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ABSTRACT. We work throughout in the theory ZF with the axiom of determinacy, AD. We introduce and
prove some club uniformization principles under AD and ADg. Using these principles, we establish continuity
results for functions of the form ®: [w1]¥! — wi and ¥: [wi]¥! — “lw;. Specifically, for every function
®: [w1]¥T — wi, there is a club C C wy so that ® | [C]¥! is a continuous function. This has several
consequences such as establishing the cardinal relation |[w1]<%1| < [[w1]“!| and answering a question of
Zapletal by showing that if (Xo : o < wi) is a collection of subsets of [w1]“! with the property that
Ua<w1 Xa = [w1]¥?, then there is an o < wy so that X, and [w1]¥! are in bijection.

We show that under ADg everywhere [w1]<“1-club uniformization holds which is the following statement:
Let clubg,, denote the collection of club subsets of wi. Suppose R C [w1]<%! x cluby,, is C-downward closed
in the sense that for all o € [w1]<*1, for all clubs C C D, R(o, D) implies R(c,C). Then there is a function
F': dom(R) — cluby,, so that for all o € dom(R), R(c, F(0)).

We show that under AD almost everywhere [w1]<“1-club uniformization holds which is the statement that
for every R C [w1]<“1 X club,; which is C-downward closed, there is a club C and a function F': dom(R) N
[C]£T = cluby, so that for all ¢ € dom(R) N [C]=“", R(o, F(a)).

1. INTRODUCTION

The setting throughout this article will be ZF + AD. AD is the axiom of determinacy which asserts that
for every two player integer game, one of the two players must have a winning strategy. AD and its various
extensions have been shown to be a fruitful and general framework for extending properties of simple subsets
of R to a much more general class. Within this setting, sets which are surjective images of R have a very
interesting structure.

The definable properties of R and it subsets have long been studied within descriptive set theory. Under
determinacy, the first uncountable cardinal, wq, is a minimal uncountable set much like R. AD can distinguish
w1 and R via bijections: w; and R are incomparable cardinals in the sense that neither can inject into the
other. Moreover, under a strengthening of AD called AD", Woodin’s perfect set dichotomy implies that
every uncountable set X which is a surjective image of R must contain a copy of R or w;. (See [3] Section 8
or [4].) More generally, [1] showed that in L(R) = AD, every uncountable set X must contain a copy of R
or wi. Like its companion R, w; and its subsets deserves a definable analysis.

Note that R, & (w), and [w]¥ (where [w]® is the collection of increasing functions from w into w) are all in
bijection. Let [w1]“* denote the collection of increasing functions from w; to wy. [w]*? is in bijection with
P(w1). Under AD, the cardinal structure below |R| = |#(w)| = |[w]“| is fully understood. One motivation
for this article was to explore the definable cardinals around | (w;)| = |[w1]¥*| under AD. A continuity
phenomenon for functions of the form @ : [w;]“* — w; will be a useful tool for studying the cardinals below
P (w1). The continuity phenomenon will be shown to be a consequence of a choice principle for club subsets
of wy which is fundamentally useful for studying definable combinatorics on |jw1]“*| = |#?(w1)| under AD.

The continuity phenomenon in a general sense asserts that a local property of the output of a function can
be determined by a local behavior of the input. Philosophically, this is motivated by a question of whether
it is possible for one to truly use all of a function f € [w;]*? in order to assign to f a countable ordinal.

As motivation, consider the classical case of a function ® : R — R. As customary in descriptive set theory,
R denotes “w which is the collection of functions from w into w. A priori, ® may need all of f € R even to
determine the first bit ®(f)(0) of ®(f). That is, if g differs from f at any place, ®(f)(0) could potentially
be different from ®(g)(0). However, if ® is continuous, then there is a j € w so that if f | j =g | j, then
®(f)(0) = ®(g)(0). Thus one can determine the value of ®(f)(0) forever by freezing an appropriate local
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behavior of the input f. Certainly not all functions ® : R — R are continuous. However, under AD, every
function is continuous almost everywhere in the sense that there is a comeager set C C R so that @ [ C is a
continuous function.

Now counsider a function @ : [w1]“* — w;. First, one needs an appropriate notion of “almost-everywhere”.
Let p be the collection of subsets of wy which contain a club subset of w;. Solovay showed that p is a normal
countably complete measure on w; under AD. It has the distinction of being the unique normal measure
on wi. Let p,, be the filter on [wq]¥* defined by X € p,, if and only if there is a club C' C w; so that
[C]¥r € X. (If A Cwy, [A]%" is the collection of increasing functions from wq into A which are of the correct
type. See Definition 2.1.) Using the (correct type) strong partition property wy —. (w1)5' of Martin, one
can show that p,, is a countably complete measure on [w;]%*. Using p,, as the notion of almost-everywhere
is both natural and robust since it allows the strong partition property as a powerful tool in analyzing the
continuity phenomenon. (The use of correct type is needed to obtain club homogeneous sets for partitions.
One can show [w1]*“! and #(w) are in bijection with [w;]¥*. For this reason, this article will prefer [w]4"
over P (w).)

So the question becomes: For every @ : [w1]¥* — wy, is @ continuous u,,, -almost everywhere? Precisely, is
there a club C' C wy so that for all f € [C]¥1] there is an a < w; so that for all g € [C]¥* with f [a=g¢ [ «,
() = B(g)?

There is a great deal of empirical evidence that the continuity property holds. Any function ® : [w;]¥* —
wy which is of bounded dependence g, -almost everywhere is continuous p,,-almost everywhere. (This
means that there is an € < wy and a function ¥ : [w;]¢ — wy so that for u,, almost all f, ®(f) = ¥(f [€).)
The function @ : [w1]*" — wy defined by ®(f) = sup, s(g) f(a) does not have bounded dependence, but it
is continuous.

One can even attempt to use definability notions to construct a function that ostensibly seems to use the
entire sequence to define an output: For instance, let ®(f) = wlL 1. This function is discussed in Example
4.2 where it is shown that g, -almost everywhere this function is constant. Thus for u,,-almost all f, ®
actually uses no information about f to determine the output ®(f).

This article will show that the continuity phenomenon holds for every function ® : [w;]¥* — wy:

Theorem 4.5. Assume ZF + AD. Fvery function ® : [w1]¥* — wy is continuous pi, -almost everywhere.

The continuity property, in its various forms, has interesting mathematical consequences for definable
combinatorics under determinacy. The continuity property for function f : R — R is an important tool
for the study of the Mycielski and Jénsson property for quotient of Fy in [6] and [2]. Furthermore in [5],
a form of the continuity property is established for functions ® : [w1]S — w; where € < wy and for func-
tions @ : [wa]é — we where € < wq in order to give a purely descriptive set theoretic proof under AD that
[lwr]#] < Jlwr]<1| and |[ws]*| < [fwa] <] < [[wa]!] < [[wa] <.

Using the continuity property at wi, one can give a purely descriptive set theoretic proof of the following
cardinality computation:

Theorem 4.7. Assume ZF + AD. |[w1]<“!| < |[w1]**].

Zapletal also asked the first author the following basic combinatorial question: Assume AD. If one
partitions [wq]“! (or equivalently £(w)) into w; many pieces, (X, : @ < wi), so that X, C [w]“* and
Ua<w1 Xo = [w1]¥?, then must there be a piece X, so that X, ~ [w1]“!, meaning X,, is in bijection with
[w1]“1? A positive answer follows from the continuity property.

Theorem 4.6. Assume ZF + AD. Suppose (X, : o < wi) is a sequence of subsets of [w1]“' so that
Uacw, Xa = [wi1]*t. Then there is an o < wy so that Xo = [wi]“1.

A natural question extending Theorem 4.5 is to ask whether every function @ : [wq]¥? — “'w; is continu-
ous fi,, -almost everywhere. (Here “*w; refers to the set of all functions f : w; — w;.) Given such a function
®, one can define @3 : [w1]¥* — w1 by (f) = (f)(B). By applying Theorem 4.5 to ®g, there is a club C
so that ®g | [C]¥* is continuous. Although it is possible to show there is a sequence (Cp : 8 < wi) so that
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for all f < wq, g | [Cs]¥* is continuous (see [3] Fact 4.8), it is not clear how to use this sequence to obtain
one single club C' which witnesses that the original function ® : [w;]** — “*w; is continuous on [C]4* since

an intersection of wi-many club subsets of w; may not be a club. Using ideas similar to the proof of The-
orem 4.5 but with more elaborate partitions, the following almost everywhere continuity result can be shown.

Theorem 5.3 (With Trang) Assume ZF + AD. Ewvery function ® : [wi]¥' — “w; is continuous p,, -
almost everywhere.

The strong partition property for w; is crucial in the arguments for establishing the continuity prop-
erty for functions ® : [w1]“* — w;. The second uncountable cardinal ws fails to have the strong partition
property but by a result of Martin and Paris, it does have the weak partition property, that is, wo — (w2)§
for each € < wo. Using an explicit failure of the strong partition property for wo, Section 6 shows that there
is a function ® : [wy]“? — 2 with no club C' C we such that ® [ [C]¥2 is continuous.

The main challenge in establishing Theorem 4.5 is to show that a certain natural partition P : [wy]¥* — 2
has a club homogeneous set for the desired side of the partition. As described in the proof of Theorem 4.5,
one needs to make choices of club subsets of wy which is dependent on previous choices of clubs. The axiom
of determinacy is incompatible with many consequences of the axiom of choice. A selection principle for
subsets of wy is generally not possible in AD. To perform the construction mentioned above, one would need
to prove a club uniformization result.

Let club,,, denote the club subsets of w;. In the applications of this paper, one has a relation R C
[w1]<“t X club,,, which is C-downward closed in the sense that for all C' C D which are club subsets of w;
and for all o, if R(c, D) holds, then R(o,C) holds. [w1]<*“!-club uniformization is the statement that there
is a function A : dom(R) — club,,, so that for all o € [w1]<*?, R(0,A(0)).

For any R C [w;]<“! x club,, as above, there is a coded version R C R x R x R of R. Theorem 3.7 shows
that if R has a uniformization, then one can use the simple ws-version of the Kechris-Woodin generic coding
function (see [9]) and a category argument to establish that R has an (everywhere) uniformization. Thus
under ADg, (everywhere) [w;]<“!-club uniformization holds:

Theorem 3.7. Assuming ZF + ADg, [w1]<“*-club uniformization holds.

Under ADg, every relation S C R x R can be uniformized. AD cannot prove this full uniformization
since L(R) = AD has a relation on R x R that cannot be uniformized. However, there is an almost every-
where uniformization result that does hold in AD: for any relation S C R x R, there is a comeager C' C R
and a function F': C'— R which uniformizes S on C.

Similarly, AD cannot prove (everywhere) [w;]<“!-club uniformization since Fact 3.9 shows that it fails in
L(R) = AD. One says that almost-everywhere [w1]<“*-club uniformization holds if and only if for every re-
lation R C [w1]<%! x club,,, which is C-downward closed, there is a club C' C wy so that RN ([C]S¥! x cluby,,)
has a uniformization. By combining the generic coding function, category arguments, the Moschovakis
coding lemma, and a fundamental idea of Martin (used in the study of the partition properties on wi)
where the player with the winning strategy determines the property of the output but the losing player de-
termines the identity of the output, one can prove the following which is one of the main results of this paper:

Theorem 3.10. Assume ZF + AD. Almost everywhere [w1]<“!-club uniformization holds.

Neeman has shown similar uniformization results (such as [10] Theorem 3.9) in L(R) using inner model
theory techniques.

Almost everywhere [w]<“*-club uniformization is used to verify that the partition used in the proof of
the continuity property (Theorem 4.5) has a homogeneous club which is homogeneous for the desired side.
Moreover, Theorem 3.10 is a powerful general technique for constructing functions h € [wq]%¥* which verify
that partitions of a certain form are homogeneous for the desired side. The following template illustrates a
very typical and simple use of Theorem 3.10:

Suppose P : [w1]¥? — 2 is a partition defined by P(f) = 0 if and only if f does not have any “errors”.
An error is a property of f so that if f has an error, then it must be witnessed at a v < w;. An example
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of an error property could be that L[f] = —GCH, i.e. the generalized continuum hypothesis fails in L[f].
For this example, if f has an error, then by a condensation argument, there is a 7 < w; which witnesses
this error in the sense that L[f] = 27 > 4. By the partition relations, there is a club Dy C wy which is
homogeneous for P. Suppose one could show that for all ¢ € [Dg]<“!, there is a club C' C w; so that for
all g € [C]%* such that sup(o) < ¢(0), 0"g does not have an error at any 7 such that sup(c) < v < g(0).
Define a relation R C [Dg]<“! x club,, by R(c,C) if and only if C has the above property with respect to
o. R is a relation which is C-downward closed in the club,, -coordinate. By Theorem 3.10, let D; C Dy and
A : dom(R) N [Dq]£t — club,,, be such that for all ¢ € dom(R) N [D1]5**, R(o,A(c)). Now construct a
function h € [D1]“* by recursion as follows: Let Fy = Dy N A(D). Let h(0) the w'® element of Fy. Suppose
for some «, h [ o and Fpg, for all 8 < «, have been defined. Let F, = A(h [ a) N ﬂﬁ«x Fg and let h(o)
be the w'M element of F, larger than sup(h | «). This completes the construction. Note that h belongs to
[D1]¢r. For each a < wy, let drop(h,a) € [D1]¥* be defined by drop(h, a)(v) = h(a + 7). For all a < wy,
by construction, one has drop(h, ) € [F,]“* C [A(h [ @)]¥* and therefore h does not have an error at any ~y
with sup(h | o) < < drop(h, @)(0) = h(c). Thus h has no errors at any v < w;. Because errors must be
witnessed at some 7y < wq, h has no error. P(h) = 0 and therefore Dy is homogeneous for P taking value 0.

The almost everywhere [w1]<“!-club uniformization of Theorem 3.10 is particularly important for studying
the stable theory of the partition measure ju,,: Each f € [w1]*?, L[f] is naturally an .Z = {&, E'} structure.
Since fi,, is an ultrafilter, for any .Z-sentence, either (1) for p,,-almost all f, L[f] = ¢ or (2) for p.,-almost
all f, L[f] & —¢. The w;-stable theory is ! which is defined to be the collection of #-sentences ¢ so that
for p,,,-almost all f, L[f] &= ¢. One can ask which natural statements of set theory, such as GCH, belong to
3«1, For instance, in forthcoming work of Chan, Jackson, and Trang, one can show that for any o € [w]<“?,
there is a club C' C w; so that for all g € [C]41, for all k with sup(c) < x < g(0), L[o"g] | 2% = k™. Thus
using the outline above, one has that GCH € E“*. Using Theorem 3.10, one can also show that for y,,, -almost
all f, L[f] E (Va < w1)(f(«) is a strongly inaccessible cardinal) and L[f] satisfies ¥{-determinacy. One can
also show that for p,, -almost all f, L[f] has a canonical inner model L[] where 7y is an w;-length sequence
of normal measure with discontinuous increasing sequence of critical points & so that f is generic over L[vy]
for a generalized Prikry forcing P, ;> considered by Fuchs [7]. This can be used to show that for f,,,-almost
all f, Al-determinacy fails in L[f]. Welch [11] has investigated similar questions in a different setting.

2. BaAsics

Throughout the entire paper, assume ZF+AD (but not necessarily DCg) unless otherwise explicitly stated.

Except for Theorem 2.16 and Theorem 2.17 which were proved or observed by the authors for this paper,
the results of this section are well known and due to Martin and Solovay. This section will introduce the
necessary notations and results. Although the proofs use a simple and fundamentally important idea of
Martin that appears in his arguments for the partition properties, the exposition is quite tedious. A careful
presentation is given in [3]. Specifically, see [3] Section 2, 3, and 4 for more details.

Definition 2.1. Let [w;]“* denote the collection of strictly increasing functions f : wy; — wi. A function
f € [w1]¥* has uniform cofinality w if and only if there is a function F': wy; X w — wy so that for all o < wy,
for all n € w, F(a,n) < F(a,n + 1) and f(a) = sup{F(a,n) : n € w}. A function f € [w1]** has correct
type if and only if f has uniform cofinality w and for all & < wq, f(a) > sup{f(8) : B < a}, that is, f is
discontinuous everywhere. Let [w1]¥! denote the subset of [w1]*“! consisting of the functions of correct type.

Fact 2.2. [w1]“! &~ [w]4".

Proof. Let A ={w-(a+1):a € w}. Suppose f € [A]“!. Let F'(«) be the unique S so that f(«a) = w-(8+1).
Let F': wy X w — wy be defined by F(a,n) = w- F'(a)+n. Note that for all o, f(a) = sup{F(a,n) : n € w}.
Thus f has uniformly cofinality w. For any «, for any 8 < a, f(f) = w- (F'(8)+1) < w- F'(a) <
w- (F'(a) +1) = f(«). This shows that every f € [A]“* is of the correct type. Clearly, [w1]“* = [A]“*. Thus
one has an injection of [w1]*! into [wy]¢*. The inclusion map in an injection of [w;]%* into [wy]**. O

Definition 2.3. Let € < wy. Write w1 — (w1)§ to indicate that for all P : [w1]¢ — 2, there is an ¢ € 2 and
a club C C w; so that for all f € [w1]S, P(f) = i. In this case, one says that C' is homogeneous for P taking
value 7.
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Fact 2.4. (Martin; [8] Theorem 12.2, [3] Corollary 4.10 and 4.27) For all e < w1y, wy — (w1)5.

Definition 2.5. For € < wq, let p. denote the collection of X C [w;]S so that there exists a club C' C wy
so that [C]S € X. As a consequence of w; —, (w1)5', pe is a countably complete ultrafilter on [w;]¢ for all
€ < wi.

Definition 2.6. Let 7 : w X w — w be a bijection. If R C w X w, then z € “w codes R if and only if
(a,b) € R < x(mw(a,b)) = 0. This gives a coding of binary relations on w by elements of R. For each = € R,
field(x) is the set of n so that there exists some m such that z(w(m,n)) =0 or z(w(n,m)) = 0.

Let WO denote the set of reals coding wellorderings on subsets of w. If w € WO, then <,, refers to the
wellordering on field(w) coded by w. For each w € WO and a < ot(w), let n¥ be the element of field(w)
which has rank « according to <,,. For each a < wy, let WO, = {w € WO : ot(w) = a}. Similarly, one can
define WO.,, WO<,, WO, and WO<,. Note that WO is II}. For each a < wy, WO+, and WOs,, are
IT}; and WO,, WO, and WO, are Al.

Fact 2.7. (]3] Fact 4.3) Suppose T is a Player 2 strategy with the property that for all x € WO, 7(z) € WO
and ot(7(x)) > ot(x). Let Cr = {n <w; : (Vw)(w € WO, = 7(w) € WO,,)}. Then C; is a club.

Definition 2.8. Let clubcode,,, denote the collection 7 € R so that 7 is a Player 2 strategy with the property
that for all w € WO, 7(w) € WO and ot(7(w)) > ot(w). Note that clubcode,, is a II} set.

Fact 2.9. (Solovay, [3] Fact 4.6) Suppose C is a club. There is a T € clubcode,, so that C; C C.

Fact 2.10. ([3] Fact 4.7) Suppose A C clubcode,,, is 1. Then one can find a club C uniformly in A (as a
set; e.g. not depending on any X1 representation of A) so that for all T € A, C C C,.

Definition 2.11. A function ® : [w1]¥* — w; is continuous if and only if for all f € [w;]¥*, there is some
a < wi so that for all g € [wh]¥t,if g [ a= f | a, then ®(g) = ().

If one gives [w;]¥* the topology generated by Ny = {f € [w1]¥* : s C f} for each s € [wq]s*!, then ® is
continuous in the above sense if and only if it is continuous in the topological sense with the range w; given
the discrete topology.

D : [w]¥r — wp is continuous almost everywhere if and only if there is a club C C w; so that ® is

*

continuous on [C]¥*; that is, for all f € [C]%*, there exists an a so that for all g € [C]“* with g [ a = f | a,

B(g) = @(f). '

Definition 2.12. Let BS denote a coding of bounded sequences in w; by reals defined as follows. BS is the
the collection of (z,y) € R? so that
(i) x € WO.
(ii) For all n € field(x), y, € WO.
(iii) For all m,n € field(x), m <, n if and only if ot(y,,) < ot(yn).

Note that BS is II{. For each (z,y) € BS, let o, : ot(z) = w; be defined by o, ) () = ot(yns).
Observe that for every o € [wi]<“?, there is some (x,y) € BS so that o(,,) = 0.

Definition 2.13. Let & be a regular cardinal and A <  be an ordinal. A good coding system for *x consists
of I', decode, and GCg , for each 3 < A and v < k with the following properties:
(1) T is a (boldface) pointclass closed under 3%, Let T' denote the dual pointclass. Let A =TNT.
(2) decode : R — Z(\ x k). For all f € *k, there is some = € R so that decode(z) = f.
(3) For all 8 < A and v < k, GCg, C R, GCg, € A, and GCg  has the property that = € GCg , if and
only if
decode(z)(83,7) A (V' < k)(decode(z)(8,7") = v =7').
For each 8 < A, let GCg =, ., GCp.y.
(4) (Boundedness property) Suppose A € F®A and A C GCg, then there exists some § < & so that
A€, 5 GCae
(5) A is closed under less than x wellordered unions.
Let GC = nﬁ</\ GCg. Note that if z € GC, then decode(z) is the graph of a function in *x. If z € GC,
then one will use function notation such as decode(x)(8) = v to indicate (8,) € decode(x).
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Definition 2.14. Suppose « is a regular cardinal and X is such that w - A < k. Suppose f € “ k. Let
block : “*k — *k be defined by block(f)(a) = sup{f(w-a + k) : k € w}. Thus block(f) is the function
returning the supremum of each w-block.

Suppose f,g € “*k. Let joint : ¥k x “*x — 2k be defined by

joint(f,g)(a) = sup{f(w-a+k),g(w-a+k): k € w} = max{block(f)(c), block(g)(a)}.

Theorem 2.15. (Martin, [3] Theorem 3.7) Suppose \, k are ordinals such that w - A < k. Suppose there is
a good coding system (I, decode, GCp - : B < w - A,y < k) for “ k. Then r —. (k)3 holds.

Theorem 2.16. (3] Theorem 3.8) (Almost everywhere uniformization on good codes) Let k be a regular
cardinal and X < k. Let (I',decode,GCs : f < w- A,y < k) be a good coding system for @i, Let
R C [k]2 x R be a relation.

Then there is a club C C k and a Lipschitz continuous function F' : R — R so that for all x € GC with
decode(z) € [C]“* and block(decode(z)) € [C]2 Ndom(R), R(block(decode(z)), F(z)).

One application of Theorem 2.16 is that under certain conditions large fragments of functions can be
absorbed into inner models containing all reals.

Theorem 2.17. ([3] Theorem 3.9) Let k be a regular cardinal and A\ < r. Suppose (I', decode, GCs, : B <
A,y < K) is a good coding system for *k. Let M |= AD be an inner model containing all the reals and within
M, (T',decode, GC : f < A,y < K) is a good coding system.

Then for any @ : [k]» — &, there is a club D, necessarily in M by the coding lemma, so that ® | [D]} € M.

Definition 2.18. Let s be a regular cardinal and A < k. k is A-reasonable if and only if there is a good
coding system for *k.

Theorem 2.19. (Martin, [3] Fact 4.9, Theorem 4.18, and Theorem 4.26) For any A < w1, wy is A-reasonable.

Remark 2.20. One can check that for A\ < wy, the natural good coding system for “**w; (given by BS as in
Definition 2.12) has the property that for any f € [w1]}, the collection of # € GC with block(decode(z)) = f
is Al. See [3] Fact 4.12.

3. CLUB UNIFORMIZATION

Definition 3.1. Let club,, denote the collection of club subsets of wi. Let R C [wi|S¥* X club,,. If
o € [w1]£¥, then let R, = {C € club,, : R(0,C)}. Let dom(R) = {0 € [w1]s“* : R, # 0}. A function
F : dom(R) — club,,, is a uniformization for R if and only if for all ¢ € dom(R), R(c, F(0)). R is C-
downward closed if and only if for all o € [w1]£“* and for all C' C D with C, D € club,,, R(c, D) implies
R(0,C).

[w1]£¥t-club uniformization is the statement that every R C [w1]s** x club,,, which is C-downward closed
has a uniformization. Almost everywhere [w1]5“*-club uniformization is the statement that for every R C
[w1]s“t x cluby,, which is C-downward closed, there is a club C' C wy so that the relation RN ([C]s%* x club,,,)

has a uniformization.

The primary purpose of this section is to establish the almost everywhere [wq]<¥*-club uniformization,
which will be applied in the next section to establish continuity results. As a warmup, the following is a
simple form of club uniformization.

Definition 3.2. Let o < wy. Let R C [w1]? X club,,, be a C-downward closed relation. A uniformization
for R is a function F : dom(R) — club,,, so that for all o € dom(R), R(o, F(0)). [w1]$-club uniformization
is the statement that every R C [wq]¢ x club,, which is C-downward closed has a uniformization. Almost
everywhere [w1]?-club uniformization is the statement that for every R C [w;]% X club,,, which is C-downward

*

closed, there is a club C' C w; so that RN ([C]¢ X cluby, ) has a uniformization.

Theorem 3.3. Let a < wy. Almost everywhere [w1]$-club uniformization holds.
Proof. Let (21, decode, GCg  : B < a,y < wy) be the natural good coding system for “"*w; which satisfies
the property mentioned in Remark 2.20 or [3] Fact 4.12. Fix R C [w1]? X club,, which is C-downward

closed. Let S C [w;]? x clubcode,, be defined by S(f, z) if and only if R(f,C,). By Theorem 2.16, there is
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a Lipschitz continuous function F : R — R and a club C so that for all z € GC with decode(z) € [C]*'* and
block(decode(x)) € dom(S), S(block(decode(x)), F(z)). Let D be the set of limit points of C'. Remark 2.20
implies that for all f € dom(R) N [D]?, the set Ky = {z € R : decode(x) € [C]Y"* A block(decode(x)) = f}
is Af{. Thus F[K/y] is a X{ subset of clubcode,,. By Fact 2.10, there is a club C; obtained uniformly
from F[Ky| (and hence obtained uniformly from f) so that Cy C C, for all z € F[Ky]. Since for any
z € F[Ky], R(f,C.) and R is C-downward closed, R(f,Cy). Thus the function mapping f to Cy defined by

the procedure above is a uniformization for R on dom(R) N [D]2. O

Note that Theorem 3.3 uses only a boundedness principle. It does not use uniformization or any other
consequences of scales. This is in contrast to the argument of Theorem 3.10 for the almost everywhere
[w1]£“2-club uniformization which seems to require the relevant relations to be Suslin or uniformizable.

Definition 3.4. Let o < wy, let s € <“a. Let N* = {f € “a:s C f}. “a is given the topology generated
by N&, and “« is homeomorphic to “w. The concepts of meagerness, comeagerness, and nonmeagerness can
be defined as usual.

Under AD, a wellordered intersection of comeager subsets of “«a is a comeager subset of “a. Note that
the set surj, = {f € “Ya: f: w — « is a surjection} is a comeager subset of “a.

The following is the simple generic coding function for w;.
Fact 3.5. There is a function & : “w; — WO so that for any o < wq, if f € surj,, then ot(B(f)) = a.

Proof. For any f € “wy, let Ay ={n €w: (Ym)(f(n) = f(m)=n <m)}. Let &(f) code a binary relation
with domain Ay by letting m <g(p) n if and only if f(m) < f(n). It is clear that &(f) € WO and if
f € surj,, then ot(&(f)) = a. O

Fact 3.6. There is a function H : [w1]<“* x WO — BS with the property that for all o € [w1]<“* and for
all w € WO so that ot(w) = sup(o) +2, H(o,w) codes o, that is, 0p(s,w) = 0 (in the notation of Definition
2.12).

Proof. Fix o € [w1]<¥t. If w € WO and ot(w) # sup(c) +2, then let H(o,w) be some fixed element of BS as
this case is insignificant. Now assume ot(w) = sup(o)+2. Observe that length(c) < sup(o)+2. Canonically
from w and o, one will produce (z,y) € BS as follows: Let x € WO (which is produced canonically from w
and o) code a relation on w whose field is {n € field(w) : n <, n}‘éngth(a)} (here the notation comes from
Definition 2.6) and for m,n € field(z), m <, n if and only if m <,, n. Then ot(z) = length(o).

Similarly, produce y canonically from w and o as follows: Fix a k € w. If k ¢ field(z), then let y;, = 0,
the constant 0 sequence. If k € field(x), then let o < length(o) so that K = n¥. Let yx be the unique
real coding a binary relation such that field(yx) = {n € field(w) : n <4 ng, } and for all m,n € field(yx),
m <y, n < m <, n. Then y, € WO and ot(yx) = o(a). Let y € R be such that for all k¥ € w, the k'!
section of y is yx. Thus (x,y) € BS and 0, ) = 0. Let H(o,w) = (z,y). O

Theorem 3.7. Assume ZF and all sets of reals have the Baire property. Let R C [wi]<“* X cluby, be a
C-downward closed relation. Define R C R x R x R (which is the coded version of R) by
R(z,y,2) & (z,y) € BS A z € clubcode,,, A R(0(4,),C2).
Consider R as a binary relation on BS x clubcode,,, . Suppose there is a J : dom(R) — clubcode,,, which is
a uniformization for R. Then there is an F : dom(R) — club,,, which is a uniformization for R.
Thus ZF + ADg proves [w1]<“*-club uniformization.

Proof. Fix 0 € dom(R). The club F(o) will be defined in the following:

Recall & is the simple generic coding function from Fact 3.5 and H is the function from Fact 3.6. Let
A = SWjgup(o)42- As observed earlier, A is comeager as a subset of “(sup(o) +2). Let O : A — BS be
defined by O(f) = J(H(0,8(f))). Note that &(f) € WOgup(o)42 for all f € A. Therefore for all f € A,
H(o,®(f)) € BS and codes o. Since J is a uniformization for R, R(H (o, &(f)),0(f)) holds for all f € A.
The key observation is that for any f € A, O(f) € clubode,, and R(o, Coy))-

For any club C, let enum¢ : wq — C be the increasing enumeration of C. For each v < wy, let K () be the
least § < wi so that for comeagerly many f € A (in the topological space “(sup(c) +2)), enumc,,, (7) < 0.
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Claim 1: K is a well-defined function.

To see this: Fix 7. For each € < wy, let Tc = {f € A : enumg,,,(7) = €} and T>. = {f € A :
enumc,,; (7) > €}. For the sake of contradiction, suppose K (7) is not defined. Then for all € < wy, T is
nonmeager. Since A =T>q = J.-( e is comeager and wellordered unions of meager sets are meager (by the
Baire property for all sets of realg), there exists some € < w; so that T, is nonmeager. Let €y be the least €
so that T¢ is nonmeager. Suppose [ < w; and €, has been defined for all & < 3. Let { = sup{e, : a < S}.
Since by assumption T>¢ = J,.~ ¢ T, is nonmeager and wellordered unions of meager sets are meager, there is
an € > ¢ so that 7, is nonmeager. Let eg be the least € > ¢ so that 7 is nonmeager. This defines a sequence
(€p : B < w1) so that (T¢, : B < wi) is an uncountable collection of disjoint nonmeager sets. Since all sets of
reals have the Baire property, this violates the countable chain condition of the topology on “(sup(o) + 2).
This completes the proof of Claim 1.

Let D = {n <w; : (Vv < n)(K(v) <n)}. Note that since for any club C C wq, enuma(y) > =, one can
conclude that K(y) > ~v. Also if v < v/, K(y) < K(7'). Let € < wy. Let ap = €. Let a1 = K(ay,).
Hence ap41 > ay. Let o = sup{a, : n € w}. Note that for all v < o, v < «, for some n. Then one has
K(v) < K(an) = apt1 < @. Thus @ € D and € < o. This shows that D is unbounded. D is clearly closed.

Claim 2: R(o, D).

To see this: Let n € D. For each 8 < 7, let Fﬁ" ={f € A:enumg,,, (B) <n}. Since n € D, for all 3 <,
K(B) < n. So the set of f € A so that enumc,,,, (8) < K(8) < n is comeager, i.e. Fj is comeager. Then
Y = nB<n Fg is a comeager set. For all f € Y7 forall g <n, 8 < enumcom(ﬂ) < 1. Since Cp(y) is a club,
n € Co(y)- It has been shown that if n € D, then Y has the property that for all f € Y, n € Co(y). Let

= ﬂne p Y. Since wellordered intersection of comeager sets are comeager, Y is comeager. Pick an f € Y.
For any n € D, f € Y". Son € Co(). Thus D C Cpy). Since R(o,Co(y)) holds and R is C-downward
closed, R(o, D). This completes the proof of Claim 2.

Note that D was produced uniformly from o by the procedure above. So finally, let F(c) = D. This
defines F' : dom(R) — club,,,. F' is a uniformization for R.

Now assume ADg. This implies AD and hence all set of reals has the Baire property. Moreover, the
uniformization J for R exists since ADg proves uniformization for all relations on R x R. Club uniformization
follows from the first part of the theorem. |

For a < wy, let BS,, be the subset of BS coding elements of [wy]*.

Corollary 3.8. Assume ZF angl all sets of reals have the Baire property. Let o < wy. Let R C [w1]% X cluby,,
be a C-closed relation. Define RCR xR xR by

R(z,y,z) < (2,y) € BS4 A z € clubcode,,, A R(0 (5,4, C-).

Consider R as a relation on BS, x clubcode,,, . Suppose there is a J : dom(]é) — clubcode,,, which is a
uniformization for R. Then there is an F : dom(R) — club,, which is a uniformization for R.
Thus ADg proves [w1]®-club uniformization, for all o < wy.

Fact 3.9. Assume ZF + AD. Then L(R) = AD (and even AD") and L(R) does not satisfy [wi]®-club
uniformization (when w < a < wi) or [w1]<“'-club uniformization.

Proof. Work in L(R). Consider the relation S C R x club,, defined by S(z,C) if and only if for all club
D CC, D ¢HOD,.

First, one will show that dom(S) = R. Fix an z € R. Since ws is measurable in V', every wellordered
sequence of elements of & (w;) has length less than wy. Thus (£ (w;))" 9P has cardinality less than ws
in L(R). Let (Cy : o < wq) be an enumeration of all club subsets of w; which belong to HOD,. (This
enumeration does not belong to HOD,.) One will construct a club E C w; as follows. Let Fg = ). If v is a
limit ordinal and E, has been defined for all v <+, then let E., be the closure of | J, <~ Ev. Now suppose vy
is an ordinal so that (a, : ¥ < ) and the closed set E, has been defined with «, ¢ E, for any v < 7. Let
o be least element of C., greater than sup E,,. Let E, 1 = E, U {«a, + 1}. Note that a, ¢ E, 4.

In the end, one has constructed a sequence (a, : v < wi) and a sequence (E, : v < wq) so that for all
v<wi, oy €Cyandforall v <y <wy, a, ¢ Ey. Let E= U,KW1 E,. One can check that E is club and
a, ¢ E for any v < wy. Now suppose there was a club D such that D C E and D € HOD,. Then there
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is some v < wy so that D = C,. But ay ¢ D since o, ¢ E. But o, € C,. Hence D # C, which is a
contradiction. This shows that F C w; is a club subset with the property that F has no club subsets that
belong to HOD,. That is, S(x, F). Since x € R was arbitrary, it has been shown that dom(S) = R.
Observe that S is C-downward closed in the sense that for all x € R, S(z,C) and D C C, then S(z, D).
Suppose there is a function F' : R — club,, so that F' uniformizes S. In L(R), F is OD, for some
z € R. Since F is a uniformization, S(z, F'(z)). Therefore F'(z) is a club subset of w; which is OD, and thus
F(z) € HOD,. This contradicts the definition of S.
Considering R as [w]“, the set of increasing sequences in w, define R C [w1]¥ x club,, by

R(z,C) e (x e RAS(z,0) V (z ¢ [w]“).

R can not be uniformized or else S could be uniformized. This shows [w;]¥-club uniformization fails. Similar
examples give the failure of [wq]®-club uniformization for all w < a < w; and a failure of [wq]<“'-club
uniformization. ]

Thus almost everywhere [w;]<“*-club uniformization is the best one can expect in AD alone. This is
verified by the following result.

Theorem 3.10. Almost everywhere [w1]<“*-club uniformization holds: Let R C [w1]s“* x club,,, which is
C-downward closed. Then there is a club D C wy so that RN ([D]£“* x cluby,,) has a uniformization.

Proof. Suppose D C wy is a club. Let BS” denote the subset of BS which code elements of [D]<“. If one
can find a club D C w; so that RN (BS” x clubcode,,, ) has a uniformization, then Theorem 3.7 would give
the conclusion of this theorem.

Fix a © set U C R3 which is universal for £} subsets of R?. Take any f € [wi]“*. Let Ty C WO x
clubcode,,, be defined by T (w, z) if and only if

f I ot(w) € dom(R) A z € clubcode,,, A R(f | ot(w),C.).

That is, T is a relation which attempts to collect reals coding clubs that are associated to all the initial seg-
ments of f according to R. By the coding lemma applied to the pointclass 34 and the usual prewellordering
on WO, there is some e so that

(1) U, C Ty.

(2) For all w € WO, (T¥), # 0 if and only if Ue ,, # 0.

(Note that (1), = {c € R : T¢(w,c)}. Recall that U C R? and U, = {c € R : U(a,b,c)}.) Say that
e € Ris an f-selector if and only if (1) and (2) holds for e and f.

Fix a good coding system (X},decode,GCps - : 3 < wi,7 < wy) for ““1w;. Consider the relation, S C
[w1]¥t x R defined by S(f,e) if and only if e is an f-selector. By Theorem 2.16, let F' be a Lipschitz function
and F C w; be a club such that for all z € GC with decode(z) € [E]““* and block(decode(z)) € dom(S),
S(block(decode(x)), F'(z)). By Fact 2.9, let z* € clubcode,,, be such that C,- C E. Let D be the limit points
of C«.

Now consider the relation K C BS x R by K((z,y),r) if and only if the conjunction of the two holds
(1) 0(ay) € [D]£¥r. (That is, (z,y) € BS”.)

(2) r € GC, decode(r) € [C.-]*"“1, and o, ) C block(decode(r)).

That is, K((z,y),r) holds if (z,y) is a code for a function of length less than w; of the correct type
through D (which is the set of limit points of C.+) and r is a code (according to the good coding system)
for a full wy = w - w; length function with the property that o(, , is an initial segment of block(decode(r)).

One can check that K is projective using z* as a parameter. Hence let G : R — R be a projective
uniformization for this relation. Thus if (z,y) € BS? is such that O(z,y) 18 @ bounded function of the correct
type, then decode(G(z,y)) € [C.+]¢“", and block(decode(G/(x,y))) is an extension of o(, ,) to a full sequence.

Define Y C BS” x clubcode,,, by
Y ((z,9),0) < (2,y) € BS” Av € Up(gay)).

Note that Y is projective since D is the limit points of C,«, U is X3, F is a Lipschitz function, and G is a

projective function. Whenever (z,y) € BS” and 0(z,y) codes a sequence of the correct type of length less than

wy through D, G(z,y) € GC is a code for a full function passing through C,- so that block(decode(G(z,vy)))
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extends o, ). Recall that = is the length of o, ). Thus Thiock(decode(G(z,y))),z = R(:ﬂ,y)' By the prop-
erty of I, F(G(x,y)) is then a block(decode(G(z,y)))-selector. So for all such (z,%), UpG(zy)).e <

Tblock(decode(G(t,y))) T R(ac y) and UF(G(t,y)) z 7& 0 if and Only if R(ac y) — Tblock(decode(G(ac y )) x 7& (). Hence
Y € RN (BS® x clubcode,,,) and any uniformization for Y is a uniformization for RN (BS® x clubcode,,, ).

However, Y does have a uniformization since it is projective. Thus R N (BSD x clubcode,,,) has a uni-
formization. By the remarks at the beginning of the proof, this suffices to complete the argument. O

Theorem 3.11. Assume ZF and all sets of reals have the Baire property. Let R C wy X [w1]<¥* X cluby, be
a C-downward closed relation (on the club,, -coordinate). Define RC R xR xR x R by

R(w,z,y,2) < w e WO A (z,y) € BSA z € clubcode,,, A R(ot(w), 0z, Cz).

Consider R as a relation on (WO x BS) x clubcode,,, . Suppose there is a J : dom(R) — clubcode,,, which
is a uniformization for R. Then there is an F : dom(R) — club,,, which is a uniformization for R.

Thus under ADyg, such relations have a uniformization.

Let R C wy X [w1]5¥t X club,,, be a C-downward closed relation as above. Then there is a club D C wy so
that RN (w1 x [D]$“t x cluby,) has a uniformization.

Proof. This requires some small modifications in the arguments for Theorem 3.7 and Theorem 3.10.

By an argument similar to Fact 3.6, there is a function H : wy X [w1]<“* x WO — WO x BS with the
property that for all & < wy, 0 € [w1]<*", and all w € WO so that ot(w) = max{sup(c) + 2, + 1}, one
has that H(«,0,w) € WO x BS with the property that ot(m (H (o, o, w))) = o and 7o (H («, 0, w)) codes o,
where 71,2 : R X R — R are the projection maps onto the first and second coordinate, respectively. Using
H, one can prove the first part by making the necessary modifications to the argument of Theorem 3.7.

For the second part, let p : w; — w; X wy be a bijection. Let w;,ws : w1 X w; — wy be the projection
onto the first and second coordinate, respectively. Define a relation 7y € WO X clubcode,,, by T¢(w, z) if
and only if

(@1(plot(w))), f | @a(p(ot(w)))) € dom(R) A = € clubcode,, A R(w1(p(ot(w)), f | @a(p(ot(w))), 2).

With this version of the relation T, one can prove the second statement with a modification of the argument
in Theorem 3.10. O

4. CONTINUITY OF FUNCTIONS [wq]*! — wq

Lemma 4.1. Suppose ® : [w1]¥* — wy has the property that there is a club C' C wq so that for all f € [C]%?,
®(f) < f(0). Then there is a club D C wy and a { < wy so that for all f € [D]¥1, ®(f) =C.

Proof. Define a partition P : [w1]¥* — 2 by P(a”f) = 0 if and only if ®(f) < «. By the strong partition
property wy —« (w1)s?, there is a club E C wy which is homogeneous for P. Let E= {a € E:enumpg(a) =
a} where enumpg : w; — FE is the increasing enumeration of F. E C E is also a club subset of wy. Let
f e[ENC]¥. Then ®(f) < f(0) by the assumption on C. Since f is a function of the correct type and
f(0) € E, one can find an o € E with ®(f) < a < f(0). Then o'f € [E]** and P(a"f) = 0. Since E is
homogeneous for P, one must have that E is homogeneous for P taking value 0. Let Ey = E \ (min E + 1).
For all f € [Ep]¥", one has that ®(f) < minE since (min E)"f € [E]¥* and P(min(E)"f) = 0. By the

countable completeness of the strong partition measure on wy, there is a club D C Ey and a ( < min F so
that for all f € [D]¥*, ®(f) =¢. O

Example 4.2. The existence of a function ® : [wy]“* — w; which is not continuous i, -almost everywhere
intuitively amounts to asking whether there is a way to define a map that truly uses all information about
f and not merely an initial segment of f, for p,,, -almost all f € [wq]“?

One function that at first glance may appear to use the whole function f € [wq]*“? is ®(f) = wf L1, However,
almost everywhere ® uses no information about f. It is u,, -almost everywhere a constant function.

To see this: Let f € [w1]¢*. For each o < wy, let fo € [w1]¥* be defined by fo(8) = f(a + B). Note
that for all @ < 8 < w1, fg € L[fa]. So wlL[fﬁ] < wlL[f”]. The sequence (wlL[f"] : @ < wi) is a nonincreasing
sequence of ordinals. It must be eventually constant else one would have an infinite decreasing sequence of
ordinals. Let ¢ be the eventual constant value of this sequence.
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Let Q : [w1]¥* — 2 be defined by Q(f) =0 < wle = es. By the strong partition property wi —. (w1)s",
there is some D C w club which is homogeneous for Q). Let f € [D]%*. Let a be minimal so that wlL[f“] = €5.
Note that wf[f“] =€, and f, € [D]¢*. Thus Q(f,) = 0. Thus D is homogeneous for @ taking value 0. It
has been shown that for all f € [D]¢", wle = wlL[f“] for all o < wy.

Consider P : [D]** — 2 defined by P(f) = 0 & &(f) = w¥! < £(0). By wy —. (w1)$", let C C D be a
club such that C' is homogeneous for P. Take any f € [C]¥'. Note that for all @ < wy, ®(f,) = wlL[f“] =
wlL[f] = O(f) since f € [D]¥*. Pick 6 so that f(4) > wlL[f]. Then ®(f5) = ®(f) < f(8) = f5(0). Since
fs5 € [C]¥*, one has that C' is homogeneous for P taking value 0.

So for all f € [C]¥1, ®(f) < f(0). By Lemma 4.1, ® is p,,-almost everywhere a constant function.

With Trang, it has been shown that the constant almost everywhere value of ® is quite large. It is in
particular not wt.

Claim 1: There is some € < w; and some club Cy C wy so that for all f € [Cy]%?, the canonical L[f]
wellordering of RE] has ordertype e.

Suppose not. For all a < wy, there is a club C' C wy so that the canonical wellordering of R*l/] has length
greater than «. By the countable additivity of the strong partition measure, for each o < wq, there is a real
T so that for almost all f € [w1]“1, 7, is the ! real in the canonical wellordering. Suppose « # 3. There
is a club C,, and Cjp so that for all f € [C,]%* and g € [Cp]“1, the o't real of L[f] is r, and the 3" real of
Llg] is r5. If f € [Co N Cp]«1, then r, and 75 are the o and B real of L[f]. Hence r, # 7. This shows
that (r, : @ < wi) is an wy sequence of distinct reals. This is impossible under AD. Claim 1 has been shown.

By a countable additivity argument, one can show that there is a club Cy so that for all f,g € [C]42,
RELUT = RLI9), Let R* denote this common set of reals. Suppose 2 € R*. AD implies that 2¥ exists. Let C, be
the club set of Silver indiscernible for L[z]. Let f € [C1 N C,]¢*. Note that f [ w € L[f] and = € L[f]. Thus
z¥ can be defined within L[f] as the collection of formulas true in L[z] using { f(n) : n € w} as indiscernibles.
So 2 € R*. It has been shown that R* is closed under sharps. This implies that for f € [C}]1, wle > wh.

This example motivates the further study of the stable theory of the partition measures p. for € < wy:
Note that for each sentence ¢ in the language of set theory, since . is an ultrafilter, one has exactly one of
the following holds: (i) for pe-almost all f, L[f] &= ¢ or (ii) for pc-almost all f, L[f] E —¢.

In work with Trang, the authors study which natural statements belong to the stable theory of the
partition measure p.. For example, for all € < wy, for p-almost all f, L[f] E GCH. The most difficult case
is € = wy where the [wq]£*!-almost everywhere club uniformization plays as essential role as a construction
principle. This result will appear elsewhere.

As a warmup to showing every function ® : [w;]¥' — w; is continuous, we will show that elements of
H[wl];ul w1 /p which have representatives that are continuous form an initial segment of the ultraproduct.

Fact 4.3. Suppose ¥, ® : [w1]¥* — wy. Suppose O is continuous pi,, -almost everywhere and ¥ <pe,
which means {f € [w1]“* : (f) < P(f)} € pw,- Then ¥ is continuous pi,, -almost everywhere.

Proof. Let Cy C wy be a club so that ® is continuous on [Cpl¥* and U(f) < ®(f) for all f € [Co]«*. Let
K C [Co]£“* be the collection of o so that for all f,g € [Co]“* with f [ |o| =g [ |o| =0, ®(f) = D(g). Since
® is continuous on [Cyl¥t, K is dense in [Cp]¥! in the sense that for all f € [Cpl¥t, there exists an a < wq
so that f | @ € K. For each 0 € K, let d, = ®(f) for any f € [Co]¥* such that f | |o| = o, which is well
defined by the definition of K.

For each o € K, define I',, : [Cp\sup(o)+1]¥* — wy by I's(g) = ¥(0"g). Thus for all g € [Co\sup(o)+1]42,
I';(g9) < dy. By the countable additivity of p,, for u,,-almost all g, T's(g) takes a constant value denoted
¢o. Define U’ : [Cp]¥* — wy as follows: For each f € [Cyl¥?, find the least v so that f [ a € K (which exists
by the density of K), and let ¥'(f) = ¢s}o. Note that ¥’ is continuous.

The claim is that ¥ =, ¥

Define P : [Cy]“t — 2 by P(f) = 0 if and only if ¥(f) = U/(f). By the strong partition relation
w1 = (w1)5t, let C1 C Cp be a club on which P is homogeneous. Let f € [C1]¥*. Find the least
a so that f | @ € K. There is some club D so that 'y, takes constant value cfjo on [D]¢*. Let
D' = (Ci\sup(o) + 1) N D. Let g € [D']¥*. Then ¥(f [ a"g) = I'jjal9) = cr1a = ¥'(f | a’g). So
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P(fla'g)=0and f [ a"g € [C1]¥*. Hence C is homogeneous for P taking value 0. This implies ¥ = ¥’
on [C4]¥, so ¥ is continuous on [C7]%! since ¥’ is continuous. O

The following is a useful notation:

Definition 4.4. Define drop : [w1]*“! X wy; — [w1]** by drop(f,d)(a) = f(0 + «). Thus drop(f,d) is merely
f with its §*P-initial segment, f [ §, removed.

Let A C wy be an unbounded subsets of wy. Let nexty : w; — A be defined by nexta(«) is the smallest
element of A strictly larger than a. Let next : w; — A be defined by next4(a) is the w'M-element of A
larger than a.

Theorem 4.5. Every function ® : [w1]¥* — wy is continuous almost everywhere.

Proof. Let P : [w1]¥* — 2 be defined by P(f) = 0 if and only if there exists o < wy so that for all club
C C wy, there exists g € [C]4* so that f | @"g € [w1]¥* (i.e. is strictly increasing) and ®(f [ a’g) < ¢(0).
(The idea is that if P(f) = 0, then the « above gives the initial segment of f which serves as a continuity
point. One would like to use Lemma 4.1 to obtain the value of ® at this continuity point; however, the
quantifiers in the definition of P are the opposite of the quantifiers of Lemma 4.1.)

By w1 = (w1)¥1, let D C wy be homogeneous for P.

Claim 1: D is homogeneous for P taking value 0.

To prove this: Suppose that it is homogeneous for P taking value 1. This means that for all f € [D]%*,
for all @ < wy, there exists a club C C [w1]¥* so that for all g € [C]¥* such that f [ &g € [wi1]4?,
o(f 1 a’g) > 9(0).

Define R C [D]5%t xcluby, by R(o, C) if and only if for all g € [C]¥* with 6°g € [w1]¢*, ®(c7g) > ¢(0). Ris
C-downward closed. Note that dom(R) = [D]£“* since D is homogeneous for P taking value 1. By Theorem
3.10, there is a club E C D so that RN ([E]£“* X cluby, ) has a uniformization. Let A : [E]£¥* — club,, be
such a uniformization function for R on [E]s“!.

First one will construct an h € [E]$" by recursion as follows: Let Fy = E N A(0). Let h(0) = next, (0).
Suppose h | a and clubs Fp for all 8 < « have been defined. Let F, = A(h | a) N ﬂﬂ<a Fg. Let
h(a) = next$ (sup(h [ «)). This completes the construction of & € [E]** and sequence of clubs (Fj : f < wy).

Since one has the sequence (Fj : 3 < wi), one also can define the sequence of functions (nextr, : f < wi).
Define H : w; X w — wy by recursions as follows: H(0,0) = nextp,(0). H(0,n+ 1) = nextp, (H(0,n)). If for
some «, H(S,n) has been defined for all § < a and n € w, then let = sup{H(f,n): f < a An € w}. Let
H(a,0) = nextp, (1). Let H(o,n + 1) = nextp, (H(a,n)). Now H witnesses that i has uniform cofinality
w. By the construction, it is clear that h is increasing and discontinuous everywhere. Thus h € [E]¢1, i.e. is
increasing and has correct type.

Now pick any « < wy. Since drop(h, ) € [F,]¥* C [A(h | @)]%*, the definition of A being a uniformization
for R implies that ®(h) = ®(h | o’drop(h,«)) > drop(h,a)(0) = h(a). Since o < wy was arbitrary, this
shows that for all @ < wy, ®(h) > h(a). Since h € [E]%! is a strictly increasing function, ®(h) > wy. This
is impossible since ® : [w1]“* — w; is a function which takes values among the countable ordinals. This
establishes Claim 1.

Thus D is homogeneous for P taking value 0. Let K C [D]<“* be the collection of ¢ such that for all club
C C wy, there is some g € [C]¢* with 07g € [w1]¥* and ®(0"g) < ¢(0). Note that K is dense in [D]%* since
D is homogeneous for P taking value 0. (Elements of K will be the continuity points of ®. However, the
quantifiers in the definition of K are the opposite of what is needed to use Lemma 4.1. The next partition
attempts to resolve this.)

Fix 0 € K. Let Q, : [D \ supo + w]¥* — 2 be defined by Q,(g) = 0 if and only if ®(¢"g) < ¢g(0). By
w1 =4 (w1)5?, there is some E C D club which is homogeneous for Q),. By the property of o € K, there
is some g € [E]“* so that 0°g € [w1]¢* and ®(0"g) < g(0). Thus one has Q,(g) = 0. This shows that F is
homogeneous for @, taking value 0. (Now one can apply Lemma 4.1 to find the value of ® associated to
0.) Define V,, : [E'\ supo + w]¥* — wy by V,(g) = ®(07g). For all g € [E\ supo + w]¥?, V,(g9) < ¢g(0). By
Lemma 4.1, there is an E' C FE club so that V, is constant on [E’']¢* taking value ¢,. Note that ¢, does
not depend on the choice of E or E’ in the sense that for any club E” so that V, is constant on [E"]¥*, the
constant value must be c¢,.
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Define ¥ : [D]¥* — w; as follows: For f € [D]%", find the least a so that f [ & € K and let U(f) = ¢fja.
Such an « exists by the density of K. ¥ is continuous on [D]¥*. This is because for any f € [D]¥*, let a be
the least ordinal so that f [ « € K. For any g € [D]¥* with g [ @ = f | «, one has that « is also the least
ordinal so that g [ @ € K. Thus ¥(g) = ¢gja = cf1a = ¥(f).

Claim 2 : For p,,-almost all f, ®(f) = ¥(f).

To see this: Define Y : [D]¥* — 2 by Y(f) = 0 if and only if ®(f) = ¥(f). By w1 —. (w1)¥?, there
is some club F' C D which is homogeneous for Y. Let f € [F]¥'. Let a be least so that f | @ € K. Let
o = f | a. There is some F’ C F club so that V,, takes constant value ¢, on [F']¢*. Let g € [F']“* be such
that sup(o) < ¢g(0). Let f' = ¢"g. Then ®(f') = ®(c"g) = V,(g9) = ¢,. As noted above, the least « so that
f' T a € K is the same as the least « so that f [ « € K. So ¢, = U(f’). Thus Y(f’) = 0. Since f' € [F]41,
F must be homogeneous for Y taking value 0.

It has been shown that for all f € [F]¥t, ®(f) = ¥(f). Since ¥ is a continuous function, ® is p,,,-almost
equal to a continuous function. O

Zapletal asked the first author whether every partition of [w1]“! into w; many pieces must have at least
one piece of cardinality [w1]“?. The following gives a positive answer.

Theorem 4.6. Suppose (X, : o < wy) is a sequence of subsets of [w1]“* so that |J Xo = [w1]*t. Then

there is an o < wy so that X, =~ [wq]*.

Proof. Define @ : [w1]¥* — w; by letting ®(f) be the least o such that f € X,. By Theorem 4.5, there
is some club C' C w; so that ® is continuous on [C]¥*. Pick any f € [C]¥*. Let 6 = ®(f). By continuity,
there is some « so that for all g € [C]¢* with g [ a = f | «, ®(g) = ®(f) = 6. Using Fact 2.2, let

A jw]¥t = [C\ f()]¥* be a bijection. Define I' : [w1]“t — X5 by T'(9) = (f | @)"A(g). Then T" is an
injection. Thus | X5| = |[w1]¥*]. O

a<wiy

Theorem 4.7. |[w1]<%!| < |[w1]“1].

Proof. For a < 8 < wy, let Xq 5 = [6]* and note that | X, g < [R|. Observe that [wi]<“t =<5, Xa,s-

By using the Godel pairing function, one can recognize this union as an wi-length union of subsets of [wq]<*?
with cardinality less than or equal to R (but non-uniformly). Therefore |[w;]<“!| = |[w1]¥!| is impossible
since it would violate Theorem 4.6. ]

5. CONTINUITY OF FUNCTIONS [wq]“? — “lw;
Recall that “*w; is the collection of all functions f : w; — wy.

Definition 5.1. A function ® : [wq]“! — “'w; is continuous if and only if for all f € [wq]“?, for all € < wy,
there exists a § < w; so that for all g € [wy]¥*,if f[d =g [J, then D(f) [ e = P(g) [e.

If one gives [w1]*“! and “*w; the topology indicated in Definition 2.11, then ® : [w;]“* — “*wy is continuous
if and only if ® is continuous in the topological sense.

D : [wy]“r — “w; is continuous almost everywhere if and only if there club C' C wy so that ® is continuous
on [C]¥r.

Lemma 5.2. There is no club D C wy and no function A : [D]¥* — wy with the property that for all
f € [D]¥r, for all & < wy, there exists a club C C wy so that for all g € [C]“Y, if (f | @)’g € [w1]¥?, then
A((f T @)g) = 9(0).

Proof. The proof of Claim 1 in Theorem 4.5 is precisely this lemma. As there, one can prove this by using
the almost everywhere [w1]5**-club uniformization (Theorem 3.10). However, having already established
the continuity property in Theorem 4.5, this lemma can be derived easily as follows:

Suppose such a club D C w; and function A exist. By Theorem 4.5, there is a Dy C D so that A | [Dg]«t
is continuous. Take any f € [Dg]¥*. Let ¢ = A(f). By continuity, there is an o < w; so that for all
h € [Dol“t, if f | @« = h | «, then A(h) = A(f) = ¢. By the hypothesis applied to this f and «, there
exists some club C C wy so that for all g € [C]¢1, if (f | @)g € [w1]¢?, then A((f | «)"g) > ¢(0). Pick
g € [C'N Dg)“t such that (f | «)’g € [w1]¥* and ¢g(0) > ¢. Then A((f [ @)’g) > g(0) > ¢ by choice of C.
However (f | a)’g € [Do]¥* and ((f | «)°g) | @« = f | a. Since f [ v is a point of continuity for A on [Dg]4?
for taking value ¢, one must have A((f | a)’g) = ¢. Contradiction. O
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Theorem 5.3. (With Trang) Every function ® : [w1]“? — “wy is continuous almost everywhere.

Proof. Define a partition Py : [w1]4* — 2 by Py(f) = 0 if and only if for all 8 < wy, for all ¥ < wy, there
exists an a > 7 so that for all club C' C wq, there exists a g € [C]%* so that (f | «)'g € [wi]¢* and
DO((f ] @)g)(B) < g(0). (Here Py(f) = 0 will intuitively means that for each § < wy and v < wy, there is an
a >« such that f | a is a continuity point for the 5" coodinate of ®.)

By w1 =« (w1)3", there is a club Dy C w; which is homogeneous for Fy.

Claim 1: Dg is homogeneous for Py taking value 0.

To see this, suppose Dy is homogeneous for Py taking value 1. Negating the definition of Py, one see that
Py(f) = 1 if and only if there exists 8 < wy, there exists v < w; so that for all & > =, there exists a club
C C wy so that for all g € [CJ22, if (f [ a)°g € [w)]2*, then &((f | a)'g)(8) > g(0).

Let Wy : [Dg]¥* — wy be defined by letting Wy (f) be the least 5 witnessing the first existential quantifier
in the definition of Py(f) = 1. By Theorem 4.5, there is a club D, C Dy so that ¥q | [D{]¥* is continuous.

Define ¥y : [Dj]¥* — w1 by Ui(f) is the least v witnessing the second existential quantifier in the
definition of Py(f) =1 for 8 = Wy(f). Again by Theorem 4.5, there is a club D; C Dj so that ¥y [ [Dq]%*
is continuous. (Note that g | [D1]%* is also continuous.)

Now take an h € [D1]91. Let 8 = Uo(h) and 4 = \Ifl(h). By the continuity of ¥y [ [D1]%* and ¥y | [Dq]%,
there is ¢ < w; so that for all g € [D1]<1,if g | ¢ = h | ¢, then Wy(g) = Wo(h) = B and W1 (g) = Uy (h) = 4.
Let & = max{(,5}. Let 0 = h | &. Note that for all g € [D1]%* so that ¢°g € [D1]¥*, one has that
Uo(o"g) = 5 and ¥1(07g) = 4. A

Define A : [Dy \ (supo + 1)]¥* — wy by A(f) = ®(0"f)(B). Observe that A has the property that for
all @ and f € [Dy \ (supo + 1)]¢, there is a club C' C w; so that for all g € [C]%, if (f | a)g € [w1]¥?,
then A((f [ «)"g) > ¢(0). Such a function can not exist by Lemma 5.2. Claim 1 has been shown so Dy is
homogeneous for Py taking value O.

For each 8 < wi, let K be the collection of o € [Dy]s“* so that for all clubs C' C wy, there exists a
g € [C]¢* so that 0”g € [w1]¢* and @(c7g)(8) < ¢(0). Note that for all 5 < wy, Kg is dense in [Dg]4*, which
means that for all f € [Dg]4*, for all v < wy, there exists an o > v with f [ @ € Kg. To see this: for any
f € [Dol¢ and v < wy, Po(f) = 0 implies there exists some a > =y so that for all club C' C wy, there exists a
g € [C1¥* with f | a’g € [w1]¥* and ((f | @) ¢)(8) < ¢(0). This o would suffice. (K will be the collection
of continuity point for the B*"-coordinate of ®. The next partition will use Lemma 4.1 to find the value
associated to this continuity point.)

For each 3 < wy and o € K, define the partition Q2 : [wy \ (supo + 1)]* — 2 by Q%(g) = 0 if and only
if ®(0°g)(8) < g(0). By w1 — (w1)%1, there is a club E C w; which is homogeneous for Q2. By definition of
o € Kg, there is a g € [E]** so that 0°g € [w;1]¢* and ®(0"g) < g(0). Thus E is homogeneous for Q¥ taking
value 0. Define ®2 : [E'\ (supo + 1)]“* — w; by ®2(g) = ®(0"g)(B). Since E is homogeneous for Q¥ taking
value 0, one has that for all g € [E\ (sup(o) + 1)]¢*, ®2(g) < ¢(0). By Lemma 4.1, there is a club FF C E
and a cg < wj so that for all g € [F]*1, ®%(g) = ¢2. (Note that ¢ does not depend on the choice of clubs
EorF.)

For each f € [Dg]¥t, define a strictly increasing sequence <a? : B < wi) by recursion as follows: Let a(}
be the least a so that f | o € Ky, which exists by the density of Ky in [Dg]¥*. Suppose 8 < w; and for
all ¥ < B, aj has been defined with the property that f [ a} € K. Let { = sup{a} : v < 8}. Let a?
be the least o > £ so that f [ a € Kg, which exists by the density of Kg in [Dy]¥*. Note that the map
= <oz§i7 : B < wi) is continuous in the sense that for any f € [Dg]¥*, any v < wy, and for all g € [Dg]«t, if
gl oz} =f] o/}, then o/; = ag for all 8 < . (Intuitively, the sequence (a? : B < wy) collects the length of
the various continuity points of f for the various coordinates of ®(f).)

Define T : [Dg]¥* — “'wy by T'(f)(B) = c/; . Pick any f € [Dg]* and v < wy. As observed above, for

all g so that g [ a} = f | &}, one has that <o¢§ .ﬁgfﬁ = <af :B8<9). Hence I'(f) [v+1=T(g) I v+1
for all g so that g [ a} = f [ a}. This shows that I': [Do]$* — “1w; is continuous.
Claim 2 : There is a club Dy C wy so that @ [ [Dg]4* =T | [Do]“!.
To see Claim 2: Define a partition Py : [Dg]¥* — 2 by Pi(f) = 0 if and only if T'(f) = ®(f). By
w1 = (w1)5", there exists a club Dy C Dy which is homogeneous for P;.
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Define a relation R C wi x [Do]¢* x club,,, by R(3, 0, C) if and only if o € Kz and ®2 is constant on [C]“
taking value c2. Note that the domain of Ris Y = {(8,0) : ¢ € Kz}. Ris C-closed in the club,,-coordinate.
By Theorem 3.11, there is a club D3 C D, and a uniformization function ¥ : Z — club,, so that for all
(B,0) € Z, R(B,0,%(B,0)), where Z = {(B,0) : B €wr Ao € KgN[Ds]s¥1}.

If C C wy is a club, then let po € [C]¢* be defined by po(a) = enume(w - (o + 1)). pe can be regarded
as the canonical correct type function passing through the club C.

A function h € [D3]%*, an increasing sequence of ordinals (s : § < wy), and a sequence of clubs (Fs : § <
w1) will be constructed by recursion. (The function i will be defined by specifying longer initial segments
of h at each stage.)

Let go = pp,. Note that go € [D3]¥*. Let vy = ago. Define h | v9 = go | 7. Note that h [ 79 € Ky and
therefore (0,h | 7o) € Z. Let Fy = (0, h [ 79) N D3. Note that for any h’ D h | 7o, one has that af, = vo.

Suppose 73, h | 73, and F have been defined for all 8 < 6. Suppose it has also been shown that for
all 8 < 0, for all B’ € [D3]¥* such that A’ O h | g, one has that ag, = vg. Let £ = sup{ys : B < d}.
Let Gs = (Ng<s Fp) \ (sup(h | §) +1). Let g5 = h | {'pgs. Note that gs € [D3]¢*. Let v5 = 035- Let
h v =gs | 7. Since h | vg C g5 for all 8 < J, one has that s > g for all 3 < 6. Note that for all
B D h|vs, al, =5 Also h | vs € Ks and therefore (6,h | v5) € Z. Let Fs = X(8,h | v5) N ﬂﬁ<5 Fp.

This completes the construction. Note that h € [D3]*. By construction, (s : d < w1) = (af : § < wy).
Fix any § < wy. Due to the construction, drop(h,ad) € [F5]“* C [X(6,h | a)]#*. Since ¥ is a uniformization
for R, one has that ®(h)(§) = ®(h | af drop(h,al))(s) = (szrai (drop(h,a?)) = waai = T'(h)(d). Since §
was arbitrary, ®(h) = I'(h). Thus Py(h) = 0. Since D3 was homogeneous for P; and h € [Ds]*', Ds is
homogeneous for P; taking value 0. Thus @ [ [D3]¥* =T [ [Ds]¢*. @ is continuous on [D3]%" since T' is
continuous on [D3]¢*. This completes the proof. O

6. FAILURE OF CONTINUITY PROPERTY AT wsy

A natural question would be whether the continuity phenomenon occurs at wy. That is, for every function
D : [wa]¥? — wo, is there is a club C' C wy so that @ [ [C]%? is continuous?

* *

Fact 6.1. (Martin) For all @ < we, wo — (we2)g. That is, we is a weak partition cardinal.
(Martin and Paris) The partition relation wa —, (w2)5? fails.

The strong partition property for w; played an essential role in establishing the continuity property
for functions @ : [w1]¥* — wy. The failure of the strong partition property at ws seems to suggest that one
should use a counterexample to the strong partition property as a counterexample to the continuity property.
However, it is not clear if the fact that a function P : [w2]*2 — 2 has no club homogeneous set alone can
imply the failure of the continuity property. For this, one needs to analyze explicit counterexamples to the
strong partition property at ws.

The proof of the Martin-Paris theorem roughly shows that if the partition relation wy — (w2)5? holds,
then w3 — (w3)§ holds for each o < wy. The partition relation w3 — (w3)3 already implies that w3 is regular.
However, AD proves that cof(ws) = wa. See [8] Section 13.

The second author produced an explicit example of the failure of the strong partition property at ws. Its
proof gives some additional properties that will show this function also fails to have the continuity property.
The proof of the following theorem requires an analysis of the ultrapower le w1/, where p is the club
measure on wi, the Kunen tree, and Kunen functions for functions of the form f:w; — w;.

Since le w1/ = wa, every function h : w3 — £ (w;) represents a subset of wy. If A C wsy, then denote
A €], Z(w1)/pif and only if there is a function h : wy — P (w1) so that A = [A],,.

One can also show that [[, & (w:1)/p is necessarily missing a subset of wy. For instance, {a € ws :
cof(a) = wi} does not belong to [[, #?(w1)/p. These results are essential ingredients of the proof of
the follow theorem. The background material and proof of the results mentioned above and the following
theorem are given in [3] Section 6.

Theorem 6.2. (Jackson) Let p denote the club measure on wy. Let P : [w2]¥2 — 2 be defined by P(f) =0
if and only if rang(f) € [[,,, &(w1)/p. Then there is no club C C wy so that P is constant on [C]¢2.

*

As a corollary of the proof of this result, one also has
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Corollary 6.3. Let P denote the function from Theorem 6.2. Let o € [we]=¥2. Define P, : [wa \ (sup(o) +
w)]¥2 = 2 by Py(f) =0 if and only if P(c"f) = 0. Then there is no club C C wy so that P, is constant on
[Cl2=.

With these results, one can show that P is not continuous on [C]¥2 for any club C' C ws.

Theorem 6.4. Let P : [wa]¥2 — 2 be the function from Theorem 6.2. Then there is no club C C wy so that

P [ [C]%2 is continuous.

Proof. Suppose there was a club C so that P | [C]¥? is continuous. Take any f € [C]¥2. Without loss of

*

generality, say that P(f) = 0. By continuity, there is some ¢ < ws so that for all g € [C]¥2 with g [ { = f | (,
P(f) = P(g). Let 0 = f | ¢. This would means that C'\ (sup(c) + w) would be a club homogeneous for P,.
This contradicts Corollary 6.3. (]
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