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Abstract. Vegetation structural complexity and biodiversity tend to be positively correlated, but under-
standing of this relationship is limited in part by structural metrics tending to quantify only horizontal or
vertical variation, and that do not reflect internal structure. We developed new metrics for quantifying
internal vegetation structural complexity using terrestrial LiDAR scanning and applied them to 12 NEON
forest plots across an elevational gradient in Great Smoky Mountains National Park, USA. We asked (1)
How do our newly developed structure metrics compare to traditional metrics? (2) How does forest struc-
ture vary with elevation in a high-biodiversity, high topographic complexity region? (3) How do forest
structural metrics vary in the strength of their relationships with vascular plant biodiversity? Our new
measures of canopy density (Depth) and structural complexity (σDepth), and their canopy height-normal-
ized counterparts, were sensitive to structural variations and effectively summarized horizontal and verti-
cal dimensions of structural complexity. Forest structure varied widely across plots spanning the
elevational range of GRSM, with taller, more structurally complex forests at lower elevation. Vascular plant
biodiversity was negatively correlated with elevation and more strongly positively correlated with vegeta-
tion structure variables. The strong correlations we observed between canopy structural complexity and
biodiversity suggest that structural complexity metrics could be used to assay plant biodiversity over large
areas in concert with airborne and spaceborne platforms.
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INTRODUCTION

Vegetation physical structure, biodiversity, and
topography are interrelated elements controlling
key ecosystem properties. Canopy structural
complexity—variability in the arrangement of
wood and foliar elements in plant canopies
(Hardiman et al. 2011, Atkins et al. 2018a)—tends
to correlate positively with forest biodiversity
(Ehbrecht et al. 2017, Hakkenberg et al. 2018,
LaRue et al. 2019) for complex, interrelated rea-
sons. Different tree species may have different

growth forms (Verbeeck et al. 2019). More
diverse forests, it follows, may have more growth
forms represented and thus have more building
blocks with which to construct structural com-
plexity (Gough 2020). At the same time, struc-
tural complexity also tends to facilitate
biodiversity by increasing available niche space
for other flora and fauna species (Hansen et al.
1994, Hyde et al. 2006, Torresani et al. 2020).
In the southern Appalachians, complex topog-

raphy creates steep ecological gradients that
drive structural and compositional patterns
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(Whittaker 1956, Harmon et al. 1984) and pro-
duce high levels of biodiversity (Latham and
Ricklefs 1993, Gough et al. 2019). Southern Appa-
lachian forests, such as those of Great Smoky
Mountains National Park (GRSM), are among
the most diverse temperate forests in the world
with over 100 woody plant species (Latham and
Ricklefs 1993). As such, these forests have long
been studied for insights into biodiversity (Whit-
taker 1956) and related topics including forest
productivity (Whittaker 1966, Gough et al. 2019),
disturbance (Harmon et al. 1984, Atkins et al.
2020), resource acquisition (Atkins et al. 2018b),
habitat fragmentation (Ambrose and Bratton
1990), pollution (Mathias and Thomas 2018), and
land cover change (Turner et al. 2003). Perhaps
surprisingly, then, we are unaware of earlier
studies relating biodiversity and forest structure
in this high-diversity, topographically complex
system. Studies conducted elsewhere have found
that plant biodiversity tends to decline with
increasing elevation (Homeier et al. 2010, Toledo-
Garibaldi and Williams-Linera 2014), while
canopy height and structural complexity also
tend to change with elevation (Homeier et al.
2010). For example, along a 3300 m elevational
gradient in South America extending from the
Amazon lowlands to the tree line in the Peruvian
Andes, changes in forest structure were mani-
fested as decreases in canopy height and
increases in canopy gap fraction (Asner et al.
2014).

Advances in remote sensing, specifically light
detection and ranging (LiDAR), have enabled
mapping of forest structure and complexity with
unprecedented precision, at plot-level to regional
scales (LaRue et al. 2020). Ecological applications
of LiDAR have broadened our understanding of
resource acquisition (Stark et al. 2015, Atkins
et al. 2018b), allocation strategies (Stovall et al.
2017, 2018a, b, Stovall and Shugart 2018), use effi-
ciencies (Hardiman et al. 2013), drought response
(Atkins and Agee 2019, Smith et al. 2019, Stovall
et al. 2019, 2020), productivity (Gough et al.
2019), and disturbance history (Fahey et al. 2015,
Atkins et al. 2020). However, recent studies of
forest structural complexity either focus on
broad, landscape- to continental-scale patterns
(LaRue et al. 2018, Atkins et al. 2018b, Gough
et al. 2019, Fahey et al. 2019), or are limited to
characterizations of stand-scale phenomena

(Hardiman et al. 2018, Hickey et al. 2019), with-
out fully considering how forest complexity var-
ies at the stand to regional scale in response to
ecological gradients.
Forest structure is most commonly character-

ized using two-dimensional indices that describe
either vertical or horizontal space only, often
ignoring canopy structural traits that describe
internal canopy characteristics (Paynter et al.
2018, Fahey et al. 2019) or how forest structure
varies simultaneously along both the vertical and
horizontal axes. For instance, horizontal struc-
tural heterogeneity can be characterized via pas-
sive (optical) remote sensing as variation in
canopy cover (Morton et al. 2014, Verrelst et al.
2015), while active (radar and LiDAR) remote
sensing captures vertical heterogeneity as
changes in canopy height (Camaretta et al. 2019).
Both metrics of forest structural complexity focus
on the outer canopy and ignore internal canopy
characteristics (e.g., canopy structural traits such
as layering or foliage density). Internal canopy
structure can be inferred using statistically
derived metrics such as the 90th percentile or
standard deviation of LiDAR measured heights
above ground level. Statistical metrics derived
directly from LiDAR point clouds can be effec-
tive and efficient for predictive models of species
biodiversity (Goetz et al. 2007), but lack ecologi-
cal meaning and may be unstable or non-trans-
ferrable across forest types. Recent developments
of ecology-based structural metrics that effec-
tively characterize internal canopy structural
traits (Atkins et al. 2018b, Fahey et al. 2019)
describe two-dimensional structure over ground-
based transects and are unable to fully capture
three-dimensional complexity. New metrics need
to be developed that synthesize the canopy struc-
tural traits such as layering, density, canopy
height, and openness in three-dimensional space
to fully characterize structural complexity and its
relationship to biodiversity.
To understand relationships between forest

structure, biodiversity, and elevation in a topo-
graphically complex, high-biodiversity region,
we used three-dimensional terrestrial LiDAR
scanning (TLS) to sample 12 forest plots in Great
Smoky Mountains National Park that were previ-
ously inventoried by the National Ecological
Observatory Network (NEON). We developed
two new canopy structural complexity metrics
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and combined them with traditional TLS-derived
forest structural metrics and vascular plant biodi-
versity data to address the following questions:
(1) How do our newly developed structure met-
rics compare to traditional metrics? (2) How does
forest structure vary with elevation in a high-bio-
diversity, high topographic complexity region?
(3) How do forest structural metrics vary in the
strength of their relationships with vascular plant
biodiversity.

METHODS

Study area and site description
Great Smoky Mountains National Park

(35.56 N, −83.50 W; denoted as NEON site
GRSM) has a humid, continental climate with a
mean annual temperature of 13.3°C. Precipita-
tion is highly variable, with low-elevation valleys
receiving on average 1400 mm per year, while
upper elevations can receive in excess of
2200 mm per year. Elevations in GRSM range
from 270 to 2025 m. The park is over 95%
forested, with forests that occupy drier, colder
ridges, and mountaintops—higher elevations
above 1600 m—often populated by hemlock
(Tsuga canadenesis), balsam fir (Abies balsamea),
fraser fir (Abies fraseri), and red spruce (Picea
rubens; Narayanaraj et al. 2010, Walter et al.
2017). Sheltered valley regions at lower eleva-
tions may have dense cove forests where tulip-
tree (Liriodendron tulipifera), red maple (Acer
rubrum), and oak (Quercus spp.) abound. Much
of the area is covered by thick understories of
evergreen shrub, primarily mountain laurel (Kal-
mia latifolia) and rhododendron (Rhododendron
spp.; Elliott and Vose 2012). The park is home to
over 1400 flowering plant species and over 4000
species of non-flowering plants; geologically,
GRSM is primarily Precambrian siltstone and
sandstone from the Snowbird group.

Data collection and post-processing
Terrestrial LiDAR, or terrestrial laser scanning

(TLS), captures detailed 3D information on the
forest, enabling the reconstruction and quantita-
tive analysis of forest structure. We visited
twelve National Ecological Observatory Network
(NEON) distributed vegetation plots (Barnett
et al. 2019) located in GRSM (Fig. 1). Plots were
chosen based on field accessibility and ancillary

NEON data availability at time of scanning. Four
TLS scans were acquired in each plot, one at plot
center and also at three points around center.
Scans were taken between 23 August and 25
August 2018 using two Faro Focus 1203D scan-
ners (FARO, Lake Mary, Florida, USA). Scans
were taken at 1/5 resolution and 4 × quality for a
total of 28.2 million pulses per scan. All returns
with intensity lower than 650 (maximum value =
2100) were removed. Filtering low intensity
returns reduces noise and ensures gaps are cor-
rectly identified (Stovall et al. 2017).
Filtered scans were used to estimate the verti-

cal distribution of plant material or plant area
vegetation density (PAVD) at the plot level. We
roughly follow the method described by Calders
et al. (2014): (1) elevation normalization, (2) cal-
culate gap probability, and (3) estimate PAVD.
The one key difference in the current study is the
adoption of a fully 3D digital elevation model to
normalize topographic effects, as opposed to
simple plane fitting. We found plane fitting was
inappropriate in the complex topography of the
GRSM national park, resulting in overestimates
of total canopy height and a misrepresentation of
the vegetation distribution. Topographic normal-
ization followed the following procedure: (1)
estimate ground surface, (2) remove spikes and
anomalous points, and (3) refit and normalize
TLS data with 5 × 5 m resolution surface model.
The ground surface is first estimated as the first
percentile of height from TLS points in a 5 × 5 m
grid over a 200 × 200 m area. The initial model is
optimized to remove spikes by excluding all pix-
els >40% slope. The remaining pixels are refit
using a k-nearest neighbor inverse distance
weighting (k = 21), and the resulting surface
model is subtracted from the height measure-
ments in the TLS data.
PAVD distributions are derived from a simple

calculation of the vertically resolved gap proba-
bility (Pgap). Pgap is calculated as

Pgapðθ,zÞ¼ 1�∑ðzi<z,θÞ
NðθÞ

where z is the height above ground and θ is the
midpoint of the 5° zenith angle bin used to
aggregate the LiDAR returns. The equation essen-
tially calculates the cumulative number of
returns per unit normalized height divided by
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the total number of outgoing laser pulses. In
essence, as more vegetation is intercepted, the
probability of a laser pulse escaping the canopy
decreases.

PAVD is accurately estimated at the hinge angle
(a viewing zenith angle of 57.5°) with Pgap. The
hinge angle is used to estimate total VAI as this is
the angle at which the G-Function is nearly invari-
able at 0.5 for all typical leaf angle distributions

(MacArthur and Horn 1969, Jupp et al. 2008). A 5°
zenith bin between 55° and 60° is used to approxi-
mate the hinge angle region. Pgap is converted to
the cumulative VAI distribution with respect to
height aboveground (L(z)) using:

LðzÞ≈�1:1logðPgapð57:5ÞÞ
Estimates of L(z) at the top of the canopy

approximate the total VAI for a particular sample

Fig. 1. Overview (A) the Great Smoky Mountains National Park study area and examples of terrestrial laser
scanning data in (B) low-elevation broadleaf and (C) high-elevation conifer plots.
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location. Once cumulative VAI is estimated, Pgap
is calculated at 5° zenith angle bins from 0° to 60°
and weighted by the sine of the zenith angle to
sample the uppermost area of the hemisphere
viewable by the laser scanner. Finally, the total
VAI in each 1 m vertical bin is estimated as the
first derivative of the L(z) curve after weighting
with respect to zenith angle.

Metrics
We derived a suite of structural metrics from

TLS data to characterize the horizontal and ver-
tical distribution of vegetation (Table 1). As
described above, we derived the cumulative
VAI and, subsequently, PAVD, for every scan
location. Using the PAVD, we calculated foliage
density-dependent median height and 80th and
90th percentiles (i.e., the height at which 80% or
90% of foliage falls below). While these metrics
summarize vertical structure, they are unable to
quantitatively describe trends in horizontal
structure. For this reason, we developed a new
metric we call “Depth,” which describes per-
centiles of canopy penetration at the hinge angle
(Fig. 2). Depth percentiles are calculated as the
distance from the laser scanner at which a cer-
tain percentage of the total number of returns
are observed for 10-degree azimuth bins. A sin-
gle scan produces 36 estimates of Depth from
which a standard deviation can be calculated,
which we denote “σDepth” (Fig. 2). For this
work, we derived mean and standard deviation
values from median Depth estimates for each
azimuth angle bin; other percentiles of depth
can be calculated (e.g., 80th, 90th), but were col-
inear with the median estimates, so we use

median as the basis for all subsequent analyses.
The inherent benefit of using hinge angle-based
Depth percentiles and variability is that this
information synthesizes vertical and horizon-
tal structural complexity. Additionally, because
Depth and σDepth covary strongly with
canopy height (see Results), we also considered
both metrics normalized by canopy height, that
is, Depth/canopy height and σDepth/canopy
height.

Relationships between biodiversity, elevation, and
forest structure
We used NEON vascular plant diversity data

(Barnett et al. 2019) from twelve 400-m2

(20 × 20 m) NEON plots coinciding with our
TLS scans. We used plant abundance data from
July and August 2017 and quantified biodiversity
using species richness (compositional diversity
sensu Noss 1990). Diversity indices that consider
abundance, such as Shannon’s index and Simp-
son’s index, were deemed inappropriate given
the orders-of-magnitude differences in size
among the species included in NEON’s dataset
(all vascular plants, including trees).
Pearson correlation was used to quantify how

plant species richness is correlated with elevation
and TLS-derived forest structural metrics. We
considered the forest structural metrics vegeta-
tion area index (VAI), canopy height (90th
percentile of TLS returns), Depth, σDepth,
Depth/canopy height, and σDepth/canopy
height. To obtain forest structural metrics at the
plot level, we averaged metrics for all scans
taken at each plot (n = 3–5). Statistical analyses
were conducted in R 3.6.2 (R Core Team 2019).

Table 1. Definitions of terrestrial LiDAR-derived structural terms.

Metric Definition Source

Vegetation Area Index
(VAI)

One-sided area of all vegetation elements, including leaf,
branches, etc

MacArthur and Horn (1969),
Jupp et al. (2008), Atkins et al.
(2018)

Height Percentiles
(e.g., p10, p90)

Percentile height of foliage distribution or Plant Area
Vegetation Density (PAVD; e.g., p90 is the height at which
90% of the vegetation is below)

Goetz et al. (2007)

Depth Percentile of distance or depth specifically at 57.5° zenith
angle (e.g., d95 is the distance at which 95% of all LiDAR
returns have occurred)

This paper

σDepth The standard deviation of all mean depth measurements at
the 57.5° zenith angle in 10° azimuth bins

This paper

Depth metrics are introduced in this paper.
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RESULTS

Forest structure and complexity
Forest structure varied widely across plots

spanning the elevational range of GRSM.
Canopy height ranged from ca. 10 to 35 m
(Fig. 3). Canopies between 15 and 25 m had the
highest variability in PAVD distributions, show-
ing that vegetation layering differs among and
within plots (Fig. 3). The high-elevation locations
were dominated by dense conifers with a notable
presence of coarse woody debris (e.g., large,
downed trees) and standing dead, while the tal-
ler locations in lower elevations were more open
throughout the canopy (Table 2).

Our measures of canopy density (Depth) and
structural complexity (σDepth), as well as their
counterparts normalized by canopy height, were
sensitive to structural variations and effectively
summarized variability in canopy structure in
the horizontal and vertical dimensions (Fig. 4).
Depth summarized information about the den-
sity and height of the canopy. Plots with similar
Depth could have substantially different σDepth
(Fig. 4), as this metric captures how variable
Depth is across all 10-degree azimuth bins.
Higher σDepth is indicative of canopies with
high variability in vegetation structure: high-
density vegetation and gaps distributed through-
out the canopy.

Forest structural metrics considered in this
study were moderately to strongly correlated
with each other (Fig. 5). Lower stature canopies
had higher VAI in GRSM (Fig. 4). VAI was also
moderately negatively correlated with both

Fig. 2. Method of deriving σDepth complexity metric from TLS scans. For each 10° azimuthal bin, the distribu-
tion of return density with respect to distance from the scanner is calculated. Next, the median (p50) is calculated,
along with any other necessary percentiles (e.g., p95). The standard deviation of all depth percentiles in individ-
ual 10° azimuthal bins (σDepth) provides an estimate of structural complexity.

Fig. 3. PAVD distributions for 3 canopy height
classes. Low stature (<15 m) canopies exhibited dense
foliage, while medium (15–30 m) and large (>30 m)
canopies had more evenly distributed foliage.
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Depth and σDepth, but taller canopies were con-
sistently more structurally complex (Fig. 5).
Total VAI was of less relative importance than
canopy height in capturing changes in struc-
tural variability (Fig. 5). Depth and σDepth
were strongly positively correlated with each
other (Fig. 5). By design, normalizing Depth
and σDepth by canopy height reduced their

correlation with canopy height, putatively mak-
ing them better descriptors of internal canopy
structure.
Topographic gradients in the GRSM controlled

forest structure and complexity (Fig. 6). Canopy
height declined with increasing elevation. VAI
was highest in the high-elevation plots and low-
est in the low-elevation plots. Forest complexity

Table 2. Plot elevation, biodiversity, and forest structural metrics.

Plot ID Elevation (m) Richness VAI p90 (m) Depth (m) σDepth (m)

GRSM_001 467 41 3.59 27.25 11.00 6.51
GRSM_002 969 9 3.50 20.67 6.32 2.97
GRSM_006 527 22 3.96 19.25 6.56 3.65
GRSM_013 561 31 3.88 19.75 5.76 3.66
GRSM_014 545 34 3.59 29.75 10.33 5.48
GRSM_016 1778 7 4.02 15.50 4.51 2.76
GRSM_020 608 44 4.02 23.75 7.14 4.19
GRSM_021 587 47 3.25 30.33 11.03 6.37
GRSM_024 624 11 3.54 17.75 3.53 2.99
GRSM_025 1791 9 4.52 11.33 3.34 1.27
GRSM_027 1973 17 3.59 10.00 2.43 1.18
GRSM_029 1786 4 4.02 15.00 5.75 2.04

Notes: Plot IDs correspond to NEON plot designations. The p90 metric corresponds to canopy height.

Fig. 4. Visualization of plots with different internal canopy complexity: (left) dense vegetation with few gaps
(plot = GRSM_029; depth = 5.4 m; SD(depth) = 1.8 m) and (right) open canopy with high complexity (plot =
GRSM_013, depth = 6.9 m; SD(depth) = 5.0 m). We derive the openness and complexity metric at the 57.5 view
angle. The black line is the 50th percentile (median) distance from the scanner in each 10° azimuth bin. The mean
(Depth; solid red line) and � 1 SD (σDepth; dashed red lines) of azimuth-binned 50th percentile distances are the
basis for our new structural complexity metrics.
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as measured by Depth and σDepth decreased
from low to high elevation.

Biodiversity
Plant species richness varied widely among

plots, from 4 to 47 species (Table 2). Species rich-
ness was not significantly correlated with VAI
(Fig. 7; Pearson r = −0.39, P = 0.205), but was
strongly positively correlated with canopy height

(r = 0.80, P = 0.002), Depth (r = 0.77, P = 0.004),
and σDepth (r = 0.84, P < 0.001). Plant species
richness was also negatively correlated with ele-
vation (Fig. 8; r = −0.66, P = 0.018). The correla-
tions between biodiversity and forest structural
complexity metrics tended to be stronger than
the correlation between biodiversity and eleva-
tion. Although the strongest correlate of plant
species richness was σDepth, the confidence

Fig. 5. Distributions of and correlations between forest structural metrics for individual TLS scans. Correlation
is measured using Pearson correlation.
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interval on r included the estimates for canopy
height, Depth, and σDepth/canopy height.

DISCUSSION

In this study, we developed four new forest
structural complexity metrics suited to quantify-
ing aspects of the 3D structure of forests (Depth,

σDepth, Depth/canopy height, and σDepth/ca-
nopy height) and investigated how they correlate
with biodiversity across a high-biodiversity,
topographically complex area in Great Smoky
Mountains National Park. Statistically derived
LiDAR structural metrics have been limited by
either focusing solely on characterizing either
horizontal structure (Fischer et al. 2019) or

Fig. 6. Correlations between forest structural metrics and elevation. Correlation (r) is measured using Pearson
correlation, and nominal p-values assume independent tests. Error bars indicate 1 SD.
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vertical structure (Fotis et al. 2018, Kamoske
et al. 2019), or by a lack of true representation of
how 3D structure varies with space (Stark et al.
2015, Hardiman et al. 2018, Atkins et al. 2018b).
Capturing the complex relationships between

biodiversity and physical structure requires the
summation of multiple dimensions of variability,
including the biological and physical. The
bounds of forest structural complexity are likely
set by the species pool from which that forest

Fig. 7. Plant species richness is correlated with structural complexity metrics. Correlation (r) is measured using
Pearson correlation, and nominal p values assume independent tests. Error bars indicate one standard deviation.
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draws. Depth and σDepth metrics simultane-
ously summarize vegetation structural com-
plexity in both the vertical and horizontal
dimensions, describing the internal arrangement
of the forest. Our metrics likely correlate strongly
with measures of species richness since the
greater the number of species, the more likely the
species included will be architecturally dissimilar
from others.

In this study, we compared our new structural
complexity metrics to two of the most widely
used metrics of vegetation structure, VAI and
canopy height; however, many other vegetation
structure metrics have been proposed. Here, we
consider how our metrics compare to a selection
of these. Ehbrecht et al. (2016, 2017) introduced
the effective number of layers (ENL) and stand
structure complexity index (SSCI). These metrics
are applied to TLS data like our metrics, but rep-
resent fundamentally different approaches to
quantifying complexity. Our metrics are based
on distance from scanner, while the ENL is based
on a voxel-based hit-grid approach to quantify-
ing vegetation layering. SCCI further incorpo-
rates the fractal dimension of polygon slices
based on the scanner’s field of view. We expect
our metrics to correlate positively with ENL and
SCCI and are arguably easier to calculate. Like
our metrics, SCCI reflects complexity along both
the horizontal and vertical axes. Another metric,
foliage height diversity (FHD) was introduced in
a classic study of forest complexity (MacArthur
and MacArthur 1961) and remains in use today,
including as the primary forest complexity

product from the GEDI mission (Tang et al.
2019). Similar to ENL, FHD requires discretizing
the canopy into height classes and primarily
reflects vertical complexity, as opposed to the
horizontal complexity emphasized in particular
by σDepth.
Potential users should consider the specific

aspects of forest structure and complexity repre-
sented by our new metrics. Depth simultane-
ously summarizes information about vegetation
density and stature, while σDepth captures inter-
nal canopy variability. Since these metrics are
more sensitive to internal canopy structure than
canopy height, we recommend several TLS
acquisitions (>3) per plot to capture variability in
complexity—variability itself may also act as a
higher order metric of stand heterogeneity. In
plots with little spatial variation in stand struc-
ture, single scans are likely sufficient to capture
the complexity of a plot. Normalizing these new
metrics by forest stature enables relative compar-
isons of stand architecture similar to coefficient
of variation (e.g., Are short or tall forest stands
relatively more complex?). Further investigations
of these metrics are needed in a diverse array of
forest types, specifically across gradients of stand
age and major environmental factors like temper-
ature, precipitation, soil characteristics, among
others.
Across the high-biodiversity, high-relief, and

topographically complex Great Smoky Moun-
tains, both forest structural complexity and vas-
cular plant biodiversity tended to decline with
elevation. In this case, we observed high among-
plot variability in plot-level species richness (al-
pha-diversity), even as high regional species rich-
ness (gamma-diversity) was maintained by
substantial species turnover among plots (beta-
diversity). The elevational gradient in GRSM
seems to create a microcosm of latitudinal clines
in biodiversity, where an increasingly inhos-
pitable environment supports fewer species and
constrains plant growth (Whittaker 1956, Haw-
kins et al. 2003, Gillman et al. 2015). However,
inference here is limited, the main caveat being
an approximately 1000 m gap in elevation
between our low- and high-elevation plots.
While many studies of elevation and diversity
relationships show monotonic declines in species
richness with elevation, there are as many stud-
ies showing a humped relationship, with species

Fig. 8. Correlation between plant species richness
and elevation across 12 plots in Great Smoky Moun-
tains National Park.
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richness peaking at mid-elevations (Rahbek 1995,
Grytnes and Vetaas 2002). It is important to note
that mid-elevation is relative to the study system
—different ranges for what mid-elevation is
would exist when comparing the Appalachians
to the Rockies, or either to the Himalayas.

It is unclear whether structural complexity
begets biodiversity, or vice versa. Indeed, neither
direction of causality strictly excludes the other.
Structural complexity could enhance biodiversity
by creating niche space that can be filled by other
species, or biodiversity could enhance structural
complexity due to architectural diversity among
species creating more ways to build complexity
(Gough et al. 2019, Verbeeck et al. 2019) at higher
values of species richness. It may, in principle, be
possible to disentangle these effects if a scenario
with many plots featuring different subsets of an
overlapping species pool. However, with a mod-
est number of plots with high beta-diversity, this
is not possible in our study.

The strong correlations we observed between
canopy structural complexity and biodiversity
suggest that structural complexity metrics could
be used to assay plant biodiversity over large
areas. The availability of LiDAR from airborne
platforms is increasing due to programs such as
NEON (Kao et al. 2012), and new spaceborne
sensors such as GEDI (Dubayah et al. 2020) cre-
ate opportunities for quantifying forest structural
complexity at fine spatial resolutions over
unprecedented geographic extents. Studies such
as ours are important precursors, however,
because they explicitly link biodiversity and for-
est structural complexity, but studies in other
systems are needed to understand the generality
of forest structure–biodiversity relationship, and
determine which metrics, and combinations
thereof, are most predictive. The metric foliage
height diversity (Tang et al. 2019, Burns et al.
2020), an established GEDI data product, cap-
tures vertical structural complexity and is a likely
candidate for inclusion in successful predictions
of biodiversity from airborne and spaceborne
LiDAR sensors.
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