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ABSTRACT

ZF+ AD proves that for all nontrivial forcings P on a wellorderable set of

cardinality less than Θ, 1P �P ¬AD. ZF + AD + Θ is regular proves that

for all nontrivial forcing P which is a surjective image of R, 1P �P ¬AD.

In particular, ZF+ AD+ V = L(R) proves that for every nontrivial forcing

P ∈ LΘ(R), 1P �P ¬AD.

1. Introduction

Paul Cohen [1] developed forcing which is a very flexible method of extending

models of certain axioms of set theory (such as ZF or ZFC) so that the resulting

structures continue to satisfy these axioms of set theory. This technique has

become a powerful tool for showing statements are independent of ZFC. For

example by [1], if ZFC is consistent, then ZFC+ 2ℵ0 = ℵ1 and ZFC+ 2ℵ0 > ℵ1

are both consistent.

Descriptive set theory is the study of the definable aspects of mathematics.

Various interesting properties are commonly considered while employing defin-

able techniques to study mathematical problems. Some of these include the

perfect set property, Lebesgue measurability, the property of Baire, partition

relations on ordinals, and certain properties of Turing degrees. These properties

in their full generality are all incompatible with AC, the axiom of choice.
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These properties are interesting and appeared naturally in classical descrip-

tive set theory. Definable instances of these properties are provable in more

basic axiom systems such as ZF, in the same way that definable instances of

the axiom of choice, for example, coanalytic uniformization, is provable in ZF.

This analogy justifies the study of the consequences of the full generalization

of these properties just as one does with AC, the full generalization of definable

selection principles.

The axiom of determinacy, AD, has developed into a comprehensive frame-

work for studying the properties mentioned above in their full generality. As

customary in descriptive set theory, R will denote the Baire space, ωω, of func-

tions from ω into ω. For each A ⊆ R, let GA be the game where Players 1 and 2

take turns playing elements of ω. After infinitely many stages, a single f ∈ R

has been produced. Player 1 wins this run of GA if and only if f ∈ A. The

axiom of determinacy states that for all A ⊆ R, one of the two players has a

winning strategy for GA. AD implies the perfect set property, Lebesgue mea-

surability, Baire property for all sets of reals, and there are many cardinals with

various partition properties. As with all these properties, definable fragments

of AD can be proved in ZF, for example, Martin showed all games GA where A

is Borel are determined under ZF.

One can wonder if the forcing construction which has been fruitful for study-

ing consistency results over ZFC could be useful for AD. The most basic question

would be to understand what forcings over AD could preserve AD. By the na-

ture of AD, if one does not change R or P(R), then AD will be preserved.

Therefore the question becomes what forcings which disturb R or P(R) can

still preserve AD.

Ikegami and Trang initiated the study of the preservation of AD under forcing.

They showed that many forcings, such as Cohen forcing, can never preserve AD.

They also showed that if one is working with natural models of AD, i.e., models

satisfying ZF+ AD+ + V = L(P(R)), then any forcing which preserves ADmust

preserve Θ, where Θ is the supremum of the ordinals which are surjective images

of R. They also showed that the consistency of ZF + AD+ + Θ > Θ0 implies

the consistency of ZF + AD and there is a forcing which preserves AD and

increases Θ. Thus necessarily this forcing must disturb P(R) by adding a new

set of reals.
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The following are some examples of concrete forcings applied within AD.

They all destroy the axiom of determinacy for various reasons. These examples

give some empirical evidence that most small forcings can not preserve AD and

also motivate the general arguments presented throughout the paper.

Let C denote Cohen forcing. Cohen forcing adds a generic filter which is

equiconstructible from a generic real, called the Cohen generic real. It is well

known that if g is a Cohen generic real over V , then V [g] |= “RV does not have

the Baire property”. Hence V [g] |= ¬AD.
Note that Woodin has shown that if V |= ZFC has a proper class of Woodin

cardinals, then for any P and G ⊆ P which is P-generic over V , L(R)V is

elementarily equivalent to L(R)V [G]. This setting implies that L(R)V |= AD.

Let g be a Cohen real which is generic over V . Note g ∈ L(R)V [g] and by

Woodin’s result, L(R)V [g] |= AD. However, L(R)[g] |= ¬AD by the result

mentioned in the previous paragraph. Observe that the elements of the ground

model always belong to its forcing extension. Thus RV ∈ L(R)[g]; however,

RV /∈ L(R)V [g].

Assume ZF + DCR. Let Coll(ω1, ω2) be the forcing consisting of countable

partial functions from ω1 into ω2 ordered by reverse extension. Suppose there

was a G ⊆ Coll(ω1, ω2) generic over V such that V [G] |= AD. Since Coll(ω1, ω2)

is countably closed and DCR holds, no new reals are added. V [G] has a surjection

of ωV
1 onto ωV

2 . Thus there is a new subset of ωV
1 which codes an ordering of ωV

1

of length ωV
2 . In V , let π : RV → ωV

1 be a surjection. By the Moschovakis coding

lemma in V [G] |= AD, there is some real which codes this new subset of ωV
1

with respect to π. This is impossible if there are no new reals. Thus V [G] can

not satisfy AD.

Suppose κ is a cardinal. The partition relation κ → (κ)λ2 is the statement

that for all Φ : [κ]λ → 2, there is a club C ⊆ κ and an i ∈ 2 so that Φ(f) = i

for all f ∈ [κ]λ of the correct type. The notion of correct type will be defined

below and is needed to obtain a club set which is homogeneous. Martin showed

that ω1 → (ω1)
ω1
2 holds under AD.

Revisiting the Cohen forcing C: Assume ZF. Suppose there was a Cohen

generic real g over V such that V [g] |= AD. Since |C| = ℵ0, everyD ⊆ ω1 in V [g]

has a C ∈ V which is a club subset of ω1 so that V [g] |= C ⊆ D. (This phe-

nomenon will be called the ground club property.) Note that ([ω1]
ω1)V ∈ V [g],
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so one may define a partition Φ : [ω1]
ω → 2 in V [g] as follows:

Φ(f) =

⎧⎨
⎩
0, f ∈ ([ω1]

ω)V ,

1, otherwise.

We have V [g] |= AD, so by ω1 → (ω1)
ω
2 , let D ⊆ ω1 be a club set homogeneous

for Φ. Let C ⊆ D be a club in V so that V [g] |= C ⊆ D. Taking any f ∈ ([C]ω)V

of the correct type, one can show that in V [g], C is homogeneous for Φ taking

value 0. Let ci denote the (ω · i+ω)th element of C. As C ∈ V , 〈ci : i ∈ ω〉 ∈ V .

Pick z ∈ P(ω)V [g]. Let fz ∈ ([C]ω)V [g] be defined by letting fz be the increasing

enumeration of {ci : i ∈ z}. The function fz is of the correct type so Φ(fz) = 0.

Thus fz ∈ V . Since z = {i ∈ ω : ci ∈ fz}, one has that z ∈ V . It has been

shown that RV = RV [g] which is impossible since g ∈ RV [g] \ RV .

These examples suggest that “small” nontrivial forcings should not be able

to preserve AD. The examples also seem to indicate that the partition property

and the ground model club phenomenon appear to be common aspects of these

arguments.

The axiom of determinacy by its definition influences the sets which are sur-

jective images of R. It is reasonable to ask whether a nontrivial forcing which

itself is within the realm of determinacy (i.e., is a surjective image of R) must dis-

turb R orP(R) and if so, can it preserve AD. More specifically, if V |= AD, L(R)

is the smallest model of determinacy containing RV . One can ask if in L(R),

which is the most natural model of AD, can a nontrivial forcing within the

realm of determinacy, i.e., in LΘ(R), preserve AD. The following are the main

questions:

Question 1.1: Assume ZF+AD. If P is a nontrivial forcing which is a surjective

image of R, is it possible that 1P �P AD?

Assume ZF+AD+ V = L(R). Is there any nontrivial P which is a surjective

image of R so that 1P �P AD?

The first question will be answered negatively if the assumptions are aug-

mented with the condition that Θ is regular. Since Θ is regular in L(R), this

immediately gives the negative answer to the second question. The results of

the paper are the following:

Theorem 3.2: Assume ZF + AD. If P is a nontrivial wellorderable forcing of

cardinality less than Θ, then 1P �P ¬AD.
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The argument of the above theorem serves as a template for the main result.

Its proof is a generalization of the example involving Cohen forcing. In discus-

sion with Goldberg, a stronger result for wellorderable forcing can be shown

using different techniques:

Theorem 3.5.: Assume ZF+AD. If P is a wellorderable forcing which adds a

new real, then 1P �P ¬AD.
The main results are:

Theorem 5.5: Assume ZF + AD+ Θ is regular. Suppose P is a nontrivial

forcing which is a surjective image of R. Then 1P �P ¬AD.
Corollary 5.6: Assume ZF+AD+ V = L(R). No nontrivial forcing P∈LΘ(R)

can preserve AD.

In fact, assume ZF+ AD+ + ¬ADR + V = L(P(R)). No nontrivial forcing

which is the surjective image of R can preserve AD.

2. Ground club property

Recall that if A ⊆ R× Rn and e ∈ R, Ae = {x ∈ Rn : (e, x) ∈ A}.
Fact 2.1 (Moschovakis): Assume ZF+ AD. Let Γ be a nonselfdual pointclass

closed under continuous substitution, ∃R, ∧, and Σ1
1 ⊆ Γ. Let ≺∈ Γ be a strict

prewellordering. For each a ∈ dom(≺), let Qa = {b ∈ dom(≺) : a � b ∧ b � a}.
Let U ⊆ R3 be a Γ-universal set for subsets of R2 in Γ. Let Z ⊆ dom(≺)× R.

Then there is an e ∈ R so that:

(1) Ue ⊆ Z.

(2) For all a ∈ dom(≺), (Ue)a �= ∅ if and only if Za �= ∅.
Proof. See [6] Section 7D.

Fact 2.2: Assume ZF + AD. Let X ⊆ R and π : X → κ be a surjec-

tion. Let ≺ be a strict prewellordering on X defined by x ≺ y if and only

if π(x) < π(y). Let Γ be a nonselfdual pointclass closed under continuous sub-

stitution, ∃R, ∧, ≺∈ Γ, and Σ1
1 ⊆ Γ. Let U be a fixed Γ-universal set for subsets

of R2 in Γ. For each e ∈ R, let Sπ
e = {α < κ : (∃a)(π(a) = α ∧ Ue(a, 0)}.

For all C ⊆ κ, there is some e ∈ R so that Sπ
e = C.

Proof. Let Z = {(a, 0) : a ∈ X ∧ π(a) ∈ C}. Apply Fact 2.1.
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Definition 2.3: Assume ZF + AD. Let A ⊆ R. Let δA be the least ordinal δ

so that Lδ(A,R) ≺1 L(A,R), where ≺1 denotes Σ1 elementarity in a language

that includes a predicate Ȧ and Ṙ, which are always interpreted as A and R,

respectively. It is also the least ordinal δ so that Lδ(A,R) is an elementary

substructure of L(A,R) with respect to Σ1 formulas in the above language

using elements of R, R itself, and A as parameters.

Let Σ1(L(A,R),R∪{R, A}) be the collection of sets in L(A,R) which are Σ1

definable in L(A,R) using elements of R, R itself, and A as parameters.

Definition 2.4: Following [4] Sections 2.4 and 2.5, the following is an explicit

prewellordering of a subset of R of length δA which is Σ1(L(A,R),R ∪ {R, A}):
Let T be the theory consisting of ZF without the power set axiom, “R exists”,

and countable choice for R.

Let ϕA(x,A, Ṙ) denote a Σ1 formula that defines the Σ1(L(A, Ṙ), {A, Ṙ}) set,
denoted UA, which is universal for Σ1(L(A, Ṙ), Ṙ∪{A, Ṙ}). For x ∈ UA, let Θx

be the least ordinal so that LΘx(A, Ṙ) |= T and LΘx(A, Ṙ) |= ϕA(x,A, Ṙ).

Define ρ̃A(x) = (δA)
LΘx (A,Ṙ). Let ιA : ρ̃A[UA] → δA be the transitive collapse

of ρ̃[UA]. Let ρA = ιA ◦ ρ̃A. We have that ρA is a Σ1(L(A, Ṙ), {A, Ṙ}) surjection
of UA onto δA. In applications of the coding lemma throughout the paper, the

prewellordering and universal set used will always be the ones produced above.

Therefore there is a Σ1 formula ς(α, e, A, Ṙ) so that for all α < δA,

L(A, Ṙ) |= α ∈ SρA
e ⇔ ς(α, e, A, Ṙ).

Definition 2.5: A function f : λ → ON has uniform cofinality ω if and only if

there is a g : λ× ω → ON with the property that for all α < λ and n ∈ ω,

g(α, n) < g(α, n+ 1) and f(α) = sup{g(α, n) : n ∈ ω}.
A function f : λ → ON is of the correct type if and only if f is strictly

increasing, for all α < λ, f(α) > sup{f(β) : β < α}, and f has uniform

cofinality ω.

Let κ be an ordinal. For ordinals λ ≤ κ, let κ → (κ)λ2 denote that for

all Φ : [κ]λ → 2, there is a club C ⊆ κ and i ∈ 2 so that for all f : λ → C of the

correct type, Φ(f) = i.

If κ → (κ)κ2 , then one says that κ has the strong partition property. If for

all η < κ, κ → (κ)η2 , then κ is said to have the weak partition property. (Note

that κ → (κ)22 implies that κ is regular.)
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Fact 2.6: Assume ZF + AD. Let A ⊆ R. Then δA has the strong partition

property in L(A,R) and even in V .

Proof. This is shown by following Martin’s template for establishing partition

properties. The reflection properties and the uniform coding lemma is used to

produce a good coding system for functions f : δA → δA. See [2] for more

details. See [5] for the details of this specific result.

Definition 2.7: The ordinal Θ is the supremum of the ordinals which are sur-

jective images of R.

For A,B ∈ P(R), A ≤w B denotes that A is Wadge reducible to B. For

each r ∈ R, let Ξr denote the Wadge reduction coded by r. So Ξ−1
r [B] is the

subset of R reducible to B via the Wadge reduction coded by r.

The Wadge lemma states that ZF + AD implies that for all A,B ∈ P(R)

either A ≤w B or B ≤w (R \A).
Fact 2.8 ([3]): Assume ZF+ AD. For all λ < Θ, there exists some κ with

λ < κ < Θ so that κ has the strong partition property.

Proof. This result follows from Fact 2.6. [3] works with ZF+ DC+ AD as its

base theory. [5] has a careful presentation of this result from just ZF+AD.

Definition 2.9: Let κ be a regular cardinal and P = (P,≤P, 1P) be a forcing. P

has the ground club property at κ if and only if for all p ∈ P and all P-name Ḋ

such that p �P “Ḋ is a club subset of κ̌”, there is some club C ⊆ κ so that

p �P Č ⊆ Ḋ.

If A ⊆ ω1 is an unbounded subset of ω1, then for each α < ω, let A(α) denote

the αth-element of A.

Lemma 2.10: Assume ZF. Let P be a forcing and p ∈ P. If P has the ground

club property at κ and p � κ → (κ)ω2 , then p � Ṙ = Ř.

Proof. Let G ⊆ P be any P-generic filter over V containing p. Observe that

every set of V belongs to V [G], so in particular, ([κ]ω)V ∈ V [G].

In V [G], define Φ : [κ]ω → 2 by

Φ(f) =

⎧⎨
⎩
0, f ∈ ([κ]ω)V ,

1, otherwise.
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Let D ⊆ κ be a club set homogeneous for Φ. By the ground club prop-

erty at κ, there is some C ⊆ D with C ∈ V and is a club in V . Pick any

f ∈ ([C]ω)V of correct type. Then Φ(f) = 0. Thus D is homogeneous for Φ

taking value 0. Therefore C is also homogeneous for Φ taking value 0. Any

function f ∈ ([C]ω)V [G] of the correct type belongs to V .

Let ci = C(ω · i + ω). Since C ∈ V , the sequence (ci : i ∈ ω) belongs to V .

Each ci ∈ C since C is club and each ci has cofinality ω. Let z ∈ RV [G]. Let

fz = {ci : i ∈ z}. Then fz ∈ [C]ω and is of correct type. So Φ(fz) = 0. fz ∈ V .

Then z = {i ∈ ω : ci ∈ fz}. So z ∈ RV .

3. Wellorderable forcings of cardinality less than Θ

This section will show that a nontrivial forcing on a wellorderable set of cardi-

nality less than Θ can not preserve AD. The results of this section are subsumed

by the results of Section 5; however, the argument there is far less natural for

wellorderable forcings.

Fact 3.1: Assume ZF. Let P be a wellorderable forcing of size λ. Then P has

the ground club property at κ for all regular κ > λ.

Proof. Let r ∈ P and Ḋ be a P name such that r �P “Ḋ ⊆ κ̌ is a club”. For

each α < κ, let

Aα = {p ∈ P : (∃β < κ)(p �P Ḋ(α̌) = β̌)}.
Let

Bα = {β : (∃p ∈ Aα)(p �P Ḋ(α̌) = β̌)}.
Since |Aα| ≤ |P| = λ < κ and κ is regular, supBα < κ. Let F (α) = supBα.

Note that F (α) ≥ α since 1P �P Ḋ(α̌) ≥ α̌. Let

C = {α < κ : (∀η < α)(F (η) < α)}.
We have that C is club.

Let G ⊆ P be a P-generic filter over V with r ∈ G. Let D = Ḋ[G].

Suppose α ∈ C. Since G is generic, for each η < α, G ∩ Aη �= ∅. For

any q ∈ G ∩ Aη, q �P Ḋ(η̌) ≤ F (η̌) < α̌. Hence η ≤ D(η) < α for

all η < α. Since D is a club, α ∈ D. This shows C ⊆ D in V [G]. Since G was

arbitrary with r ∈ G, r �P Č ⊆ Ḋ.
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Theorem 3.2: Assume ZF + AD. If P is a nontrivial wellorderable forcing of

cardinality less than Θ, then 1P �P ¬AD.
Proof. Suppose |P| = δ where δ < Θ is a cardinal. One may assume P ⊆ δ.

Let G ⊆ P be a P-generic filter over V . Assume that V [G] |= AD. By

Fact 2.8, let κ be a cardinal such that δ < κ < ΘV [G] and has the strong

partition property in V [G]. Therefore, κ is regular in V . Let p ∈ G be such

that p � κ → (κ)ω2 . Since δ < Θ, let π : RV → δ be a surjection in V . Let Γ

be a pointclass and U be a Γ-universal sets satisfying the conditions of Fact 2.2

for the surjection π.

Since P ⊆ δ, if P is nontrivial, then G is a new subset of δ. Since V [G] |= AD,

there is some e ∈ RV [G] so that Sπ
e = G by Fact 2.2. If RV = RV [G], then this

would imply G ∈ V . Hence one must have that RV � RV [G].

Fact 3.1 implies that P has the ground club propery at κ. Lemma 2.10 implies

that p �P Ṙ = Ř. So RV = RV [G]. Contradiction.

The previous theorem illustrates the main ideas to be used in Section 5. The

above proof uses the partition property κ → (κ)ω2 . This requires the theorem to

be restricted to wellorderable forcings of cardinality less than Θ. In discussion

with Goldberg, the following more elementary argument was found which could

apply to more wellorderable forcings:

Fact 3.3: Assume ZF, ACR
ω (the axiom of countable choice for R), and all

sets of reals have the Baire property and the perfect set property. Let P be a

wellorderable forcing such that 1P �P Ř � Ṙ (adds new reals). Then 1P �P “Ř

has no perfect subset”.

Proof. Suppose there was a G ⊆ P which is P-generic over V and V [G] |= RV

has a perfect subset. In V [G], let T be a perfect tree so that [T ] ⊆ RV . Let Ṫ

be a name for T and q ∈ G be such that q �P Ṫ is a perfect tree.

Work in V . For each p ∈ P, let Ap = {x ∈ RV : p �P x̌ ∈ [Ṫ ]}. Note that

if p ≤P q, then each Ap is closed. To see this: Suppose z is a limit point of Ap.

Let H be any P-generic filter over V containing p. Since [Ṫ [H ]] is a closed set

and Ap ⊆ [Ṫ [H ]], z ∈ [Ṫ [H ]]. Since H was arbitrary containing p, p �P ž ∈ [Ṫ ].

Let q′ ≤P q, and note that q′ �P Ṫ is a perfect tree. Observe that in V [G],

[T ] ⊆
⋃

p≤Pq′
Ap.
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Thus in V ,
⋃

p≤Pq′ Ap is an uncountable set. By the perfect set property in V ,

there is an injection Φ : R → ⋃
p≤Pq′ Ap. Note that

R =
⋃

p≤Pq′
Φ−1[Ap],

which is a wellordered union of subsets of R. By the Baire property in V for

all sets of reals and the Kuratowski–Ulam, a wellordered union of meager sets

is meager. Since R is not meager, there must be a p ≤P q′ so that Φ−1[Ap] is

nonmeager and hence uncountable. Thus Ap is uncountable. Since Ap is a closed

uncountable set (or by the perfect set property), there is some perfect tree U

so that [U ] ⊆ Ap. Note that for all t ∈ U , p �P ť ∈ Ṫ . Thus p �P [Ǔ ] ⊆ [Ṫ ].

Let D be the collection of p ≤P q so that there is a perfect tree U ∈ V so

that p �P [Ǔ ] ⊆ [Ṫ ]. Since q′ ≤P q was arbitrary in the above argument, one

has shown that D is dense below q ∈ G. By the genericity of G, G ∩ D �= ∅.
Let p ∈ G ∩ D and let U ∈ V be a perfect tree so that p �P [Ǔ ] ⊆ [Ṫ ].

Since U ∈ V and V [G] has a new real, [U ] must have a new real in V [G].

Because

V [G] |= [U ] ⊆ [Ṫ [G]] and [Ṫ [G]] = [T ],

one has that [T ] has a new real. But [T ] ⊆ RV . Contradiction.

Fact 3.4: (ZF). Let P be a forcing on a wellorderable set. If R is not wellorder-

able, then 1P �P Ř is not wellorderable.

Proof. Since P is wellorderable, let |P| = δ where δ is some ordinal. One

may assume P ⊆ δ. Suppose G ⊆ P is P-generic over V and V [G] |= RV is

wellorderable. There is an injection Φ : RV → ON. Let Φ̇ be a P-name for Φ.

Work in V : For each r ∈ R, let

Ar = {〈p, β〉 : p �P Φ̇(ř) = β̌},

where 〈·, ·〉 denotes a definable bijection of ON × ON with ON. Each Ar �= ∅
and if r �= s, then Ar ∩ As = ∅. In V , let Ψ : R → ON be defined by

Ψ(r) = minAr. We have that Ψ is an injection and hence RV is wellorderable

in V . Contradiction.

Theorem 3.5: Assume ZF+ AD. If P is a wellorderable forcing which adds a

new real, then 1P �P ¬AD.
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Proof. Let G ⊆ P be P-generic over V . By Fact 3.4, V [G] must think that RV is

uncountable. By Fact 3.3, RV is an uncountable set of reals without the perfect

set property. Thus AD must fail.

Question 3.6: Assume ZF + AD. Can a nontrivial wellorderable forcing

preserve AD?

If P is a nontrivial wellorderable forcing, then must P add a new real?

The proof of Theorem 3.2 used the Moschovakis coding lemma to show that

nontrivial wellorderable forcing of cardinality less than Θ must add a new real.

4. Preservation of Θ

Trang and Ikegami showed that in natural models of AD+, every forcing that

preserves AD must preserve Θ:

Fact 4.1 (Ikegami and Trang): Assume ZF+ AD+ + V = L(P(R)). If P is a

nontrivial forcing and 1P �P AD, then

1P � Θ̇ = ΘV .

This section will show under ZF+ AD that any forcing which is a surjective

image of R that preserves AD must preserve Θ. It will first be shown using

Lemma 2.10 that any forcing that adds a new real and preserves AD must

preserve Θ.

A nontrivial forcing adds the generic filter as a new object. If P is a surjective

image of R, then a new set of reals must be added. It will then be shown

under ZF + AD that any nontrivial forcing which is a surjective image of R

which preserves AD must actually add a new real. Hence any nontrival forcing

which is a surjective image of R must preserve Θ.

Lemma 4.3 and Fact 4.4 below have been known to Ikegami and Trang

under ZF+ AD+ + V = L(P(R)) for forcings more general than those which

are surjective images of R. An important aspect of their argument involves the

sharps of sets of reals. It should be noted that the arguments below are for forc-

ings which are surjective images of R proved under just ZF+AD without DCR.

Some classical arguments use DCR to produce sharps of sets of reals and to show

the wellfoundedness of the Wadge hierarchy.
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Fact 4.2: Let P be a forcing which is a surjective image of R. For each regular

κ ≥ Θ, P has the ground club property at κ.

Proof. Let π : R → P be a surjection. Let κ ≥ Θ be regular.

Let p ∈ P and Ḋ be a P-name so that p �P “Ḋ ⊆ κ̌ is a club”. For each α < κ,

let

Aα = {p ∈ P : (∃β < κ)(p �P Ḋ(α̌) = β̌)}.
Let

Bα = {β : (∃p ∈ Aα)(p � Ḋ(α̌) = β̌)}.
One will show that for all α < κ, supBα < κ. Fix an α < κ. Define in V ,

Φ : R → κ by

Φ(r) =

⎧⎨
⎩
0, π(r) /∈ Aα,

β, π(r) ∈ Aα ∧ π(r) �P Ḋ(α̌) = β̌.

We have that Φ induces a prewellordering on R. Let δ < ΘV be the length of

this prewellordering. Hence Φ induces a map Ψ : δ → κ. Since κ is regular

in V , Ψ must be bounded below κ. Thus supBα < κ.

For each α < κ, let F (α) = supBα. Let

C = {α < κ : (∀η < α)(F (η) < α)}.

We have that C is a club subset of κ in V . As in the proof of Fact 3.1,

p �P Č ⊆ Ḋ.

Lemma 4.3: Assume ZF. If P is a forcing which is a surjective image of R and

adds a new real, then 1P �P AD implies that 1P �P Θ = ΘV .

Proof. Let G ⊆ P be a P-generic filter over P. Suppose V [G] |= AD and

ΘV [G] > ΘV .

By Fact 2.8 applied in V [G], there is a κ such that ΘV < κ < ΘV [G]

and κ → (κ)ω2 . Note κ → (κ)22 implies that κ is regular in V [G]. Hence κ is reg-

ular in V . By Fact 4.2, P has the ground club property at κ. Choose p ∈ G so

that p�Pκ→(κ)ω2 . Lemma 2.10 implies that RV =RV [G]. Contradiction.

Fact 4.4: Assume ZF. Let P be a nontrival forcing which is a surjective image

of R. Suppose 1P �P AD. Then 1P �P Ř � Ṙ. Hence 1P �P Θ̇ = ΘV .
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Proof. Let π : R → P be a surjection. Suppose there is some p ∈ P so

that p �P Ř = Ṙ. Since P is a nontrivial forcing, π−1[Ġ] is forced to be a new

set of reals. Since p �P Ř = Ṙ, for each A ∈ P(R)V , p �P Ǎ ≤w π−1[Ġ].

In V , define Φ : R× R → Θ by

Φ(r, s) =

⎧⎪⎪⎨
⎪⎪⎩
α,

π(r) ≤ p, π(r) �P

“Ξ−1
s [π−1[Ġ]] ∈ V̌ , and is a prewellordering of length α̌”

0, otherwise.

Thus in V , Φ is a surjection of R× R onto Θ. This is impossible.

Fact 4.5: Assume that P is a forcing which is a surjective image of R. Then

there is a forcing Q on R so that for every G ⊆ P which is P-generic over V ,

there is an H ⊆ Q which is Q-generic over V so that V [G] = V [H ].

Proof. Let π : R → P be a surjection. Define a forcing Q on R by p ≤Q q if and

only if π(p) ≤P π(q). If G ⊆ P is a P-generic filter over V , then π−1[G] ⊆ Q is

a Q-generic filter over V and V [G] = V [π−1[G]].

Lemma 4.6: Assume ZF and there is an A ⊆ R such that V = L(A,R). Let P

be a forcing on R such that 1P �P AD and P ≤w A. Let A⊕ RV indicate some

fixed recursive coding of the two sets of reals into a single set of reals. (Note

that V = L(A⊕ RV ,RV ).) Then 1P � V̇ = L(Ǎ⊕ Ř, Ṙ).

Proof. Suppose not. Let G ⊆ P be a P-generic filter over L(A,R) witness-

ing the failure of the conclusion of the lemma. Here R refers to RL(A,R).

Let R∗ = ṘL(A,R)[G]. Note that P,R ∈ L(A ⊕ R,R∗). Therefore, L(A,R) is

a definable inner model of L(A ⊕ R,R∗). Thus ΘL(A,R) ≤ ΘL(A⊕R,R∗). Since

P,R ∈ L(A⊕R,R∗), L(A⊕R,R∗) �= L(A,R)[G] implies that G /∈ L(A⊕R,R∗).
Since L(A⊕R,R∗) and L(A,R)[G] have the same set of reals, G Wadge reduces

every set of reals in L(A⊕ R,R∗). In L(A,R)[G], define Φ : R∗ → ΘL(A⊕R,R∗)

by

Φ(r)=

⎧⎨
⎩
length(Ξ−1

r [G]), Ξ−1
r [G]∈L(A⊕R,R∗) and is a prewellordering onR∗,

0, otherwise.

We have that Φ is a surjection in L(A,R)[G] of R∗ onto ΘL(A⊕R,R∗). This

implies that ΘL(A,R) ≤ ΘL(A⊕R,R∗) < ΘL(A,R)[G]. This contradicts Fact 4.4

which asserts that ΘL(A,R) = ΘL(A,R)[G].
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Fact 4.7: Assume ZF. If P is a forcing which is the surjective image of R and Θ

is regular, then 1P �P AD implies 1P � Θ is regular.

Proof. Let π : R → P be a surjection. Let G ⊆ P be a P-generic filter over V .

By Fact 4.4, V [G] |= ΘV [G] = ΘV . Suppose Θ is not regular in V [G]. There is

some η < Θ and a function f : η → Θ which is cofinal. Let τ ∈ V be a P-name

so that τ [G] = f .

Now work in V . Define g : η × R → Θ by

g(α, r) =

⎧⎨
⎩
0, (∀β < Θ)(π(r) ��P τ(α̌) = β̌),

β, π(r) �P τ(α̌) = β̌.

Let ρ : R → η be a surjection. Define h : R → Θ by

h(x) = g(ρ(x1), x2),

where x = 〈x1, x2〉 under some standard pairing function. Let x � y if and only

if h(x) ≤ h(y). As � is a prewellordering of R, it has length some δ < Θ. Thus

there is a map h̃ : δ → Θ which is cofinal. This is impossible since Θ is regular

in V .

5. Destroying AD when Θ is regular

By Fact 4.5, this section will assume that the forcing is on R. For such a

forcing P, a name for a real consisting of elements of the form (ň, p) for n ∈ ω

and p ∈ P can be considered subsets of R. In this section, when one writes that

a name σ ∈ P(R), it is understood that σ takes this form.

Definition 5.1: Let P be a forcing on R. P has the name condition if and only if

there is an A ⊆ R so that P ≤w A and 1P �P “for all r ∈ Ṙ, there is a P-name

σ ∈ P(Ř)L(Ǎ,Ř) so that σ[Ġ] = r and L(Ǎ, Ř) |= σ ≤w Ǎ”.

This means that there is a set A ⊆ R so that for all G ⊆ P which are P-generic

over V , for all r ∈ RV [G], there is a set of reals σ in L(A,R) which is also Wadge

reducible to A in L(A,R) so that when σ is construed as a P-name, σ[G] = r.

Fact 5.2: Assume ZF. Let A ⊆ R. Let CA be the set of ordinals α less than Θ

so that A can Wadge reduce a prewellordering on R of length α. Then CA is

bounded below Θ.
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Proof. Suppose not. Define Ψ : R× R → Θ by

Ψ(r, s) =

⎧⎨
⎩
rkΞ−1

r [A](s), if Ξ−1
r [A] is a prewellordering on R,

0, otherwise,

where if � is a prewellordering on R, then rk�(s) denotes the rank of s in the

prewellordering �. Ψ is a surjection of R× R onto Θ. Contradiction.

Fact 5.3: Assume ZF + AD + Θ is regular. Every forcing P on R such

that 1P �P AD has the name condition.

Proof. Let p ∈ P and G ⊆ P be a P-generic filter over V such that p ∈ G. By

Fact 4.4 and Fact 4.7, ΘV [G] = ΘV and Θ remains regular in V [G].

Suppose r ∈ RV [G]. There is some P-name τ ∈ V so that r = τ [G]. Let

σ = {(ň, s) : s �P ň ∈ τ}.

Note that σ[G] = τ [G] and σ can be considered as essentially a set of reals.

Since P(R)V ∈ V [G], one can define a function Φ : RV [G] → Θ by

Φ(r) = min{sup(Cσ)
V + 1 : σ ∈ P(R)V ∧ σ[G] = r}

where CA, for A ⊆ R, is defined in Fact 5.2.

In V [G], define x � y if and only if Φ(x) ≤ Φ(y). Note that � is a

prewellordering on R. There is some δ < ΘV [G] = ΘV so that � has length δ.

Thus Φ induces a map Φ̃ : δ → Θ. Since Θ is regular in V [G], Φ̃ and hence Φ

is bounded below some γ < Θ.

Fix a prewellordering �∗ in V of length greater than or equal to γ.

Let r ∈ RV [G]. Let σ ∈ V be a set of reals so that when it is construed as

a P-name, σ[G] = r and Φ(r) = (Cσ)
V + 1. Since γ > sup(Cσ)

V , σ can not

Wadge reduce �∗ in V . Hence by Wadge’s lemma, σ ≤w�∗ in V .

It has been shown that in V [G], there is some ordinal γ, so that for any

prewellordering �∗∈ V of length greater than or equal to γ, every r ∈ RV [G]

has a name σ ∈ P(R)L(�∗,R) so that

σ[G] = r and L(�∗,R) |= σ ≤w�∗ .

Find some q ≤P p, q ∈ G, and some γ < Θ so that q forces this above statement

about γ. Since p ∈ P was arbitrary, it has been shown that there is a dense set

of q for which there is some γ so that q forces the above statement involving γ.
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Define Ψ : P → Θ by Ψ(q) being the least γ so that q forces the above

statement involving γ if such a γ exists. Let Ψ(q) = 0 otherwise. Ψ induces

a prewellordering on R of length less than Θ. Since Θ is regular in V , Ψ is

bounded below Θ by some γ. Let �∗ be some prewellordering on R of length

γ. Let A =�∗. One has that A witnesses that P has the name condition.

Lemma 5.4: Assume ZF+AD. Let P be a forcing on R and 1P � AD. Assume

that P has the name condition. Let A ⊆ R witness the name condition. Then

in L(A,R), 1P �P AD, δA has the ground club property, and 1P �P δ̌A has the

strong partition property.

Proof. Let A witness the name condition. Note that L(A,R) |= AD.

Throughout this proof, R denotes RV and R∗ denotes RV [G] whenever G

is P-generic over V .

Let p ∈ P. Let G ⊆ P be any P-generic filter over V containing p. By

definition of the name condition, ṘL(A,R)[G] = ṘV [G]. Thus since V [G] |= AD,

L(A,R)[G] |= AD.

Let q ≤P p with q ∈ G be such that L(A,R) |= q �P AD. Since p ∈ P was

arbitrary, there is a dense set of q ∈ P so that L(A,R) |= q �P AD. One has

that

L(A,R) |= 1P �P AD.

By Lemma 4.6, L(A,R)[G] = L(A⊕R,R∗) for any G ⊆ P which is P-generic

over V .

Let p ∈ P. Let G ⊆ P be any P-generic filter over V containing p.

Claim 1: δA = (δA⊕R)
L(A⊕R,R∗).

Let r ∈ R∗. By the name condition, there is some τ ⊆ R which is Wadge

reducible to A and τ [G] = r when τ is construed as a P-name. Note that every

set which is Wadge reducible to A appears at level L1(A,R). Let ϕ(v̇, A⊕R, Ṙ)

be a Σ1 formula. Suppose that

L(A⊕ R,R∗) |= ϕ(r, A⊕ R,R∗).

Since L(A⊕ R,R∗) = L(A,R)[G], there is some q0 ≤P p so that q0 ∈ G and

L(A,R) |= q0 �P L(Ǎ⊕ Ř, Ṙ) |= ϕ(τ, Ǎ⊕ Ř, Ṙ).
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By replacement, the following is a true Σ1(L(A,R),R∪{R, A}) formula: (Note

that it is important that τ ≤w A.)

L(A,R) |= (∃α)(Lα(A,R) |= q0 �P L(Ǎ⊕ Ř, Ṙ) |= ϕ(τ, Ǎ⊕ Ř, Ṙ)).

By definition of δA, there exists some α < δA so that

L(A,R) |= Lα(A,R) |= q0 �P L(Ǎ⊕ Ř, Ṙ) |= ϕ(τ, Ǎ⊕ Ř, Ṙ).

Hence for some α < δA,

Lα(A,R) |= q0 �P L(Ǎ⊕ Ř, Ṙ) |= ϕ(τ, Ǎ⊕ Ř, Ṙ).

Since q0 ∈ G, the forcing theorem gives

Lα(A,R)[G] |= L(A⊕ R, Ṙ) |= ϕ(r, A ⊕ R, Ṙ).

Also

(L(A⊕ R, Ṙ))Lα(A,R)[G] = Lα(A⊕ R, ṘLα(A,R)[G]).

Since A witnesses the name condition, every t ∈ R∗ has a name in L1(A,R).

Hence ṘLα(A,R)[G] = R∗. Thus one has

Lα(A,R)[G] |= Lα(A⊕ R,R∗) |= ϕ(r, A⊕ R,R∗).

Thus

Lα(A⊕ R,R∗) |= ϕ(r, A ⊕ R,R∗).

By upward absolute of Σ1 formulas,

LδA(A⊕ R,R∗) |= ϕ(r, A⊕ R,R∗).

It has been established that (δA⊕R)
L(A⊕R,R∗) ≤ δA.

Let ϕ(v̇, A, Ṙ) be a Σ1 formula and r ∈ RV . Note R ∈ L(A⊕R,R∗). Suppose
L(A,R) |= ϕ(r, A,R). Then

L(A⊕ R,R∗) |= L(A,R) |= ϕ(r, A,R).

The following is a true Σ1(L(A⊕ R,R∗),R∗ ∪ {A⊕ R,R∗}) sentence
L(A⊕ R,R∗) |= (∃α)(Lα(A,R) |= ϕ(r, A,R)).

By definition of (δA⊕R)
L(A⊕R,R∗), there is some α < (δA⊕R)

L(A⊕R,R∗) so that

L(A⊕ R,R∗) |= Lα(A,R) |= ϕ(r, A,R).

Thus

Lα(A,R) |= ϕ(r, A,R).
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By upward absoluteness

L(δA⊕R)L(A⊕R,R∗)(A,R) |= ϕ(r, A,R).

This shows that δA ≤ (δA⊕R)
L(A⊕R,R∗). Claim 1 has been established.

By Claim 1, let q ≤P p with q ∈ G be such that L(A,R) |= q � δ̌A = δ̇A⊕Ř.

Since p ∈ P was arbitrary, the set of q ∈ P such that L(A,R) |= q � δ̌A = δ̇A⊕Ř

is dense. Thus

L(A,R) |= 1P �P δ̌A = δ̇A⊕Ř.

Fact 2.6, Lemma 4.6, and the fact that L(A,R) |= 1P � δ̌A = δ̇A⊕Ř now imply

that L(A,R) |= 1P �P δ̌A has the strong partition property. It remains to show

that δA has the ground club property.

Claim 2: In L(A,R), δA has the ground club property.

Let p ∈ P and G be P-generic over L(A,R) containing p. Recall it has been

shown that δ
L(A,R)
A = δ

L(A⊕R,R∗)
A⊕R and L(A,R)[G] = L(A⊕R,R∗) by Lemma 4.6.

Let D ∈ L(A,R)[G] be a club subset of δ
L(A,R)
A = δ

L(A⊕R,R∗)
A⊕R . Let ρA⊕R and ς be

those objects from Definition 2.4 for A⊕R defined in L(A,R)[G] = L(A⊕R,R∗).
Since

L(A,R)[G] = L(A⊕ R,R∗) |= AD

and Fact 2.2, there is some e ∈ R∗ so that the graph of the increasing enumer-

ation of D is S
ρA⊕R

e . By the name condition as witnessed by A, there is some

P-name ė ⊆ R so that ė ≤w A by a Wadge reduction coded in L(A,R) and

ė[G] = e. There is some q0 ≤P q with q0 ∈ G so that q0 � “S
ρA⊕R

ė is the graph

of an enumeration of a club subset of δ̌A”.

By reflection, for each β < δA, the following is a true Σ1 statement in L(A,R)

using parameters among A, R, and elements of LδA(A,R):

L(A,R) |=(∃α)(Lα(A,R) |=(∀k ≤P q0)(∃j ≤P k)(∃γ)(j�P ς(〈β̌, γ̌〉, ė, Ǎ⊕Ř, Ṙ))),

where 〈·, ·〉 refers to a fixed ordinal pairing function. This merely states that

there is a dense set of conditions below q0 which forces a value for the image

of β̌ under the function whose graph is S
ρǍ⊕Ř

ė .

By the definition of δA in L(A,R), there is some α < δA so that

Lα(A,R) |= (∀k ≤P q0)(∃j ≤P k)(∃γ)(j �P ς(〈β̌, γ̌〉, ė, Ǎ⊕ Ř, Ṙ)).
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Let εβ be the least α with this property. By upward absoluteness of the Σ1

formula ς ,

L(A,R) |= q0 �P (∃γ < ε̌β)(ς(〈β̌, γ〉, ė, Ǎ⊕ Ř, Ṙ)).

Thus for all P-generic filters H containing q0, the β
th element of the club subset

of δ
L(A,R)
A enumerated by the function whose graph is S

ρA⊕R

ė[H] is less than εβ.

Define, in L(A,R), a function g : δA → δA by g(β) = εβ. Let

C = {μ < δA : (∀γ < μ)(g(γ) < μ)}.
By the same argument as in the proof of Fact 3.1, C ⊆ δA is a club in L(A,R)

and q0 � “Č is a subset of the club enumerated by S
ρA⊕R

ė ”. Thus

L(A,R)[G] |= C ⊆ D.

This proves Claim 2 and completes the lemma.

Theorem 5.5: Assume ZF + AD+ Θ is regular. Suppose P is a nontrivial

forcing which is a surjective image of R. Then 1P �P ¬AD.
Proof. As throughout this section, one may assume P is a forcing on R. As-

sume AD is preserved by the forcing. Fact 5.3 implies that P has the name

condition. Let A ⊆ R witness the name condition.

Work in L(A,R). Fact 4.4 states that a new real must be added. However,

Lemma 2.10 and Lemma 5.4 imply that the ground model and the forcing

extension have the same reals. Contradiction.

Corollary 5.6: Assume ZF+AD+V=L(R). No nontrivial forcing P∈LΘ(R)

can preserve AD.

In fact, assume ZF+ AD+ + ¬ADR + V = L(P(R)). No nontrivial forcing

which is the surjective image of R can preserve AD.

Proof. If there is some setX so that every set is ODX,r for some r ∈ R, then Θ is

regular. Hence if L(R) |= AD, then L(R) |= Θ is regular. Woodin showed that if

ZF+ AD+ + ¬ADR + V = L(P(R)) holds, then there is some set of ordinals J

so that V = L(J,R). Hence in these natural models of AD+ + ¬ADR, Θ is

regular.

Question 5.7: Assume ZF+AD. If P is a nontrivial forcing which is a surjective

image of R, then does 1P �P ¬AD hold?

By the above, it remains to consider the case when Θ is singular.
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Let Θ0 be the supremum of the ordinals which are the surjective image of R

by OD surjections. Ikegami and Trang have informed the authors that the

consistency of ZF+ AD+ and Θ > Θ0 implies the consistency of the statement

that there is a forcing P (which is not a surjective image of R) such that

1P �P AD ∧ Θ̌ < Θ̇.

This model also does not satisfy ZF+ AD+ + V = L(P(R)).
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