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Abstract. We work throughout in the theory ZF with the axiom of determinacy, AD. We introduce and
prove some club uniformization principles under AD and ADR. Using these principles, we establish continuity

results for functions of the form Φ: [ω1]ω1 → ω1 and Ψ: [ω1]ω1 → ω1ω1. Specifically, for every function

Φ: [ω1]ω1 → ω1, there is a club C ⊆ ω1 so that Φ � [C]ω1
∗ is a continuous function. This has several

consequences such as establishing the cardinal relation |[ω1]<ω1 | < |[ω1]ω1 | and answering a question of

Zapletal by showing that if 〈Xα : α < ω1〉 is a collection of subsets of [ω1]ω1 with the property that⋃
α<ω1

Xα = [ω1]ω1 , then there is an α < ω1 so that Xα and [ω1]ω1 are in bijection.

We show that under ADR everywhere [ω1]<ω1 -club uniformization holds which is the following statement:

Let clubω1 denote the collection of club subsets of ω1. Suppose R ⊆ [ω1]<ω1 × clubω1 is ⊆-downward closed

in the sense that for all σ ∈ [ω1]<ω1 , for all clubs C ⊆ D, R(σ,D) implies R(σ,C). Then there is a function
F : dom(R)→ clubω1 so that for all σ ∈ dom(R), R(σ, F (σ)).

We show that under AD almost everywhere [ω1]<ω1 -club uniformization holds which is the statement that

for every R ⊆ [ω1]<ω1 × clubω1 which is ⊆-downward closed, there is a club C and a function F : dom(R)∩
[C]<ω1

∗ → clubω1 so that for all σ ∈ dom(R) ∩ [C]<ω1
∗ , R(σ, F (σ)).

1. Introduction

The setting throughout this article will be ZF + AD. AD is the axiom of determinacy which asserts that
for every two player integer game, one of the two players must have a winning strategy. AD and its various
extensions have been shown to be a fruitful and general framework for extending properties of simple subsets
of R to a much more general class. Within this setting, sets which are surjective images of R have a very
interesting structure.

The definable properties of R and it subsets have long been studied within descriptive set theory. Under
determinacy, the first uncountable cardinal, ω1, is a minimal uncountable set much like R. AD can distinguish
ω1 and R via bijections: ω1 and R are incomparable cardinals in the sense that neither can inject into the
other. Moreover, under a strengthening of AD called AD+, Woodin’s perfect set dichotomy implies that
every uncountable set X which is a surjective image of R must contain a copy of R or ω1. (See [3] Section 8
or [4].) More generally, [1] showed that in L(R) |= AD, every uncountable set X must contain a copy of R
or ω1. Like its companion R, ω1 and its subsets deserves a definable analysis.

Note that R, P(ω), and [ω]ω (where [ω]ω is the collection of increasing functions from ω into ω) are all in
bijection. Let [ω1]ω1 denote the collection of increasing functions from ω1 to ω1. [ω1]ω1 is in bijection with
P(ω1). Under AD, the cardinal structure below |R| = |P(ω)| = |[ω]ω| is fully understood. One motivation
for this article was to explore the definable cardinals around |P(ω1)| = |[ω1]ω1 | under AD. A continuity
phenomenon for functions of the form Φ : [ω1]ω1 → ω1 will be a useful tool for studying the cardinals below
P(ω1). The continuity phenomenon will be shown to be a consequence of a choice principle for club subsets
of ω1 which is fundamentally useful for studying definable combinatorics on |[ω1]ω1 | = |P(ω1)| under AD.

The continuity phenomenon in a general sense asserts that a local property of the output of a function can
be determined by a local behavior of the input. Philosophically, this is motivated by a question of whether
it is possible for one to truly use all of a function f ∈ [ω1]ω1 in order to assign to f a countable ordinal.

As motivation, consider the classical case of a function Φ : R→ R. As customary in descriptive set theory,
R denotes ωω which is the collection of functions from ω into ω. A priori, Φ may need all of f ∈ R even to
determine the first bit Φ(f)(0) of Φ(f). That is, if g differs from f at any place, Φ(f)(0) could potentially
be different from Φ(g)(0). However, if Φ is continuous, then there is a j ∈ ω so that if f � j = g � j, then
Φ(f)(0) = Φ(g)(0). Thus one can determine the value of Φ(f)(0) forever by freezing an appropriate local
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behavior of the input f . Certainly not all functions Φ : R → R are continuous. However, under AD, every
function is continuous almost everywhere in the sense that there is a comeager set C ⊆ R so that Φ � C is a
continuous function.

Now consider a function Φ : [ω1]ω1 → ω1. First, one needs an appropriate notion of “almost-everywhere”.
Let µ be the collection of subsets of ω1 which contain a club subset of ω1. Solovay showed that µ is a normal
countably complete measure on ω1 under AD. It has the distinction of being the unique normal measure
on ω1. Let µω1 be the filter on [ω1]ω1

∗ defined by X ∈ µω1 if and only if there is a club C ⊆ ω1 so that
[C]ω1
∗ ⊆ X. (If A ⊆ ω1, [A]ω1

∗ is the collection of increasing functions from ω1 into A which are of the correct
type. See Definition 2.1.) Using the (correct type) strong partition property ω1 →∗ (ω1)ω1

2 of Martin, one
can show that µω1

is a countably complete measure on [ω1]ω1
∗ . Using µω1

as the notion of almost-everywhere
is both natural and robust since it allows the strong partition property as a powerful tool in analyzing the
continuity phenomenon. (The use of correct type is needed to obtain club homogeneous sets for partitions.
One can show [ω1]ω1 and P(ω1) are in bijection with [ω1]ω1

∗ . For this reason, this article will prefer [ω1]ω1
∗

over P(ω1).)
So the question becomes: For every Φ : [ω1]ω1

∗ → ω1, is Φ continuous µω1
-almost everywhere? Precisely, is

there a club C ⊆ ω1 so that for all f ∈ [C]ω1
∗ , there is an α < ω1 so that for all g ∈ [C]ω1

∗ with f � α = g � α,
Φ(f) = Φ(g)?

There is a great deal of empirical evidence that the continuity property holds. Any function Φ : [ω1]ω1 →
ω1 which is of bounded dependence µω1

-almost everywhere is continuous µω1
-almost everywhere. (This

means that there is an ε < ω1 and a function Ψ : [ω1]ε∗ → ω1 so that for µω1
almost all f , Φ(f) = Ψ(f � ε).)

The function Φ : [ω1]ω1 → ω1 defined by Φ(f) = supα<f(0) f(α) does not have bounded dependence, but it
is continuous.

One can even attempt to use definability notions to construct a function that ostensibly seems to use the

entire sequence to define an output: For instance, let Φ(f) = ω
L[f ]
1 . This function is discussed in Example

4.2 where it is shown that µω1 -almost everywhere this function is constant. Thus for µω1 -almost all f , Φ
actually uses no information about f to determine the output Φ(f).

This article will show that the continuity phenomenon holds for every function Φ : [ω1]ω1 → ω1:

Theorem 4.5. Assume ZF + AD. Every function Φ : [ω1]ω1
∗ → ω1 is continuous µω1-almost everywhere.

The continuity property, in its various forms, has interesting mathematical consequences for definable
combinatorics under determinacy. The continuity property for function f : R → R is an important tool
for the study of the Mycielski and Jónsson property for quotient of E0 in [6] and [2]. Furthermore in [5],
a form of the continuity property is established for functions Φ : [ω1]ε∗ → ω1 where ε < ω1 and for func-
tions Φ : [ω2]ε∗ → ω2 where ε < ω2 in order to give a purely descriptive set theoretic proof under AD that
|[ω1]ω| < |[ω1]<ω1 | and |[ω2]ω| < |[ω2]<ω1 | < |[ω2]ω1 | < |[ω2]<ω2 |.

Using the continuity property at ω1, one can give a purely descriptive set theoretic proof of the following
cardinality computation:

Theorem 4.7. Assume ZF + AD. |[ω1]<ω1 | < |[ω1]ω1 |.

Zapletal also asked the first author the following basic combinatorial question: Assume AD. If one
partitions [ω1]ω1 (or equivalently P(ω1)) into ω1 many pieces, 〈Xα : α < ω1〉, so that Xα ⊆ [ω1]ω1 and⋃
α<ω1

Xα = [ω1]ω1 , then must there be a piece Xα so that Xα ≈ [ω1]ω1 , meaning Xα is in bijection with
[ω1]ω1? A positive answer follows from the continuity property.

Theorem 4.6. Assume ZF + AD. Suppose 〈Xα : α < ω1〉 is a sequence of subsets of [ω1]ω1 so that⋃
α<ω1

Xα = [ω1]ω1 . Then there is an α < ω1 so that Xα ≈ [ω1]ω1 .

A natural question extending Theorem 4.5 is to ask whether every function Φ : [ω1]ω1
∗ → ω1ω1 is continu-

ous µω1 -almost everywhere. (Here ω1ω1 refers to the set of all functions f : ω1 → ω1.) Given such a function
Φ, one can define Φβ : [ω1]ω1

∗ → ω1 by Φβ(f) = Φ(f)(β). By applying Theorem 4.5 to Φβ , there is a club C
so that Φβ � [C]ω1

∗ is continuous. Although it is possible to show there is a sequence 〈Cβ : β < ω1〉 so that
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for all β < ω1, Φβ � [Cβ ]ω1
∗ is continuous (see [3] Fact 4.8), it is not clear how to use this sequence to obtain

one single club C which witnesses that the original function Φ : [ω1]ω1 → ω1ω1 is continuous on [C]ω1
∗ since

an intersection of ω1-many club subsets of ω1 may not be a club. Using ideas similar to the proof of The-
orem 4.5 but with more elaborate partitions, the following almost everywhere continuity result can be shown.

Theorem 5.3 (With Trang) Assume ZF + AD. Every function Φ : [ω1]ω1 → ω1ω1 is continuous µω1
-

almost everywhere.

The strong partition property for ω1 is crucial in the arguments for establishing the continuity prop-
erty for functions Φ : [ω1]ω1 → ω1. The second uncountable cardinal ω2 fails to have the strong partition
property but by a result of Martin and Paris, it does have the weak partition property, that is, ω2 → (ω2)ε2
for each ε < ω2. Using an explicit failure of the strong partition property for ω2, Section 6 shows that there
is a function Φ : [ω2]ω2 → 2 with no club C ⊆ ω2 such that Φ � [C]ω2

∗ is continuous.
The main challenge in establishing Theorem 4.5 is to show that a certain natural partition P : [ω1]ω1

∗ → 2
has a club homogeneous set for the desired side of the partition. As described in the proof of Theorem 4.5,
one needs to make choices of club subsets of ω1 which is dependent on previous choices of clubs. The axiom
of determinacy is incompatible with many consequences of the axiom of choice. A selection principle for
subsets of ω1 is generally not possible in AD. To perform the construction mentioned above, one would need
to prove a club uniformization result.

Let clubω1
denote the club subsets of ω1. In the applications of this paper, one has a relation R ⊆

[ω1]<ω1 × clubω1
which is ⊆-downward closed in the sense that for all C ⊆ D which are club subsets of ω1

and for all σ, if R(σ,D) holds, then R(σ,C) holds. [ω1]<ω1 -club uniformization is the statement that there
is a function Λ : dom(R)→ clubω1 so that for all σ ∈ [ω1]<ω1 , R(σ,Λ(σ)).

For any R ⊆ [ω1]<ω1 × clubω1
as above, there is a coded version R̃ ⊆ R×R×R of R. Theorem 3.7 shows

that if R̃ has a uniformization, then one can use the simple ω1-version of the Kechris-Woodin generic coding
function (see [9]) and a category argument to establish that R has an (everywhere) uniformization. Thus
under ADR, (everywhere) [ω1]<ω1 -club uniformization holds:

Theorem 3.7. Assuming ZF + ADR, [ω1]<ω1-club uniformization holds.

Under ADR, every relation S ⊆ R × R can be uniformized. AD cannot prove this full uniformization
since L(R) |= AD has a relation on R × R that cannot be uniformized. However, there is an almost every-
where uniformization result that does hold in AD: for any relation S ⊆ R × R, there is a comeager C ⊆ R
and a function F : C → R which uniformizes S on C.

Similarly, AD cannot prove (everywhere) [ω1]<ω1 -club uniformization since Fact 3.9 shows that it fails in
L(R) |= AD. One says that almost-everywhere [ω1]<ω1 -club uniformization holds if and only if for every re-
lation R ⊆ [ω1]<ω1

∗ ×clubω1
which is ⊆-downward closed, there is a club C ⊆ ω1 so that R∩ ([C]<ω1

∗ ×clubω1
)

has a uniformization. By combining the generic coding function, category arguments, the Moschovakis
coding lemma, and a fundamental idea of Martin (used in the study of the partition properties on ω1)
where the player with the winning strategy determines the property of the output but the losing player de-
termines the identity of the output, one can prove the following which is one of the main results of this paper:

Theorem 3.10. Assume ZF + AD. Almost everywhere [ω1]<ω1-club uniformization holds.

Neeman has shown similar uniformization results (such as [10] Theorem 3.9) in L(R) using inner model
theory techniques.

Almost everywhere [ω1]<ω1 -club uniformization is used to verify that the partition used in the proof of
the continuity property (Theorem 4.5) has a homogeneous club which is homogeneous for the desired side.
Moreover, Theorem 3.10 is a powerful general technique for constructing functions h ∈ [ω1]ω1

∗ which verify
that partitions of a certain form are homogeneous for the desired side. The following template illustrates a
very typical and simple use of Theorem 3.10:

Suppose P : [ω1]ω1
∗ → 2 is a partition defined by P (f) = 0 if and only if f does not have any “errors”.

An error is a property of f so that if f has an error, then it must be witnessed at a γ < ω1. An example
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of an error property could be that L[f ] |= ¬GCH, i.e. the generalized continuum hypothesis fails in L[f ].
For this example, if f has an error, then by a condensation argument, there is a γ < ω1 which witnesses
this error in the sense that L[f ] |= 2γ > γ+. By the partition relations, there is a club D0 ⊆ ω1 which is
homogeneous for P . Suppose one could show that for all σ ∈ [D0]<ω1 , there is a club C ⊆ ω1 so that for
all g ∈ [C]ω1

∗ such that sup(σ) < g(0), σ ĝ does not have an error at any γ such that sup(σ) ≤ γ < g(0).
Define a relation R ⊂ [D0]<ω1 × clubω1 by R(σ,C) if and only if C has the above property with respect to
σ. R is a relation which is ⊆-downward closed in the clubω1 -coordinate. By Theorem 3.10, let D1 ⊆ D0 and
Λ : dom(R) ∩ [D1]<ω1

∗ → clubω1
be such that for all σ ∈ dom(R) ∩ [D1]<ω1

∗ , R(σ,Λ(σ)). Now construct a
function h ∈ [D1]ω1

∗ by recursion as follows: Let F0 = D1 ∩ Λ(∅). Let h(0) the ωth element of F0. Suppose
for some α, h � α and Fβ , for all β < α, have been defined. Let Fα = Λ(h � α) ∩

⋂
β<α Fβ and let h(α)

be the ωth element of Fα larger than sup(h � α). This completes the construction. Note that h belongs to
[D1]ω1

∗ . For each α < ω1, let drop(h, α) ∈ [D1]ω1
∗ be defined by drop(h, α)(γ) = h(α + γ). For all α < ω1,

by construction, one has drop(h, α) ∈ [Fα]ω1
∗ ⊆ [Λ(h � α)]ω1

∗ and therefore h does not have an error at any γ
with sup(h � α) ≤ γ < drop(h, α)(0) = h(α). Thus h has no errors at any γ < ω1. Because errors must be
witnessed at some γ < ω1, h has no error. P (h) = 0 and therefore D0 is homogeneous for P taking value 0.

The almost everywhere [ω1]<ω1 -club uniformization of Theorem 3.10 is particularly important for studying

the stable theory of the partition measure µω1 : Each f ∈ [ω1]ω1 , L[f ] is naturally an L = {∈̇, Ė} structure.
Since µω1 is an ultrafilter, for any L -sentence, either (1) for µω1 -almost all f , L[f ] |= ϕ or (2) for µω1 -almost
all f , L[f ] |= ¬ϕ. The ω1-stable theory is Tω1 which is defined to be the collection of L -sentences ϕ so that
for µω1

-almost all f , L[f ] |= ϕ. One can ask which natural statements of set theory, such as GCH, belong to
Tω1 . For instance, in forthcoming work of Chan, Jackson, and Trang, one can show that for any σ ∈ [ω1]<ω1 ,
there is a club C ⊆ ω1 so that for all g ∈ [C]ω1

∗ , for all κ with sup(σ) ≤ κ < g(0), L[σ ĝ] |= 2κ = κ+. Thus
using the outline above, one has that GCH ∈ Tω1 . Using Theorem 3.10, one can also show that for µω1 -almost
all f , L[f ] |= (∀α < ω1)(f(α) is a strongly inaccessible cardinal) and L[f ] satisfies Σ1

1-determinacy. One can
also show that for µω1

-almost all f , L[f ] has a canonical inner model L[ν̄f ] where ν̄f is an ω1-length sequence
of normal measure with discontinuous increasing sequence of critical points κ̄ so that f is generic over L[ν̄f ]
for a generalized Prikry forcing P̄ν̄f , considered by Fuchs [7]. This can be used to show that for µω1

-almost

all f , ∆1
2-determinacy fails in L[f ]. Welch [11] has investigated similar questions in a different setting.

2. Basics

Throughout the entire paper, assume ZF+AD (but not necessarily DCR) unless otherwise explicitly stated.
Except for Theorem 2.16 and Theorem 2.17 which were proved or observed by the authors for this paper,

the results of this section are well known and due to Martin and Solovay. This section will introduce the
necessary notations and results. Although the proofs use a simple and fundamentally important idea of
Martin that appears in his arguments for the partition properties, the exposition is quite tedious. A careful
presentation is given in [3]. Specifically, see [3] Section 2, 3, and 4 for more details.

Definition 2.1. Let [ω1]ω1 denote the collection of strictly increasing functions f : ω1 → ω1. A function
f ∈ [ω1]ω1 has uniform cofinality ω if and only if there is a function F : ω1 × ω → ω1 so that for all α < ω1,
for all n ∈ ω, F (α, n) < F (α, n + 1) and f(α) = sup{F (α, n) : n ∈ ω}. A function f ∈ [ω1]ω1 has correct
type if and only if f has uniform cofinality ω and for all α < ω1, f(α) > sup{f(β) : β < α}, that is, f is
discontinuous everywhere. Let [ω1]ω1

∗ denote the subset of [ω1]ω1 consisting of the functions of correct type.

Fact 2.2. [ω1]ω1 ≈ [ω1]ω1
∗ .

Proof. Let A = {ω ·(α+1) : α ∈ ω1}. Suppose f ∈ [A]ω1 . Let F ′(α) be the unique β so that f(α) = ω ·(β+1).
Let F : ω1×ω → ω1 be defined by F (α, n) = ω ·F ′(α)+n. Note that for all α, f(α) = sup{F (α, n) : n ∈ ω}.
Thus f has uniformly cofinality ω. For any α, for any β < α, f(β) = ω · (F ′(β) + 1) ≤ ω · F ′(α) <
ω · (F ′(α) + 1) = f(α). This shows that every f ∈ [A]ω1 is of the correct type. Clearly, [ω1]ω1 ≈ [A]ω1 . Thus
one has an injection of [ω1]ω1 into [ω1]ω1

∗ . The inclusion map in an injection of [ω1]ω1
∗ into [ω1]ω1 . �

Definition 2.3. Let ε ≤ ω1. Write ω1 →∗ (ω1)ε2 to indicate that for all P : [ω1]ε∗ → 2, there is an i ∈ 2 and
a club C ⊆ ω1 so that for all f ∈ [ω1]ε∗, P (f) = i. In this case, one says that C is homogeneous for P taking
value i.
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Fact 2.4. (Martin; [8] Theorem 12.2, [3] Corollary 4.10 and 4.27) For all ε ≤ ω1, ω1 →∗ (ω1)ε2.

Definition 2.5. For ε ≤ ω1, let µε denote the collection of X ⊆ [ω1]ε∗ so that there exists a club C ⊆ ω1

so that [C]ε∗ ⊆ X. As a consequence of ω1 →∗ (ω1)ω1
2 , µε is a countably complete ultrafilter on [ω1]ε∗ for all

ε ≤ ω1.

Definition 2.6. Let π : ω × ω → ω be a bijection. If R ⊆ ω × ω, then x ∈ ωω codes R if and only if
(a, b) ∈ R⇔ x(π(a, b)) = 0. This gives a coding of binary relations on ω by elements of R. For each x ∈ R,
field(x) is the set of n so that there exists some m such that x(π(m,n)) = 0 or x(π(n,m)) = 0.

Let WO denote the set of reals coding wellorderings on subsets of ω. If w ∈ WO, then <w refers to the
wellordering on field(w) coded by w. For each w ∈ WO and α < ot(w), let nwα be the element of field(w)
which has rank α according to <w. For each α < ω1, let WOα = {w ∈WO : ot(w) = α}. Similarly, one can
define WO<α, WO≤α, WO>α, and WO≤α. Note that WO is Π1

1. For each α < ω1, WO>α and WO≥α are
Π1

1; and WOα, WO<α, and WO≤α are ∆1
1.

Fact 2.7. ([3] Fact 4.3) Suppose τ is a Player 2 strategy with the property that for all x ∈WO, τ(x) ∈WO
and ot(τ(x)) > ot(x). Let Cτ = {η < ω1 : (∀w)(w ∈WO<η ⇒ τ(w) ∈WO<η)}. Then Cτ is a club.

Definition 2.8. Let clubcodeω1
denote the collection τ ∈ R so that τ is a Player 2 strategy with the property

that for all w ∈WO, τ(w) ∈WO and ot(τ(w)) > ot(w). Note that clubcodeω1
is a Π1

2 set.

Fact 2.9. (Solovay, [3] Fact 4.6) Suppose C is a club. There is a τ ∈ clubcodeω1
so that Cτ ⊆ C.

Fact 2.10. ([3] Fact 4.7) Suppose A ⊆ clubcodeω1 is Σ1
1. Then one can find a club C uniformly in A (as a

set; e.g. not depending on any Σ1
1 representation of A) so that for all τ ∈ A, C ⊆ Cτ .

Definition 2.11. A function Φ : [ω1]ω1
∗ → ω1 is continuous if and only if for all f ∈ [ω1]ω1

∗ , there is some
α < ω1 so that for all g ∈ [ω1]ω1

∗ , if g � α = f � α, then Φ(g) = Φ(f).
If one gives [ω1]ω1

∗ the topology generated by Ns = {f ∈ [ω1]ω1
∗ : s ⊂ f} for each s ∈ [ω1]<ω1

∗ , then Φ is
continuous in the above sense if and only if it is continuous in the topological sense with the range ω1 given
the discrete topology.

Φ : [ω1]ω1
∗ → ω1 is continuous almost everywhere if and only if there is a club C ⊆ ω1 so that Φ is

continuous on [C]ω1
∗ ; that is, for all f ∈ [C]ω1

∗ , there exists an α so that for all g ∈ [C]ω1
∗ with g � α = f � α,

Φ(g) = Φ(f).

Definition 2.12. Let BS denote a coding of bounded sequences in ω1 by reals defined as follows. BS is the
the collection of (x, y) ∈ R2 so that
(i) x ∈WO.
(ii) For all n ∈ field(x), yn ∈WO.
(iii) For all m,n ∈ field(x), m <x n if and only if ot(ym) < ot(yn).

Note that BS is Π1
1. For each (x, y) ∈ BS, let σ(x,y) : ot(x) → ω1 be defined by σ(x,y)(α) = ot(ynxα).

Observe that for every σ ∈ [ω1]<ω1 , there is some (x, y) ∈ BS so that σ(x,y) = σ.

Definition 2.13. Let κ be a regular cardinal and λ ≤ κ be an ordinal. A good coding system for λκ consists
of Γ, decode, and GCβ,γ for each β < λ and γ < κ with the following properties:

(1) Γ is a (boldface) pointclass closed under ∃R. Let Γ̌ denote the dual pointclass. Let ∆ = Γ ∩ Γ̌.
(2) decode : R→P(λ× κ). For all f ∈ λκ, there is some x ∈ R so that decode(x) = f .
(3) For all β < λ and γ < κ, GCβ,γ ⊆ R, GCβ,γ ∈ ∆, and GCβ,γ has the property that x ∈ GCβ,γ if and

only if

decode(x)(β, γ) ∧ (∀γ′ < κ)(decode(x)(β, γ′)⇒ γ = γ′).

For each β < λ, let GCβ =
⋃
γ<κ GCβ,γ .

(4) (Boundedness property) Suppose A ∈ ∃R∆ and A ⊆ GCβ , then there exists some δ < κ so that
A ⊆

⋃
γ<δ GCβ,γ .

(5) ∆ is closed under less than κ wellordered unions.

Let GC =
⋂
β<λ GCβ . Note that if x ∈ GC, then decode(x) is the graph of a function in λκ. If x ∈ GC,

then one will use function notation such as decode(x)(β) = γ to indicate (β, γ) ∈ decode(x).
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Definition 2.14. Suppose κ is a regular cardinal and λ is such that ω · λ ≤ κ. Suppose f ∈ ω·λκ. Let
block : ω·λκ → λκ be defined by block(f)(α) = sup{f(ω · α + k) : k ∈ ω}. Thus block(f) is the function
returning the supremum of each ω-block.

Suppose f, g ∈ ω·λκ. Let joint : ω·λκ× ω·λκ→ λκ be defined by

joint(f, g)(α) = sup{f(ω · α+ k), g(ω · α+ k) : k ∈ ω} = max{block(f)(α), block(g)(α)}.

Theorem 2.15. (Martin, [3] Theorem 3.7) Suppose λ, κ are ordinals such that ω · λ ≤ κ. Suppose there is
a good coding system (Γ, decode,GCβ,γ : β < ω · λ, γ < κ) for ω·λκ. Then κ→∗ (κ)λ2 holds.

Theorem 2.16. ([3] Theorem 3.8) (Almost everywhere uniformization on good codes) Let κ be a regular
cardinal and λ ≤ κ. Let (Γ, decode,GCβ,γ : β < ω · λ, γ < κ) be a good coding system for ω·λκ. Let
R ⊆ [κ]λ∗ × R be a relation.

Then there is a club C ⊆ κ and a Lipschitz continuous function F : R → R so that for all x ∈ GC with
decode(x) ∈ [C]ω·λ and block(decode(x)) ∈ [C]λ∗ ∩ dom(R), R(block(decode(x)), F (x)).

One application of Theorem 2.16 is that under certain conditions large fragments of functions can be
absorbed into inner models containing all reals.

Theorem 2.17. ([3] Theorem 3.9) Let κ be a regular cardinal and λ ≤ κ. Suppose (Γ, decode,GCβ,γ : β <
λ, γ < κ) is a good coding system for λκ. Let M |= AD be an inner model containing all the reals and within
M , (Γ, decode,GCβ,γ : β < λ, γ < κ) is a good coding system.

Then for any Φ : [κ]λ → κ, there is a club D, necessarily in M by the coding lemma, so that Φ � [D]λ∗ ∈M .

Definition 2.18. Let κ be a regular cardinal and λ ≤ κ. κ is λ-reasonable if and only if there is a good
coding system for λκ.

Theorem 2.19. (Martin, [3] Fact 4.9, Theorem 4.18, and Theorem 4.26) For any λ ≤ ω1, ω1 is λ-reasonable.

Remark 2.20. One can check that for λ < ω1, the natural good coding system for ω·λω1 (given by BS as in
Definition 2.12) has the property that for any f ∈ [ω1]λ∗ , the collection of x ∈ GC with block(decode(x)) = f
is ∆1

1. See [3] Fact 4.12.

3. Club Uniformization

Definition 3.1. Let clubω1
denote the collection of club subsets of ω1. Let R ⊆ [ω1]<ω1

∗ × clubω1
. If

σ ∈ [ω1]<ω1
∗ , then let Rσ = {C ∈ clubω1

: R(σ,C)}. Let dom(R) = {σ ∈ [ω1]<ω1
∗ : Rσ 6= ∅}. A function

F : dom(R) → clubω1
is a uniformization for R if and only if for all σ ∈ dom(R), R(σ, F (σ)). R is ⊆-

downward closed if and only if for all σ ∈ [ω1]<ω1
∗ and for all C ⊆ D with C,D ∈ clubω1 , R(σ,D) implies

R(σ,C).
[ω1]<ω1

∗ -club uniformization is the statement that every R ⊆ [ω1]<ω1
∗ × clubω1

which is ⊆-downward closed
has a uniformization. Almost everywhere [ω1]<ω1

∗ -club uniformization is the statement that for every R ⊆
[ω1]<ω1

∗ ×clubω1
which is ⊆-downward closed, there is a club C ⊆ ω1 so that the relation R∩([C]<ω1

∗ ×clubω1
)

has a uniformization.

The primary purpose of this section is to establish the almost everywhere [ω1]<ω1
∗ -club uniformization,

which will be applied in the next section to establish continuity results. As a warmup, the following is a
simple form of club uniformization.

Definition 3.2. Let α < ω1. Let R ⊆ [ω1]α∗ × clubω1
be a ⊆-downward closed relation. A uniformization

for R is a function F : dom(R)→ clubω1
so that for all σ ∈ dom(R), R(σ, F (σ)). [ω1]α∗ -club uniformization

is the statement that every R ⊆ [ω1]α∗ × clubω1
which is ⊆-downward closed has a uniformization. Almost

everywhere [ω1]α∗ -club uniformization is the statement that for every R ⊆ [ω1]α∗×clubω1 which is ⊆-downward
closed, there is a club C ⊆ ω1 so that R ∩ ([C]α∗ × clubω1) has a uniformization.

Theorem 3.3. Let α < ω1. Almost everywhere [ω1]α∗ -club uniformization holds.

Proof. Let (Σ1
1, decode,GCβ,γ : β < α, γ < ω1) be the natural good coding system for ω·αω1 which satisfies

the property mentioned in Remark 2.20 or [3] Fact 4.12. Fix R ⊆ [ω1]α∗ × clubω1
which is ⊆-downward

closed. Let S ⊆ [ω1]α∗ × clubcodeω1
be defined by S(f, z) if and only if R(f, Cz). By Theorem 2.16, there is
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a Lipschitz continuous function F : R→ R and a club C so that for all x ∈ GC with decode(x) ∈ [C]ω·α and
block(decode(x)) ∈ dom(S), S(block(decode(x)), F (x)). Let D be the set of limit points of C. Remark 2.20
implies that for all f ∈ dom(R) ∩ [D]α∗ , the set Kf = {x ∈ R : decode(x) ∈ [C]ω·α∗ ∧ block(decode(x)) = f}
is ∆1

1. Thus F [Kf ] is a Σ1
1 subset of clubcodeω1

. By Fact 2.10, there is a club Cf obtained uniformly
from F [Kf ] (and hence obtained uniformly from f) so that Cf ⊆ Cz for all z ∈ F [Kf ]. Since for any
z ∈ F [Kf ], R(f, Cz) and R is ⊆-downward closed, R(f, Cf ). Thus the function mapping f to Cf defined by
the procedure above is a uniformization for R on dom(R) ∩ [D]α∗ . �

Note that Theorem 3.3 uses only a boundedness principle. It does not use uniformization or any other
consequences of scales. This is in contrast to the argument of Theorem 3.10 for the almost everywhere
[ω1]<ω1

∗ -club uniformization which seems to require the relevant relations to be Suslin or uniformizable.

Definition 3.4. Let α < ω1, let s ∈ <ωα. Let Nα
s = {f ∈ ωα : s ⊂ f}. ωα is given the topology generated

by Nα
s , and ωα is homeomorphic to ωω. The concepts of meagerness, comeagerness, and nonmeagerness can

be defined as usual.
Under AD, a wellordered intersection of comeager subsets of ωα is a comeager subset of ωα. Note that

the set surjα = {f ∈ ωα : f : ω → α is a surjection} is a comeager subset of ωα.

The following is the simple generic coding function for ω1.

Fact 3.5. There is a function G : ωω1 →WO so that for any α < ω1, if f ∈ surjα, then ot(G(f)) = α.

Proof. For any f ∈ ωω1, let Af = {n ∈ ω : (∀m)(f(n) = f(m)⇒ n ≤ m)}. Let G(f) code a binary relation
with domain Af by letting m <G(f) n if and only if f(m) < f(n). It is clear that G(f) ∈ WO and if
f ∈ surjα, then ot(G(f)) = α. �

Fact 3.6. There is a function H : [ω1]<ω1 ×WO → BS with the property that for all σ ∈ [ω1]<ω1 and for
all w ∈WO so that ot(w) = sup(σ) + 2, H(σ,w) codes σ, that is, σH(σ,w) = σ (in the notation of Definition
2.12).

Proof. Fix σ ∈ [ω1]<ω1 . If w ∈WO and ot(w) 6= sup(σ) + 2, then let H(σ,w) be some fixed element of BS as
this case is insignificant. Now assume ot(w) = sup(σ)+2. Observe that length(σ) < sup(σ)+2. Canonically
from w and σ, one will produce (x, y) ∈ BS as follows: Let x ∈WO (which is produced canonically from w
and σ) code a relation on ω whose field is {n ∈ field(w) : n <w nwlength(σ)} (here the notation comes from

Definition 2.6) and for m,n ∈ field(x), m <x n if and only if m <w n. Then ot(x) = length(σ).
Similarly, produce y canonically from w and σ as follows: Fix a k ∈ ω. If k /∈ field(x), then let yk = 0̄,

the constant 0 sequence. If k ∈ field(x), then let α < length(σ) so that k = nwα . Let yk be the unique
real coding a binary relation such that field(yk) = {n ∈ field(w) : n <w nwσ(α)} and for all m,n ∈ field(yk),

m <yk n ⇔ m <w n. Then yk ∈ WO and ot(yk) = σ(α). Let y ∈ R be such that for all k ∈ ω, the kth

section of y is yk. Thus (x, y) ∈ BS and σ(x,y) = σ. Let H(σ,w) = (x, y). �

Theorem 3.7. Assume ZF and all sets of reals have the Baire property. Let R ⊆ [ω1]<ω1 × clubω1 be a

⊆-downward closed relation. Define R̃ ⊆ R× R× R (which is the coded version of R) by

R̃(x, y, z)⇔ (x, y) ∈ BS ∧ z ∈ clubcodeω1
∧R(σ(x,y), Cz).

Consider R̃ as a binary relation on BS× clubcodeω1
. Suppose there is a J : dom(R̃)→ clubcodeω1

which is

a uniformization for R̃. Then there is an F : dom(R)→ clubω1
which is a uniformization for R.

Thus ZF + ADR proves [ω1]<ω1-club uniformization.

Proof. Fix σ ∈ dom(R). The club F (σ) will be defined in the following:
Recall G is the simple generic coding function from Fact 3.5 and H is the function from Fact 3.6. Let

A = surjsup(σ)+2. As observed earlier, A is comeager as a subset of ω(sup(σ) + 2). Let O : A → BS be

defined by O(f) = J(H(σ,G(f))). Note that G(f) ∈ WOsup(σ)+2 for all f ∈ A. Therefore for all f ∈ A,

H(σ,G(f)) ∈ BS and codes σ. Since J is a uniformization for R̃, R̃(H(σ,G(f)), O(f)) holds for all f ∈ A.
The key observation is that for any f ∈ A, O(f) ∈ clubodeω1 and R(σ,CO(f)).

For any club C, let enumC : ω1 → C be the increasing enumeration of C. For each γ < ω1, let K(γ) be the
least δ < ω1 so that for comeagerly many f ∈ A (in the topological space ω(sup(σ) + 2)), enumCO(f)

(γ) < δ.
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Claim 1: K is a well-defined function.
To see this: Fix γ. For each ε < ω1, let Tε = {f ∈ A : enumCO(f)

(γ) = ε} and T≥ε = {f ∈ A :

enumCO(f)
(γ) ≥ ε}. For the sake of contradiction, suppose K(γ) is not defined. Then for all ε < ω1, T≥ε is

nonmeager. Since A = T≥0 =
⋃
ε≥0 Tε is comeager and wellordered unions of meager sets are meager (by the

Baire property for all sets of reals), there exists some ε < ω1 so that Tε is nonmeager. Let ε0 be the least ε
so that Tε is nonmeager. Suppose β < ω1 and εα has been defined for all α < β. Let ζ = sup{εα : α < β}.
Since by assumption T≥ζ =

⋃
ε≥ζ Tε is nonmeager and wellordered unions of meager sets are meager, there is

an ε ≥ ζ so that Tε is nonmeager. Let εβ be the least ε ≥ ζ so that Tε is nonmeager. This defines a sequence
〈εβ : β < ω1〉 so that 〈Tεβ : β < ω1〉 is an uncountable collection of disjoint nonmeager sets. Since all sets of
reals have the Baire property, this violates the countable chain condition of the topology on ω(sup(σ) + 2).
This completes the proof of Claim 1.

Let D = {η < ω1 : (∀ν < η)(K(ν) < η)}. Note that since for any club C ⊆ ω1, enumC(γ) ≥ γ, one can
conclude that K(γ) > γ. Also if γ ≤ γ′, K(γ) ≤ K(γ′). Let ε < ω1. Let α0 = ε. Let αn+1 = K(αn).
Hence αn+1 > αn. Let α = sup{αn : n ∈ ω}. Note that for all ν < α, ν < αn for some n. Then one has
K(ν) ≤ K(αn) = αn+1 < α. Thus α ∈ D and ε < α. This shows that D is unbounded. D is clearly closed.

Claim 2: R(σ,D).
To see this: Let η ∈ D. For each β < η, let F ηβ = {f ∈ A : enumCO(f)

(β) < η}. Since η ∈ D, for all β < η,

K(β) < η. So the set of f ∈ A so that enumCO(f)
(β) < K(β) < η is comeager, i.e. F ηβ is comeager. Then

Y η =
⋂
β<η F

η
β is a comeager set. For all f ∈ Y η, for all β < η, β ≤ enumCO(f)

(β) < η. Since CO(f) is a club,
η ∈ CO(f). It has been shown that if η ∈ D, then Y η has the property that for all f ∈ Y η, η ∈ CO(f). Let
Y =

⋂
η∈D Y

η. Since wellordered intersection of comeager sets are comeager, Y is comeager. Pick an f ∈ Y .

For any η ∈ D, f ∈ Y η. So η ∈ CO(f). Thus D ⊆ CO(f). Since R(σ,CO(f)) holds and R is ⊆-downward
closed, R(σ,D). This completes the proof of Claim 2.

Note that D was produced uniformly from σ by the procedure above. So finally, let F (σ) = D. This
defines F : dom(R)→ clubω1

. F is a uniformization for R.
Now assume ADR. This implies AD and hence all set of reals has the Baire property. Moreover, the

uniformization J for R̃ exists since ADR proves uniformization for all relations on R×R. Club uniformization
follows from the first part of the theorem. �

For α < ω1, let BSα be the subset of BS coding elements of [ω1]α.

Corollary 3.8. Assume ZF and all sets of reals have the Baire property. Let α < ω1. Let R ⊆ [ω1]α∗ ×clubω1

be a ⊆-closed relation. Define R̃ ⊆ R× R× R by

R̃(x, y, z)⇔ (x, y) ∈ BSα ∧ z ∈ clubcodeω1 ∧R(σ(x,y), Cz).

Consider R̃ as a relation on BSα × clubcodeω1
. Suppose there is a J : dom(R̃) → clubcodeω1

which is a

uniformization for R̃. Then there is an F : dom(R)→ clubω1
which is a uniformization for R.

Thus ADR proves [ω1]α-club uniformization, for all α < ω1.

Fact 3.9. Assume ZF + AD. Then L(R) |= AD (and even AD+) and L(R) does not satisfy [ω1]α-club
uniformization (when ω ≤ α < ω1) or [ω1]<ω1-club uniformization.

Proof. Work in L(R). Consider the relation S ⊆ R × clubω1
defined by S(x,C) if and only if for all club

D ⊆ C, D /∈ HODx.
First, one will show that dom(S) = R. Fix an x ∈ R. Since ω2 is measurable in V , every wellordered

sequence of elements of P(ω1) has length less than ω2. Thus (P(ω1))HODx has cardinality less than ω2

in L(R). Let 〈Cα : α < ω1〉 be an enumeration of all club subsets of ω1 which belong to HODx. (This
enumeration does not belong to HODx.) One will construct a club E ⊆ ω1 as follows. Let E0 = ∅. If γ is a
limit ordinal and Eν has been defined for all ν < γ, then let Eγ be the closure of

⋃
ν<γ Eν . Now suppose γ

is an ordinal so that 〈αν : ν < γ〉 and the closed set Eγ has been defined with αν /∈ Eγ for any ν < γ. Let
αγ be least element of Cγ greater than supEγ . Let Eγ+1 = Eγ ∪ {αγ + 1}. Note that αγ /∈ Eγ+1.

In the end, one has constructed a sequence 〈αγ : γ < ω1〉 and a sequence 〈Eγ : γ < ω1〉 so that for all
γ < ω1, αγ ∈ Cγ and for all ν < γ < ω1, αν /∈ Eγ . Let E =

⋃
γ<ω1

Eγ . One can check that E is club and

αγ /∈ E for any γ < ω1. Now suppose there was a club D such that D ⊆ E and D ∈ HODx. Then there
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is some γ < ω1 so that D = Cγ . But αγ /∈ D since αγ /∈ E. But αγ ∈ Cγ . Hence D 6= Cγ which is a
contradiction. This shows that E ⊆ ω1 is a club subset with the property that E has no club subsets that
belong to HODx. That is, S(x,E). Since x ∈ R was arbitrary, it has been shown that dom(S) = R.

Observe that S is ⊆-downward closed in the sense that for all x ∈ R, S(x,C) and D ⊆ C, then S(x,D).
Suppose there is a function F : R → clubω1

so that F uniformizes S. In L(R), F is ODz for some
z ∈ R. Since F is a uniformization, S(z, F (z)). Therefore F (z) is a club subset of ω1 which is ODz and thus
F (z) ∈ HODz. This contradicts the definition of S.

Considering R as [ω]ω, the set of increasing sequences in ω, define R ⊆ [ω1]ω × clubω1
by

R(x,C)⇔ (x ∈ R ∧ S(x,C)) ∨ (x /∈ [ω]ω).

R can not be uniformized or else S could be uniformized. This shows [ω1]ω-club uniformization fails. Similar
examples give the failure of [ω1]α-club uniformization for all ω ≤ α < ω1 and a failure of [ω1]<ω1 -club
uniformization. �

Thus almost everywhere [ω1]<ω1 -club uniformization is the best one can expect in AD alone. This is
verified by the following result.

Theorem 3.10. Almost everywhere [ω1]<ω1-club uniformization holds: Let R ⊆ [ω1]<ω1
∗ × clubω1 which is

⊆-downward closed. Then there is a club D ⊆ ω1 so that R ∩ ([D]<ω1
∗ × clubω1

) has a uniformization.

Proof. Suppose D ⊆ ω1 is a club. Let BSD denote the subset of BS which code elements of [D]<ω1
∗ . If one

can find a club D ⊂ ω1 so that R̃ ∩ (BSD × clubcodeω1
) has a uniformization, then Theorem 3.7 would give

the conclusion of this theorem.
Fix a Σ1

2 set U ⊆ R3 which is universal for Σ1
2 subsets of R2. Take any f ∈ [ω1]ω1 . Let Tf ⊆ WO ×

clubcodeω1 be defined by Tf (w, z) if and only if

f � ot(w) ∈ dom(R) ∧ z ∈ clubcodeω1
∧R(f � ot(w), Cz).

That is, Tf is a relation which attempts to collect reals coding clubs that are associated to all the initial seg-
ments of f according to R. By the coding lemma applied to the pointclass Σ1

2 and the usual prewellordering
on WO, there is some e so that
(1) Ue ⊆ Tf .
(2) For all w ∈WO, (Tf )w 6= ∅ if and only if Ue,w 6= ∅.

(Note that (Tf )w = {c ∈ R : Tf (w, c)}. Recall that U ⊆ R3 and Ua,b = {c ∈ R : U(a, b, c)}.) Say that
e ∈ R is an f -selector if and only if (1) and (2) holds for e and f .

Fix a good coding system (Σ1
1, decode,GCβ,γ : β < ω1, γ < ω1) for ω·ω1ω1. Consider the relation, S ⊆

[ω1]ω1
∗ ×R defined by S(f, e) if and only if e is an f -selector. By Theorem 2.16, let F be a Lipschitz function

and E ⊆ ω1 be a club such that for all x ∈ GC with decode(x) ∈ [E]ω·ω1 and block(decode(x)) ∈ dom(S),
S(block(decode(x)), F (x)). By Fact 2.9, let z∗ ∈ clubcodeω1

be such that Cz∗ ⊆ E. Let D be the limit points
of Cz∗ .

Now consider the relation K ⊆ BS× R by K((x, y), r) if and only if the conjunction of the two holds

(1) σ(x,y) ∈ [D]<ω1
∗ . (That is, (x, y) ∈ BSD.)

(2) r ∈ GC, decode(r) ∈ [Cz∗ ]
ω·ω1 , and σ(x,y) ⊆ block(decode(r)).

That is, K((x, y), r) holds if (x, y) is a code for a function of length less than ω1 of the correct type
through D (which is the set of limit points of Cz∗) and r is a code (according to the good coding system)
for a full ω1 = ω · ω1 length function with the property that σ(x,y) is an initial segment of block(decode(r)).

One can check that K is projective using z∗ as a parameter. Hence let G : R → R be a projective
uniformization for this relation. Thus if (x, y) ∈ BSD is such that σ(x,y) is a bounded function of the correct
type, then decode(G(x, y)) ∈ [Cz∗ ]

ω·ω1
∗ , and block(decode(G(x, y))) is an extension of σ(x,y) to a full sequence.

Define Ỹ ⊆ BSD × clubcodeω1 by

Ỹ ((x, y), v)⇔ (x, y) ∈ BSD ∧ v ∈ UF (G(x,y)),x

Note that Ỹ is projective since D is the limit points of Cz∗ , U is Σ1
2, F is a Lipschitz function, and G is a

projective function. Whenever (x, y) ∈ BSD and σ(x,y) codes a sequence of the correct type of length less than
ω1 through D, G(x, y) ∈ GC is a code for a full function passing through Cz∗ so that block(decode(G(x, y)))
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extends σ(x,y). Recall that x is the length of σ(x,y). Thus Tblock(decode(G(x,y))),x = R̃(x,y). By the prop-
erty of F , F (G(x, y)) is then a block(decode(G(x, y)))-selector. So for all such (x, y), UF (G(x,y)),x ⊆
Tblock(decode(G(x,y))),x = R̃(x,y) and UF (G(x,y)),x 6= ∅ if and only if R̃(x,y) = Tblock(decode(G(x,y))),x 6= ∅. Hence

Ỹ ⊆ R̃ ∩ (BSD × clubcodeω1
) and any uniformization for Ỹ is a uniformization for R̃ ∩ (BSD × clubcodeω1

).

However, Ỹ does have a uniformization since it is projective. Thus R̃ ∩ (BSD × clubcodeω1
) has a uni-

formization. By the remarks at the beginning of the proof, this suffices to complete the argument. �

Theorem 3.11. Assume ZF and all sets of reals have the Baire property. Let R ⊆ ω1 × [ω1]<ω1
∗ × clubω1 be

a ⊆-downward closed relation (on the clubω1-coordinate). Define R̃ ⊆ R× R× R× R by

R̃(w, x, y, z)⇔ w ∈WO ∧ (x, y) ∈ BS ∧ z ∈ clubcodeω1
∧R(ot(w), σ(x,y), Cz).

Consider R̃ as a relation on (WO × BS) × clubcodeω1
. Suppose there is a J : dom(R̃) → clubcodeω1

which

is a uniformization for R̃. Then there is an F : dom(R)→ clubω1
which is a uniformization for R.

Thus under ADR, such relations have a uniformization.
Let R ⊆ ω1 × [ω1]<ω1

∗ × clubω1
be a ⊆-downward closed relation as above. Then there is a club D ⊆ ω1 so

that R ∩ (ω1 × [D]<ω1
∗ × clubω1) has a uniformization.

Proof. This requires some small modifications in the arguments for Theorem 3.7 and Theorem 3.10.
By an argument similar to Fact 3.6, there is a function H : ω1 × [ω1]<ω1 ×WO → WO × BS with the

property that for all α < ω1, σ ∈ [ω1]<ω1 , and all w ∈ WO so that ot(w) = max{sup(σ) + 2, α + 1}, one
has that H(α, σ,w) ∈WO× BS with the property that ot(π1(H(α, σ,w))) = α and π2(H(α, σ,w)) codes σ,
where π1, π2 : R× R→ R are the projection maps onto the first and second coordinate, respectively. Using
H, one can prove the first part by making the necessary modifications to the argument of Theorem 3.7.

For the second part, let ρ : ω1 → ω1 × ω1 be a bijection. Let $1, $2 : ω1 × ω1 → ω1 be the projection
onto the first and second coordinate, respectively. Define a relation Tf ⊆ WO × clubcodeω1 by Tf (w, z) if
and only if

($1(ρ(ot(w))), f � $2(ρ(ot(w)))) ∈ dom(R) ∧ z ∈ clubcodeω1 ∧R($1(ρ(ot(w))), f � $2(ρ(ot(w))), z).

With this version of the relation Tf , one can prove the second statement with a modification of the argument
in Theorem 3.10. �

4. Continuity of Functions [ω1]ω1 → ω1

Lemma 4.1. Suppose Φ : [ω1]ω1
∗ → ω1 has the property that there is a club C ⊆ ω1 so that for all f ∈ [C]ω1

∗ ,
Φ(f) < f(0). Then there is a club D ⊆ ω1 and a ζ < ω1 so that for all f ∈ [D]ω1

∗ , Φ(f) = ζ.

Proof. Define a partition P : [ω1]ω1
∗ → 2 by P (α f̂) = 0 if and only if Φ(f) < α. By the strong partition

property ω1 →∗ (ω1)ω1
2 , there is a club E ⊆ ω1 which is homogeneous for P . Let Ẽ = {α ∈ E : enumE(α) =

α} where enumE : ω1 → E is the increasing enumeration of E. Ẽ ⊆ E is also a club subset of ω1. Let

f ∈ [Ẽ ∩ C]ω1
∗ . Then Φ(f) < f(0) by the assumption on C. Since f is a function of the correct type and

f(0) ∈ Ẽ, one can find an α ∈ E with Φ(f) < α < f(0). Then α f̂ ∈ [E]ω1
∗ and P (α f̂) = 0. Since E is

homogeneous for P , one must have that E is homogeneous for P taking value 0. Let E0 = E \ (minE + 1).
For all f ∈ [E0]ω1

∗ , one has that Φ(f) < minE since (minE)̂ f ∈ [E]ω1
∗ and P (min(E)̂ f) = 0. By the

countable completeness of the strong partition measure on ω1, there is a club D ⊆ E0 and a ζ < minE so
that for all f ∈ [D]ω1

∗ , Φ(f) = ζ. �

Example 4.2. The existence of a function Φ : [ω1]ω1 → ω1 which is not continuous µω1
-almost everywhere

intuitively amounts to asking whether there is a way to define a map that truly uses all information about
f and not merely an initial segment of f , for µω1 -almost all f ∈ [ω1]ω1

∗ .

One function that at first glance may appear to use the whole function f ∈ [ω1]ω1 is Φ(f) = ω
L[f ]
1 . However,

almost everywhere Φ uses no information about f . It is µω1
-almost everywhere a constant function.

To see this: Let f ∈ [ω1]ω1
∗ . For each α < ω1, let fα ∈ [ω1]ω1

∗ be defined by fα(β) = f(α + β). Note

that for all α < β < ω1, fβ ∈ L[fα]. So ω
L[fβ ]
1 ≤ ω

L[fα]
1 . The sequence 〈ωL[fα]

1 : α < ω1〉 is a nonincreasing
sequence of ordinals. It must be eventually constant else one would have an infinite decreasing sequence of
ordinals. Let εf be the eventual constant value of this sequence.
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Let Q : [ω1]ω1
∗ → 2 be defined by Q(f) = 0⇔ ω

L[f ]
1 = εf . By the strong partition property ω1 →∗ (ω1)ω1

2 ,

there is some D ⊆ ω1 club which is homogeneous for Q. Let f ∈ [D]ω1
∗ . Let α be minimal so that ω

L[fα]
1 = εf .

Note that ω
L[fα]
1 = εfα and fα ∈ [D]ω1

∗ . Thus Q(fα) = 0. Thus D is homogeneous for Q taking value 0. It

has been shown that for all f ∈ [D]ω1
∗ , ω

L[f ]
1 = ω

L[fα]
1 for all α < ω1.

Consider P : [D]ω1
∗ → 2 defined by P (f) = 0 ⇔ Φ(f) = ω

L[f ]
1 < f(0). By ω1 →∗ (ω1)ω1

2 , let C ⊆ D be a

club such that C is homogeneous for P . Take any f ∈ [C]ω1
∗ . Note that for all α < ω1, Φ(fα) = ω

L[fα]
1 =

ω
L[f ]
1 = Φ(f) since f ∈ [D]ω1

∗ . Pick δ so that f(δ) > ω
L[f ]
1 . Then Φ(fδ) = Φ(f) < f(δ) = fδ(0). Since

fδ ∈ [C]ω1
∗ , one has that C is homogeneous for P taking value 0.

So for all f ∈ [C]ω1
∗ , Φ(f) < f(0). By Lemma 4.1, Φ is µω1 -almost everywhere a constant function.

With Trang, it has been shown that the constant almost everywhere value of Φ is quite large. It is in
particular not ωL1 .

Claim 1: There is some ε < ω1 and some club C0 ⊆ ω1 so that for all f ∈ [C0]ω1
∗ , the canonical L[f ]

wellordering of RL[f ] has ordertype ε.
Suppose not. For all α < ω1, there is a club C ⊆ ω1 so that the canonical wellordering of RL[f ] has length

greater than α. By the countable additivity of the strong partition measure, for each α < ω1, there is a real
rα so that for almost all f ∈ [ω1]ω1

∗ , rα is the αth real in the canonical wellordering. Suppose α 6= β. There
is a club Cα and Cβ so that for all f ∈ [Cα]ω1

∗ and g ∈ [Cβ ]ω1
∗ , the αth real of L[f ] is rα and the βth real of

L[g] is rβ . If f ∈ [Cα ∩ Cβ ]ω1
∗ , then rα and rβ are the αth and βth real of L[f ]. Hence rα 6= rβ . This shows

that 〈rα : α < ω1〉 is an ω1 sequence of distinct reals. This is impossible under AD. Claim 1 has been shown.
By a countable additivity argument, one can show that there is a club C1 so that for all f, g ∈ [C1]ω1

∗ ,
RL[f ] = RL[g]. Let R∗ denote this common set of reals. Suppose x ∈ R∗. AD implies that x] exists. Let Cx be
the club set of Silver indiscernible for L[x]. Let f ∈ [C1 ∩Cx]ω1

∗ . Note that f � ω ∈ L[f ] and x ∈ L[f ]. Thus
x] can be defined within L[f ] as the collection of formulas true in L[x] using {f(n) : n ∈ ω} as indiscernibles.

So x] ∈ R∗. It has been shown that R∗ is closed under sharps. This implies that for f ∈ [C1]ω1
∗ , ω

L[f ]
1 > ωL1 .

This example motivates the further study of the stable theory of the partition measures µε for ε ≤ ω1:
Note that for each sentence ϕ in the language of set theory, since µε is an ultrafilter, one has exactly one of
the following holds: (i) for µε-almost all f , L[f ] |= ϕ or (ii) for µε-almost all f , L[f ] |= ¬ϕ.

In work with Trang, the authors study which natural statements belong to the stable theory of the
partition measure µε. For example, for all ε ≤ ω1, for µε-almost all f , L[f ] |= GCH. The most difficult case
is ε = ω1 where the [ω1]<ω1

∗ -almost everywhere club uniformization plays as essential role as a construction
principle. This result will appear elsewhere.

As a warmup to showing every function Φ : [ω1]ω1
∗ → ω1 is continuous, we will show that elements of∏

[ω1]
ω1
∗
ω1/µ which have representatives that are continuous form an initial segment of the ultraproduct.

Fact 4.3. Suppose Ψ,Φ : [ω1]ω1
∗ → ω1. Suppose Φ is continuous µω1-almost everywhere and Ψ <µω1

Φ,
which means {f ∈ [ω1]ω1

∗ : Ψ(f) < Φ(f)} ∈ µω1
. Then Ψ is continuous µω1

-almost everywhere.

Proof. Let C0 ⊆ ω1 be a club so that Φ is continuous on [C0]ω1
∗ and Ψ(f) < Φ(f) for all f ∈ [C0]ω1

∗ . Let
K ⊆ [C0]<ω1

∗ be the collection of σ so that for all f, g ∈ [C0]ω1 with f � |σ| = g � |σ| = σ, Φ(f) = Φ(g). Since
Φ is continuous on [C0]ω1

∗ , K is dense in [C0]ω1
∗ in the sense that for all f ∈ [C0]ω1

∗ , there exists an α < ω1

so that f � α ∈ K. For each σ ∈ K, let dσ = Φ(f) for any f ∈ [C0]ω1
∗ such that f � |σ| = σ, which is well

defined by the definition of K.
For each σ ∈ K, define Γσ : [C0\sup(σ)+1]ω1

∗ → ω1 by Γσ(g) = Ψ(σ ĝ). Thus for all g ∈ [C0\sup(σ)+1]ω1
∗ ,

Γσ(g) < dσ. By the countable additivity of µω1
, for µω1

-almost all g, Γσ(g) takes a constant value denoted
cσ. Define Ψ′ : [C0]ω1

∗ → ω1 as follows: For each f ∈ [C0]ω1
∗ , find the least α so that f � α ∈ K (which exists

by the density of K), and let Ψ′(f) = cf�α. Note that Ψ′ is continuous.
The claim is that Ψ =µ Ψ′:
Define P : [C0]ω1

∗ → 2 by P (f) = 0 if and only if Ψ(f) = Ψ′(f). By the strong partition relation
ω1 →∗ (ω1)ω1

2 , let C1 ⊆ C0 be a club on which P is homogeneous. Let f ∈ [C1]ω1
∗ . Find the least

α so that f � α ∈ K. There is some club D so that Γf�α takes constant value cf�α on [D]ω1
∗ . Let

D′ = (C1 \ sup(σ) + 1) ∩ D. Let g ∈ [D′]ω1
∗ . Then Ψ(f � α ĝ) = Γf�α(g) = cf�α = Ψ′(f � α ĝ). So
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P (f � α ĝ) = 0 and f � α ĝ ∈ [C1]ω1
∗ . Hence C1 is homogeneous for P taking value 0. This implies Ψ = Ψ′

on [C1]ω1
∗ , so Ψ is continuous on [C1]ω1

∗ since Ψ′ is continuous. �

The following is a useful notation:

Definition 4.4. Define drop : [ω1]ω1 × ω1 → [ω1]ω1 by drop(f, δ)(α) = f(δ + α). Thus drop(f, δ) is merely
f with its δth-initial segment, f � δ, removed.

Let A ⊆ ω1 be an unbounded subsets of ω1. Let nextA : ω1 → A be defined by nextA(α) is the smallest
element of A strictly larger than α. Let nextωA : ω1 → A be defined by nextωA(α) is the ωth-element of A
larger than α.

Theorem 4.5. Every function Φ : [ω1]ω1
∗ → ω1 is continuous almost everywhere.

Proof. Let P : [ω1]ω1
∗ → 2 be defined by P (f) = 0 if and only if there exists α < ω1 so that for all club

C ⊆ ω1, there exists g ∈ [C]ω1
∗ so that f � α ĝ ∈ [ω1]ω1

∗ (i.e. is strictly increasing) and Φ(f � α ĝ) < g(0).
(The idea is that if P (f) = 0, then the α above gives the initial segment of f which serves as a continuity
point. One would like to use Lemma 4.1 to obtain the value of Φ at this continuity point; however, the
quantifiers in the definition of P are the opposite of the quantifiers of Lemma 4.1.)

By ω1 →∗ (ω1)ω1
∗ , let D ⊆ ω1 be homogeneous for P .

Claim 1: D is homogeneous for P taking value 0.
To prove this: Suppose that it is homogeneous for P taking value 1. This means that for all f ∈ [D]ω1

∗ ,
for all α < ω1, there exists a club C ⊆ [ω1]ω1 so that for all g ∈ [C]ω1

∗ such that f � α ĝ ∈ [ω1]ω1
∗ ,

Φ(f � α ĝ) ≥ g(0).
Define R ⊆ [D]<ω1

∗ ×clubω1
by R(σ,C) if and only if for all g ∈ [C]ω1

∗ with σ ĝ ∈ [ω1]ω1
∗ , Φ(σ ĝ) ≥ g(0). R is

⊆-downward closed. Note that dom(R) = [D]<ω1
∗ since D is homogeneous for P taking value 1. By Theorem

3.10, there is a club E ⊆ D so that R ∩ ([E]<ω1
∗ × clubω1

) has a uniformization. Let Λ : [E]<ω1
∗ → clubω1

be
such a uniformization function for R on [E]<ω1

∗ .
First one will construct an h ∈ [E]ω1

∗ by recursion as follows: Let F0 = E ∩ Λ(∅). Let h(0) = nextωF0
(0).

Suppose h � α and clubs Fβ for all β < α have been defined. Let Fα = Λ(h � α) ∩
⋂
β<α Fβ . Let

h(α) = nextωFα(sup(h � α)). This completes the construction of h ∈ [E]ω1 and sequence of clubs 〈Fβ : β < ω1〉.
Since one has the sequence 〈Fβ : β < ω1〉, one also can define the sequence of functions 〈nextFβ : β < ω1〉.

Define H : ω1 × ω → ω1 by recursions as follows: H(0, 0) = nextF0
(0). H(0, n+ 1) = nextF0

(H(0, n)). If for
some α, H(β, n) has been defined for all β < α and n ∈ ω, then let µ = sup{H(β, n) : β < α ∧ n ∈ ω}. Let
H(α, 0) = nextFα(µ). Let H(α, n + 1) = nextFα(H(α, n)). Now H witnesses that h has uniform cofinality
ω. By the construction, it is clear that h is increasing and discontinuous everywhere. Thus h ∈ [E]ω1

∗ , i.e. is
increasing and has correct type.

Now pick any α < ω1. Since drop(h, α) ∈ [Fα]ω1
∗ ⊆ [Λ(h � α)]ω1

∗ , the definition of Λ being a uniformization
for R implies that Φ(h) = Φ(h � α d̂rop(h, α)) ≥ drop(h, α)(0) = h(α). Since α < ω1 was arbitrary, this
shows that for all α < ω1, Φ(h) ≥ h(α). Since h ∈ [E]ω1

∗ is a strictly increasing function, Φ(h) ≥ ω1. This
is impossible since Φ : [ω1]ω1 → ω1 is a function which takes values among the countable ordinals. This
establishes Claim 1.

Thus D is homogeneous for P taking value 0. Let K ⊆ [D]<ω1
∗ be the collection of σ such that for all club

C ⊆ ω1, there is some g ∈ [C]ω1
∗ with σ ĝ ∈ [ω1]ω1

∗ and Φ(σ ĝ) < g(0). Note that K is dense in [D]ω1
∗ since

D is homogeneous for P taking value 0. (Elements of K will be the continuity points of Φ. However, the
quantifiers in the definition of K are the opposite of what is needed to use Lemma 4.1. The next partition
attempts to resolve this.)

Fix σ ∈ K. Let Qσ : [D \ supσ + ω]ω1
∗ → 2 be defined by Qσ(g) = 0 if and only if Φ(σ ĝ) < g(0). By

ω1 →∗ (ω1)ω1
2 , there is some E ⊆ D club which is homogeneous for Qσ. By the property of σ ∈ K, there

is some g ∈ [E]ω1 so that σ ĝ ∈ [ω1]ω1
∗ and Φ(σ ĝ) < g(0). Thus one has Qσ(g) = 0. This shows that E is

homogeneous for Qσ taking value 0. (Now one can apply Lemma 4.1 to find the value of Φ associated to
σ.) Define Vσ : [E \ supσ + ω]ω1

∗ → ω1 by Vσ(g) = Φ(σ ĝ). For all g ∈ [E \ supσ + ω]ω1
∗ , Vσ(g) < g(0). By

Lemma 4.1, there is an E′ ⊆ E club so that Vσ is constant on [E′]ω1
∗ taking value cσ. Note that cσ does

not depend on the choice of E or E′ in the sense that for any club E′′ so that Vσ is constant on [E′′]ω1
∗ , the

constant value must be cσ.
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Define Ψ : [D]ω1
∗ → ω1 as follows: For f ∈ [D]ω1

∗ , find the least α so that f � α ∈ K and let Ψ(f) = cf�α.
Such an α exists by the density of K. Ψ is continuous on [D]ω1

∗ . This is because for any f ∈ [D]ω1
∗ , let α be

the least ordinal so that f � α ∈ K. For any g ∈ [D]ω1
∗ with g � α = f � α, one has that α is also the least

ordinal so that g � α ∈ K. Thus Ψ(g) = cg�α = cf�α = Ψ(f).
Claim 2 : For µω1

-almost all f , Φ(f) = Ψ(f).
To see this: Define Y : [D]ω1

∗ → 2 by Y (f) = 0 if and only if Φ(f) = Ψ(f). By ω1 →∗ (ω1)ω1
∗ , there

is some club F ⊆ D which is homogeneous for Y . Let f ∈ [F ]ω1
∗ . Let α be least so that f � α ∈ K. Let

σ = f � α. There is some F ′ ⊆ F club so that Vσ takes constant value cσ on [F ′]ω1
∗ . Let g ∈ [F ′]ω1

∗ be such
that sup(σ) < g(0). Let f ′ = σ ĝ. Then Φ(f ′) = Φ(σ ĝ) = Vσ(g) = cσ. As noted above, the least α so that
f ′ � α ∈ K is the same as the least α so that f � α ∈ K. So cσ = Ψ(f ′). Thus Y (f ′) = 0. Since f ′ ∈ [F ]ω1

∗ ,
F must be homogeneous for Y taking value 0.

It has been shown that for all f ∈ [F ]ω1
∗ , Φ(f) = Ψ(f). Since Ψ is a continuous function, Φ is µω1 -almost

equal to a continuous function. �

Zapletal asked the first author whether every partition of [ω1]ω1 into ω1 many pieces must have at least
one piece of cardinality [ω1]ω1 . The following gives a positive answer.

Theorem 4.6. Suppose 〈Xα : α < ω1〉 is a sequence of subsets of [ω1]ω1 so that
⋃
α<ω1

Xα = [ω1]ω1 . Then
there is an α < ω1 so that Xα ≈ [ω1]ω1 .

Proof. Define Φ : [ω1]ω1
∗ → ω1 by letting Φ(f) be the least α such that f ∈ Xα. By Theorem 4.5, there

is some club C ⊆ ω1 so that Φ is continuous on [C]ω1
∗ . Pick any f ∈ [C]ω1

∗ . Let δ = Φ(f). By continuity,
there is some α so that for all g ∈ [C]ω1

∗ with g � α = f � α, Φ(g) = Φ(f) = δ. Using Fact 2.2, let
∆ : [ω1]ω1 → [C \ f(α)]ω1

∗ be a bijection. Define Γ : [ω1]ω1 → Xδ by Γ(g) = (f � α)̂ ∆(g). Then Γ is an
injection. Thus |Xδ| = |[ω1]ω1 |. �

Theorem 4.7. |[ω1]<ω1 | < |[ω1]ω1 |.

Proof. For α ≤ β < ω1, let Xα,β = [β]α and note that |Xα,β | ≤ |R|. Observe that [ω1]<ω1 =
⋃
α≤β<ω1

Xα,β .

By using the Gödel pairing function, one can recognize this union as an ω1-length union of subsets of [ω1]<ω1

with cardinality less than or equal to R (but non-uniformly). Therefore |[ω1]<ω1 | = |[ω1]ω1 | is impossible
since it would violate Theorem 4.6. �

5. Continuity of Functions [ω1]ω1 → ω1ω1

Recall that ω1ω1 is the collection of all functions f : ω1 → ω1.

Definition 5.1. A function Φ : [ω1]ω1 → ω1ω1 is continuous if and only if for all f ∈ [ω1]ω1 , for all ε < ω1,
there exists a δ < ω1 so that for all g ∈ [ω1]ω1 , if f � δ = g � δ, then Φ(f) � ε = Φ(g) � ε.

If one gives [ω1]ω1 and ω1ω1 the topology indicated in Definition 2.11, then Φ : [ω1]ω1 → ω1ω1 is continuous
if and only if Φ is continuous in the topological sense.

Φ : [ω1]ω1 → ω1ω1 is continuous almost everywhere if and only if there club C ⊆ ω1 so that Φ is continuous
on [C]ω1

∗ .

Lemma 5.2. There is no club D ⊆ ω1 and no function Λ : [D]ω1
∗ → ω1 with the property that for all

f ∈ [D]ω1
∗ , for all α < ω1, there exists a club C ⊆ ω1 so that for all g ∈ [C]ω1 , if (f � α)̂ g ∈ [ω1]ω1

∗ , then
Λ((f � α)̂ g) ≥ g(0).

Proof. The proof of Claim 1 in Theorem 4.5 is precisely this lemma. As there, one can prove this by using
the almost everywhere [ω1]<ω1

∗ -club uniformization (Theorem 3.10). However, having already established
the continuity property in Theorem 4.5, this lemma can be derived easily as follows:

Suppose such a club D ⊆ ω1 and function Λ exist. By Theorem 4.5, there is a D0 ⊆ D so that Λ � [D0]ω1
∗

is continuous. Take any f ∈ [D0]ω1
∗ . Let ζ = Λ(f). By continuity, there is an α < ω1 so that for all

h ∈ [D0]ω1
∗ , if f � α = h � α, then Λ(h) = Λ(f) = ζ. By the hypothesis applied to this f and α, there

exists some club C ⊆ ω1 so that for all g ∈ [C]ω1
∗ , if (f � α)̂ g ∈ [ω1]ω1

∗ , then Λ((f � α)̂ g) ≥ g(0). Pick
g ∈ [C ∩ D0]ω1 such that (f � α)̂ g ∈ [ω1]ω1

∗ and g(0) > ζ. Then Λ((f � α)̂ g) ≥ g(0) > ζ by choice of C.
However (f � α)̂ g ∈ [D0]ω1

∗ and ((f � α)̂ g) � α = f � α. Since f � α is a point of continuity for Λ on [D0]ω1
∗

for taking value ζ, one must have Λ((f � α)̂ g) = ζ. Contradiction. �
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Theorem 5.3. (With Trang) Every function Φ : [ω1]ω1 → ω1ω1 is continuous almost everywhere.

Proof. Define a partition P0 : [ω1]ω1
∗ → 2 by P0(f) = 0 if and only if for all β < ω1, for all γ < ω1, there

exists an α > γ so that for all club C ⊆ ω1, there exists a g ∈ [C]ω1
∗ so that (f � α)̂ g ∈ [ω1]ω1

∗ and
Φ((f � α)̂ g)(β) < g(0). (Here P0(f) = 0 will intuitively means that for each β < ω1 and γ < ω1, there is an
α > γ such that f � α is a continuity point for the βth coodinate of Φ.)

By ω1 →∗ (ω1)ω1
2 , there is a club D0 ⊆ ω1 which is homogeneous for P0.

Claim 1: D0 is homogeneous for P0 taking value 0.
To see this, suppose D0 is homogeneous for P0 taking value 1. Negating the definition of P0, one see that

P0(f) = 1 if and only if there exists β < ω1, there exists γ < ω1 so that for all α > γ, there exists a club
C ⊆ ω1 so that for all g ∈ [C]ω1

∗ , if (f � α)̂ g ∈ [ω1]ω1
∗ , then Φ((f � α)̂ g)(β) ≥ g(0).

Let Ψ0 : [D0]ω1
∗ → ω1 be defined by letting Ψ0(f) be the least β witnessing the first existential quantifier

in the definition of P0(f) = 1. By Theorem 4.5, there is a club D′0 ⊆ D0 so that Ψ0 � [D′0]ω1
∗ is continuous.

Define Ψ1 : [D′0]ω1
∗ → ω1 by Ψ1(f) is the least γ witnessing the second existential quantifier in the

definition of P0(f) = 1 for β = Ψ0(f). Again by Theorem 4.5, there is a club D1 ⊆ D′0 so that Ψ1 � [D1]ω1
∗

is continuous. (Note that Ψ0 � [D1]ω1
∗ is also continuous.)

Now take an h ∈ [D1]ω1
∗ . Let β̂ = Ψ0(h) and γ̂ = Ψ1(h). By the continuity of Ψ0 � [D1]ω1

∗ and Ψ1 � [D1]ω1
∗ ,

there is ζ < ω1 so that for all g ∈ [D1]ω1
∗ , if g � ζ = h � ζ, then Ψ0(g) = Ψ0(h) = β̂ and Ψ1(g) = Ψ1(h) = γ̂.

Let ξ = max{ζ, γ̂}. Let σ = h � ξ. Note that for all g ∈ [D1]ω1
∗ so that σ ĝ ∈ [D1]ω1

∗ , one has that

Ψ0(σ ĝ) = β̂ and Ψ1(σ ĝ) = γ̂.

Define Λ : [D1 \ (supσ + 1)]ω1
∗ → ω1 by Λ(f) = Φ(σ f̂)(β̂). Observe that Λ has the property that for

all α and f ∈ [D1 \ (supσ + 1)]ω1
∗ , there is a club C ⊆ ω1 so that for all g ∈ [C]ω1

∗ , if (f � α)̂ g ∈ [ω1]ω1
∗ ,

then Λ((f � α)̂ g) ≥ g(0). Such a function can not exist by Lemma 5.2. Claim 1 has been shown so D0 is
homogeneous for P0 taking value 0.

For each β < ω1, let Kβ be the collection of σ ∈ [D0]<ω1
∗ so that for all clubs C ⊆ ω1, there exists a

g ∈ [C]ω1
∗ so that σ ĝ ∈ [ω1]ω1

∗ and Φ(σ ĝ)(β) < g(0). Note that for all β < ω1, Kβ is dense in [D0]ω1
∗ , which

means that for all f ∈ [D0]ω1
∗ , for all γ < ω1, there exists an α > γ with f � α ∈ Kβ . To see this: for any

f ∈ [D0]ω1
∗ and γ < ω1, P0(f) = 0 implies there exists some α > γ so that for all club C ⊆ ω1, there exists a

g ∈ [C]ω1
∗ with f � α ĝ ∈ [ω1]ω1

∗ and Φ((f � α)̂ g)(β) < g(0). This α would suffice. (Kβ will be the collection
of continuity point for the βth-coordinate of Φ. The next partition will use Lemma 4.1 to find the value
associated to this continuity point.)

For each β < ω1 and σ ∈ Kβ , define the partition Qβσ : [ω1 \ (supσ + 1)]ω1
∗ → 2 by Qβσ(g) = 0 if and only

if Φ(σ ĝ)(β) < g(0). By ω1 → (ω1)ω1
∗ , there is a club E ⊆ ω1 which is homogeneous for Qβσ. By definition of

σ ∈ Kβ , there is a g ∈ [E]ω1
∗ so that σ ĝ ∈ [ω1]ω1

∗ and Φ(σ ĝ) < g(0). Thus E is homogeneous for Qβσ taking
value 0. Define Φβσ : [E \ (supσ + 1)]ω1

∗ → ω1 by Φβσ(g) = Φ(σ ĝ)(β). Since E is homogeneous for Qβσ taking
value 0, one has that for all g ∈ [E \ (sup(σ) + 1)]ω1

∗ , Φβσ(g) < g(0). By Lemma 4.1, there is a club F ⊆ E
and a cβσ < ω1 so that for all g ∈ [F ]ω1

∗ , Φβσ(g) = cβσ. (Note that cβσ does not depend on the choice of clubs
E or F .)

For each f ∈ [D0]ω1
∗ , define a strictly increasing sequence 〈αβf : β < ω1〉 by recursion as follows: Let α0

f

be the least α so that f � α ∈ K0, which exists by the density of K0 in [D0]ω1
∗ . Suppose β < ω1 and for

all γ < β, αγf has been defined with the property that f � αγf ∈ Kγ . Let ξ = sup{αγf : γ < β}. Let αβf
be the least α > ξ so that f � α ∈ Kβ , which exists by the density of Kβ in [D0]ω1

∗ . Note that the map

f 7→ 〈αβf : β < ω1〉 is continuous in the sense that for any f ∈ [D0]ω1
∗ , any γ < ω1, and for all g ∈ [D0]ω1

∗ , if

g � αγf = f � αγf , then αβf = αβg for all β ≤ γ. (Intuitively, the sequence 〈αβf : β < ω1〉 collects the length of

the various continuity points of f for the various coordinates of Φ(f).)

Define Γ : [D0]ω1
∗ → ω1ω1 by Γ(f)(β) = cβ

f�αfβ
. Pick any f ∈ [D0]ω1

∗ and γ < ω1. As observed above, for

all g so that g � αγf = f � αγf , one has that 〈αβg : β ≤ γ〉 = 〈αβf : β ≤ γ〉. Hence Γ(f) � γ + 1 = Γ(g) � γ + 1

for all g so that g � αγf = f � αγf . This shows that Γ : [D0]ω1
∗ → ω1ω1 is continuous.

Claim 2 : There is a club D2 ⊆ ω1 so that Φ � [D2]ω1
∗ = Γ � [D2]ω1

∗ .
To see Claim 2: Define a partition P1 : [D0]ω1

∗ → 2 by P1(f) = 0 if and only if Γ(f) = Φ(f). By
ω1 →∗ (ω1)ω1

2 , there exists a club D2 ⊆ D0 which is homogeneous for P1.
14



Define a relation R ⊆ ω1× [D2]ω1
∗ ×clubω1 by R(β, σ, C) if and only if σ ∈ Kβ and Φβσ is constant on [C]ω1

∗
taking value cβσ. Note that the domain of R is Y = {(β, σ) : σ ∈ Kβ}. R is ⊆-closed in the clubω1 -coordinate.
By Theorem 3.11, there is a club D3 ⊆ D2 and a uniformization function Σ : Z → clubω1 so that for all
(β, σ) ∈ Z, R(β, σ,Σ(β, σ)), where Z = {(β, σ) : β ∈ ω1 ∧ σ ∈ Kβ ∩ [D3]<ω1

∗ }.
If C ⊆ ω1 is a club, then let pC ∈ [C]ω1

∗ be defined by ρC(α) = enumC(ω · (α + 1)). pC can be regarded
as the canonical correct type function passing through the club C.

A function h ∈ [D3]ω1
∗ , an increasing sequence of ordinals 〈γδ : δ < ω1〉, and a sequence of clubs 〈Fδ : δ <

ω1〉 will be constructed by recursion. (The function h will be defined by specifying longer initial segments
of h at each stage.)

Let g0 = pD3
. Note that g0 ∈ [D3]ω1

∗ . Let γ0 = α0
g0 . Define h � γ0 = g0 � γ0. Note that h � γ0 ∈ K0 and

therefore (0, h � γ0) ∈ Z. Let F0 = Σ(0, h � γ0) ∩D3. Note that for any h′ ⊇ h � γ0, one has that α0
h′ = γ0.

Suppose γβ , h � γβ , and Fβ have been defined for all β < δ. Suppose it has also been shown that for

all β < δ, for all h′ ∈ [D3]ω1
∗ such that h′ ⊇ h � γβ , one has that αβh′ = γβ . Let ξ = sup{γβ : β < δ}.

Let Gδ = (
⋂
β<δ Fβ) \ (sup(h � ξ) + 1). Let gδ = h � ξ p̂Gδ . Note that gδ ∈ [D3]ω1

∗ . Let γδ = αδgδ . Let
h � γδ = gδ � γδ. Since h � γβ ⊆ gδ for all β < δ, one has that γδ > γβ for all β < δ. Note that for all
h′ ⊇ h � γδ, αδh′ = γδ. Also h � γδ ∈ Kδ and therefore (δ, h � γδ) ∈ Z. Let Fδ = Σ(δ, h � γδ) ∩

⋂
β<δ Fβ .

This completes the construction. Note that h ∈ [D3]ω1
∗ . By construction, 〈γδ : δ < ω1〉 = 〈αδh : δ < ω1〉.

Fix any δ < ω1. Due to the construction, drop(h, αδh) ∈ [Fδ]
ω1
∗ ⊆ [Σ(δ, h � αδh)]ω1

∗ . Since Σ is a uniformization
for R, one has that Φ(h)(δ) = Φ(h � αδh d̂rop(h, αδh))(δ) = Φδ

h�αδh
(drop(h, αδh)) = cδ

h�αδh
= Γ(h)(δ). Since δ

was arbitrary, Φ(h) = Γ(h). Thus P1(h) = 0. Since D3 was homogeneous for P1 and h ∈ [D3]ω1
∗ , D3 is

homogeneous for P1 taking value 0. Thus Φ � [D3]ω1
∗ = Γ � [D3]ω1

∗ . Φ is continuous on [D3]ω1
∗ since Γ is

continuous on [D3]ω1
∗ . This completes the proof. �

6. Failure of Continuity Property at ω2

A natural question would be whether the continuity phenomenon occurs at ω2. That is, for every function
Φ : [ω2]ω2

∗ → ω2, is there is a club C ⊆ ω2 so that Φ � [C]ω2
∗ is continuous?

Fact 6.1. (Martin) For all α < ω2, ω2 →∗ (ω2)α2 . That is, ω2 is a weak partition cardinal.
(Martin and Paris) The partition relation ω2 →∗ (ω2)ω2

2 fails.

The strong partition property for ω1 played an essential role in establishing the continuity property
for functions Φ : [ω1]ω1

∗ → ω1. The failure of the strong partition property at ω2 seems to suggest that one
should use a counterexample to the strong partition property as a counterexample to the continuity property.
However, it is not clear if the fact that a function P : [ω2]ω2 → 2 has no club homogeneous set alone can
imply the failure of the continuity property. For this, one needs to analyze explicit counterexamples to the
strong partition property at ω2.

The proof of the Martin-Paris theorem roughly shows that if the partition relation ω2 → (ω2)ω2
2 holds,

then ω3 → (ω3)α2 holds for each α < ω1. The partition relation ω3 → (ω3)2
2 already implies that ω3 is regular.

However, AD proves that cof(ω3) = ω2. See [8] Section 13.
The second author produced an explicit example of the failure of the strong partition property at ω2. Its

proof gives some additional properties that will show this function also fails to have the continuity property.
The proof of the following theorem requires an analysis of the ultrapower

∏
ω1
ω1/µ, where µ is the club

measure on ω1, the Kunen tree, and Kunen functions for functions of the form f : ω1 → ω1.
Since

∏
ω1
ω1/µ = ω2, every function h : ω1 → P(ω1) represents a subset of ω2. If A ⊆ ω2, then denote

A ∈
∏
ω1

P(ω1)/µ if and only if there is a function h : ω1 →P(ω1) so that A = [h]µ.
One can also show that

∏
ω1

P(ω1)/µ is necessarily missing a subset of ω2. For instance, {α ∈ ω2 :
cof(α) = ω1} does not belong to

∏
ω1

P(ω1)/µ. These results are essential ingredients of the proof of
the follow theorem. The background material and proof of the results mentioned above and the following
theorem are given in [3] Section 6.

Theorem 6.2. (Jackson) Let µ denote the club measure on ω1. Let P : [ω2]ω2
∗ → 2 be defined by P (f) = 0

if and only if rang(f) ∈
∏
ω1

P(ω1)/µ. Then there is no club C ⊆ ω2 so that P is constant on [C]ω2
∗ .

As a corollary of the proof of this result, one also has
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Corollary 6.3. Let P denote the function from Theorem 6.2. Let σ ∈ [ω2]<ω2
∗ . Define Pσ : [ω2 \ (sup(σ) +

ω)]ω2
∗ → 2 by Pσ(f) = 0 if and only if P (σˆf) = 0. Then there is no club C ⊆ ω2 so that Pσ is constant on

[C]ω2
∗ .

With these results, one can show that P is not continuous on [C]ω2
∗ for any club C ⊆ ω2.

Theorem 6.4. Let P : [ω2]ω2
∗ → 2 be the function from Theorem 6.2. Then there is no club C ⊆ ω2 so that

P � [C]ω2
∗ is continuous.

Proof. Suppose there was a club C so that P � [C]ω2
∗ is continuous. Take any f ∈ [C]ω2

∗ . Without loss of
generality, say that P (f) = 0. By continuity, there is some ζ < ω2 so that for all g ∈ [C]ω2

∗ with g � ζ = f � ζ,
P (f) = P (g). Let σ = f � ζ. This would means that C \ (sup(σ) + ω) would be a club homogeneous for Pσ.
This contradicts Corollary 6.3. �
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