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We report numerical calculations of a dynamic pairbreaking current density J; and a critical
superfluid velocity vq in a nonequilibrium superconductor carrying a uniform, large-amplitude ac
current density J(t) = J, sin Qt with Q well below the gap frequency Q <« Ag/fh. The dependencies
Ja(2,T) and vq(€2,T) near the critical temperature T, were calculated from either the full time-
dependent nonequilibrium equations for a dirty s-wave superconductor and the time-dependent
Ginzburg-Landau (TDGL) equations for a gapped superconductor, taking into account the GL
relaxation time of the order parameter 7¢r and the inelastic electron-phonon relaxation time of
quasiparticles 7z. We show that both approaches give similar frequency dependencies of Jq(2) and
v4(92) which gradually increase from their static pairbreaking GL values J. and v, at Qg < 1 to
\/§Jc and \/§vc at Qrg > 1. Here J4, vg and a dynamic superheating field at which the Meissner
state becomes unstable were calculated in two different regimes of a fixed ac current and a fixed ac
superfluid velocity induced by the applied ac magnetic field H = H, sin 2t in a thin superconducting
filament or a type-II superconductor with a large GL parameter. We also calculated a nonlinear
electromagnetic response of a nonequilibrium superconducting state, particularly a dynamic kinetic
inductance and a dissipative quasiparticle conductivity, taking into account the oscillatory dynamics
of superconducting condensate and the kinetics of quasiparticles driven by a strong ac current. It is
shown that an ac current density produces multiple harmonics of the electric field, the amplitudes

of the higher-order harmonics diminishing as 7 increases.

I. INTRODUCTION

Mechanisms of the maximum superfluid velocity v,
and the dc depairing current density .J. which a super-
conducor can carry in an equilibrium state have been
well established '. The first calculations * of v.(T") and
Jo(T') were based on the Ginzburg-Landau (GL) equa-
tions near the critical temperature T' ~ T,.. Further-
more, v.(T') and J.(T') have been calculated in the whole
temperature range 0 < T' < T, in the BCS model for
clean % superconductors with nonmag-
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and dirty
netic and magnetic impurities” and taking into account
strong electron-phonon coupling in the Eliashberg theory
“. The dc depairing current densities have been measured
for different superconducting materials *''. These issues
are closely related to a maximum superheating magnetic
field Hs which can be sustained by a superconductor in
the vortex-free Meissner state. Here Hs(T) near T, has
been calculated from the GL theory '%'? and for type-1I
superconductorts with a large GL parameter k > 1 at
T =0 '* and in the entire temperature range 0 < T' < T,
both in the clean limit ' and for arbitrary concentra-
tions of nonmagnetic and magnetic impurities '°. Non-
linear screening and breakdown of superconductivity in
proximity-coupled bilayers under a strong dc magnetic
field have been calculated in Refs. 17-20 .

Unlike the static v. and J,. in equilibrium, the physics
of the dynamic critical superfluid velocity v4 and the de-
pairing current density J; at which superconductivity is
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destroyed in a monequilibrium state is not well under-
stood. The dynamic vg and J; are controlled by both
the nonlinear current pairbreaking effects and a complex
kinetics of quasiparticles driven out of equilibrium by a
time-dependent electromagnetic field *. For an oscillat-
ing superflow J(t) = J,sinQt, the dynamic vy and Jy
depend on the frequency €2 and the relaxation time con-
stants for the superfluid density 71 (T) and quasiparti-
cles Tg(T). At Q@ < A/h the ac field does not generate
new quasiparticles which transfer the absorbed power to
phonons. At kT < A this power transfer is mostly
limited by an inelastic scattering time of quasiparticles
7s(T) and a recombination time of Cooper pairs 7,.(T)
due to electron-phonon collisions °”:
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where 71 and 79 are materials constants. Depending on
the amplitude J,, the distribution function of quasipar-
ticles f(E,t) can either deviate strongly from the Fermi-
Dirac distribution fo(E) at (7.,75)Q > 1 or relax to
fo(E) at (7,,75)Q < 1. Since both 7.(T) and 75(T)
increase as T decreases, nonequilibrium effects become
more pronounced at T < T.. By contrast, 7¢.(7T) in-
creases as T increases and diverges at T = T, '
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At T <« T, the condition Q7 < 1 is satisfied up to
0.1 — 1 THz for most superconductors but breaks down

at temperatures very close to T,. For instance, at 1 GHz,
we have Qrgr(T) ~ 1 at T, — T ~ 7h§)/8kp ~ 107 2K.


mailto:asheikhz@odu.edu
mailto:gurevich@odu.edu

The dynamics of the condensate at Qrg;, < 1 re-
mains nearly quasistatic if the effect of quasiparticles
is weak. At T < T, the relaxation times 7,(7T") and
7-(T) increase strongly as the temperature decreases so
that (7,,75)2 = 1 while Q7¢r, < 1, and the ac field
can produce highly nonequilibrium quasiparticles. Yet
the density of quasiparticles in s-wave superconductors
at T < T, and Q < A/h is exponentially small as com-
pared to the superfluid density, so the nonequilibrium
quasiparticles have only a weak effect on the dynamics
of the condensate which reacts almost instantaneously to
J(t). In this case, the dynamic vq and J; at Q@ < A/h
and T' < T, would be close to the static v. and J. in
thermodynamic equilibrium.

The situation changes at T' ~ T, where the superfluid
density becomes smaller than the density of nonequilib-
rium quasiparticles which significantly affect the dynamic
vg and Jyg at which superconductivity breaks down. In
this work we used both the time-dependent Ginzburg-
Landau (TDGL) equations and a full set of nonequi-
librium equations for dirty superconductors in a low-
frequency (2 < A/h) field 2H?72° to calculate the dy-
namic vq(T,Q) and J4(T,) at T ~ T., where nonequi-
librium effects are most pronounced. We consider the
case of h{) < kgT in which the microwave stimulation
of superconductivity “* does not happen, but the ac cur-
rents strongly affect the density of states of quasiparticles
6:2%.29 and drive them out of equilibrium.

The physics of the dynamic critical velocity is relevant
to many applications, for instance, microwave thin film
superconducting resonators used in kinetic inductance
photon detectors and astrophysical spectroscopy”’*!. It
is also essential for superconducting resonant cavities for
particle accelerators, where the breakdown fields close
to the thermodynamic superheating field H; have been
achieved at very high quality factors ~ 10'° at 2K in the
Meissner state *>**. These cavities operate at 0.1 — 3
GHz much lower than the gap frequency A/h ~ 0.8 THz
for Nb, and the dynamic superheating field H; sets a the-
oretical limit of the rf breakdown. The dynamic super-
heating field was measured by Yogi et al.”* who showed
that for Sn, Pb, In at 90-300 MHz, the breakdown field
near T, is close to Hy(T). Pulse measurements * on
Nb and NbsSn at GHz frequencies at 2K< T' < T, have
shown that the field onset of magnetic flux penetration is
close to H(T') for Nb near T, but is smaller than H4(T)
for NbgSn at lower T'.

In this work we calculate the dynamic J4(2,T) and a
critical phase gradient Qq(€2,T) of the order parameter
related to vy by Qq = muvg/h, where m is the electron
mass' for a uniform ac superflow at T~ T,.. We focus
here on the maximum amplitude of the ac current density
J(t) = Josin Qt which can be sustained in a nonequilib-
rium Meissner states and do not consider nonuniform dis-
sipative states at J, > Jg due to proliferation of phase
slip centers in narrow filaments®® *® or penetration of
vortices in bulk superconductors above the dynamic su-
perheating field. TDGL simulations of thin filaments

have shown that J; can approach V2J. at Qrg > 1
3% while numerical simulations of kinetic equations **
have shown®’ that superconductivity can persist during
short current pulses with amplitudes above the static J..
Yet the calculations of J; and @4 taking into account
both the nonlinear current pairbreaking and nonequilib-
rium kinetics of quasiparticles, have not yet been done.
We also calculate a nonlinear electromagnetic response in
a nonequilibrium state at J < Jg and its manifestations
in the nonlinear Meissner effect, kinetic inductance and
intermodulation which have been so far investigated in
equilibrium superconductors '’ "',

The paper is organized as follows. In Sec. II we spec-
ify the main equations and discuss the theoretical as-
sumptions under which the equations have been derived.
These equations were solved for a uniform ac superflow
in Sec. III, where the dynamic Qu(T,Q) and Ju(T, )
were calculated. In Sec. IV we address a nonlinear re-
sponse and calculate the current-dependent kinetic in-
ductance both in equilibrium and nonequilibrium states.
The conclusions and broader implications of our results
are presented in Sec. V.

II. MAIN EQUATIONS

We consider a dirty s-wave superconductor exposed
to time-dependent electromagnetic potentials A(r, t) and
o(r,t). The dynamic Qq(Q2,T) and J4(,T) at T ~ T,
are calculated using the equations for the order parame-
ter ¥(r,t) = Aexp(—if) and the current density J(r,t)
along with a kinetic equation for the distribution function
of quasiparticles “*7?°. The cases of a fixed ac superfluid
velocity v(t) and a fixed ac current density J(t) are in-
vestigated. These cases can be realized in the geometries
shown in Fig. 1, where a thin film cylinder (a) and a ring
filament (b) exposed to the ac magnetic field H(t) cor-
respond to the regime of fixed v(t), whereas a thin wire
connected to an ac power supply shown in Fig. 1 (c) or a
semi-infinite superconductor with £ > 1 corresponds to
the regime of fixed J(¢). It is assumed that the thickness
d of films and filaments is much smaller than the mag-
netic penetration depth Az, so that the induced current
density is uniform over the cross-section. We focus here
on the stability of a uniform Meissner state and do not
consider thermally-activated or quantum proliferation of
vortices or phase-slip centers °' % and the influence of
ac current **°° on their dynamics at J < J4(Q,T), or
the effects of inhomogeneities”” and current leads on the
nucleation of vortices or phase slips. The condition that
vortices do not nucleate at J ~ Jy requires d < &(T),
where £ is the coherence length. It is also assumed that
the magnetic flux threading the samples shown in Fig. la
is much greater than the flux quantum ¢y and the Little-
Parks oscillations ' are washed out. Here the self field is
smaller than the applied field by the factor d/\;, < 1.

The dynamic Qq4(2,T) and J4(2,T) for both fixed
electric field and fixed current are calculated by first solv-



H(t)

H(t)
(b)

FIG. 1. Geometries for which Q4(Q2,T) and J4(Q2, T') are cal-
culated: (a) a thin film cylinder in a parallel ac magnetic field,
(b) a thin filament ring in a perpendicular magnetic field, (c)
a thin wire connected to an ac power supply.

ing the TDGL equations. The TDGL approach is useful
to address qualitative mechanisms of destruction of su-
perconductivity by an ac current, even though the TDGL
theory, strictly speaking, is not applicable for the cal-
culations of Jg(2,T). We then calculate Qq(2,T) and
Ja(Q,T) by solving the full set of dynamic equations of
Ref. 24. Comparing the TDGL results with a more ade-
quate theory of Refs. 23-26 shows the effects of nonequi-
librium kinetics of quasiparticles and the extent to which
the TDGL approach is applicable. We then proceed with
the calculations of the kinetic inductance and the nonlin-
ear electromagnetic response in nonequilibrium states.

II.1. TDGL equations

Slow temporal and spatial variations of ¥(r,¢) and
J(r,t) in a dirty s-wave superconductor at T' ~ T, can
be described by the TDGL equations *%2°:
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Here ¢ = (whD/8kpT.e)'/? is the coherence length,
D = vpl/3 is diffusion constant, vp is the Fermi velocity,
[ is the mean free path, e = 1 —T/T., 7g is an energy re-
laxation time due to inelastic scattering of quasiparticles
on phonons”', A2 = 872k%T2e/7¢(3), oo = 2¢2DN(0)
is the normal state conductivity, N(0) is the density of
states on the Fermi surface, —e is the electron charge,
and Q = —(V0 + 27rA/¢y) is a gauge-invariant phase
gradient. Equations (3) and (4) (in which the units with
h = kp =1 are used) were derived from the kinetic BCS

theory under the condition of local equilibrium, assuming
that Q(r,?) and A(r,t) vary slowly over o, the diffusion
length L = (D7g)Y/? and 75 *"°>?%, where

v () (5) - ©

Here c¢; is the speed of longitudinal sound, X is a dimen-
sionless electron-phonon coupling constant, and Tp =
er/kp is the Fermi temperature. For Pb, we have %Y
cs ~ 1.32 km/s, vp ~ 1830 km/s, Tr = 1.1-10° K,
T. = 7.3 K and A\ = 1.55, which yields Tgb(TC) ~
2.52 - 10~ s. For Al with ¢, ~ 5.1 km/s, vp ~ 2030
km/s, Tr = 1.36 - 10° K, T, = 1.2 K and A = 0.43, Eq.
(5) gives TAY(T.) =~ 3.64- 1077 s.

For a uniform superflow, Eqs. (3) and (4) in the gauge
¢ = 0 can be written in the following dimensionless form:

(1+4T2¢2)1/268—f =(1-¢*)v—?, (6)
0
j=u’q+ 3 (7)
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where v = A/Ag, ¢ = QE, T = AoTr /R, j = J/Jo, tis in
units of 7qr,, Jo = 00/2e€7GL, and u = 7 /14¢(3) ~ 5.79.

II.2. Nonequilibrium kinetic equations

For a uniform current flow, the full set of nonequilib-
rium kinetic equations “*~°° given in Appendix A can be
reduced to a single kinetic equation for the odd in energy
E part of the quasiparticle distribution function f(E,t),
and dynamic equations for ¢(t) and j(¢):
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Here 0f(E,t) = f(E,t) — fo(E), fo = tanh(E/2T), the
quasiparticle energy E and temperature T are in units
of Ay, and the scaling factor (u/e)'/? = 2rgAg/h re-
sults from the same normalization of the parameters as
in Egs. (6) and (7). If Qrgr < 1 the spectral functions
Ny, N2, Ry and Ry are defined by the normal a(E) =
Ny (E)+iR;(F) and anomalous 3(E) = No(F)+iRa(E)
Green’s functions which satisfy the quasi-static Usadel

).

equation for 1D current flow 27-%°:

1 . q° -
(E —ZE) ﬁ—i-?aﬁ—wa, (11)

where o + 32 = 1. Eq. (11) reduces to a quatric equa-
tion for «, the solutions of which are given in Appendix



A. The term 1/27 in Eq. (11) defines a finite quasipar-
ticle lifetime due to scattering on phonons, resulting in
subgap states at |E| < 1. We do not consider here other
contributions to the subgap states V72,

We solved the integro-differential Egs. (8)-(10) numer-
ically using the method of lines “?. By discretizing the
energy, Egs. (8)-(10) were reduced to coupled ordinary
differential equations in time which were solved by the
Adams-Bashforth-Moulton method °* with the error tol-
erances below 107, Results of the calculations of the
dimensionless j; = J4/Jo and ¢4 = Q€ as functions of
the dimensionless frequency w = Q7¢ 1, and the quasipar-
ticle relaxation time 7 = 75 A /h are given below.

III. DYNAMIC PAIRBREAKING CURRENT

III.1. TDGL results

The stationary Egs. (6)-(7) have the solution ¢ = 0 at
g>1and ¢y =+/1—¢? at ¢ < 1. Stability of this solu-
tion with respect to small perturbations 64 (t) and dq(¢)
depends on the way by which the superflow is generated.
In the regime of fixed ¢ the stationary solution 1 (q) is
stable in the whole region of ¢ < g. = 1, but in the regime
of fixed j the solution t(q) is stable if ¢ is smaller than
¢e = 1/4/3 at which j = ug(1 — ¢?) reaches maximum" .
This gives the GL depairing current density j. = 2u/3v/3
above which (j) drops from ¥ (j.) = \/2/3 to zero.

I1.1.1. Fized Q(1).

Figure 2 shows (t) calculated from Eq. (6) with
q(t) = gqusinwt at w = Qrgr, = 0.1, 7 = 100 and the
initial condition t(0) = 1. Here 1 (t) relaxes after a tran-
sient period ¢ = v/1 + 472 to an oscillating steady-state
with a nonzero mean () if ¢, < qq(w,T’) or to the nor-
mal state with o(t) = 0 at ¢t > 1if g, > qa(w,T). The
mean (1(q,)) decreases with g, and vanishes at g, = qq-

The calculated dependencies of ¢4 on w and 7 are
shown in Fig. 3. Here g4(7) at w = 0.01 increases from
qa(0) =~ 1.097 at 7 = 0 to qa(7) — V2 at 7 > 1. At
higher frequency w = 0.1, the dynamic gq(7) is nearly
equal to V2 at all 7. However, if 7 is fixed but the fre-
quency changes, gq(w) varies from ¢. = 1 at w = 0 to
qa(w) = V2 at w1+ 472 > 1. The universal value of
qqa = V2 is achieved at wr > 1, that is, for Q exceeding
a crossover frequency Q. ~ h/7qrAoTE given by:
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where Tp is the Debye temperature. Here §2.(7) vanishes
at T, reaches maximum €2, = Q.(67../7) at T/T. ~ 0.86
and decreases with 1" at T' < 0.87, as shown in Fig. 4.
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FIG. 2. Dynamics of ¢(t) calculated at ¢ = gq sinwt, 7 = 100,
and w = 0.1. Here 1(t) eventually vanishes at g, = v/2.
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FIG. 3. The calculated dependencies of ¢4 on 7 (top) and w
(bottom). Here gg — v/2 at wr > 1.
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FIG. 4. Temperature dependence of Q.(7"). The dashed lines
show the levels of fixed 2 at 2 > Q,, and © < Q,,,, where Q,,
is the maximum value of Q.(7T") corresponding to the point m.
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FIG. 5. Qq(T) calculated for different values of wy =

7hiQ/8kpT. and 790 = 78(T.)A¢(0), where AZ(0) =
872T2/7¢(3). Here the dynamic Qq = +/2(1 — T/T.)/& at
Q > Q.(T) has the same temperature dependence as the
static Qe = /1 —T/T:/&. U Q ~ Q(T) the behavior of
Q4(T) is affected by the temperature dependence of 7£(T),
as shown for the case of wg = 0.001 and 79 = 100.

The increase of Q4(Q,T) at Q =2 Q.(T) by the fac-
tor v/2 can be understood as follows. As follows from
Fig. 2, ¥(t) oscillates rapidly around a mean (). Here
() ~ /1 — (¢?) is determined by Eq. (6) with the time-
averaged (¢%(t)) = ¢2/2 so (1) vanishes at q, = V2.
A small-amplitude ac correction §i(t) was calculated in
Appendix B. The superconducting state remains stable
in the whole region 0 < g, < gq4.

The temperature dependence of Q4(€2,7") shown in
Fig. 5 is affected by the ratio Q/Q.(T). If Q > Q,, =
Q.(6T,./7) (see Fig. 4), the dynamic Qq(T) — v/2/&(T)
has the same temperature dependence as the static
Q. = 1/&(T). However, if Q < Q,,, we obtain that
Qa(T) — &51/2(1 = T/T,) at T close to T, and crosses
over to the static Q.(7T") at lower T'. There is also a range
of frequencies Q < Q,, but Q 2 Q.(T./2) (see Fig. 4)
in which Qu(T) evolves from v2Q.(T) at T — T. to
Qa =~ Q.(T) at T < 0.8T,. and back to ~ v/2Q.(T).

[1.1.2.  Figed J(t).

We calculated ¥ (t) at a fixed j(t) = j, sinwt by solving
the coupled Eqgs. (6)-(7). The GL dc depairing current
density j. = 2u/3v/3 =~ 2.228 is reached at ¢ = 1//3
and ¢? = 2/3, while at ¢ > 1/v/3 the superconduct-
ing state becomes unstable and 1)(q) vanishes abruptly'.
This feature is characteristic of the ac current as well,
which makes it different from the regime of fixed ¢(t).
For instance, Fig. 6 shows ¢ (¢) calculated at 7 = 10 and
w = 0.1. At j, = 1.38j. the order parameter abruptly

Ja = Je
0.8
Jo = 1.38j.
0.6 1
=
=
04—
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0.2
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0 10000 ¢ 20000
0 L L L
0 500 1000 1500

t

FIG. 6. Dynamics of ¥(t) calculated at j = jq sinwt, w = 0.1,
7 = 10, and different amplitudes j,. At j, = j., the super-
conducting state still exists, but once j, reaches the dynamic
pair breaking current jq = 1.38jc, ¥ (t) vanishes. The inset
shows 9 (t) calculated at 7 = 100 at j, = V2j. and w = 0.1.
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3
1 1 1 1 1
0 200 400 . 600 800 1000
S 14y 7 =100
i~
312
3 T=0
1 L L L L
0 0.1 0.2 0.3 0.4 0.5
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FIG. 7. Dynamic pair breaking current jq as a function of 7
(top) and w (bottom). Here j4(w,T) — v2jc at wr > 1.

vanishes after a transient period. For large 7, this transi-
tion to the normal state occurs at j, = v/2j., as shown in
the inset for 7 = 100 and w = 0.1. Here the dynamic pair
breaking current jg4(w,7) shown in Fig. 7 exhibits similar
dependencies on w and 7 as q4(w,7) at a fixed ¢(t). If
wt 2 1 both the dynamic j;(w, ) and g4(w, ) are larger
by the factor V/2 than their respective GL values.

The temperature dependence of J4(£2,7T) is affected
by the temperature dependencies of 7(T') and Q.(T). At
T — T. and Q = Q.(T) the dynamic pair breaking cur-
rent Jy is v/2 times larger than the static J.(7) and is
independent of 7. As T decreases J4(Q2,T) can evolve
to J.(T) at temperatures for which Q@ < Q.(7). This
behavior of J4(£2,T) is illustrated in Fig. 8.
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FIG. 8. Ju(T) calculated for different values of wo =

7hQ/8kpT. and 790 = 7E(T.)Ac(0), where AZ(0) =
872T2/7¢(3). Here the dynamic J; = v/2J.(0)(1 — T/T.)*/?
at Q> Q.(T) has the same temperature dependence as the
static J. = J.(0)(1 — T/T.)*?. At Q ~ Q.(T) the behavior
of Jq(T') is affected by the temperature dependence of 7 (T),
as shown for the case of wg = 0.001 and 79 = 100.

II1.2. Qu(T,Q) and J4(T,1?) calculated from the full

set of nonequilibrium equations

The TDGL calculations of ¢4(T,w) and jq(T,w) give
a qualitative picture of dynamic pairbreaking, although
Egs. (6)-(7) are not really applicable at J ~ J;. Indeed,
the dynamic terms in Eqs. (6)-(7) were derived from the
BCS kinetic theory, assuming weak pairbreaking and lo-
cal equilibrium in which Q¢ < 1 and A(r, t) varies slowly
over the diffusion length Ly = (D7x)'/? and the energy
relaxation time 75 °%?%. Those conditions break down at
Q~Q.~¢ ' and Q 2 75}, so in this section we calcu-
late ©(t), ga(T,w) and jq(T,w) from Egs. (8)-(10) which
take into account both the dynamic current pairbreaking
and nonequilibrium kinetics of quasiparticles.

Consider first solutions of Eqs. (8)-(11) at 7(7") = 100
and T = 0.97 for a superflow ¢(t) = ¢, tanh ¢ which was
gradually turned on at ¢ = 0. As shown in Fig. 9, the
qualitative behavior of ¢(t) calculated from Eqs. (8)-(9)
turns out to be similar to that of TDGL, except that
the non-equilibrium integral term in Eq. (9) accelerates
relaxation of ¢(t) at g, ~ 1. In both cases superconduc-
tivity is destroyed at gqp = 1.

Shown in Fig. 10 are snapshots of a nonequilibrium
part of the distribution function d f(F,t) induced by the
stepwise ¢(t). Here the magnitude of §f(E,t) calculated
at 7 = 100 increases as g, increases but remains relatively
small up to g, = 1. As the quasiparticle relaxation time
7 increases, the magnitude of § f (E, t) also increases. The
peak in 0 f(E,t) shifts to lower energies as ¢, increases,
consistent with the decrease of the quasiparticle gap due
to the dc current pairbreaking.
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0.8 1
i
1l 4
06T gy (8)-(11), gu = 0.75
a 1
e i
0.4 '\ TDGL, ¢, = 1.0 8
02l '\.\:\\/ Egs. (8)-(11), g, = 1.0 |
0 ‘ e istpirsivtottets
0 1000 2000 3000 4000 5000
t
FIG. 9. Comparison of ¢(t) calculated from the TDGL

equation (6) and the full nonequilibrium Egs. (8)-(11) for
q(t) = gntanht at g, = 0.75 and ¢, = 1. Here we took
7(T) =100 and T = 0.97..

0.15 ——(1):g, = 0.254
e (2):qh =0.5
0.1 —(3):qn = 0.75]
— @@ =10
0.05 i
0 .
Er_q\ 3 4 5
S o0z
0. 4 ‘(l):'r =1
(2):7 =10
3 —— (3):7 = 100
01t ——— (4):7 = 1000 |
2
4
0 !
0 1 2 3 4 5

FIG. 10. The nonequilibrium correction 0 f(E) at the times
when the magnitude 0 f (E, t) reaches maximum after the step-
wise increase of ¢(t). Taking 7' = 0.97., here the top panel
shows 0 f(E,t) calculated for different ¢, at 7 = 100 and the
bottom panel shows 0 f(E,t) calculated for different values of
Tat qgn = 1.

II1.3. Fixed Q(t).

Solutions of Egs. (8)-(9) with ¢(t) = gusinwt are
shown in Fig. 11 along with the TDGL results obtained
for the same input parameters. At g, = 1 the order pa-
rameters 1(t) oscillate around nearly the same mean val-
ues (1)) but the amplitude of oscillations §1)(t) calculated
from Eqgs. (8)-(9) is noticeably larger than the TDGL
d1p(t). Relaxation of 1 (t) from the initial value ¢(0) =1
to the steady-state oscillations described by Eqs. (8)-(9)
is also faster than the TDGL transient time, consistent
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FIG. 11. Comparison of 1 (t) calculated from the TDGL equa-
tions and Egs. (8)-(9) for ¢(t) = ¢asinwt, 7 = 100, w = 0.1,
and T = 0.97..
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FIG. 12. Dynamic ¢q(w,7) as functions of 7 (top) and w
(bottom) calculated from Egs. (8)-(9) at 7= 0.97.

with the above results for ¢(t) = gj, tanht shown in Fig.
9. These features become more pronounced at the dy-
namic critical momentum gq ~ v/2 at wr > 1, where the
amplitudes of oscillations d4(t) grow significantly larger
so that 1 (t) touches zero but then recovers. Yet, despite
a rather different dynamics of ¢ (¢) described by Egs. (8)-
(9) and the TDGL equations, superconductivity gets de-
stroyed at the same critical value g; — V2 at 7 = 100
and w = 0.1 in both cases. The calculated dependencies
of g4 on 7 and w shown in Fig. 12 appear similar to the
TDGL results shown by Fig. 3.

Our solutions of Egs. (8)-(9) have revealed a dynamic
state in which () periodically vanishes but then recov-
ers to ¥(t) ~ 1. This state appears as the frequency
decreases, as shown in Fig. 13. For instance, in the case
of w = 0.1 and 7 = 10 shown in the top panel Fig. 13,

. 0 . h
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0.6F T o= 0.1‘
¥
0.4 1
0.2
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0 1 1
4000 4200 4400 ; 4600 4800 5000

FIG. 13. Steady state oscillations of #(t) calculated from
Egs. (8)-(9) at T' = 0.9, with ¢ = ¢, sinwt for: different 7
at w = 0.1 and ¢, = 1.35 (top) and different w at 7 = 100
and ¢, = 1.30 (bottom).

(t) drops down to ~ 2 x 1072 at the minimum but re-
mains finite. As 1) (t) goes through the minimum the am-
plitude of § f(F,t) decreases and changes sign. However,
at w = 0.01 in the bottom panel, 1(t) at the minimum
drops below the numerical tolerance level of ~ 10~7 dur-
ing a significant portion of the ac period. This case corre-
sponds to a true transition to the normal state with ¢» = 0
in which all terms in Eq. (9) vanish and Eq. (8) describes
an exponential relaxation of 0 f(F,t) o< exp(—ts/27) un-
til the superconductivity recovers as ¢(t) decreases. This
behavior is physically transparent: at very low frequen-
cies the quasi-static ¥(t) is determined by the instanta-
neous ¢(t) = g, sinwt, resulting in periodic transitions to
the normal state and the subsequent recovery of super-
conductivity once |q(t)| exceeds 1. At higher frequencies
w 2 0.1, the superconducting state does not have enough
time to disappear during the parts of the ac period in
which |¢(¢)] > 1, so that () at the minimum remains
finite all the way to ¢ — qq.

The calculated Qq(T') curves shown in Fig. 14 are sim-
ilar to the TDGL results but generally fall below them:
Qa0 T) = V2Q. = /21 —=T/T,) at Q 2 Q.(T) but
Qi(2,T) — Qc(T) at @ <« Q(T/2). The tempera-
ture dependence of 7(T') oc T3 results in a crossover
of Qq(T,Q) from Q.(T) to v2Q.(T) as T decreases.

IIL.4. Fixed J(1)

Solutions of Egs. (8)-(10) for j = j, sinwt, w = 0.1 at
7 = 10 and 7 = 100 shown in Fig. 15 are qualitatively
similar to that of ¢(t) for a fixed ¢(t). Here 1) (t) vanishes
abruptly at j, = ja(w,T), the amplitude of oscillations
of ¥(t) essentially depends on w and 7, as shown in Fig.
16. The calculated j; = 1.35j. at 7(T) = 10 turned
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FIG. 14. Qq(T) calculated from Egs. (8)-(9) for different
values of wg = 7hQ/8kpT. and 70 = 7r(Tc)Ao(0), where
AZ(0) = 872T2/7¢(3). The dynamic Qq = 1/2(1 — T/T:)/&o
at Q> Qc(T) has the same temperature dependence as the

static Q. = /1 —T/Tc/&. If Q ~ Q.(T) the behavior of
Q4(T) is affected by the temperature dependence of 7£(T),
as shown for the case of wg = 0.001 and 79 = 100.

out to be slightly smaller than the TDGL value, but at
7(T) = 100 both TDGL theory and Egs. (8)-(10) give the
same jq = v/2j.. The dependencies of jq(w, ) on 7 and
w shown in Fig. 17 appear similar to those for gq(w, )
in Fig. 12 and clearly demonstrate that jq4 — v/2j. at
wt > 1. The temperature dependence of J4(€2, T') shown
in Fig. 18 is similar to the TDGL results only at T" — T:
Ja(Q,T) — V2J.00)(1 — T/T.)3? at Q 2 Q.(T) and
Ja(,T) — J(T) at Q < Q.(T). As T decreases, the
Ja(Q,T) curves tend toward J.(T) even at Q > Q.(T).

IV. NONLINEAR ELECTROMAGNETIC
RESPONSE

In this section we address an electromagnetic response
of a nonequilibrium superconductor. For a nearly uni-
form current considered here, the linear response is quan-
tified by a frequency-dependent complex conductivity,

J= (0’1 - iO’g)E, (13)

where 01(Q2) describes a dissipative quasiparticle re-
sponse, 02(Q) = 1/p0Q\? accounts for the Meissner ef-
fect, and Ay is the London penetration depth. Here o9
also determines the kinetic inductance £y = (dQ203) ! =
poA% /d per unit length of a film of thickness d **.

Using A2 (T') = 2hkpT,/muoo0 AR near T.”' yields:

 2hkpT.

Ly = p—ek (14)

At high current densities the conductivity o = o1 —io9
depends on Q(t), causing the nonlinear Meissner effect,
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FIG. 15. Dynamics of ¢ (t) calculated at j = j,sinwt, w =
0.1, 7 = 10, jo = j. and the critical current j, = 1.35j. at
which 9 (¢) vanishes abruptly. The inset shows 1 (t) calculated
at 7 = 100, w = 0.1 and j, = \/ch. All calculations were
performed at 7' = 0.97%.
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FIG. 16. Steady state oscillations of ¥ (t) calculated at T' =
0.97., j = jasinwt, jo = 1.20j. and: different 7 at w = 0.1
(top) and different w at 7 = 100 (bottom).

intermodulation and generation of higher order harmon-
ics of the electric field E(t) in response to the ac current
J(t) = J,sinQt, . Defining the kinetic inductance
by Eq. (14), where A(t) is given by the solutions of
Egs. (6) or Egs. (8)-(9), we can expect strong oscil-
lations of L (t) at large J, due to the nonequilibrium
current pairbreaking. Shown in Fig. 19 is the dynam-
ics of Li(t) calculated at a fixed ¢(t) = g, sinwt with
¢a = 0.9v2, w = 0.01 and 7 = 100. Here the amplitudes
of L (t) increase with ¢, and diverge at ¢, — gq, the
peaks in L (t) getting higher as wr decreases. Figure 19
also shows that the amplitudes of Lj(t) calculated from
the full Egs. (8)-(11) can be orders of magnitude higher
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FIG. 18. J4(T) calculated from Egs. (8)-(11) for 7o = 100
at different wo = 7hQ/8kpT. where 790 = 7p(T:)Ao(0), and
A3(0) = 872T2/7¢(3). As Q > Qc(T), we have Jy(T) =
J(0)v2(1 — T/T.)*/? at T — T., however as T decreases a
crossover to J(T') occurs even at Q > Q.(T).

as compared to the TDGL results. This reflects larger
amplitudes of oscillations of v (t) calculated from Egs.
(8)-(11) and discussed above (see Fig. 11).

Shown in Fig. 20 is £ () calculated from Eqs. (6)- (7)
and Egs. (8)-(11) at a fixed ac current j = j, sinwt and
7 = 100. Here L;(t) can exhibit large-amplitude oscil-
lations at small wr. The amplitudes of Lj(t) calculated
from Egs. (8)-(11) are larger than the TDGL results,
although not by orders of magnitude.

The above calculations of L (t) pertain to low frequen-
cies wr < 1 at which L(t) follows instantaneously to the
time-varying order parameter ¥(¢). Generally, the non-
linear electromagnetic response at a fixed ¢(t) = ¢, sinwt
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FIG. 19. Dynamics of Lx(¢t) in units of Lro =

noodAG/2likp T, calculated from: (a) Eq. (6) and (b) Egs.
(8)-(11) at T = 0.9T. and q(t) = qu sinwt with g, = 0.9v/2,
w = 0.01, and 7 = 100. Notice large-amplitude oscillations of
Li(t) at small wr and large qq, the peaks in Li(¢) calculated
from Egs. (8)-(11) can be orders of magnitude larger than
those obtained from Eq.(6).
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FIG. 20. Dynamics of L(t) calculated for a fixed current
§(t) = jasinwt with jo = 0.9v2j, w = 0.01 and 7 = 100
using: (a) Egs. (6)-(7) and (b) Egs. (8)-(11) at T'= 0.97.

causes generation of multiple current harmonics:

jt) = Z[jln sinwpt + jon, oS wyt]. (15)

n

Likewise, the ac current j = j, sinwt produces multiple
harmonics of the electric field € = ¢:

e(t) = Z[aln sinwpt 4 €2, cOS W] (16)
n
Here the frequencies w, and the Fourier amplitudes

J1n(4a), J2n(qa)s €1n(Ja) and €2, (Jo) are to be calculated
self-consistently from Egs. (8)-(10), as shown below.



IV.1. Fixed q(t).

Shown in Fig. 21 are the current Fourier spectra cal-
culated at different 7 at ¢, = 0.95v/2 and w = 0.1. Here
the multimode spectrum of j(w) consisting of equidistant
peaks at w, = nw, n = 1,3,5, ... changes markedly as 7
increases and the amplitudes of high-frequency harmon-
ics diminish. The latter is consistent with the results of
the previous sections which showed that at wr > 1 the
amplitude of oscillations of superfluid density responsi-
ble for the generation of higher harmonics diminishes and
the fundamental harmonic in j(¢) dominates. Here the
nonequilibrium effects described by Eqs. (8)-(9) signifi-
cantly increase the amplitudes of higher order harmonics
as compared to the respective TDGL results.

Of particular interest is the dependence of the in-phase
and out-of-phase parts of the amplitude of the main har-
monic j,(t) = ji sinwt + ja coswt on q,, where jo deter-
mines the mean dissipative power p = wq,j2/2. Shown
in Fig. 22 are steady-state oscillations of j(t) at 7 = 1
and 7 = 100. At ¢, = 272 and 7 = 100, the cur-
rent response is nearly in-phase with ¢(¢) but at 7 = 1
the current has dips when ¢(¢) is maximum. The latter
comes from pairbreaking effects which mostly reduce the
superfluid density and the supercurrent when ¢(t) reaches
maximum. This effect becomes more pronounced for a
larger amplitude g, = 0.951/2 represented in Fig. 22(b).
In this case 1(t) is much reduced during a considerable
part of the ac period so j; < js and the current response
becomes nearly ohmic.

The dependencies of the in-phase ji(g,) and out of
phase j2(q,) amplitudes of the current main harmonic
on g, are shown in Fig. 23 at 7 = 1 and 7 = 100. At
7 = 100 the response current is mostly in-phase with ¢(t)
up to the critical ¢, ~ v/2, while at 7 = 1, the out-of-
phase part of j,,(t) is essential and significantly increases
with ¢, and the supercurrent decreases.

IV.2. Fixed j(t).

To calculate the Fourier harmonics of the dimension-
less electric field e(t) = E(t)/Ey = Jq/0t with Ey =
(2e€76r) "1, we solved Eqs. (8)-(10) for +(t) and q(t) at
a fixed ac current j = j,sinwt. Shown in Fig. 24 are
the Fourier spectra (w) at j, = 0.77v/2j., w = 0.1 and
different 7. Like in the case of a fixed ¢(t), the Fourier
spectra of the electric field contain equidistant peaks at
wy = nw with n = 1,3,5,..., the amplitudes of higher
order harmonics decreasing as 7 increases.

Figure 25 shows the in-phase and out-of-phase ampli-
tudes 1 and €5 of the main harmonic &,,(t) = &1 sinwt +
gg coswt as functions of j, at w = 0.1 and two values
of 7 =1 and 7 = 100. Here £5(j,) describing the su-
perfluid response dominates at all j, and is nearly linear
in j,, indicating that the dynamic differential resistivity
p2 = 0ea/0j, is weakly dependent on j, except for a
sharp increase in a narrow region at j, — jq for both
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FIG. 21.  Fourier spectra of the current amplitudes j, =

V3%, + 72, caused by q(t) = gosinwt calculated from Egs.
(8)-(10) for different 7 at T = 0.97%, g, = 0.95/2 and w =
0.1. The Fourier amplitudes are peaked at w, = nw with
n=13,5,..
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FIG. 22. Nonlinear current response j(t) calculated at g, =
0.5v/2 and Qo = 0.95v/2 for two values of 7 = 1 and 7 = 100
at T'=0.9T.. At 7 = 100 the current is nearly in phase with
q(t) at all go’s. At 7 = 1 the current response at large qa
becomes almost evenly divided into the in phase and out of
phase parts.

7 =1 and 7 = 100. By contrast, £1(j,) is linear in j,
at jo < ja/2 but then increases sharply as j, approaches
ja- The differential resistivities pi1(j,) = 0e1/0j, and
p2(ja) = 0e2/0j, as well as the resulting dissipated
power p = P/Py = €1j,/2 as functions of j, where
Py = EyJy are shown in Figs. 26 and 27, respectively.
At J > J; the supercurrent density vanishes jumpwise,
resulting in the ohmic response J = oo F in the normal
state. Notice that both p; and p2 turned out to be much
smaller than the normal state resistivity po = 1/0¢ in the
whole region of 0 < J, < Jg.
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FIG. 23. The amplitudes j1(q.) and j2(ga) of the main
current harmonic as functions of ¢, calculated from Eqgs. (8)-
(10) at T'= 0.9T¢ with ¢(t) = gasinwt at w = 0.1, 7 =1 and
7 = 100.
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FIG. 24. Fourier spectra of the electric field ,, = /€3, + €3,
in response to the ac current j = j, sin wt calculated from Eqs.
(8)-(10) at T = 0.9T., jo = 0.77v/2jc, w = 0.1 and different
7. The peaks in €, occur at the odd multiples of w.

V. DISCUSSION

In this work we address the breakdown of superconduc-
tivity by strong rf currents at h{) < Ag < kpT.. Here
the deviation of the quasiparticle distribution function
f(E,t) from equilibrium is controlled by the amplitude
of rf current and the inelastic electron-phonon scattering
time 7 which can be much larger than 7, and the rf pe-
riod, Q7 > 1. Because Eqgs. (8)-(10) are applicable at
Q) < kT, >* Y, they do not describe a microwave stim-
ulation of superconductivity which occurs at A = kgT
“. Yet the kinetic equations (8)-(10) in which 9f/9F is
replaced with its equilibrium value 9 fy/0F for a weak rf
field *?° can have spurious solutions corresponding to
stimulated superconductivity. We did observe these so-
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FIG. 25. The amplitudes €1(j.) and €2(ja) of the main

electric field harmonic as functions of j, calculated from Eqs.
(8)-(10) at T' = 0.97, with j(t) = jasinwt, w=0.1land 7 =1
and 7 = 100.
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Jja calculated from Egs. (8)-(10) at T = 0.97. with j(t) =
Jasinwt at w =0.1, 7 =1 and 7 = 100.
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FIG. 27. Ac power p = €1j4/2 as functions of j, calculated
from Egs. (8)-(10) at T" = 0.97. with j(t) = jasinwt at
w=20.1 for 7 =1 and 7 = 100.

lutions of the linearized Eqs. (8)-(10) but only at large
rf amplitudes producing unphysical §f(E,t) > 1. The
results presented above are obtained using the Larkin-
Ovchinnikov form of Egs. (8)-(10) which include the ex-
act 0f /OF “'. In this case the nonequilibrium correction
df(E,t) was always smaller than 1 and no stimulated
superconductivity was observed.

The temperature and frequency dependencies of Qg
and Jy calculated from either the TDGL equations or
Egs. (8)-(10) turned out to be similar. Namely, both
Qg and J; tend to their respective static GL values at
Qrp < 1 and gradually increase with frequency, ap-
proaching the universal values Qg — \/§QC and Jg; —
V2J. at max(rgr, 7E)Q > 1. The physics of this effect
is rather transparent: at Q7p > 1, the pair potential
P(t) = (¥) + §1(t) undergoes small-amplitude rapid os-
cillations of 61 (¢) around a mean value (1)) which is deter-
mined by quasi-static equations with the time-averaged
(Q?) = Q2 /2. Thus, the solutions for the mean order pa-
rameter (1)) disappear above the same pairbreaking criti-
cal value of (Q?) as for a dc current. This result can also
be used to evaluate the dynamic superheating field Hy
at which the Meissner state in a large-x superconductor
becomes absolutely unstable:

Hy(T) — H(T),
Hy(T) — V2H(T),

i - (228

where H,(T) is the dc superheating field at T ~ T, 7.
At k> 1 the screening current density varies slowly over
&, so Q(x,t) and A(x,t) are nearly independent of the
coordinate x perpendicular to the surface.

The relation between the dynamic superheating field

Qrp(T) < 1, (17)
Qrp(T)>1,  (18)

) H., k> 1 (19)

12

H,(T) and the dc superheating field Hs(T) at low tem-
peratures T < T, and frequencies hAf) < kpT. has
not yet been calculated from a microscopic theory. Yet
based on the known dependence of the quasiparticle
gap €, on the mean free path at H = Hy '°, we
can make qualitative conclusions °° regarding the es-
sential effect of impurities on Hg(T) at T <« T.. In
the dirty limit | < & at T <« T., the quasiparticle
gap €4(H) diminishes as the field increases but remains
finite all the way to H, at which ¢,(Hs) =~ 0.384,
10 where Hy, = 0.84H.'*. 1In this case the density
of thermally-activated quasiparticles remains exponen-
tially small ng,(T) < no(Ao/kpT)"/? exp(—e,/kpT) in
the entire field range of stability of the Meissner state,
0 < H < Hs. A low frequency field h) < Ag can pro-
duce nonequilibrium dquasiparticles which can affect dis-
sipative kinetic coefficients and the surface resistance’’,
but the effect of an exponentially small density of quasi-
particles at T < T, on the dynamics of the supercon-
ducting condensate would be negligible, unlike the case
of T =~ T, considered in this work. As a result, the
condensate at T" < T, reacts nearly instantaneously to
the rf field with @ < Ag/h, despite slow kinetics of
sparse quasiparticles, so the superconductivity would be
destroyed under the same pairbreaking condition as in
the absence of quasiparticles. Thus, the dynamic super-
heating field Hy of a dirty superconductor at hf) < Ag
and T' < T, may be close to the static superheating field
H, =~ 0.84H, even if Qrg > 1.

For cleaner materials, the quasiparticle gap e,(H) van-
ishes before the dc depairing limit H = Hg or J = J,
is reached if [ > 8.7£'°. 1In this case the density of
quasipartricles at H = Hj is no longer negligible so their
slow kinetics at T' < T, may increase H; relative to H
even at M) <« Ap. A similar situation can also occur
in superconductors with a nanostructured surface’” or
inhomogeneous density of impurities’”, where the quasi-
particle gap at the surface can be reduced by both the
current pairbreaking and the proximity effect. Complex
effects of impurities on the electron-phonon and electron-
electron energy relaxation have been a subject of many
experimental investigations in recent years %% 7.

Our calculations of a nonlinear electromagnetic re-
sponse of a nonequilibrium superconducting state show
that the amplitudes of higher order harmonics diminish
as the quasiparticle energy relaxation time 75 increases.
Typically 7z near T, is about 2 orders of magnitude
higher than 74, except a narrow region of T very close
to T.. Given that strong disorder can significantly re-
duce 77", one could expect that generation of higher
order harmonics and intermodulation effects would be
more pronounced in dirty superconductors. The mod-
erate dependence of the dynamic differential resistivity
p2(ja) which defines a nonequilibrium kinetic inductance
on j, shown in Fig. 26 is qualitatively similar to that of
L (ja) under the condition of the dc nonlinear Meissner
effect #1449 At the same time, the dissipative differ-
ential resistivity p1(j,) shown in Fig. 26 has a more pro-



nounced dependence on j, than p2(j,). Both p1(j,) and
p2(ja) have strong peak as j, approaches the dynamic
depairing current density but remain much smaller than
the normal state resistivity at low frequencies h{) < A.
The nonlinearity of £(j,) in a nonequilibrium state man-
ifests itself in a strong dependence of the rf dissipated
power on the current amplitude, as shown in Fig. 27.
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Appendix A: Nonequilibrium Equations

The equations obtained in Refs. 23-26 for a nonequi-
librium dirty s-wave superconductor at T =~ 7T, and
Q < Ag include the quasi-stationary Usadel equation:

D a9 9 1 )
> [a(V —2ieA)°s — BV a} = (E —’LE) 58— Ve,
(A1)
where the normal and anomalous retarded Green’s func-
tions a(E) = N1(E) + iRy (E) and B(E) = Na + iR2(E)
satisfy a? + % = 1. Equation (A1) is supplemented by
the kinetic equations for the odd f(F) and even fi(FE)
distribution functions of quasiparticles:

DV - [(N? — R2) Vo] + 2DN; R Q - <Vf1 gé %’t&)
NG ) =g )
DV - [(Nf +N2) (Vfl - eg—é%—?)]
12N, RoQ - V6S — N, (% " i) (fl . <p%>
— N2 || <2f1 + %%) =0, (A3)

where f = fo +df and fy = tanh(E/2T).
The equations for ¥(r,t) = Aexp(—if) and J(r,t) are

25,26.

expressed in terms of Ny 5, Ry 2, df and f; as follows™

T 0 1 [ .

A2
E2(V — 2ieA)*V + <1 - P) U, (A4)

0

- TOoo 2
J= 4(3TCA Q+

o [ sy af 0A

e /. dE {(Nl + N3) (Vfl 8E 5 4+ 2NoR2Q6f | .

(A5)
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If §f(E,rt) and ¥(r,t) vary slowly over 7z, ¢ and
Lg = (D7g)/?, the derivatives in Eqs. (A2)-(A3) can be
neglected. In this local equilibrium approximation Egs.
(A1)-(A5) reduce to Egs. (3) and (4) 27°°.

If the spatial derivatives in Eqs. (A1)-(A5) are neg-
ligible we readily obtain f; = —epdf/OE and ® =
—2ep + 00/0t = 0 from Eq. (A3), giving Vf —
e(0f JOE)(OA/0t) = 1/2(0f/OF)(0Q/dt). In turn, Eq.

(A1) reduces to the quartic equation:

2
ot —Rad + Sa? +Ro¢—RT:O,
2(u/e)\/?(iE —1/27)
¢ ’
R2 wQ
= | —+1]| -1 A
=7 {(iE—1/2T)2+ ] (A6)
The relevant solution of Eq. (A6) is given by
R 1 B
B) =2 S/ —ag2 oA -2 A
a(E) 1 +5+2 £ A o (A7)
where
2 3
A= S—% B:8R+4RS—%,

27TRA
C =283+ 2TR%*S + 2TR? — T

1/3
D= B (c+\/02—436)]
1 [ 24 1 s

Appendix B: High-frequency limit, wr > 1

At high-frequencies 9 (t) = 1 + d(t) has a small-
amplitude oscillating component §1)(t) < 1 around a
mean value ¢ so that (§¢) = 0, where (...) denotes time
averaging. In this case Eqs. (6) and (7) can be solved by
the standard methods which have been developed for dy-
namic equations with rapidly oscillating parameters’"”.

1. Fixed Q().

For a fixed ¢(t) = ¢, sinwt, we expand Eq. (6) up to
quadratic terms in §¢ and average over the rf period:

r = (1= (q%) & — ¢ + (hoy) — 3(6¢%)p,  (BI)
2
ht) = () = () = Tcos2wt, (B2
where r = (1 4 472¢2)1/2, (¢%) = ¢2/2, and (5)6¢)) = 0.
The dynamic equation for §¢(t) is obtained by expand-
ing Eq. (6) up to linear terms in §t:

rpp — gop = h(ty,  g=1-q¢2/2—3¢* (B3)



The solution of Eq. (B3) is then:

01h(t) = Acos 2wt + B sin 2wt, (B4)

2 2
q29Y qawrt
A= ——247 B=—"2"_. B5
2(4w?r? 4 g2)’ 4w?r? + g2 (B5)

From Egs. (B1) and (B4) we obtain the following self-

consistency equation for ¢ (t):

gz A
4

; ‘J?z 3 3 2 2

At 4w%r? > g% Egs. (B5) and (B6) reduce to:

P q?l qg 3
7“1#—( _E> (1_32w2r2)w_w' (B7)

Hence, the mean steady-state v is given by:

27\ 1/2 4
0= (1 - %a) (1 - 643;1%2) ' (B8)

This state is stable with respect to small perturbations
of (t) if g4 < qa = V2.

2. Fixed J(t).

For a fixed j(t) = j, sinwt, we linearize Eq. (7) with
respect to an oscillating correction 0t (t) < 1:

Ja sinwt = qup? + 2urhqd) + 4. (B9)
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Setting here ¢(t) = qisinwt + gacoswt and 0 =
Acos 2wt + Bsin2wt, we obtain (gév) = 0, and ¢(t) =
—(jo/urp?)sinwt in leading order in w/u < 1 and
(wr)™2 < 1. Substituting this ¢(¢) into Eq. (6) and
averaging gives the equation for the mean ) (t):

j2
2u2y

(14 4729V %) = (1 — ) v -3 (B10)
The r.h.s. of Eq. (B10) has the GL form for a fixed cur-
rent except that the time averaging of (¢%(t)) = j2/2u?y*
reduces the current pairbreaking term in half as com-
pared to the dc current. As a result,
ja = 2uYt(1 -9, (B11)
Stability of the above steady state with respect to slow

perturbations 1 (¢) can be addressed by setting () =
¥ + 11 (t) and linearizing Eq. (B10) with respect to v1:

: 3jz

rpy = |1+ 22y — 342 | .

(B12)
Hence, 11 o< exp(vt), where the decrement ~ is given by

v==(2-3¢%). (B13)

2
r
Here j2 in Eq. (B12) was expressed in terms of %2 using
Eq. (B11). This state becomes unstable (v > 0) at jq =
V/2j. for which j, (1) reaches maximum at ¢? = 2/3.
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