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	ABSTRACT:	A	user-friendly	approach	to	sidestep	the	venerable	Grignard	addition	to	unactivated	ketones	to	access	tertiary	
alcohols	by	reversing	the	polarity	of	the	disconnection.	In	this	work	a	ketone	instead	acts	as	a	nucleophile	when	adding	to	
simple	unactivated	olefins	to	accomplish	the	same	overall	transformation.	The	scope	of	this	coupling	is	broad	as	enabled	using	
an	electrochemical	approach	and	the	reaction	is	scalable,	chemoselective,	and	requires	no	precaution	to	exclude	air	or	water.	
Multiple	applications	demonstrate	 the	simplifying	nature	of	 the	reaction	on	multi-step	synthesis	and	mechanistic	studies	
point	to	an	intuitive	mechanism	reminiscent	of	other	chemical	reductants	such	as	SmI2	(which	cannot	accomplish	the	same	
reaction).

			Tertiary	alcohols	are	an	abundant	functional	group	with	
versatile	 reactivity	 that	 are	 found	 in	 natural	 products,1	
pharmaceuticals,2	and	a	multitude	of	useful	materials.3	Tra-
ditionally,	perhaps	overwhelmingly,	the	ketone	has	served	
as	a	loyal	progenitor	of	this	species	(Figure	1A)	for	good	rea-
sons.	 Every	 undergraduate	 organic	 textbook	 prescribes	 a	
direct	nucleophilic	addition	of	a	strong	nucleophile,	such	as	
RMgX	or	RLi,	to	these	electrophilic	species.4	Although	these	
incredibly	robust	reactions	have	been	employed	countless	
times,	they	can	indirectly	contribute	to	synthetic	inefficien-
cies	as	their	low	chemoselectivity	often	necessitates	the	use	
of	 protecting	 groups.5	 This	 dilemma	 is	 nicely	 illustrated	
(Figure	1B)	by	examining	the	patented	route	to	steroid	de-
rivative	 2.6	 	 Although	 a	 Grignard	 reaction	 with	 commer-
cially	available	ketone	1	is	an	obvious	disconnection,	its	use	
introduces	 several	 protecting	 group	 additions,	 removals	
and	functional	group	manipulations	throughout	the	course	
of	a	seven-step	sequence	(only	one	of	which	 forges	a	C–C	
bond).		

			Within	the	specific	realm	of	intermolecular	alkyl	nucleo-
phile	additions	to	unactivated	ketones,	Grignard	and	related	
organometallic	additions	are	fundamentally	limited	by	their	
2-electron	 mechanisms,	 which	 render	 these	 nucleophiles	
both	strongly	nucleophilic	and	often	highly	basic.4,5,7	Efforts	
to	tone	down	their	reactivity	have	been	explored,	with	the	
most	successful	stemming	from	nucleophiles	bearing	acti-
vated	 positions	 (i.e.	 allylic,	 benzylic,	 propargylic,	  a-car-
bonyl,	 Figure	 1C).8,9	 Studies	 employing	 Zr-,10	 Ti-,11	 Ru-,12		
and	Os-13	based	systems,	as	well	as	HAT	chemistry,14	have	
also	pointed	to	 the	use	of	olefins	as	precursors	 to	species	
capable	of	adding	to	carbonyl	groups	although	intermolec-
ular	additions	into	unactivated	ketones	are	without		

FIGURE	1.	Tertiary	alcohols	from	simple	ketones	remain	a	
challenge	 for	modern	 synthesis	 (A).	 Synthesis	of	2	 is	 em-
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blematic	 of	 the	 problems	 with	 Grignard	 (B).	 Recent	 ap-
proaches	 so	 far	 do	 not	 address	 the	 problem	 (C).	 Electro-
chemical	 precedent	 on	 activated	 olefins	 (D)	 and	 a	 sum-	
mary	of	this	work	(E).	

precedent.15	A	less	intuitive	approach	involves	an	umpolung	
disconnection,	which	 renders	 the	 ketone	 the	 nucleophilic	
group	 through	 a	 reductive	 1-electron	 approach.	 Thus	 far,	
such	 approaches	 have	 relied	 primarily	 on	 Sm(II),7a-b	
Ti(III),16	or	photoinduced	electron	transfer17	to	couple	acti-
vated	olefins	and	styrenes	to	ketones.	A	general	intermolec-
ular	reductive	coupling	of	unactivated	ketones	and	olefins	
is	so	 far	absent	 from	the	 literature.	The	closest	precedent	
for	the	desired	transformation	was	disclosed	by	Shono	and	
co-workers	 (Figure	 1D).18	 These	 reports	 focus	 predomi-
nantly	on	intramolecular	couplings,18a-b	with	only	a	few	in-
termolecular	 examples18c-d	 presented.	 To	 the	 best	 of	 our	
knowledge,	this	chemistry	has	not	been	applied	in	the	liter-
ature,	despite	being	available	for	decades,	presumably	due	
to	the	challenges	of	using	a	divided	cell	setup	under	an	ar-
gon	atmosphere	and	the	need	for	at	least	a	five-fold	excess	
of	 the	 ketone.	 In	 this	 Communication,	 a	 new	protocol	 for	
electrochemically	driven	reductive	couplings	of	unactivated	
ketones	and	olefins	is	presented.	This	method	uses	a	simple	
undivided	cell	tolerating	exogenous	air	and	moisture,	exhib-
its	a	broad	scope,	and	can	be	easily	scaled	(Figure	1E).	

			Explorations	 began	 by	 studying	 Shono’s	 original	 condi-
tions18c	 on	 a	 medicinally-relevant	 model	 substrate	 pair:	
homoallylic	alcohol	4	and	piperidone	3	(Table	1A).	In	prin-
ciple,	the	use	of	Grignard	chemistry	to	carry	out	this	assem-
bly	would	necessitate	the	use	of	a	protecting	group	on	4	and	
perhaps	 other	 precautions	 due	 to	 the	 enolizability	 of	 3,	
hence,	more	gentle	methodologies	were	sought.	Revisiting	
the	electrochemical	method	developed	by	Shono	for	less	or-
nate	substrates,18c	only	resulted	in	low	yields	(Table	1A,	en-
try	1).	This	method	was	pursued	with	some	rigor	(see	SI	for	
a	full	listing);	however,	the	yield	could	not	be	improved	be-
yond	 17%.	 Chemical	 reductants	 such	 as	 SmI2	 and	 LiDBB	
were	examined	next,	 and	while	 these	methods	have	been	
shown	to	have	success	in	similar	intramolecular	scenarios,	
they	were	found	to	be	unsatisfactory	for	this	purpose	(en-
tries	2-5,	Table	1a).	Developing	this	chemistry	following	the	
guiding	 principles	 from	 our	 own	 forays19,20	 into	 electro-
chemistry,	specifically	deeply	reductive	electrochemistry,20	
allowed	us	to	hone	in	on	the	sacrificial	anode,	electrolyte,	
current	 density	 and	 concentration	 needed	 to	 facilitate	 a	
high	yielding	olefin-ketone	coupling	(Table	1A,	see	the	SI	for	
a	 full	 listing).	As	graphically	 illustrated	 in	Table	1B,	 these	
three	variables	were	crucial	to	the	success	of	this	transfor-
mation	which,	after	optimization,	let	to	95%	isolated	yield	
of	adduct	5	(Table	1A,	entry	6).	The	use	of	an	inexpensive	
sacrificial	 anode	 (Zn)	 was	 ideal	 and,	 in	 contrast	 to	 prior	
work,	a	lower	current	ensured	broad	functional	group	tol-
erance	(10	mA	vs.	200	mA).	Notably,	unlike	prior	precedent,	
only	2	equivalents	of	the	ketone	are	required,	inexpensive	
electrodes	are	employed,	and	an	operationally	simple	undi-
vided	cell	is	used.		No	precautions	are	taken	to	exclude	air	
or	moisture	and	in	fact	the	reaction	can	be	run	open	to	the	
air	(cap	removed).	Finally,	the	linear	versus	branched	selec-
tivity	is	remarkable	(>15:1	in	most	of	the	cases).		

TABLE	1.	Optimization	of	the	reductive	ketone	olefin	cou-
pling.	 Comparison	 to	 known	 chemical	methods	 (A)	 and	 a	
graphical	 optimization	 overview	 of	 the	 newly	 developed	
electrochemical	protocol	(B).	

			With	these	results	in	hand,	the	scope	of	the	ketone-olefin	
coupling	was	investigated	(Table	2).	Several	functionalities	
on	the	olefin	were	tolerated;	free	alcohols	(1°,	2°,	and	3°;	6	
to	8),	 aniline	 (9),	 amides	 (10,	 13,	 21),	 nitrile	 (11),	 ester	
(12),	protected	amino	acid	(14),	and	heterocycles	(15-19)	
(moderate	to	high	yields).	Most	of	these	functional	groups	
would	be	challenging	to	employ	using	canonical	2e-	tactics	
such	as	Grignard.	The	reaction	tolerated	mono-substituted	
olefins	 but	 performed	 less	 successfully	 with	 poly-substi-
tuted	olefins	with	compound	22	and	23	being	the	only	ones	
affording	good	yields.	A	plausible	reason	for	this	lack	of	re-
activity	 with	 more	 substituted	 olefins	 could	 be	 due	 to	 a	
slower	rate	of	addition	(for	steric	reasons)	compared	to	the	
lifetime	of	the	ketyl	radical.21		In	the	case	of	cyclopentene-3-
ol,	an	interesting	finding	was	that	the	reaction	took	place	in	
high	yield	with	perfect	syn	diastereoselectivity.	The	analo-
gous	TBS-protected	olefin	did	not	react,	nor	did	cyclopen-
tene	 itself.	The	directing	effect	of	homo-allylic	alcohols	 in	
this	chemistry	is	notable	and	perhaps	relevant	to	the	mech-
anism	of	the	reaction	(vide	infra).		

			In	a	similar	fashion,	ketones	bearing	several	different	sub-
stituents	were	tolerated	(moderate	 to	high	yields);	ethers	
(26),	 protected	 amines	 (36-37),	 esters	 (39),	 carbamates	
(43),	alcohols	(50-51),	cyclopropanes	(52).	When	4-substi-
tuted	 cyclohexanones	 were	 used,	 single	 diastereomers	
were	isolated	with	the	selectivity	reminiscent	of	SmI2	pro-
moted	reactions	(anti,	38-39).22	Even	cyclic	ketones	of	var-
ying	ring	sizes	(24-39)	worked	well,	which	are	often	chal-
lenging	for	other	methods;	reduction	products	
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TABLE	2.	Scope	of	the	electroreductive	olefin-ketone	coupling.	

are	often	observed	when	sterically	hindered	ketones	react	
with	Grignards.	For	acyclic	ketones,	the	sterics	of	the	sub-
stituents	showed	a	minor	impact	on	the	reaction	yields	(40-
48),	although	only	25%	yield	of	the	desired	product		

was	 isolated	when	 very	 hindered	 diisopropylketone	 (45)	
was	used.	Notably,	unprotected	steroidal	substrates	50-52	
delivered	a	single	diastereomeric	product	in	high	yield	(see	
SI	for	structure	confirmation).
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SCHEME	1.	(A)	Electrochemical	ketone-olefin	coupling	facilitates	rapid	access	to	medicinally	relevant	structures	such	as	a	
vitamin	D	sidechain	(1),	a	DNA-binding	metabolite	(2),	and	a	hedgehog	signaling	modulator	(3).	(B)	Batch	and	flow	scale-up.	
aIsolated	yield

			This	reductive	coupling	could	also	be	applied	to	simplify	
real-world	challenges	in	medicinal	chemistry	(Scheme	1A).	
Thus,	the	synthesis	of	a	simple	vitamin	D	analog	sidechain	
55	was	reported	through	a	seven-step	route	wherein	only	
one	of	those	steps	formed	a	C–C	bond	(Scheme	1A-1).23	In	
contrast,	commercially	available	oxazolidinone	53	could	be	
allylated	 and	 reduced	 to	 yield	 (S)-2	methyl-4-penten-1-ol	
54.	Coupling	of	54	with	acetone	under	the	developed	elec-
trochemical	conditions	then	smoothly	furnished	sidechain	
55.	Of	the	three	steps	required	to	access	55,	two	forged	key	
C–C	bonds.	Next,	 the	synthesis	of	DNA-binding	metabolite	
58	 required	 a	 five-step	 sequence	 with	 two	 protecting	
groups	and	air-sensitive	SmI2	to	forge	a	key	C–C	bond	(73%	

ee,	Scheme	1A-2).24	Using	the	electrochemical	strategy	out-
lined	above,		

commercially	available	aldehyde	56	could	be	converted	to	
the	same	product	in	only	3	steps	via	simple	Brown	allyla-
tion,	followed	by	electrochemical	addition	of	acetone/TBAF	
work-up	and	a	final	oxidative	lactonization	(72%	yield,	93%	
ee).	Finally,	 the	steroidal	example6	mentioned	 in	Figure	1	
could	be	addressed	in	a	similar	way	from	the	same	starting	
material	(Scheme	1A-3).	Thus,	electrochemical	addition	of	
1	to	Teoc-protected	amine	59	delivered	a	single	diastereo-
meric	tertiary	alcohol	that,	after	CsF-induced	deprotection	
delivered	2	in	only	2	steps.	Clearly,	the	success	of	the	above	
applications	benefits	from	the	chemoselective	(FG	tolerant)	
nature	 of	 the	 electrochemical	 ketone-olefin	 coupling.	 The	
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reaction	can	be	conducted	on	100	gram-scale	(>1	mol)	us-
ing	a	flow	system	

	
SCHEME	2.	Mechanistic	insights	from	byproducts	(A),	deuterium	labeling	(B),	proposed	reaction	mechanism	(C),	and	voltam-
metry	studies	(D	&	E).	See	SI	for	details.

	affording	a	comparable	yield	to	the	batch	reaction(Scheme	
1B,	see	SI	for	details).		

			The	mechanism	 of	 this	 useful	 reaction	 (Scheme	 2)	 was	
next	interrogated	through	the	observation	of	certain	side-
products	(Scheme	2A),	deuterium	labeling	(Scheme	2B),	ki-
netics,	and	voltammetric	studies	(Scheme	2D	&	2E).	A	nota-
ble	limitation	of	this	chemistry	was	that	ketones	bearing	al-
pha-substituents	(such	as	60)	were	not	tolerated	and	elim-
ination	of	the	alpha-substituent	was	observed	(62),	sugges-
tive	of	a	ketyl	radical	intermediate.	Using	allyl	alcohol	(64),	
the	bis	addition	adduct	65	was	observed,	perhaps	pointing	
to	a	carbanion	intermediate	wherein	ZnBr2	generated	from	
anodic	 oxidation	 could	 assist	 in	 the	 departure	 of	 the	 pri-
mary	alcohol	and	regeneration	of	another	olefin.	Deuterium	
labeling	using	acetone-d6	 led	 to	80%	 incorporation	at	 the	
highlighted	position	(Scheme	2B)	further	supporting	a	car-
banion	intermediate.	When	regular	acetone	was	used	in	the	
same	experiment	but	with	deuterated	DMF,	no	deuterated	
product	was	observed.	Kinetic	studies	revealed	zero-order	
dependence	 on	 all	 components	 except	 current	 indicating	
that	reduction	is	purely	electrochemical.	

			Finally,	a	series	of	voltammetric	studies	were	performed	
(Scheme	2D	&	2E)	to	understand	how	traditionally	nucleo-

philic	ketyl	 radical	 can	serve	as	competent	coupling	part-
ners	with	unactivated	olefins,	as	well	as	to	provide	evidence	
for	 the	 overall	 electrochemical	 mechanistic	 sequence	 as	
proposed	in	Scheme	2C.	We	hypothesized	that		

the	change	in	its	electronic	property	and	reactivity	can	be	
facilitated	by	a	strong	adsorption	of	the	ketyl	radical	to	the	
Sn	 electrode.	 Cyclic	 voltammetry	 studies	were	performed	
using	Sn	and	glassy	carbon	(GC)	as	working	electrodes	with	
acetophenone25	as	the	source	of	ketyl	radical.	Pre-peaks	on	
the	CV	were	observed	using	Sn	as	the	working	electrode	but	
not	observed	using	GC	as	the	working	electrode.	These	pre-
peaks	 are	 distinct	 characteristics	 of	 an	 electron	 transfer	
where	the	product	(ketyl	radical)	is	strongly	adsorbed	into	
the	working	electrode.26	Furthermore,	the	current	response	
observed	in	the	pre-peak	in	Sn	was	found	to	be	dependent	
on	the	concentration	of	ketone	(see	SI).27	This	result	also	ra-
tionalizes	the	effectiveness	of	using	Sn-cathode	over	other	
electrode	 materials	 (see	 SI).	 Square-wave	 voltammetry	
(SWV)	studies	were	performed	and	the	results	are	summa-
rized	in	Scheme	2E.	The	addition	of	alkene	61	to	acetophe-
none	showed	an	anodic	shift	in	the	cathodic	peak	potential	
denoting	 a	 chemical	 reaction	 with	 the	 ketyl	 radical	 after	
one-electron	reduction.	However,	even	at	high	frequencies	
(100	Hz),	the	expected	second	reduction	peak	was	not	ob-
served.	We	hypothesized	that	one	crucial	role	of	the	sacrifi-
cial	Zn-anode	is	to	provide	Zn2+	as	a	thermodynamic	sink	for	
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the	second	electron	reduction.	SWV	analysis	in	the	presence	
of	catalytic	amounts	of	ZnBr2	showed	three	distinct	reduc-
tion	peaks	where	the	third	peak	can	be	the	reduction	of	the	
ZnBr2-coordinated	 ketone	 (see	 SI).	 Taken	 together,	 these	
results	 suggest	 an	 ECEC-type	 electrochemical	mechanism	
where	the	ketyl	radical	formation	(E)	takes	place	at	the	Sn-
cathode	with	strong	adsorption	characteristic	followed	by	
radical	addition	(C)	 into	 the	olefin.	A	second	one-electron	
reduction	(second	E)	of	the	radical	anion	to	the	dianion	fol-
lowed	by	protonation	(second	C)	and	then	workup	delivers	
the	final	product.	The	enhanced	reactivity	of	homoallylic	al-
cohols	may	be	due	to	 improved	binding	of	 the	olefin	sub-
strate	to	the	cathode	surface.		

			In	 summary,	 a	 chemoselective,	 scalable	method	 to	 com-
bine	 unactivated	 olefins	 and	 ketones	 has	 been	 developed	
that	 subverts	 the	 issues	 encountered	 using	 Grignard	 rea-
gents	in	conventional	retrosynthetic	analysis.	The	scope	of	
this	reaction	is	broad	and	it	is	operationally	simple	to	per-
form.	A	number	of	applications	demonstrate	that	the	utility	
extends	 beyond	 that	 of	 a	 simple	 tactical	 change	 as	when	
strategically	 employed,	 it	 can	 dramatically	 reduce	 overall	
step	count.	Mechanistic	studies	point	to	an	intuitive	electro-
chemically	driven	reductive	pathway	that	initiates	upon	the	
formation	of	a	ketyl	radical,	addition	to	the	olefin,	and	fur-
ther	 reduction	 to	 a	 stabilized	 carbanion	prior	 to	workup.	
This	work	is	thus	another	example	of	how	strongly	reducing	
chemistry	can	be	uniquely	facilitated	and	enabled	in	com-
plex	settings	under	electrochemical	control	when	classical	
chemical	reagents	fail.	
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