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Abstract—Machine learning algorithms used to detect attacks
are limited by the fact that they cannot incorporate the back-
ground knowledge that an analyst has. This limits their suitability
in detecting new attacks. Reinforcement learning is different from
traditional machine learning algorithms used in the cybersecurity
domain. Compared to traditional ML algorithms, reinforcement
learning does not need a mapping of the input-output space or
a specific user-defined metric to compare data points. This is
important for the cybersecurity domain, especially for malware
detection and mitigation, as not all problems have a single,
known, correct answer. Often, security researchers have to resort
to guided trial and error to understand the presence of a malware
and mitigate it.

In this paper, we incorporate prior knowledge, represented
as Cybersecurity Knowledge Graphs (CKGs), to guide the
exploration of an RL algorithm to detect malware. CKGs
capture semantic relationships between cyber-entities, including
that mined from open source. Instead of trying out random
guesses and observing the change in the environment, we aim to
take the help of verified knowledge about cyber-attack to guide
our reinforcement learning algorithm to effectively identify ways
to detect the presence of malicious process names so that they can
be deleted to mitigate a cyber-attack. We show that such a guided
system outperforms a base RL system in detecting malware.

Index Terms—Reinforcement Learning, Knowledge Graphs,
Cybersecurity, Artificial Intelligence

I. INTRODUCTION

Cybersecurity aims to protect hardware and software com-

ponents in a computer system against malicious attacks. A

key part to protecting against malicious attacks is identifying

them, as early as possible in the Cyber Kill Chain [7]. The

most common approaches today are signature based, which of

course can be defeated by adversaries by minor modifications

of the malware or its dropper. Another approach is based

on behavioural anomalies. This can be done by observing

the system behavior over time and flagging any aberrant

behavior. However, such anomaly detection based approaches

often misidentify less frequently occurring legitimate system

actions as attacks. Another commonly used approach is to use

machine learning on network data to detect attacks [24]. In

2019 for instance, the IEEE Big Data conference organized

a competition on the use of machine learning algorithms to

detect attacks based on observed network data [8].

Machine learning is an important tool for recognising pat-

terns in data. In the cybersecurity space, this can be useful

to identify the behavior of a system under attack. However,

standard machine learning algorithms have limitations in the

cybersecurity space, especially in real deployments [28], [35].

In part, this is because the dataset is highly imbalanced – most

of the observed data in a real system is not attacks, and unless

a dataset is artificially curated to be balanced, it will mostly

have benign data. In other words, the base rate of an attack

is quite low. Hence, most machine learning algorithms tend

to overfit for the data points of non-attack scenarios. Such

learning algorithms are prone to weak performances in the

real world. They also struggle in their ability to generalize, to

unseen attacks.

There are also other problems in the cybersecurity space

for traditional ML approaches. In other domains like natural

language processing or computer vision, it is fairly simple

for a human, who is not necessarily an expert in the specific

task, to draw a conclusion the Artificial Intelligence (AI)

system is trying to reach with high confidence. For example,

a human may not need complicated background knowledge,

except what is in implicit in the image itself to differentiate the

image of a cat from a dog. However, looking at netflow data,

it is not easy for a person to decide if it represents an attack –

this requires significant expertise and background knowledge.

So when we are trying to mimic the way security professionals

reach a decision about a task, it is imperative that we consider

a way to incorporate their prior knowledge that is not in the

data itself into the machine learning system. This is because

their prior knowledge and experience, as opposed to common

knowledge, may dictate how they perform their tasks in their

profession. For example, a security professional might take

what they know about recent discussions in online forums

about vulnerabilities in identifying an attack on their system.

Also, in tasks like image recognition, there is not much scope

for subjectivity for reaching a conclusion. Usually, an image

is either a cat or not. However, what is an attack is not always

clear, and for sophisticated APTs, even experts may not even

recognize an attack as it is happening. It has been reported

that often a third party identifies and APT attack, not the in

house security team of the organization being attacked.

Reinforcement Learning (RL) mimics the way human be-

ings tend to process new information. RL does not require

sub-optimal actions to be explicitly corrected. Instead, it tries

to find a balance between exploration (of new knowledge)

and exploitation (of current knowledge). It does not assume



any prior mathematical modelling for the environment. This

gives the RL algorithm more flexibility in learning about a

new knowledge space.

In this paper, we make two key contributions. First, we

use reinforcement learning for malware detection. Second, we

also use knowledge mined from open information sources

describing the same or similar malware attacks to change

the behavior of the RL algorithm, automatically changing the

parameters of the RL algorithm to adapt its reward functions

and their initial probability distributions. This approach is

not only a way to solve the issue of having to rely on

pre-defined loss functions for traditional ML systems created

by individuals who may not be experts in cybersecurity, it

also helps to mimic how security professionals use their own

knowledge in identifying attacks.

We organize our paper as follows - Section II talks about

the key concepts of the different aspects of our algorithm. In

Section III, we discuss our core algorithm. We discuss our

findings in Section IV. We also discuss some of the relevant

work conducted in this area in Section V, and we finally

conclude our paper in Section VI.

II. BACKGROUND

In this section, we discuss key reinforcement learning

algorithm details and our general approach of representing

extracted open source text in a Cybersecurity Knowledge

Graph (CKG).

A. Reinforcement Learning

We utilize methods in model-free reinforcement learning

in our approach [30]. Model-free RL agents employ prior

experience and inductive reasoning to estimate, rather than

generate, the value of a particular action. There are many

kinds of model-free reinforcement learning models such as

SARSA, Monte Carlo Control, Actor-Critic and Q-learning.

We specifically utilize the Q-learning methods [30].

Q-learning agents learn an action-value function (policy),

which returns the reward of taking an action given a state.

Q-learning utilizes the Bellman equation in order to learn

expected future rewards. We calculate the maximum future

reward max(Q(s′, a′)) given a set of multiple actions corre-

sponding to different rewards. Q(s, a) is the current policy

of an action a from state s, and γ is the discount factor.

The discount factor is the total reward an agent will receive

from the current iteration until termination, and allows us to

value short term reward over long term reward. The goal is

to therefore maximize the discounted future reward at every

iteration [32].
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New Q-Value

= Q(s, a)+α∣
∣
∣

Learning Rate

[R(s, a)
︸ ︷︷ ︸

Reward

+γ
∣
∣
∣
∣
∣

Discount rate

Maximum predicted reward, given
new state and all possible actions

︷ ︸︸ ︷

maxQ′(s′, a′)−Q(s, a)]

We update a policy table, also known as a Q-table for every

action taken from a state. A Q-table is simply a lookup table

that preserves the maximum expected reward for an action

at each state. The columns represent actions and the rows

represent states. The Q-table is improved at each iteration and

is controlled by the learning rate α [32].

B. Cybersecurity Knowledge Graphs (CKGs)

Cybersecurity Knowledge Graphs have been widely used to

represent Cyber Threat Intelligence (CTI). We use CKG to

store CTI as semantic triples that helps in understanding how

different cyber entities are related. This representation allows

the users to query the system and reason over the information.

Knowledge graphs for cybersecurity have been used before to

represent various entities [23]. Open source CTI has been used

to build CKGs and other agents to aid cybersecurity analysts

working in an organization [16]–[18], [21], [27]. CKGs have

also been used to compare different malware by Liu et al. [13].

Some behavioral aspects have also been incorporated in CKGs,

where the authors used system call information [22]. Graph

based methods have also been post processed by machine

learning algorithms, as demonstrated by other approaches [2],

[9], [10].

III. METHODOLOGY

In this section, we discuss the principles of our proposed

algorithm. Figure 1, gives us an overview of the different

aspects of our system. We provide text describing a piece

of malware as an input to our cyber knowledge extraction

pipeline and we receive a set of semantic triples as an output.

We assert this set of triples to a CKG. We sometimes fuse

this CKG with data from other sources such as behavior

analysis [25]. This forms our knowledge base that will help

us identifying malicious activity in a system and also suggest

ways to mitigate them. The RL algorithm acts on the malware

behavior data. We tune the parameters of the RL algorithm

based on the information present in the CKGs that can be

retrieved by querying the CKG.

A. Cyber Knowledge Extraction (CKGs) from prior knowledge

sources

We have an established cyber knowledge extraction pipeline

that takes malware After Action Reports and automatically

populates CKGs [26]. The method uses a trained ‘Malware

Entity Extractor’ to detect cyber- named entities. Once the

malware entities have been detected, a deep neural network

is used to identify the relationships between them [23]. The

relationship extractor takes pairs of entities, generates their text

embedding using a trained word2vec [15] model, and produces

a relationship as an output for the pairs of entities. Finally the

entity-relationship set is asserted into a CKG.

We use these trained models on open-source text describing

the malware we use in our experiments, or similar malware.

In order to find open source text analysing the malware, we

use the known MD5 Hash of the malware and perform a web

search to look for articles talking about the same malware.







the processes create multiple threads, we can use that as an

additional parameter for our reward function. We will discuss

the different reward functions that we have constructed from

the knowledge sources and their performance in Section IV.

IV. EXPERIMENTAL RESULTS

In this section, we discuss the preliminary results from

our experiments. Most of the malware analysis and machine

learning research concentrates on evaluating the performance

of the machine learning algorithm on a dataset of malware

samples. For example, Gavrilut et al. [6], discuss multiple

machine learning algorithms to detect malware files using

perceptrons and kernelized perceptrons and they evaluate the

performance of their trained algorithm on a test set. Since

our approach is aimed at discovering a sequence of process

names that we suspect to be malicious, we aim to rank the

actions (processes) with respect to their q-values after some

episodes of training. To be precise, we use 140 episodes for

training with 10,000 steps in each of them. The high number

of step count compared to the number of episodes is because

the time series data consists of 26,000 to 28,000 states. If we

use a small value for the step count, we would be able to cover

only a small portion of the state space in one episode. Hence,

we keep the step count high and the episode count relatively

low. We aim to calculate as much q-values as possible in one

episode itself. We then record how our RL system scores the

known malicious processes with respect to other processes that

are benign.

We use a combination of reward functions from Equations

3, 4, and 5. The first reward function is constructed based on

common knowledge and intuition. If the I/O activity decreases

or the network activity after a process creation, we can make

an educated assumption that the process could be benign. We

assign a reward value of ‘+1’ if the I/O or network activity

decreases after a process creation. For this we calculate the

average of I/O read/write bytes for 5 time-steps before a

process creation and 5 time steps after a process creation.

The same approach is used for KiloBytes (KB) Sent/Received.

This is done because the effect of a process creation may not

be immediate. In our first experiment (Exp 1) we simply use

Equation 3 and Equation 4 as our reward function.

In our second experiment (Exp 2), we keep the reward func-

tions constant. However, we change the exploration criteria for

our RL algorithm based on prior knowledge. The exploration

probability distribution is stated in Equation 2. This helps

the RL algorithm to explore state-action pairs that have high

priority nice values leading to a faster convergence.

Reward(s, a) + = 1 (if I/O write/read decreases

or KB sent/recieved decreases)
(3)

Reward(s, a) − = 1 (otherwise) (4)

Reward(s, a) = w1 ·
nicevalue

20
+ w2 · (numthreads(state, action)

− numthreads(state− 1, previousaction))
(5)

In the third experiment (Exp 3), we incorporate the prior

knowledge source in our reward function. The prior knowledge

source states that the nice values of the associated processes

are high priority. We use Equation 5 with the value of ‘w2’

set to 0. A high priority nice value will be close to -20. So, a

state-action pair for which the nice value is close to -20, will

have a negative reward associated with it if the value of ‘w1’

is set to 1.

In the last experiment (Exp 4), we select another source

of information describing the Bill Gates Botnet family. The

source tells us that this malware family spawns a significantly

higher number of threads. We use Equations 3, 4, and 5 for this

experiment. We use a weighted sum of the two prior sources

in this experiment.

Type Exp-1 Exp-2 Exp-3 Exp-4

Q-value -5.1 -5.7 -7 -16.99

Rank 9(99) 11(99) 8(99) 1(99)

TABLE II: Ranking and Q-values of the known malicious

process

In Table II we can see that the reward function using the

weighted mean of prior information sources is able to identify

the known malicious process as the highest ranked process.

The Q-values are greater in magnitude because the reward

functions have more parameters included in them. This shows

that including more knowledge sources in our RL algorithm

yields better results.

In Figure 4, we can see the comparison of time required to

complete each episode that consists of 10,000 steps. We argued

previously that tuning the exploration probability distribution

would lead to a faster convergence. We observe that this is

partly true. In sharp dips signify the exploitation phase of

the RL algorithm, when the algorithm knows what it looks

for. The surge signifies more time to find ‘actions’ during

exploration that fit the state-transition. Although the average

time is lower in Figure 4a than in Figure 4b, this is because

in the beginning the environment is benign. So, the tuned

probability distribution that is supposed to aid in the process of

finding malicious processes hinders the RL algorithm to find

processes or actions, that are benign in the beginning, that

fits the state transformation. However, we do observe some

sharp peaks in Figure 4a, as the RL algorithm’s episodes move

to the malicious phase. In contrast, the time per episode is

more consistent in Figure 4b. This is the result of the changed

probability distribution that helps the RL algorithm in finding

processes faster in the malicious phase.





ration probability distribution, it also briefly discussed about

how it can be used to improve performance. In our study, we

use a variant of this technique in one of our experiments. The

key difference is that we are utilizing CKGs that already hold

knowledge about cybersecurity and we do not have to rely on

expensive human inputs.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose using RLs to detect malware, and

incorporating prior knowledge from CKGs into the RL based

detection system. This separates our approach from traditional

use of ML approaches to detect attacks. Our approach mimics

the way cybersecurity professionals in a SoC analyze the

reported sensor data based on their backgroud knowledge to

see if the system is currently under attack by a malware. Some-

times they resort to guided trial and error method (manifested

in this case by the RL algorithm), and in some cases they use

their own knowledge and experience to derive conclusions.

Specifically, in our experiments, we show how prior knowl-

edge taken from text sources describing a malware activity

can be used in an RL algorithm to detect malicious process.

We suggest that deleting these processes may prove to be

an acceptable mitigation strategy. However, the knowledge

stored in the CKGs can actually provide multiple mitigation

strategies that can be used as a malware executes. In ongoing

work, we are using multiple known mitigation strategies

after detonating a malware sample. This can produce better

mitigation strategies for a malicious sample. We are also using

the malware features to identify the malware family that a

new malware sample belongs to. We can the use open source

intelligence about that malware family to formulate candidate

mitigation steps. This will help us build a robust mitigation

strategy generator that will be able to use and integrate the

knowledge of security researchers with RL, to yield the best

sequence of steps needed for a particular malware attack to be

defeated.
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land, and D. Ślezak. Ieee bigdata 2019 cup: Suspicious network event
recognition. In 2019 IEEE International Conference on Big Data (Big

Data), pages 5881–5887, 2019.

[9] Karuna P Joshi, Aditi Gupta, Sudip Mittal, Claudia Pearce, and Tim
Finin. Alda: Cognitive assistant for legal document analytics. In AAAI

Fall Symposium on Cognitive Assistance in Government and Public

Sector Applications. AAAI Press, 2016.

[10] Maithilee Joshi, Sudip Mittal, Karuna P Joshi, and Tim Finin. Semanti-
cally rich, oblivious access control using abac for secure cloud storage.
In Int. conf. on edge computing, pages 142–149. IEEE, 2017.

[11] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning
in robotics: A survey. The International Journal of Robotics Research,
32(11):1238–1274, 2013.

[12] Robert Levinson. General game-playing and reinforcement learning.
Computational Intelligence, 12(1):155–176, 1996.

[13] Jing Liu, Yuan Wang, and Yongjun Wang. The similarity analysis of
malicious software. In Int. Conf. on Data Science in Cyberspace. IEEE,
2016.

[14] Mufti Mahmud, Mohammed Shamim Kaiser, Amir Hussain, and Stefano
Vassanelli. Applications of deep learning and reinforcement learning to
biological data. IEEE transactions on neural networks and learning

systems, 29(6):2063–2079, 2018.

[15] Tomas Mikolov, Ilya Sutskevarand Kai Chen, Greg Corrado, and Jeffrey
Dean. Distributed representations of words and phrases and their com-
positionality. In 26th International Conference on Neural Information

Processing Systems - Vol. 2, pages 3111–3119. ACM, 2013.

[16] Sudip Mittal, Prajit Das, Varish Mulwad, Anupam Joshi, and Tim Finin.
Cybertwitter: Using twitter to generate alerts for cybersecurity threats
and vulnerabilities. In IEEE/ACM International Conference on Advances

in Social Networks Analysis and Mining. IEEE Press, 2016.

[17] Sudip Mittal, Anupam Joshi, and Tim Finin. Thinking, fast and
slow: Combining vector spaces and knowledge graphs. arXiv preprint

arXiv:1708.03310, 2017.

[18] Sudip Mittal, Anupam Joshi, and Tim Finin. Cyber-all-intel: An ai for
security related threat intelligence. preprint arXiv:1905.02895, 2019.

[19] D. Moreno, Carlos V. Regueiro, R. Iglesias, and S. Barro. Using prior
knowledge to improve reinforcement learning in mobile robotics. 2004.

[20] David L Moreno, Carlos V Regueiro, Roberto Iglesias, and Senén Barro.
Using prior knowledge to improve reinforcement learning in mobile
robotics. Proc. Towards Autonomous Robotics Systems. Univ. of Essex,

UK, 2004.

[21] Lorenzo Neil, Sudip Mittal, and Anupam Joshi. Mining threat intel-
ligence about open-source projects and libraries from code repository
issues and bug reports. In Int. Conf. on Intelligence and Security

Informatics. IEEE, 2018.

[22] Younghee Park, Douglas Reeves, Vikram Mulukutla, and Balaji Sun-
daravel. Fast malware classification by automated behavioral graph
matching. In 6th Annual Workshop on Cyber Security and Information

Intelligence Research. ACM, 2010.

[23] Aditya Pingle, Aritran Piplai, Sudip Mittal, Anupam Joshi, James Holt,
and Richard Zak. Relext: Relation extraction using deep learning
approaches for cybersecurity knowledge graph improvement. In Int.

Conf. on Advances in Social Networks Analysis and Mining. IEEE, 2019.

[24] A. Piplai, S. S. L. Chukkapalli, and A. Joshi. Nattack! adversarial attacks
to bypass a gan based classifier trained to detect network intrusion.
In 2020 IEEE 6th Intl Conference on Big Data Security on Cloud

(BigDataSecurity), IEEE Intl Conference on High Performance and

Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data

and Security (IDS), pages 49–54, 2020.



[25] Aritran Piplai, Sudip Mittal, Mahmoud Abdelsalam, Maanak Gupta,
Anupam Joshi, and Tim Finin. Knowledge enrichment by fusing
representations for malware threat intelligence and behavior. IEEE

International Conference on Intelligence and Security Informatics (ISI),
2020.

[26] Aritran Piplai, Sudip Mittal, Anupam Joshi, Tim Finin, James Holt, and
Richard Zak. Creating cybersecurity knowledge graphs from malware
after action reports. IEEE Access 2020, 2020.

[27] Priyanka Ranade, Sudip Mittal, Anupam Joshi, and Karuna Joshi. Using
deep neural networks to translate multi-lingual threat intelligence. In Int.

Conf. on Intelligence and Security Informatics. IEEE, 2018.
[28] Maheshkumar Sabhnani and Gursel Serpen. Why machine learning

algorithms fail in misuse detection on kdd intrusion detection data set.
Intelligent Data Analysis, 2004.

[29] Shahaboddin Shamshirband, Ahmed Patel, Nor Badrul Anuar, Miss
Laiha Mat Kiah, and Ajith Abraham. Cooperative game theoretic
approach using fuzzy q-learning for detecting and preventing intrusions
in wireless sensor networks. Engineering Applications of Artificial

Intelligence, 32:228–241, 2014.
[30] Sutton and Barto. Reinforcement learning: An introduction. MIT press,

2018.
[31] Daniele Ucci, Leonardo Aniello, and Roberto Baldoni. Survey of

machine learning techniques for malware analysis. Computers &

Security, 81:123–147, 2019.
[32] Watkins and Dayan. Q-learning. In Machine Learning), pages 279–292,

1992.
[33] Xin Xu and Yirong Luo. A kernel-based reinforcement learning

approach to dynamic behavior modeling of intrusion detection. In
International Symposium on Neural Networks, pages 455–464. Springer,
2007.

[34] Yoriyuki Yamagata, Shuang Liu, Takumi Akazaki, Yihai Duan, and
Jianye Hao. Falsification of cyber-physical systems using deep rein-
forcement learning. IEEE Transactions on Software Engineering, 2020.

[35] Roman V. Yampolskiy. Artificial intelligence safety and cybersecurity:
a timeline of ai failures. arxiv, 2016.


