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ABSTRACT: A user-friendly approach to sidestep the venerable Grignard addition to unactivated ketones to access tertiary
alcohols by reversing the polarity of the disconnection. In this work a ketone instead acts as a nucleophile when adding to
simple unactivated olefins to accomplish the same overall transformation. The scope of this coupling is broad as enabled using
an electrochemical approach and the reaction is scalable, chemoselective, and requires no precaution to exclude air or water.
Multiple applications demonstrate the simplifying nature of the reaction on multi-step synthesis and mechanistic studies
point to an intuitive mechanism reminiscent of other chemical reductants such as Sml, (which cannot accomplish the same
reaction).

. . . Access to Tertiary Alcohols from Simple Ketones
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incredibly robust reactions have been employed countless e
times, they can indirectly contribute to synthetic inefficien- previous
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also pointed to the use of olefins as precursors to species
capable of adding to carbonyl groups although intermolec- FIGURE 1. Tertiary alcohols from simple ketones remain a
ular additions into unactivated ketones are without challenge for modern synthesis (A). Synthesis of 2 is em-



blematic of the problems with Grignard (B). Recent ap-
proaches so far do not address the problem (C). Electro-
chemical precedent on activated olefins (D) and a sum-
mary of this work (E).

precedent.!s A less intuitive approach involves an umpolung
disconnection, which renders the ketone the nucleophilic
group through a reductive 1-electron approach. Thus far,
such approaches have relied primarily on Sm(II),72b
Ti(IlI),2¢ or photoinduced electron transfer!’ to couple acti-
vated olefins and styrenes to ketones. A general intermolec-
ular reductive coupling of unactivated ketones and olefins
is so far absent from the literature. The closest precedent
for the desired transformation was disclosed by Shono and
co-workers (Figure 1D).18 These reports focus predomi-
nantly on intramolecular couplings,!82> with only a few in-
termolecular examplesi8c=d presented. To the best of our
knowledge, this chemistry has not been applied in the liter-
ature, despite being available for decades, presumably due
to the challenges of using a divided cell setup under an ar-
gon atmosphere and the need for at least a five-fold excess
of the ketone. In this Communication, a new protocol for
electrochemically driven reductive couplings of unactivated
ketones and olefins is presented. This method uses a simple
undivided cell tolerating exogenous air and moisture, exhib-
its a broad scope, and can be easily scaled (Figure 1E).

Explorations began by studying Shono’s original condi-
tions!® on a medicinally-relevant model substrate pair:
homoallylic alcohol 4 and piperidone 3 (Table 1A). In prin-
ciple, the use of Grignard chemistry to carry out this assem-
bly would necessitate the use of a protecting group on 4 and
perhaps other precautions due to the enolizability of 3,
hence, more gentle methodologies were sought. Revisiting
the electrochemical method developed by Shono for less or-
nate substrates,!8 only resulted in low yields (Table 1A, en-
try 1). This method was pursued with some rigor (see SI for
a full listing); however, the yield could not be improved be-
yond 17%. Chemical reductants such as Sml> and LiDBB
were examined next, and while these methods have been
shown to have success in similar intramolecular scenarios,
they were found to be unsatisfactory for this purpose (en-
tries 2-5, Table 1a). Developing this chemistry following the
guiding principles from our own forays?20 into electro-
chemistry, specifically deeply reductive electrochemistry,20
allowed us to hone in on the sacrificial anode, electrolyte,
current density and concentration needed to facilitate a
high yielding olefin-ketone coupling (Table 14, see the SI for
a full listing). As graphically illustrated in Table 1B, these
three variables were crucial to the success of this transfor-
mation which, after optimization, let to 95% isolated yield
of adduct 5 (Table 1A, entry 6). The use of an inexpensive
sacrificial anode (Zn) was ideal and, in contrast to prior
work, a lower current ensured broad functional group tol-
erance (10 mA vs. 200 mA). Notably, unlike prior precedent,
only 2 equivalents of the ketone are required, inexpensive
electrodes are employed, and an operationally simple undi-
vided cell is used. No precautions are taken to exclude air
or moisture and in fact the reaction can be run open to the
air (cap removed). Finally, the linear versus branched selec-
tivity is remarkable (>15:1 in most of the cases).

TABLE 1. Optimization of the reductive ketone olefin cou-
pling. Comparison to known chemical methods (A) and a
graphical optimization overview of the newly developed
electrochemical protocol (B).

Optimization of the Electroreductive Olefin-Ketone Coupling

A Comparison with existing procedures
BocN OH "BuyNBr (0.3 M) - OH
| DMF (1 mL), rt. BocN |
+ N —m8 K /)g N
| (#H)Zn/(-)Sn |
fo) Bn 10mA, 5 F/mol OH Bn
3 (2 equiv.) 4 (1 equiv.) 5
entry deviation from above conditions yield (%)?
1 3/4 (5/1), (+)C/(-)Pt, divided cell, 0.2 A, 2.5 F/mol (Shono) <10
2 Sml, <10
(3] Sml, + HMPA <10
4 Sml, + MeOH <10
5 LiDBB <5
6 None 95%
B Importance of Electrochemical Parameters
0% yield [Anode material] 100% yield
Graphite Mg Fe Zn
0% yield [Electro[yte] 100% yield
LiBr TBA-OTf TBA-BF, TBA-Cl  TBAB
0% yield [Current] 100% yield
100 mA 50 mA 15 mA 5 mA 10 mA

With these results in hand, the scope of the ketone-olefin
coupling was investigated (Table 2). Several functionalities
on the olefin were tolerated; free alcohols (1°, 2°, and 3°; 6
to 8), aniline (9), amides (10, 13, 21), nitrile (11), ester
(12), protected amino acid (14), and heterocycles (15-19)
(moderate to high yields). Most of these functional groups
would be challenging to employ using canonical 2e- tactics
such as Grignard. The reaction tolerated mono-substituted
olefins but performed less successfully with poly-substi-
tuted olefins with compound 22 and 23 being the only ones
affording good yields. A plausible reason for this lack of re-
activity with more substituted olefins could be due to a
slower rate of addition (for steric reasons) compared to the
lifetime of the ketyl radical.?! In the case of cyclopentene-3-
o], an interesting finding was that the reaction took place in
high yield with perfect syn diastereoselectivity. The analo-
gous TBS-protected olefin did not react, nor did cyclopen-
tene itself. The directing effect of homo-allylic alcohols in
this chemistry is notable and perhaps relevant to the mech-
anism of the reaction (vide infra).

In a similar fashion, ketones bearing several different sub-
stituents were tolerated (moderate to high yields); ethers
(26), protected amines (36-37), esters (39), carbamates
(43), alcohols (50-51), cyclopropanes (52). When 4-substi-
tuted cyclohexanones were used, single diastereomers
were isolated with the selectivity reminiscent of Sml pro-
moted reactions (anti, 38-39).22 Even cyclic ketones of var-
ying ring sizes (24-39) worked well, which are often chal-
lenging for other methods; reduction products



TABLE 2. Scope of the electroreductive olefin-ketone coupling.

Scope of the Electroreductive Olefin-Ketone Coupling
"BusNBr (0.3 M)

24 (X = OH, Y = CH,Bn): 96%
25 (X = H, Y = Ph): 56%

1
A Y
OH

32 (X =OH, Y = CH,Bn): 56%
33 (X =H, Y = Ph): 77%

26 (X = OH, Y = CH,Bn): 95%
27 (X=H, Y = Ph): trace

OH

34 (X =OH, Y = CH,Bn): 94%
35 (X =H, Y = Ph): trace

28 (X = OH, Y = CH,Bn): 95%
29 (X = H, Y = Ph): 50%

X
MeN /))\
Y vy
OH

36 (X = OH, Y = CH,Bn): 67%
37 (X =H, Y = Ph): 27%

o DMF (1 mL), rt. OH [simple reaction setup]
JJ\ + o~ R ,}\/\ [>40 examples]
R'” “R2 % (#zn/()sn, 10 mA, 5 Fimol R2 RS [broad FG tolerance]
Olefin Scope
Me Me OH Me Me
Me Me Me Me
/),OH Me ’))\/ Bn - Me NHPh
3 2 4
Me Me OH OH Me Me OH OH Me Me OH
6:67% 7:98% 8:73% 9: 77%
Me Me
o L& o NHBoc
Me /’J\ Bu Me X Me mare
_n
Y X, 43N Y\ 7 > Cco,Me
Me Me OH H Me Me OH OH OH
10: 94% 11 (X = CN): 58% 13: 98% 14: 30%
12 (X = CO,Me): 56%
Me
Me H Me O/\ Me Me
\
Me Me ~ M
’)f\ N /\kN W&/ AN /)? N ¢ /)?\ NN
e Me —
o x Me' Me OH OH e’ OH L/
15 (X = CH): 56% . X Me .
16 (X = N): 61% 17: 54% 18: 94% 19: 42%
Me
. " [ e \w‘OH
Me Me B F
¥ oph Me\ﬂ/\/N\l Me L H
OH
Me Me OH OH o OH 23: 94% (single diastereomer)
20: 97% 21:88% 22:47% [gram scale]: 74% (>20:1 dr)
Ketone Scope
X o X X X
Q/\/} \ Q/\M{LY Q/\Hz)\v Q/\M%\Y
OH OH OH OH

30 (X = OH, Y = CH,Bn): 61%
31 (X=H, Y = Ph): 21%

OH
OH
%\ Y
38 (R = tBu): 87%
39 (R = CO,Et): 62%

52: 88%

X
pr s Ph e Ph X M M
nPr X Ph e e
\i/\‘\*s <£ \I/\M3 BnHzc\I/\M, Ph tBuWPh Me
OH OH OH ? ? ’)/3
OH OH
41 (X = CH,): 85% 44 (X = Cy): 61% o
40: 97% 42 (X = 0): 84% 45 (X = iPr). 25% 46: 53% 47:61% 48: 57%
43 (X = NBoc): 74% = Hrp &
Ho_ Me
HO !_Vle =
- OH nCsHq4
Me
M Ph
e /),3
OH DN
49: 1% HO 50: 70% Hogy  51:82%

OMe

are often observed when sterically hindered ketones react
with Grignards. For acyclic ketones, the sterics of the sub-
stituents showed a minor impact on the reaction yields (40-
48), although only 25% yield of the desired product

was isolated when very hindered diisopropylketone (45)
was used. Notably, unprotected steroidal substrates 50-52
delivered a single diastereomeric product in high yield (see
SI for structure confirmation).



A. Applications

1 Synthesis of a vitamin D analog side chain M
e
) ) Me BOMcl LiAH, TscI Me X MgCl mcPBA LiAIH, Pd/C, H, OH “!le
[previous workl  e0,6 0" —O0—0—@ ® —o o O
Me 55
o) o NaHMDS
Br . acetone
[this work] Et)L N/l(o /\./ '-'2"4 - Ve
3 st i : OH
seps B )\/ (83% over 2 steps) e o
N 53 54 (64%)
2 Synthesis of a DNA-binding metabolite o o)
i Au): )v 58
T MeLi TMSCI K2CO3 DMP ~o OH o
5 steps (o} @ L @ L ————— MeJ\/ \/K/
73% ee Double protection Sml, Me H
this work] ﬁ\(\;ms (+)-Ipc.B(allyl) acetone, then TBAF OH O O phi(0AC), TEMPO (cat.)
steps >
93% ee 2 ¢ Me™ye 3 2 (sg%)
56 (81% over 2 steps, 93% ee) 57
3 Synthesis of a hedgehog signaling modulator
o:
+ TBSCI RMgBr Pd/C, H, MsCI NaN3 TsOH Pd/C, H,
’ —@ L L 4 @ ® @ o—>
: . NHTeoc
N, CsF HO
59
’ 6 ® > hedgehog signaling modulator, 2
d/hy_ dropregnanone, 1 (48%, single diastereomer) (98%)
[this work] 2 steps
B. Batch and Flow Scale-up
)OJ\ OH "BuyNBr (0.3 M) OH OH
DMF, r.t.
Me” “Me t /\)\Me > RVI\/\/‘\ Me
(2 equiv) (1 equiv) (+)Zn/(-)Sn, constant current R2
Current Density _
Entry Cell Scale(g) Con.(g/mL) Current (A) (mAlcm?) Yield (%)
1 KA 0.03 0.006 0.010 8.3 75
2 beaker 1 0.025 0.335 15 72
3  beaker 10 0.025 1.350 15 69
4 flow 10 0.025 1.360 15 778 —
5 flow 100 0.025 8.000 15 637 batch reactor flow reactor

SCHEME 1. (A) Electrochemical ketone-olefin coupling facilitates rapid access to medicinally relevant structures such as a
vitamin D sidechain (1), a DNA-binding metabolite (2), and a hedgehog signaling modulator (3). (B) Batch and flow scale-up.

a[solated yield

This reductive coupling could also be applied to simplify
real-world challenges in medicinal chemistry (Scheme 1A).
Thus, the synthesis of a simple vitamin D analog sidechain
55 was reported through a seven-step route wherein only
one of those steps formed a C-C bond (Scheme 1A-1).23 In
contrast, commercially available oxazolidinone 53 could be
allylated and reduced to yield (S)-2 methyl-4-penten-1-ol
54. Coupling of 54 with acetone under the developed elec-
trochemical conditions then smoothly furnished sidechain
55. Of the three steps required to access 55, two forged key
C-C bonds. Next, the synthesis of DNA-binding metabolite
58 required a five-step sequence with two protecting
groups and air-sensitive Smlz to forge a key C-C bond (73%

ee, Scheme 1A-2).2* Using the electrochemical strategy out-
lined above,

commercially available aldehyde 56 could be converted to
the same product in only 3 steps via simple Brown allyla-
tion, followed by electrochemical addition of acetone/TBAF
work-up and a final oxidative lactonization (72% yield, 93%
ee). Finally, the steroidal example® mentioned in Figure 1
could be addressed in a similar way from the same starting
material (Scheme 1A-3). Thus, electrochemical addition of
1 to Teoc-protected amine 59 delivered a single diastereo-
meric tertiary alcohol that, after CsF-induced deprotection
delivered 2 in only 2 steps. Clearly, the success of the above
applications benefits from the chemoselective (FG tolerant)
nature of the electrochemical ketone-olefin coupling. The



reaction can be conducted on 100 gram-scale (>1 mol) us-

ing a flow system

echanistic Studies

D Cyclic voltammograms of ketone substrate in GC and Sn as Working Electrodes

GC as working electrode Sn as working electrode

250
200 4
150 4
100 4
504
04
504
-100 4
-150

pre-peak current increases as a
function of increasing number of
scans and ketone concentration

current, i (UA)

f

T T T T T T T T T T T T T
1412 -1.3 -1.4 -1.5 -1.6 1.7 -1.8 -1.9 -2.0 2.1 2.2 -23 1112 -1.3 -1.4 15 16 -1.7 -1.8 1.9 2.0 2.1 -2.2 -2.3 24
potential, E (V vs SCE) potential, E (V vs SCE)

Implications: The observed pre-peak current (as a function number of scan and ketone concentration)
disctinct in Sn as working electrode is a characteristic of a strong adsorption of the reduced product (ketyl

radical) to the working electrode (WE).

M
A Mechanistic insights from specific substrates
(o) standard md
Me ]\ - condltlons
Me *Z " “ph ——> ~"ph
E 2
. 489 2
(R =Hor TBS) 61 62: 48% z
o standard OH OH £
)J\ _~_OH conditions /}\/\/{\ ® 0
—_— . H
n-Pr nprt 7 P n-Pr n-P':‘ Fr
63 64 65: 50% 20
B Deuterium labeling experiments 4 80%D
j’\ standard OH H/D
N conditions
+ =
DsC” ~CDy Ph D,C ~"Ph
CD;
&3 61 67-d: 74%
0% D
0 ontons OH WDATEL
J‘\ + AN pp — —— A~
HsC” “CH, dg-DMF instead H;C Ph
61 of DMF Hy 40
68: 72% 2
o \E« 30
C Proposed Mechanism 5
5
/\\ /\\ 1 :::) 1
E : : E : 8
S G- S GO -0 |
—_—
D,C” ~CD; DsC C D,C R D;C R
3 CD; 04
cocp;| T
OH D (€]
/}\ | work-up > i D>D( G
D, TN R[ D3C/}\/kR
CD3 CD; Zn?*

E Square-wave voltammograms
— 1 mM ketone —
= 1 mM ketone + 1 mM olefin

1 mM ketone + 1 mM olefin + 0.2 mM ZnBr,
1 mM ketone + 0.1 mM ZnBr,

reduction of .
intermediate (E2) ™
-1.89V |

\

reduction of
ketone (E1)

-1.97V

reduction of Zn-
coordinated

10 ketone

step current, i (mA)

T T T
-1.8 -2.0 =22
potential, E (V vs SCE)

T T T
-1.8 -20 -16

potential, E (V vs SCE)

Implications: The observed shift in the reduction peak current indicates a chemical reaction between the
ketyl radical and olefin after one-electron reduction of ketone (EC-type, left squarewave voltametry (SWV).
The observance of two reduction peak potentials in the presence of ZnBr, (shown as three peaks, third
peak is the reduction of Zn-coordinated ketone) suggests that a ZnBr,-promoted second reduction follows
after the EC steps. Overall, an ECEC-type mechanism is proposed where the second chemical step is

- protonation (see deuterium labeling, 2B).

SCHEME 2. Mechanistic insights from byproducts (A), deuterium labeling (B), proposed reaction mechanism (C), and voltam-

metry studies (D & E). See SI for details.

affording a comparable yield to the batch reaction(Scheme
1B, see SI for details).

The mechanism of this useful reaction (Scheme 2) was
next interrogated through the observation of certain side-
products (Scheme 2A), deuterium labeling (Scheme 2B), ki-
netics, and voltammetric studies (Scheme 2D & 2E). A nota-
ble limitation of this chemistry was that ketones bearing al-
pha-substituents (such as 60) were not tolerated and elim-
ination of the alpha-substituent was observed (62), sugges-
tive of a ketyl radical intermediate. Using allyl alcohol (64),
the bis addition adduct 65 was observed, perhaps pointing
to a carbanion intermediate wherein ZnBr generated from
anodic oxidation could assist in the departure of the pri-
mary alcohol and regeneration of another olefin. Deuterium
labeling using acetone-de led to 80% incorporation at the
highlighted position (Scheme 2B) further supporting a car-
banion intermediate. When regular acetone was used in the
same experiment but with deuterated DMF, no deuterated
product was observed. Kinetic studies revealed zero-order
dependence on all components except current indicating
that reduction is purely electrochemical.

Finally, a series of voltammetric studies were performed
(Scheme 2D & 2E) to understand how traditionally nucleo-

philic ketyl radical can serve as competent coupling part-
ners with unactivated olefins, as well as to provide evidence
for the overall electrochemical mechanistic sequence as
proposed in Scheme 2C. We hypothesized that

the change in its electronic property and reactivity can be
facilitated by a strong adsorption of the ketyl radical to the
Sn electrode. Cyclic voltammetry studies were performed
using Sn and glassy carbon (GC) as working electrodes with
acetophenone?s as the source of ketyl radical. Pre-peaks on
the CV were observed using Sn as the working electrode but
not observed using GC as the working electrode. These pre-
peaks are distinct characteristics of an electron transfer
where the product (ketyl radical) is strongly adsorbed into
the working electrode.2¢ Furthermore, the current response
observed in the pre-peak in Sn was found to be dependent
on the concentration of ketone (see SI).27 This result also ra-
tionalizes the effectiveness of using Sn-cathode over other
electrode materials (see SI). Square-wave voltammetry
(SWV) studies were performed and the results are summa-
rized in Scheme 2E. The addition of alkene 61 to acetophe-
none showed an anodic shift in the cathodic peak potential
denoting a chemical reaction with the ketyl radical after
one-electron reduction. However, even at high frequencies
(100 Hz), the expected second reduction peak was not ob-
served. We hypothesized that one crucial role of the sacrifi-
cial Zn-anode is to provide Zn?* as a thermodynamic sink for



the second electron reduction. SWV analysis in the presence
of catalytic amounts of ZnBr; showed three distinct reduc-
tion peaks where the third peak can be the reduction of the
ZnBrz-coordinated ketone (see SI). Taken together, these
results suggest an ECEC-type electrochemical mechanism
where the ketyl radical formation (E) takes place at the Sn-
cathode with strong adsorption characteristic followed by
radical addition (C) into the olefin. A second one-electron
reduction (second E) of the radical anion to the dianion fol-
lowed by protonation (second C) and then workup delivers
the final product. The enhanced reactivity of homoallylic al-
cohols may be due to improved binding of the olefin sub-
strate to the cathode surface.

In summary, a chemoselective, scalable method to com-
bine unactivated olefins and ketones has been developed
that subverts the issues encountered using Grignard rea-
gents in conventional retrosynthetic analysis. The scope of
this reaction is broad and it is operationally simple to per-
form. A number of applications demonstrate that the utility
extends beyond that of a simple tactical change as when
strategically employed, it can dramatically reduce overall
step count. Mechanistic studies point to an intuitive electro-
chemically driven reductive pathway that initiates upon the
formation of a ketyl radical, addition to the olefin, and fur-
ther reduction to a stabilized carbanion prior to workup.
This work is thus another example of how strongly reducing
chemistry can be uniquely facilitated and enabled in com-
plex settings under electrochemical control when classical
chemical reagents fail.
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