverse of v|z,. The admissible sequences can
also be described as follows. Let G be the labelled directed graph (with loops,
that is edges whose initial and terminal vertices are the same) on the vertex set w
defined as follows. Each vertex ¢ € w is the initial vertex of the edge leading to the
vertex ¢ + 1, and labelled with e; 1. If ;11 > 0, then we add e; many edges from
i to 0, and label them with 0,1,...,e; — 1. The elements of X3 are obtained by
taking an infinite path starting at 0 and reading off the sequence of labels of the
edges used to construct the path. The proper S-expansions (elements of Yj3) are
exactly the infinite sequences of labels of paths obtained by starting at the vertex
0 and returning to 0 infinitely many times. In particular, £ (Xg3) corresponds to
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the labels of finite paths through G starting at 0. Note that as e; = | 3], there are
e1 > 0 edges from 0 to 0 (and these are the only loops in the graph G).

Lemma 14. For every B > 1 the (B-shift X has the right feeble specification
property.

Proof. Let G C Z(Xp) be the set of w € D5* corresponding to closed paths in the
graph G which start and end at the vertex 0. Clearly if u € G and v € .£(Xg) then
uv € £ (X3) (since v corresponds to a label of a path starting at 0). We claim that
there is a single symbol in v so that if we change it to 0, then for the resulting word
v’ we have that uv’ € G, so uv’ is a label of a closed path based at the vertex 0. To
see this, let v € Z(Xp) with |v| = k, and let g1, ...gx be edges of G whose labels
give v. As remarked above we may assume that g; starts at the vertex 0. If v = 0F
then there is nothing to prove: we follow the closed path defining u and then use k
times the loop based at 0. Otherwise, let 1 <14 < k be largest index so that g; is an
edge labelled by a nonzero symbol. It follows that v = v, ...v;0°7%, where v; # 0.
Let j be the initial vertex of g;. Since v; # 0 there is an edge from j to 0 labelled
with 0. That is, reading off the ith symbol v; of v, we have the option of returning
to 0. Note that v; = 0 for j > i. Let v’ equal v except we set v; = 0. Then uwv’ € G
as it corresponds to the path through G which starts at 0, returns to 0 at step ¢,
and then loops at 0 until the end of the word. Since we made only one change in
v to obtain v’ it is easy to see that dg(v,v") can be arbitrarily small if v is long
enough. O

Theorem 15. If u is a Tg-invariant Borel probability measure, then the set of
x € [0,1] which generate p is Hg—complete and the set of points with irregular
B-expansion, denoted I1(Tg), is Eg-complete.

Proof. Let u be a Tg-invariant measure on [0,1]. Note that £([0,1)) = 1, because
1 is never a periodic point for T. If ;({0}) = 0, then reasoning as in the proof of
Theorem 11 we see that ;(€25) = 1, and pu = ¢5(v) for some shift-invariant Borel
probability measure supported on Zg C Ys. Note also that ¢g(0°°) = 0, thus the
Ts-invariant Borel probability measure concentrated at 0 is the image through 7
of the shift-invariant Borel probability measure concentrated at 0> € Yj. It follows
that every T-invariant Borel probability measure on [0, 1] is the image through v
of a shift-invariant measure on Yj.

Fix a Ts-invariant measure p on [0,1]. By the above there is a shift-invariant
measure v on Yj such p = 9j(v). Observe that v(Ys) = 1 implies that v({€}) = 0.
Given a; ...a, € Z(Xp), define the basic interval

Aar,...,ax) ={z €[0,1] : 15(x) € [a1...ar]}.
Since p = ¢j(v), we have
N(A(alv s vak)) = V(wgl(A(ala s vak)))
and
Yo (Aay, ... a)) = ([ar...ax) N Y ) U (far...ax] N o "({e}) |-
= ()o@
It follows that

(23) w(Alar, ... ax) =v(lar...ax) NY3) = v([ar ... ax)).
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Note also that for every Tg-invariant Borel probability measure p and a basic
interval A(ay,...,ax) we have that

0A(ay, ... ax) € | T, ({0} U {1}

n>1

(Remember that 0 is an interior point of any interval [0,r), where » > 0.) Since
basic intervals generate the Borel sigma algebra, we see that a point z € [0,1)
generates p if and only if for every ai...ap € Z(Xg) the Tg-orbit of z visits
the basic interval A(ay,...,ar) with frequency p(A(ay,...,ar)). Observe that if
ar...ax € L(Xp), 2 € Yp, and 0"(2) € [ay...ax] C Xp, then TF(¢5(2)) belongs
to the basic interval A(aq,...,ax), since we have g o0 = Tgo g on Yz. In
particular, if z € Yj is generic for v, then using (23) we see that 1g(z) visits a
basic interval A(aq, ..., ax) with frequency v([as ... ax]), so ¥(z) € [0, 1] generates
p. Conversely, if x generates p, then the Tg-orbit of x visits each basic interval
Alaq,...,ax) with frequency p(A(aq,...,ar)), which means that the orbit of ¢5(x)
under o visits the cylinder set [a; ... ax] with the same frequency, so ¢z(z) is generic
for v on Yp. It follows that ¥g(G, NY3) is the set of points in [0,1) that generate
L
By Lemma 14 the subshift Xz has the right feeble specification property. It
is also known that the set of shift-invariant Borel probability measures supported
on Xg is uncountable. Thus, Xg satisfies the assumptions of Theorem 6, and we
conclude that for each shift-invariant Borel probability measure v supported on Xz
the set G, C X5 of generic points for v is TI3-complete. Since G, \ (G, NY3) is at
most countable, we see that G, MY} is also a Hg—complete set, and g reduces it to
the set of points in [0,1) that generate p. Thus the latter set is also Hg—complete.
Let I(Xg) be the set of irregular points for Xg. Using Theorem 6 again, we see
that 1(Xs) is a X3-complete subset of X5. Then I(X5) = (I(X5) N Xs \ Z) U
(I(Xg)NZg) is a disjoint union and (I(Xg)NXg\ Z3) is at most countable. Hence
(I(Xp) N X \ Zg) is a My-set. If I(Xg) N Zs were also a I3-set, then I(Xz)
would not be X3-complete, which is absurd. Thus I(Xs)N Zg is a E9-complete set.
Reasoning as above we also obtain that v5(I(Xg) N Zg) = I(T) \ {15 (1) : n > 0},

which implies that I(T;) is a X3-complete set. O

For each § > 1 there is a Borel probability measure on [0,1) which is invariant
for the transformation Tz, which is known as Parry measure. It is characterised as
the unique ergodic Ts-invariant that is equivalent to Lebesgue measure on [0, 1).
We let pug denote the Parry measure on [0,1). A real number = € [0,1) is normal
with respect to the B-expansion if x generates pg.

Corollary 16. For each 8 > 1 the set of x € [0,1) which are normal with respect
to the [3-expansion is a Hg—complete set.

4.4. Continued fraction expansions. Our next application of Theorem 6 is to
the regular continued fraction expansion. Let T:[0,1]\ Q — [0,1] \ Q be the

continued fraction map given by T'(z) = = — [L1]. Let p be the Gauss measure

on [0,1], which is defined by u(A) = 1n%2) fol Xfﬂfi) dx. The Gauss measure is a T-
1

invariant ergodic measure equivalent to the Lebesgue measure. If we let d(x) = |+ ],
then the regular continued fraction expansion of z is given by dids - - - € NV, where
d; = d(T*"'(z)) for i € N. This expansion gives a homeomorphism ¢ between
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[0,1] \ Q and NY such that ¢ o T = o o ¢, where o is the shift map on NY. Every
T-invariant Borel probability measure p on [0, 1] \ Q corresponds to a unique shift-
invariant Borel probability measure v = +*(p) on NV, Since the full shift N¥ satisfies
the assumptions of Theorem 6 we see that the set of sequences generic for v, denoted
by G,,is a Hg—complete subset of NI, It follows that the set of points that generate
w given by ¢ =1(G,) is also Hg—complete. The same reasoning shows that the set of
continued fraction irregular points is Eg—complete.

Theorem 17. If i is a Borel probability measure on [0,1] \ Q which is invariant
for the continued fraction map, then the set of points in [0,1]\ Q that generate p is
a Hg-complete set and the set of points with irreqular continued fraction expansion
is 39-complete.

Corollary 18. The set of x € [0,1] \ Q which are continued fraction normal is a
I13-complete set.

4.5. Sharkovsky-Sivak problem and the tent map. Our last application con-
siders the tent map T': [0,1] — [0, 1] given by
2z, if()gxgé, and
2—2z, ifi<a<l

Taking Z = {Ip = [0,1/2),1; = [1/2,1)} and the function e: {0,1} — {0,1} such
that €¢(0) = 0 and ¢(1) = 1 we can easily see that T7 . is the tent map and the
(Z, €)-GLS expansion map coincides with the tent map. Moreover, it is well-known
and easy to see, either directly or following the reasoning presented above for the
general GLS expansions, that the tent map is a factor of the full shift system {0, 1}
under a factor map 1z  which is onto and one-to-one except at the countable set
Unso T~ ™(1/2), where 97 is two-to-one (see also |?|, Example E in 6.3.5, taking
into account Proposition 6.3.4 (2) therein). As a corollary we obtain the following
result.

T(x) =

Corollary 19. If u is a Borel probability measure invariant for the tent map T,
then the set of points that generate p (also known as the statistical basin for u) is
a Hg—complete set. The set of irregular points is Eg—complete.

In particular, the statistical basin for the Dirac mass at 0 and the tent map is a
IT3-complete set, which answers [?, Problem 3].

Also as a corollary of Theorem 6 we can answer a question of Sharkovsky and
Sivak [?, Problem 3|, who asked whether there is a continuous map f: [0,1] — [0, 1]
which has an invariant Borel probability measure p such that the set of generic
points in Hg—complete.

5. CONCLUDING REMARKS

Note that there are numeration systems for which our approach does not work.
For example, the Cantor series expansions are obtained through nonautonomous
dynamical systems and thus require a separate analysis. The most up to date and
general results on normal numbers in this context are found in [?, 7, ?], respec-
tively. In [?] descriptive complexity results similar to the ones in the present paper
are obtained for Cantor series expansions. With the results presented here, this
shows that Hg—completeness is another universal property that holds for all known
examples of normal numbers.
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