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ABSTRACT

ZF + AD proves that for all nontrivial forcings P on a wellorderable set of
cardinality less than O, 1p IFp =AD. ZF + AD + O is regular proves that
for all nontrivial forcing P which is a surjective image of R, 1p IFp —AD.
In particular, ZF 4+ AD + V = L(R) proves that for every nontrivial forcing
Pe L@(R), 1p IFp =AD.

1. Introduction

Paul Cohen [1] developed forcing which is a very flexible method of extending
models of certain axioms of set theory (such as ZF or ZFC) so that the resulting
structures continue to satisfy these axioms of set theory. This technique has
become a powerful tool for showing statements are independent of ZFC. For
example by [1], if ZFC is consistent, then ZFC + 2% = X; and ZFC 4 2% > ¥,
are both consistent.

Descriptive set theory is the study of the definable aspects of mathematics.
Various interesting properties are commonly considered while employing defin-
able techniques to study mathematical problems. Some of these include the
perfect set property, Lebesgue measurability, the property of Baire, partition
relations on ordinals, and certain properties of Turing degrees. These properties
in their full generality are all incompatible with AC, the axiom of choice.
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These properties are interesting and appeared naturally in classical descrip-
tive set theory. Definable instances of these properties are provable in more
basic axiom systems such as ZF, in the same way that definable instances of
the axiom of choice, for example, coanalytic uniformization, is provable in ZF.
This analogy justifies the study of the consequences of the full generalization
of these properties just as one does with AC, the full generalization of definable
selection principles.

The axiom of determinacy, AD, has developed into a comprehensive frame-
work for studying the properties mentioned above in their full generality. As
customary in descriptive set theory, R will denote the Baire space, “w, of func-
tions from w into w. For each A C R, let G 4 be the game where Players 1 and 2
take turns playing elements of w. After infinitely many stages, a single f € R
has been produced. Player 1 wins this run of G4 if and only if f € A. The
axiom of determinacy states that for all A C R, one of the two players has a
winning strategy for G4. AD implies the perfect set property, Lebesgue mea-
surability, Baire property for all sets of reals, and there are many cardinals with
various partition properties. As with all these properties, definable fragments
of AD can be proved in ZF, for example, Martin showed all games G 4 where A
is Borel are determined under ZF.

One can wonder if the forcing construction which has been fruitful for study-
ing consistency results over ZFC could be useful for AD. The most basic question
would be to understand what forcings over AD could preserve AD. By the na-
ture of AD, if one does not change R or Z(R), then AD will be preserved.
Therefore the question becomes what forcings which disturb R or Z(R) can
still preserve AD.

Ikegami and Trang initiated the study of the preservation of AD under forcing.
They showed that many forcings, such as Cohen forcing, can never preserve AD.
They also showed that if one is working with natural models of AD, i.e., models
satisfying ZF + ADT +V = L(£(R)), then any forcing which preserves AD must
preserve O, where © is the supremum of the ordinals which are surjective images
of R. They also showed that the consistency of ZF + AD' + © > O implies
the consistency of ZF + AD and there is a forcing which preserves AD and
increases ©. Thus necessarily this forcing must disturb & (R) by adding a new
set of reals.
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The following are some examples of concrete forcings applied within AD.
They all destroy the axiom of determinacy for various reasons. These examples
give some empirical evidence that most small forcings can not preserve AD and
also motivate the general arguments presented throughout the paper.

Let C denote Cohen forcing. Cohen forcing adds a generic filter which is
equiconstructible from a generic real, called the Cohen generic real. It is well
known that if g is a Cohen generic real over V, then V[g] = “RY does not have
the Baire property”. Hence V[g] &= —AD.

Note that Woodin has shown that if V' = ZFC has a proper class of Woodin
cardinals, then for any P and G C P which is P-generic over V, L(R)V is
elementarily equivalent to L(R)VI?]. This setting implies that L(R)" }= AD.
Let g be a Cohen real which is generic over V. Note g € L(R)V19 and by
Woodin’s result, L(R)V19 = AD. However, L(R)[g] = —AD by the result
mentioned in the previous paragraph. Observe that the elements of the ground
model always belong to its forcing extension. Thus RY € L(R)[g]; however,
RY ¢ L(R)VIdl,

Assume ZF 4+ DCg. Let Coll(wy,ws) be the forcing consisting of countable
partial functions from w; into wy ordered by reverse extension. Suppose there
was a G C Coll(wy, ws) generic over V such that V]G] = AD. Since Coll(wy,ws)
is countably closed and DCg holds, no new reals are added. V[G] has a surjection
of w} onto wy . Thus there is a new subset of w} which codes an ordering of w}’
oflengthwy. In V, let 7 : RY — w} be a surjection. By the Moschovakis coding
lemma in V[G] = AD, there is some real which codes this new subset of w{’
with respect to . This is impossible if there are no new reals. Thus V[G] can
not satisfy AD.

Suppose k is a cardinal. The partition relation x — (k)3 is the statement
that for all ® : [x]} — 2, there is a club C C k and an i € 2 so that ®(f) =i
for all f € [k]* of the correct type. The notion of correct type will be defined
below and is needed to obtain a club set which is homogeneous. Martin showed
that w; — (w1)3* holds under AD.

Revisiting the Cohen forcing C: Assume ZF. Suppose there was a Cohen
generic real g over V such that V[g] = AD. Since |C| = R, every D C w; in V[g]
has a C' € V which is a club subset of w; so that V[g] | C C D. (This phe-
nomenon will be called the ground club property.) Note that ([wi]“1)V € V[g],
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so one may define a partition ® : [w1]¥ — 2 in Vg] as follows:

0, f€ ([wi]*)",

1, otherwise.

o(f) =

We have Vg] = AD, so by w; — (w1)%, let D C wy be a club set homogeneous
for ®. Let C C D be aclubin V so that V[g] = C C D. Taking any f € ([C]*)
of the correct type, one can show that in V[g], C' is homogeneous for ® taking
value 0. Let ¢; denote the (w-i+w)™ element of C. AsC €V, (¢c; :i € w) € V.
Pick z € 2(w)V9l. Let f. € ([C]*)V19 be defined by letting f. be the increasing
enumeration of {¢; : ¢ € z}. The function f, is of the correct type so ®(f,) = 0.
Thus f, € V. Since z = {i € w : ¢; € f.}, one has that z € V. It has been
shown that RV = RY9 which is impossible since g € RVI9)\ RV,

These examples suggest that “small” nontrivial forcings should not be able
to preserve AD. The examples also seem to indicate that the partition property
and the ground model club phenomenon appear to be common aspects of these
arguments.

The axiom of determinacy by its definition influences the sets which are sur-
jective images of R. It is reasonable to ask whether a nontrivial forcing which
itself is within the realm of determinacy (i.e., is a surjective image of R) must dis-
turb R or Z(R) and if so, can it preserve AD. More specifically, if V = AD, L(R)
is the smallest model of determinacy containing RY. One can ask if in L(R),
which is the most natural model of AD, can a nontrivial forcing within the
realm of determinacy, i.e., in Lo(R), preserve AD. The following are the main
questions:

Question 1.1: Assume ZF + AD. If P is a nontrivial forcing which is a surjective
image of R, is it possible that 1p IFp AD?

Assume ZF + AD +V = L(R). Is there any nontrivial P which is a surjective
image of R so that 1p IFp AD?

The first question will be answered negatively if the assumptions are aug-
mented with the condition that © is regular. Since © is regular in L(R), this
immediately gives the negative answer to the second question. The results of
the paper are the following:

THEOREM 3.2: Assume ZF + AD. If P is a nontrivial wellorderable forcing of
cardinality less than ©, then 1p IFp —AD.
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The argument of the above theorem serves as a template for the main result.
Its proof is a generalization of the example involving Cohen forcing. In discus-
sion with Goldberg, a stronger result for wellorderable forcing can be shown
using different techniques:

THEOREM 3.5.: Assume ZF + AD. If P is a wellorderable forcing which adds a
new real, then 1p IFp -AD.

The main results are:

THEOREM 5.5: Assume ZF + AD+ © is regular. Suppose P is a nontrivial
forcing which is a surjective image of R. Then 1p IFp —AD.

COROLLARY 5.6: Assume ZF+AD + V = L(R). No nontrivial forcing P € Lo (R)
can preserve AD.

In fact, assume ZF + ADT + —=ADg +V = L(#(R)). No nontrivial forcing
which is the surjective image of R can preserve AD.

2. Ground club property
Recall that if ACR xR and e € R, 4. = {z € R" : (e,x) € A}.

FactT 2.1 (Moschovakis): Assume ZF + AD. Let T' be a nonselfdual pointclass
closed under continuous substitution, 3%, A, and £} CT. Let <€ I" be a strict
prewellordering. For each a € dom(<), let Q, = {b € dom(=<):a <bAb = a}.
Let U C R3 be a I'-universal set for subsets of R? in T'. Let Z C dom(<) x R.
Then there is an e € R so that:

(1) U. C Z.

(2) For all a € dom(<), (Ue)q # 0 if and only if Z, # 0.

Proof. See [6] Section 7D.

Fact 2.2: Assume ZF + AD. Let X C R and @ : X — kK be a surjec-
tion. Let < be a strict prewellordering on X defined by x < y if and only
if m(x) < w(y). Let T be a nonselfdual pointclass closed under continuous sub-
stitution, 3%, A, <€ T, and 31 C T'. Let U be a fixed I'-universal set for subsets
of R? inT. For each e € R, let ST = {a < x : (Ja)(n(a) = a A Ue(a,0)}.

For all C C &, there is some e € R so that ST = C.

Proof. Let Z = {(a,0) : a € X A7w(a) € C}. Apply Fact 2.1.
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Definition 2.3: Assume ZF + AD. Let A C R. Let 4 be the least ordinal &
so that Ls(A,R) <1 L(A,R), where <; denotes ¥; elementarity in a language
that includes a predicate A and ]R, which are always interpreted as A and R,
respectively. It is also the least ordinal § so that Ls(A,R) is an elementary
substructure of L(A,R) with respect to ¥; formulas in the above language
using elements of R, R itself, and A as parameters.

Let X1 (L(A,R),RU{R, A}) be the collection of sets in L(A4, R) which are ¥;
definable in L(A, R) using elements of R, R itself, and A as parameters.

Definition 2.4: Following [4] Sections 2.4 and 2.5, the following is an explicit
prewellordering of a subset of R of length 64 which is X1 (L(A,R),RU{R, A}):

Let T be the theory consisting of ZF without the power set axiom, “R exists”,
and countable choice for R.

Let p4(z, A,R) denote a X formula that defines the ¥ (L(A,R), {A,R}) set,
denoted U, which is universal for 1 (L(A,R), RU{A,R}). For z € Uy, let O,
be the least ordinal so that Le, (4,R) = T and Le,(A,R) = pa(z, A, R).
Define ja(z) = (64)F0= (A8 Let 14 : pa[Ua] — 64 be the transitive collapse
of p[U4]. Let pa = taopa. We have that py is a X1 (L(A,R), {A,R}) surjection
of Uy onto d4. In applications of the coding lemma throughout the paper, the
prewellordering and universal set used will always be the ones produced above.

Therefore there is a ¥; formula ¢(a, e, A, R) so that for all o < d4,

L(AR) Eac€ S & ¢(a,e, A, R).

Definition 2.5: A function f : A — ON has uniform cofinality w if and only if
there is a g : A X w — ON with the property that for all « < A and n € w,

glayn) < glaym+1) and f(a) =sup{g(a,n):n € w}.

A function f : A — ON is of the correct type if and only if f is strictly
increasing, for all @ < A, f(a) > sup{f(8) : 8 < a}, and f has uniform
cofinality w.

Let % be an ordinal. For ordinals A < &, let k — (k)3 denote that for
all @ : [k]* — 2, there is a club C' C k and i € 2 so that for all f : A\ — C of the
correct type, ®(f) = i.

If Kk — (k)5, then one says that x has the strong partition property. If for
all n < k, kK — (k)4, then & is said to have the weak partition property. (Note
that x — (k)3 implies that & is regular.)
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Fact 2.6: Assume ZF + AD. Let A C R. Then 64 has the strong partition
property in L(A,R) and even in V.

Proof. This is shown by following Martin’s template for establishing partition
properties. The reflection properties and the uniform coding lemma is used to
produce a good coding system for functions f : 4 — da. See [2] for more
details. See [5] for the details of this specific result.

Definition 2.7: The ordinal © is the supremum of the ordinals which are sur-
jective images of R.

For A,B € Z(R), A <,, B denotes that A is Wadge reducible to B. For
each r € R, let =, denote the Wadge reduction coded by 7. So Z}[B] is the
subset of R reducible to B via the Wadge reduction coded by 7.

The Wadge lemma states that ZF + AD implies that for all A, B € Z(R)
either A <,, B or B <,, (R\ A).

Fact 2.8 ([3]): Assume ZF + AD. For all A < ©, there exists some k with
A < kK < © so that k has the strong partition property.

Proof. This result follows from Fact 2.6. [3] works with ZF + DC + AD as its
base theory. [5] has a careful presentation of this result from just ZF+AD.

Definition 2.9: Let k be a regular cardinal and P = (P, <p, 1p) be a forcing. P
has the ground club property at  if and only if for all p € P and all P-name D
such that p IFp “D is a club subset of &”, there is some club C' C & so that

plkp C C D.

If A C wq is an unbounded subset of wy, then for each o < w, let A(a) denote
the atP-element of A.

LEMMA 2.10: Assume ZF. Let P be a forcing and p € P. If P has the ground
club property at x and p I- K — ()4, then p I R=R.

Proof. Let G C P be any P-generic filter over V' containing p. Observe that
every set of V belongs to V[G], so in particular, ([5]*)" € V[G].
In V]G], define ® : [k]“ — 2 by

0, fe(lx)",

1, otherwise.

o(f) =
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Let D C k be a club set homogeneous for ®. By the ground club prop-
erty at k, there is some C C D with C' € V and is a club in V. Pick any
f € ([C]*)V of correct type. Then ®(f) = 0. Thus D is homogeneous for ®
taking value 0. Therefore C is also homogeneous for ¢ taking value 0. Any
function f € ([C]*)VI¢] of the correct type belongs to V.

Let ¢; = C(w - i + w). Since C € V, the sequence (¢; : ¢ € w) belongs to V.
Each ¢; € C since C is club and each ¢; has cofinality w. Let z € RVl Let
fo={ci i€z} Then f, € [C]¥ and is of correct type. So ®(f,) =0. f, € V.
Then z={icw:c; € f.}. So z € RV.

3. Wellorderable forcings of cardinality less than ©

This section will show that a nontrivial forcing on a wellorderable set of cardi-
nality less than © can not preserve AD. The results of this section are subsumed
by the results of Section 5; however, the argument there is far less natural for
wellorderable forcings.

Fact 3.1: Assume ZF. Let P be a wellorderable forcing of size A. Then P has
the ground club property at k for all regular K > A.

Proof. Let r € P and D be a P name such that r IFp “D C & is a club”. For
each a < K, let

Ay ={peP: (38 <r)(plte D(a) = B)}.
Let
Ba ={8:(3p € Aa)(pIFe D(a) = §)}.
Since |[A4| < |P| = A < k and & is regular, sup B, < k. Let F(a) = sup B,.

Note that F(a) > a since 1p IFp D(&) > &. Let
C={a<k:(Vn<a)(F(n) <a)}.

We have that C' is club.

Let G C P be a P-generic filter over V with » € G. Let D = DI[G].
Suppose o € C. Since G is generic, for each n < a, GN A, # 0. For
any ¢ € GNA,, q lrp D() < F(j) < & Hence n < D(n) < « for
all n < a.. Since D is a club, @ € D. This shows C' C D in V[G]. Since G was
arbitrary with r € G, r IFp CCD.
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THEOREM 3.2: Assume ZF + AD. If P is a nontrivial wellorderable forcing of
cardinality less than ©, then 1p IFp —AD.

Proof. Suppose |P| = § where § < O is a cardinal. One may assume P C §.

Let G C P be a P-generic filter over V. Assume that V[G] = AD. By
Fact 2.8, let s be a cardinal such that § < x < ©VI¢l and has the strong
partition property in V[G]. Therefore, x is regular in V. Let p € G be such
that p I- k — (k)§. Since § < O, let 7 : RY — § be a surjection in V. Let T’
be a pointclass and U be a I'-universal sets satisfying the conditions of Fact 2.2
for the surjection 7.

Since P C 4, if P is nontrivial, then G is a new subset of §. Since V[G] |= AD,
there is some e € RV 5o that ST = G by Fact 2.2. If RV = RVIC], then this
would imply G € V. Hence one must have that RV ¢ RVICI,

Fact 3.1 implies that P has the ground club propery at x. Lemma 2.10 implies
that p IFp R =R. So RY = RVI[G]. Contradiction.

The previous theorem illustrates the main ideas to be used in Section 5. The
above proof uses the partition property x — (x)%. This requires the theorem to
be restricted to wellorderable forcings of cardinality less than ©. In discussion
with Goldberg, the following more elementary argument was found which could
apply to more wellorderable forcings:

FACT 3.3: Assume ZF, ACE (the axiom of countable choice for R), and all
sets of reals have the Baire property and the perfect set property. Let P be a
wellorderable forcing such that 1p IFp R C R (adds new reals). Then 1p IFp “R
has no perfect subset”.

Proof. Suppose there was a G C P which is P-generic over V and V[G] = RY
has a perfect subset. In V[G], let T be a perfect tree so that [T] C RY. Let T
be a name for T and ¢ € G be such that ¢ IFp T is a perfect tree.

Work in V. For each p € P, let A, = {x € RV : p Irp # € [T]}. Note that
if p <p g, then each A, is closed. To see this: Suppose z is a limit point of A,.
Let H be any P-generic filter over V containing p. Since [T[H]] is a closed set
and A, C [T[H]], z € [T[H]]. Since H was arbitrary containing p, p IFp Z € [T7].

Let ¢ <p ¢, and note that ¢/ IFp T'is a perfect tree. Observe that in V[G],

rc | 4,

p<rq’
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Thus in V, U, <,
there is an injection ® : R —

A, is an uncountable set. By the perfect set property in V,
<. Ap- Note that
R= [J ®'[4,],

p<pq’

which is a wellordered union of subsets of R. By the Baire property in V for
all sets of reals and the Kuratowski—Ulam, a wellordered union of meager sets
is meager. Since R is not meager, there must be a p <p ¢’ so that ®~1[4,] is
nonmeager and hence uncountable. Thus A, is uncountable. Since A, is a closed
uncountable set (or by the perfect set property), there is some perfect tree U
so that [U] € A,. Note that for all t € U, plFp i € T. Thus p lFp [U] C [T].

Let D be the collection of p <p g so that there is a perfect tree U € V so
that p IFp [U] C [T]. Since ¢’ <p ¢ was arbitrary in the above argument, one
has shown that D is dense below ¢ € G. By the genericity of G, G N D # 0.
Let p € GN D and let U € V be a perfect tree so that p I-p [U] C [T7].
Since U € V and V[G] has a new real, [U] must have a new real in V[G].
Because

VIG] E U] C[T(G)] and [T[G]] = [T,
one has that [T'] has a new real. But [T] C RY. Contradiction.

FACT 3.4: (ZF). Let P be a forcing on a wellorderable set. If R is not wellorder-
able, then 1p IFp R is not wellorderable.

Proof. Since P is wellorderable, let |P| = ¢ where ¢ is some ordinal. One

may assume P C §. Suppose G C P is P-generic over V and V[G] E RV is

wellorderable. There is an injection ® : RY — ON. Let ® be a P-name for ®.
Work in V: For each r € R, let

Ar={(p.B) s pIFe &(7) = B},
where (-,-) denotes a definable bijection of ON x ON with ON. Each A, # 0
and if 7 # s, then A, NAs = 0. In V, let ¥ : R — ON be defined by
U(r) = min A,. We have that ¥ is an injection and hence RV is wellorderable
in V. Contradiction.

THEOREM 3.5: Assume ZF + AD. If P is a wellorderable forcing which adds a
new real, then 1p IFp —AD.
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Proof. Let G C P be P-generic over V. By Fact 3.4, V[G] must think that RY is
uncountable. By Fact 3.3, RV is an uncountable set of reals without the perfect
set property. Thus AD must fail.

Question 3.6: Assume ZF + AD. Can a nontrivial wellorderable forcing
preserve AD?

If P is a nontrivial wellorderable forcing, then must P add a new real?

The proof of Theorem 3.2 used the Moschovakis coding lemma to show that
nontrivial wellorderable forcing of cardinality less than © must add a new real.

4. Preservation of ©

Trang and Ikegami showed that in natural models of AD", every forcing that
preserves AD must preserve O:

FacT 4.1 (Ikegami and Trang): Assume ZF +AD'T +V =L(Z(R)). IfP is a
nontrivial forcing and 1p IFp AD, then

plFO=0".

This section will show under ZF 4+ AD that any forcing which is a surjective
image of R that preserves AD must preserve ©. It will first be shown using
Lemma 2.10 that any forcing that adds a new real and preserves AD must
preserve O.

A nontrivial forcing adds the generic filter as a new object. If P is a surjective
image of R, then a new set of reals must be added. It will then be shown
under ZF + AD that any nontrivial forcing which is a surjective image of R
which preserves AD must actually add a new real. Hence any nontrival forcing
which is a surjective image of R must preserve O.

Lemma 4.3 and Fact 4.4 below have been known to Ikegami and Trang
under ZF + ADT +V = L(Z(R)) for forcings more general than those which
are surjective images of R. An important aspect of their argument involves the
sharps of sets of reals. It should be noted that the arguments below are for forc-
ings which are surjective images of R proved under just ZF + AD without DCg.
Some classical arguments use DCg to produce sharps of sets of reals and to show
the wellfoundedness of the Wadge hierarchy.
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Fact 4.2: Let P be a forcing which is a surjective image of R. For each regular
Kk > O, P has the ground club property at k.

Proof. Let m: R — P be a surjection. Let K > © be regular.
Let p € P and D be a P-name so that p IFp “D C & is a club”. For each a < &,
let
Aoy ={peP:(3B<k)(plre D(&) = B)}.
Let
Bo={8:(3Fp € Au)(p - D(a) = 5)}.

One will show that for all o < k, sup B, < k. Fix an a < k. Define in V,
P :R — Kk by

0, =(r)¢ Aq,

O(r) = o y
B, m(r) € Ay Ax(r) lFp D(&) = 5.

We have that ® induces a prewellordering on R. Let § < ©V be the length of
this prewellordering. Hence ® induces a map ¥ : § — k. Since k is regular
in V, ¥ must be bounded below . Thus sup B, < k.

For each o < k, let F(a) = sup B,. Let

C={a<k:(Vn<a)(F(n) <a)}.
We have that C is a club subset of k in V. As in the proof of Fact 3.1,
plkp C C D.

LEMMA 4.3: Assume ZF. If P is a forcing which is a surjective image of R and
adds a new real, then 1p IFp AD implies that 1p IFp © = OV,

Proof. Let G C P be a P-generic filter over P. Suppose V[G] = AD and
evViel > eV,

By Fact 2.8 applied in V[G], there is a & such that OV < xk < QVIC]
and k — (k). Note k — (k)% implies that  is regular in V[G]. Hence & is reg-
ular in V. By Fact 4.2, P has the ground club property at x. Choose p € G so
that plFpk— (k)§. Lemma 2.10 implies that RV =RYI¢]. Contradiction.

Fact 4.4: Assume ZF. Let P be a nontrival forcing which is a surjective image
of R. Suppose 1p IFp AD. Then 1p IFp R - R. Hence 1p IFp ©=0".
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Proof. Let # : R — P be a surjection. Suppose there is some p € P so
that plFp R = R. Since P is a nontrivial forcing, 1G] is forced to be a new
set of reals. Since p IFp R = R, for each A € Z(R)V, plFp A<, wfl[G].

In V, define @ : R x R — © by

m(r) < p, w(r) IFp
a, : .
O(r,s) = “=7'n7 1G]] € V, and is a prewellordering of length &”

S

0, otherwise.
Thus in V, ® is a surjection of R x R onto ©. This is impossible.

Fact 4.5: Assume that P is a forcing which is a surjective image of R. Then
there is a forcing Q on R so that for every G C P which is P-generic over V,
there is an H C Q which is Q-generic over V so that V[G] = V[H].

Proof. Let m: R — P be a surjection. Define a forcing Q on R by p <g ¢ if and
only if 7(p) <p 7(q). If G C P is a P-generic filter over V, then 77 1[G] C Q is
a Q-generic filter over V and V[G] = V[r~[G]].

LEMMA 4.6: Assume ZF and there is an A C R such that V = L(A,R). Let P
be a forcing on R such that 1p IFp AD and P <,, A. Let A@® RV indicate some
fixed recursive coding of the two sets of reals into a single set of reals. (Note
that V = L(A®@RY,RY).) Then 1p IF V = L(A® R, R).

Proof. Suppose not. Let G C P be a P-generic filter over L(A,R) witness-
ing the failure of the conclusion of the lemma. Here R refers to RL(AR),
Let R* = RL(ABIC] Note that P,R € L(A @ R,R*). Therefore, L(A,R) is
a definable inner model of L(A @ R,R*). Thus @L(AR) < @LASREY) gGince
P,R e L(A®R,R*), L(A®R,R*) # L(A,R)[G] implies that G ¢ L(A®R, R*).
Since L(A®R,R*) and L(A, R)[G] have the same set of reals, G Wadge reduces
every set of reals in L(A ® R, R*). In L(A,R)[G], define & : R* — QL(A®REY)
by

length(Z,1[G]), E,1[G]€ L(A®R,R*) and is a prewellordering on R*,

P(r)=
0, otherwise.

We have that ® is a surjection in L(A,R)[G] of R* onto @FASRE) = Thig
implies that @FAR) < @LMASRRY) - @L(AR)IG] - This contradicts Fact 4.4
which asserts that (AR = @L(AR)C],
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Fact 4.7: Assume ZF. IfP is a forcing which is the surjective image of R and ©
is regular, then 1p IFp AD implies 1p I- © is regular.

Proof. Let m : R — P be a surjection. Let G C P be a P-generic filter over V.
By Fact 4.4, V[G] = 0V = @Y. Suppose O is not regular in V[G]. There is
some 77 < © and a function f :7n — © which is cofinal. Let 7 € V' be a P-name
so that 7[G] = f.

Now work in V. Define g : 7 x R — © by

0, (V8<O)(n(r) e (a)=5),

glour) = B, w(r)lkp1(q) = B.

Let p: R — n be a surjection. Define h: R — © by

h(z) = g(p(z1), x2),

where = (21, x2) under some standard pairing function. Let < y if and only
if h(z) < h(y). As < is a prewellordering of R, it has length some 6 < ©. Thus
there is a map h: & — © which is cofinal. This is impossible since O is regular
inV.

5. Destroying AD when O is regular

By Fact 4.5, this section will assume that the forcing is on R. For such a
forcing P, a name for a real consisting of elements of the form (72,p) for n € w
and p € P can be considered subsets of R. In this section, when one writes that
a name o € Z(R), it is understood that o takes this form.

Definition 5.1: Let P be a forcing on R. P has the name condition if and only if
there is an A C R so that P <, A and 1p IFp “for all r € ]R, there is a P-name
o€ P(R)LAR 5o that oG] =7 and L(A,R) = o <, A”.

This means that there is a set A C R so that for all G C P which are P-generic
over V, for all » € RVIC] there is a set of reals o in L(A,R) which is also Wadge
reducible to A in L(A,R) so that when o is construed as a P-name, o[G] = r.

Fact 5.2: Assume ZF. Let A C R. Let C4 be the set of ordinals « less than ©
so that A can Wadge reduce a prewellordering on R of length . Then Cj4 is
bounded below ©.
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Proof. Suppose not. Define ¥ : R x R — © by

U(r,s) ko1 (s), if Z.1[A] is a prewellordering on R,
r,s) = v
0, otherwise,

where if < is a prewellordering on R, then rk<(s) denotes the rank of s in the
prewellordering <. ¥ is a surjection of R x R onto ©. Contradiction.

Facr 5.3: Assume ZF + AD + O is regular. Every forcing P on R such
that 1p IFp AD has the name condition.

Proof. Let p € P and G C P be a P-generic filter over V' such that p € G. By
Fact 4.4 and Fact 4.7, ©VI¢l = @V and © remains regular in V[G].
Suppose r € RV There is some P-name 7 € V so that r = 7[G]. Let

o={(n,s):slkpner}

Note that o[G] = 7[G] and ¢ can be considered as essentially a set of reals.
Since Z(R)" € V[G], one can define a function ® : RVI¢] — © by

®(r) = min{sup(C,)" +1:0 € ZR)Y Ao[G] =1}

where C4, for A C R, is defined in Fact 5.2.

In V]G], define x C y if and only if ®(z) < ®(y). Note that C is a
prewellordering on R. There is some § < OV = OV 5o that T has length 4.
Thus @ induces a map ® : § — ©. Since O is regular in V[G], ® and hence ®
is bounded below some v < O.

Fix a prewellordering <* in V of length greater than or equal to ~.
Let r € RV Let 0 € V be a set of reals so that when it is construed as
a P-name, o[G] = r and ®(r) = (C,)V + 1. Since v > sup(C,)V, o can not
Wadge reduce <* in V. Hence by Wadge’s lemma, o <,,<* in V.

It has been shown that in V[G], there is some ordinal «, so that for any
prewellordering <*€ V of length greater than or equal to «, every r € RVIC]
has a name o € Z(R)*(Z"®) 5o that

oG] =r and L(=X"R)Eo <,=<".

Find some ¢ <p p, g € G, and some v < O so that g forces this above statement
about 7. Since p € P was arbitrary, it has been shown that there is a dense set
of g for which there is some v so that ¢ forces the above statement involving ~.
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Define ¥ : P — © by ¥(q) being the least v so that ¢ forces the above
statement involving v if such a ~ exists. Let ¥(q) = 0 otherwise. ¥ induces
a prewellordering on R of length less than ©. Since © is regular in V, ¥ is
bounded below © by some 7. Let <* be some prewellordering on R of length
~. Let A ==*. One has that A witnesses that P has the name condition.

LEMMA 5.4: Assume ZF + AD. Let P be a forcing on R and 1p IF AD. Assume
that P has the name condition. Let A C R witness the name condition. Then
in L(A,R), 1p I-p AD, 64 has the ground club property, and 1p IFp 64 has the
strong partition property.

Proof. Let A witness the name condition. Note that L(A,R) = AD.
Throughout this proof, R denotes RY and R* denotes RVl whenever G
is IP-generic over V.
Let p € P. Let G C P be any P-generic filter over V containing p. By
definition of the name condition, RE(ARIC] = RVIG] Thus since V[G] = AD,

L(A,R)[G] E AD.

Let ¢ <p p with ¢ € G be such that L(A,R) = ¢ IFp AD. Since p € P was
arbitrary, there is a dense set of ¢ € P so that L(A,R) = ¢ IFp AD. One has
that

L(A,R) |= 1p IFp AD.

By Lemma 4.6, L(A,R)[G] = L(A & R,R*) for any G C P which is P-generic
over V.
Let p € P. Let G C IP be any P-generic filter over V' containing p.

CLAIM 1: 64 = (6agr) ASREY),

Let » € R*. By the name condition, there is some 7 C R which is Wadge
reducible to A and 7[G] = r when 7 is construed as a P-name. Note that every
set which is Wadge reducible to A appears at level Li(A,R). Let ¢(0, A®R,R)
be a ¥y formula. Suppose that

LA R,R") E o(r, A® R, R*).
Since L(A & R,R*) = L(A, R)[G], there is some gy <p p so that ¢y € G and

L(AR) = g lFp LABGR,R) | o(r, A® R, R).
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By replacement, the following is a true X1 (L(A,R), RU{R, A}) formula: (Note
that it is important that 7 <,, A.)

L(A,R) E (3a)(La(A,R) = qo ke LAG R, R) | ¢(7, A® R, R)).
By definition of §4, there exists some o < §4 so that
L(A,R) E Lo(A,R) = o IFp LA ®R,R) = (1, A @ R, R).
Hence for some o < d 4,
Lo(AR) | qo lFp LA @ R,R) = (1, AR, R).
Since gp € G, the forcing theorem gives
Lo(AR)[G] = LIA®R,R) = ¢(r, AG R, R).

Also
2V Lo (AR)[G] _ R La(AR)[G]
(L(A®R,R)) L,(A®R,R ).

Since A witnesses the name condition, every ¢ € R* has a name in L;(A,R).
Hence RL= (ARG — R*. Thus one has

La(A,R)[G] = Lo(A&R,R*) = o(r, A® R, R).

Thus
Lo(ADR,R") E o(r, A® R, R").

By upward absolute of ¥; formulas,
Lsy(ASRR) = o(r, A& R,RY).

It has been established that (6 qqr ) (AERR) < §4.
Let (0, A, R) be a ¥; formula and r € RY. Note R € L(A® R, R*). Suppose
L(A,R) E o(r, A,R). Then

L(A®R,R*) E L(AR) E ¢(r, A, R).
The following is a true 31 (L(A & R,R*),R* U {4 & R,R*}) sentence
L(A®R,R") E (3a)(La(4,R) = (r, A, R)).
By definition of (5 sqr ) (A®RE) | there is some o < (§agr)*AEREY) 50 that
L(A®R,R") = Lo(4,R) = p(r, A,R).

Thus
La(Aa R) ': 90(73 A7 ]R)
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By upward absoluteness

L( L(AEBR,]R*)(A,R) ': QD(T’,A,R).

SA@R)

This shows that d4 < (5A@R)L(A®R’R*). Claim 1 has been established.

By Claim 1, let ¢ <p p with ¢ € G be such that L(A,R) = ¢l d4 = SA@R-
Since p € P was arbitrary, the set of ¢ € P such that L(A,R) = ¢l d4 = 5A@R
is dense. Thus

L(AR) [ 1plrp da = 6 4o

Fact 2.6, Lemma 4.6, and the fact that L(A,R) = 1p IF 04 = 5A€91R now imply
that L(A,R) E 1p IFp 4 has the strong partition property. It remains to show
that 64 has the ground club property.

CrLam 2: In L(A,R), 4 has the ground club property.

Let p € P and G be P-generic over L(A,R) containing p. Recall it has been
shown that 5§(A’R) = 5@&1@@&]1&*) and L(A,R)[G] = L(A®R,R*) by Lemma 4.6.
Let D € L(A,R)[G] be a club subset of 6§(A’R) = 6%;%@]&]1%*). Let pagr and ¢ be
those objects from Definition 2.4 for A@R defined in L(A4,R)[G] = L(A®R, R*).

Since
L(AR)[G] = L(A® R,R*) = AD

and Fact 2.2, there is some e € R* so that the graph of the increasing enumer-
ation of D is S£“®*. By the name condition as witnessed by A, there is some
P-name ¢ C R so that ¢ <,, A by a Wadge reduction coded in L(A4,R) and
¢[G] = e. There is some gy <p g with gy € G so that go IF “S5*®" is the graph
of an enumeration of a club subset of §4”.

By reflection, for each § < § 4, the following is a true ¥; statement in L(A, R)

using parameters among A, R, and elements of Ls, (A, R):

L(A,R) = (3a)(La (A R) = (Vk <p q0)(3j <p k)(3Y)(ilFec((B, 7). é, ABR,R))),

where (-,-) refers to a fixed ordinal pairing function. This merely states that
there is a dense set of conditions below gy which forces a value for the image
of B under the function whose graph is SSAEBR.

By the definition of §4 in L(A,R), there is some « < d4 so that

La(AaR) ': (Vk <p QO)(EJ <p k)(a’}/)(j IHP’ §(<Bv;)/>7é7121 D ]R5 R))
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Let eg be the least o with this property. By upward absoluteness of the 3;
formula ¢,

L(AR) |= qo lFe (37 < &)(s((8,7),6, A@ R, R)).
Thus for all P-generic filters H containing qo, the A*" element of the club subset

of 6j(A’R) enumerated by the function whose graph is Sg{‘;ik is less than eg.
Define, in L(A,R), a function g: 04 — 04 by g(3) = €g. Let

C={p<da:(Vy<plgly) <wm}

By the same argument as in the proof of Fact 3.1, C' C d4 is a club in L(A4,R)
and qo IF “C is a subset of the club enumerated by S£*®*”. Thus

L(A/R)[G] =C CD.
This proves Claim 2 and completes the lemma.

THEOREM b5.5: Assume ZF + AD+ © is regular. Suppose P is a nontrivial
forcing which is a surjective image of R. Then 1p IFp =AD.

Proof. As throughout this section, one may assume P is a forcing on R. As-
sume AD is preserved by the forcing. Fact 5.3 implies that P has the name
condition. Let A C R witness the name condition.

Work in L(A,R). Fact 4.4 states that a new real must be added. However,
Lemma 2.10 and Lemma 5.4 imply that the ground model and the forcing
extension have the same reals. Contradiction.

COROLLARY 5.6: Assume ZF+AD+V=L(R). No nontrivial forcing P€ Lg(R)
can preserve AD.

In fact, assume ZF + ADT + —=ADg +V = L(Z(R)). No nontrivial forcing
which is the surjective image of R can preserve AD.

Proof. If there is some set X so that every set is ODx , for some r € R, then © is
regular. Hence if L(R) = AD, then L(R) = © is regular. Woodin showed that if
ZF + AD" + =ADg + V = L(Z(R)) holds, then there is some set of ordinals .J
so that V = L(J,R). Hence in these natural models of AD* + —-ADg, O is
regular.

Question 5.7: Assume ZF + AD. If P is a nontrivial forcing which is a surjective
image of R, then does 1p IFp =AD hold?
By the above, it remains to consider the case when O is singular.
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Let ©¢ be the supremum of the ordinals which are the surjective image of R
by OD surjections. Ikegami and Trang have informed the authors that the
consistency of ZF +AD™ and © > ©g implies the consistency of the statement
that there is a forcing PP (which is not a surjective image of R) such that

1p IFp ADAO < @
This model also does not satisfy ZF +AD™ +V = L(Z(R)).
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