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Enzymatic Functions for
Toll/Interleukin-1 Receptor Domain
Proteins in the Plant Immune System

Adam M. Bayless and Marc T. Nishimura*

Department of Biology, Colorado State University, Fort Collins, CO, United States

Rationally engineered improvements to crop plants will be needed to keep pace with
increasing demands placed on agricultural systems by population growth and climate
change. Engineering of plant immune systems provides an opportunity to increase
yields by limiting losses to pathogens. Intracellular immune receptors are commonly
used as agricultural disease resistance traits. Despite their importance, how intracellular
immune receptors confer disease resistance is still unknown. One major class of immune
receptors in dicots contains a Toll/Interleukin-1 Receptor (TIR) domain. The mechanisms
of TIR-containing proteins during plant immunity have remained elusive. The TIR domain
is an ancient module found in archaeal, bacterial and eukaryotic proteins. In animals,
TIR domains serve a structural role by generating innate immune signaling complexes.
The unusual animal TIR-protein, SARM1, was recently discovered to function instead
as an enzyme that depletes cellular NADT (nicotinamide adenine dinucleotide) to trigger
axonal cell death. Two recent reports have found that plant TIR proteins also have the
ability to cleave NAD™. This presents a new paradigm from which to consider how plant
TIR immune receptors function. Here, we will review recent reports of the structure and
function of TIR-domain containing proteins. Intriguingly, it appears that TIR proteins in all
kingdoms may use similar enzymatic mechanisms in a variety of cell death and immune
pathways. We will also discuss TIR structure—function hypotheses in light of the recent
publication of the ZAR1 resistosome structure. Finally, we will explore the evolutionary
context of plant TIR-containing proteins and their downstream signaling components
across phylogenies and the functional implications of these findings.

Keywords: Toll/interleukin-1 receptor, TIR, NLR, NADase, innate immunity

THE PLANT IMMUNE SYSTEM

Single and multicellular organisms have evolved numerous defenses to ward off biotic challenges.
The plant innate immune system consists of receptor proteins that monitor both extracellular
and intracellular pathogen-related signals to activate defenses (Figure 1). Typically, extracellular
signals are transduced across the plasma membrane by an extensive array of receptor-like
kinase (RLK) and receptor-like proteins (RLPs) (Boutrot and Zipfel, 2017; Tang et al., 2017).
Disease resistance conferred by the RLK/RLP pattern recognition receptor (PRR) system
is triggered by a wide array of apoplastic molecules from microbes, pathogens and host
damage signals. Accordingly, pathogens have evolved to extensively target PRR pathways to
promote host susceptibility. A common strategy of plant pathogens is to deliver intracellular
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virulence proteins (such as type III effector proteins) in order to
disrupt PRR-based defense (Jones and Dangl, 2006; Dangl et al.,
2013). These virulence proteins are necessary for pathogenicity,
and thus serve as reliable indicators of pathogen presence. In
response to pathogen immunosuppression, plants have evolved
a second layer of innate immune receptors that directly or
indirectly recognize the presence of pathogen virulence proteins
(Jones and Dangl, 2006; Qi and Innes, 2013). As such, virulence
proteins are the tools that pathogens use to suppress the host
immune system, but also the signals that plants of the correct
genotype (i.e., resistant plants) can recognize to reinitiate a
defense response. These intracellular receptors are characterized
by nucleotide-binding site (NBS) domains and a C-terminal
Leucine-rich repeat (LRR). This combination of domains is
present in both plant and animal NLR proteins (confusingly
referring to both “NBS-LRR” and “Nod-like receptors (Nod:
N-terminal oligomerization domain).” While plant and animal
NLR proteins are functionally conserved in many ways, it
appears that they are the product of convergent evolution
(Urbach and Ausubel, 2017).

The recognition of intracellular pathogen virulence molecules
promotes conformational changes in NLR proteins (Takken and
Goverse, 2012). The N-terminal domain of NLR proteins has
signaling activities, while the C-terminal NBS-LRR domains
negatively regulate signaling in the resting state. The NBS
domain functions as a molecular switch depending on the bound
nucleotide: ADP-bound in the resting state and ATP-bound

in the active state (Takken and Goverse, 2012). Both plant
and animal NLRs are auto-regulated and self-associate during
signal transduction, however, the N-terminal signaling domains
of plant and animal NLRs are distinct (Qi and Innes, 2013;
Hu et al,, 2015; Nanson et al., 2019). Generally, plant NLRs
contain N-terminal TIR (Toll/Interleukin Receptor-1) or CC
(coiled coil) domains, and are therefore known as TNLs or
CNLs (Qi and Innes, 2013). Monocot genomes appear to lack
TNL loci, however, both monocots and dicots can encode TIR-
only and TIR-NBS proteins (Meyers et al., 2002; Collier et al.,
2011; Nandety et al.,, 2013; Nishimura et al., 2017; Gao et al,
2018). TIR and CC-domains from plant NLRs are sufficient to
activate immune outputs, including a localized cell death termed
the hypersensitive response (HR), and transcriptional defense
programs (Swiderski et al., 2009; Collier et al., 2011). The self-
association and oligomerization of either TIR or CC-domains is
required for plant immune signaling, however, the downstream
events which follow the activation of TIR or CC resistance
proteins has remained unclear (Casey et al.,, 2016; Wan et al,,
2019; Wang et al., 2019a).

DOWNSTREAM COMPONENTS OF
TIR-SIGNALING PATHWAYS IN PLANTS

Genetic screens have identified two families of proteins
that appear universally required for plant TIR phenotypes
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FIGURE 2 | Immune signaling by plant TIR NADases requires downstream components. (A) Members of the EDS1 lipase-like family: EDS1, SAG101, PAD4.
Terminal mediators of TIR-signal transduction are the RPW8-type ‘helper’ RNLs: ADR1 and/or NRG1. (B) Model of ETI-pathway activation by plant TIR NADases.
Perception of plant TIR signals (e.g., v-cADPR?) promotes EDS1-family heterodimerization, and subsequent activation of the ‘helper’ RNLs, ADR1 or NRG1.
EDS1-PAD4 heterodimers may favor activation of ADR1-mediated responses (transcriptional defense programs), while EDS1-SAG101 heterodimers activate
NRG1-mediated responses (cell death). Functional redundancy among NRG1 and ADR1 indicated by dashed arrows. (C) TIR-domain containing proteins, including
TNLs, are found in the genomes of phylogenetically distant plant-lineages and in the relatives of land plants, including green algae (Sun et al., 2014; Shao et al.,
2019), as well as gymnosperms (western white pine) and the moss, Physcomitrella patens. Monocots do not encode TNLs and lack two downstream mediators of
TIR-immune signaling: SAG101 and NRG (Collier et al., 2011; Lapin et al., 2019).

(Figure 2). The first component is the EDS1 (Enhanced Disease  Deficient 4)] (Feys et al., 2005; Lapin et al., 2019). The second
Susceptibility 1) family of lipase-like proteins [EDS1, SAG101 component, the RPW8 class of ‘helper’ CNLs, often referred to
(Senescence-Associated Gene 101), and PAD4 (Phytoalexin as ‘RNLs, functions downstream of the EDS1 family (Peart et al.,
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2005; Qi et al.,, 2018; Jubic et al., 2019; Wu et al.,, 2019). Helper
NLRs such as the NRG1 (N-requirement Gene 1) and the ADR1
family (Activated Disease Resistance 1) are candidates for being
the ultimate output of TIR pathways (Collier et al., 2011; Qi et al.,
2018; Jubic et al., 2019). How these downstream components are
activated by TIR oligomerization, and the organization of the
overall pathway, remains a major unanswered question (Jubic
etal, 2019; Lapin et al., 2019; Wan et al., 2019).

EDS1 forms exclusive heterodimers with either PAD4 or
SAG101 to relay TIR-immune signals (Feys et al., 2005; Wagner
et al., 2013). EDS1 and PAD4 are also reported to function
in plant basal defenses and salicylic acid signaling (Cui et al,
2017). The crystal structure of the EDS1-SAG101 heterodimer
suggests that binding of the N-terminal lipase-like domains
establishes unique interaction interfaces at the C-terminal EP
domain (Wagner et al., 2013). The C-terminal EP-domain
of EDS1-members contains positively charged residues and is
essential for transduction of TIR-signals (Bhandari et al., 2019;
Lapin et al,, 2019). The TNL RPS4 (Resistance to Pseudomonas
syringae 4), as well as particular TIR-NBS proteins, have been
reported to associate with EDS1, as has the ‘helper’ NLR,
NRG1 (Heidrich et al, 2011; Nandety et al, 2013; Huh
et al., 2017; Qi et al, 2018). The functional consequences of
these physical interactions are unknown. Lapin et al. (2019)
determined that the EDS1-members of Solanaceous species could
complement a N. benthamiana mutant which lacks all EDS1-
family members. However, the orthologous EDS1-members of
Arabidopsis did not complement, suggesting that within species,
EDS1-members may have co-evolved a high degree of specificity
in the relay of TIR-signals (Lapin et al, 2019). Curiously, in
the absence of downstream ‘helper’ NLRs, EDS1-members can
still mediate limited transcriptional defense programs from an
auto-active version of the TNL, Roql (Recognition of XopQ1)
(Qietal., 2018).

The expression of the RPW8-domains of ADR1 or NRGI1
is sufficient to trigger HR, even in eds! null backgrounds,
placing ‘helper’ RNLs as downstream mediators of TIR-signaling
(Collier et al., 2011; Qi et al., 2018). Typically, plant genomes
carry relatively few loci encoding helper RNLs, consistent with
a conserved RNL function that integrates inputs channeled
from upstream TNL receptors via EDS1-complexes. Additionally,
functional redundancy between ADRI and NRGI has been
reported (Castel et al., 2019; Jubic et al,, 2019; Lapin et al,
2019; Wu et al,, 2019). Some CNLs are also reported to signal
through ADRI, suggesting that cross-talk might occur at the
endpoints of certain CNL and TNL-signal pathways (Castel et al.,
2019; Wu et al., 2019). The RPW8-domain of helper RNLs does
share similarities with the CC-domain of CNLs; thus, the recent
structure of the ZAR1 (HOPZ-ACTIVATED RESISTANCE 1, a
CNL) resistosome may provide insights into the functions of
the ADRI and NRGI helper NLRs (Wang et al., 2019a,b). The
active ZAR1 complex assembles into a ring-shaped pentamer,
the “resistosome,” and hypothetically disrupts cell membrane
integrity with a pore-forming channel (Wang et al., 2019a,b).

The mechanisms of how plant NLRs activate downstream
immunity is an active area of research. While TIR-TIR
interactions are well known to promote animal immune signaling

via scaffold function, a new paradigm of plant TIR function
has recently emerged: signal competent plant TIR-domains
are NADT-(nicotinamide adenine dinucleotide)-hydrolyzing
enzymes (Figures 3A-D) (Horsefield et al., 2019; Wan et al,
2019). Below, we review recent advances in the understanding of
plant TIR-domain structure, evolution, and enzymatic (NADase)
function. We also draw insights from the TIR-NADases encoded
by animals and prokaryotes, and explore how the newly reported
structure of the ZAR1 CNL ‘resistosome’ complex might inform
the high order complexes of plant TIR-NADases.

TIR-DOMAINS: A CELLULAR DEFENSE
MODULE FOUND IN ALL DOMAINS OF
LIFE

Toll/Interleukin Receptor-1 (TIR)-domain containing proteins
are found in all domains of life — Eukarya, Bacteria, and Archaea
(Figures 4A,B) (Essuman et al., 2018). Frequently, TIR-domain
containing proteins function in immunity or cell death decisions
in bacteria, plants and animals, suggesting an ancient role in
cellular defenses (Figures 3A,B, 4A,B). The core TIR-domain
is typically ~120-200 residues, and is found in multi-domain
and single domain proteins (Nimma et al., 2017). TIR-domains
generally require TIR-TIR self-associations for function, and TIR-
domains can also participate in heterotypic protein interactions.
The sequence identity of TIR-domains among different species
may be as low as 20-30%, however, TIR-domains share a
flavodoxin-like fold, consisting of parallel beta-sheets and alpha-
helices with interconnecting loops (Ve et al., 2015).

INSIGHTS TO PLANT TIR FUNCTION
FROM ANIMAL SYSTEMS: SARM1
(STERILE ALPHA AND TIR
MOTIF-CONTAINING 1) IS AN NADase

Typically, animal TIRs (e.g., Toll-like receptors, MyD88) couple
pathogen detection to defense gene activation by nucleating the
formation of large multimeric signaling complexes (Figure 3A)
(Xu et al., 2000; O’Neill and Bowie, 2007; Kenny and O’Neill,
2008; Nimma et al, 2017). Crystal structures for numerous
animal TIR-domains have acted as guides for a biochemical
dissection of TIR-domain function (Xu et al., 2000; Valkov et al.,
2011; Bovijn et al., 2012). The crystal structure of the TIR-
domain from Toll Like Receptor 2 (TLR2) revealed residues
required for TIR-TIR interactions, and the core TIR-domain
structure of parallel beta-sheets and alpha-helices (Xu et al,
2000). Additional structural studies of TIR-adaptor proteins
further defined TIR interfaces required for multimerization and
signal complex formation (Nyman et al., 2008; Valkov et al., 2011;
Bovijn et al., 2012). Animal TIR scaffolding can signal various
defensive outputs, such as inflammatory responses and cytokine
production (Figure 2A) (O’Neill and Bowie, 2007). In contrast,
the unusual animal TIR protein SARMI (sterile alpha and TIR
motif-containing 1) was recently found to have a surprising
enzymatic function (Essuman et al., 2017).
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FIGURE 3 | Model of TIR-domain scaffolding (animals) and TIR-NADase activity (plants and animals). (A) Canonical TIR-scaffold function in animals: TIR-TIR
interactions promote signal complex formation and innate immune signal transduction. (B) Top: animal TIR NADases (e.g., SARM1) assemble into high order
complexes, and hydrolyze NAD(P)* substrate and alter NAD(P)* pools. Bottom: assembly of plant TIR-domains into hypothetical NADase complex
(resistosome-like?) and generation of immunomodulatory signals. (C) Numerous TIR-domain configurations are present in animal, plant, and bacterial proteins. Plant
TIR-domains are often found in modular NBS-LRRs, TIR-NBS, TIR-X or TIR-only proteins. -X corresponds to atypical or undefined domains. The animal SARM1 TIR
is located at the C-terminus; the SARM1 SAM-domains promote oligomerization. (D) Known products of TIR NADases; plant TIRs produce variant cyclic-ADPR
(v-cADPR), whose structure is currently unknown.

The animal TIR protein SARMI functions in axon
degeneration, an active process of programmed cell death
in response to injury (classically known as “Wallerian
degeneration”) (Gerdts et al., 2015). NAD"-depletion had

been associated with axon degeneration, but the SARMI-
regulated NADase had remained elusive. The critical
observation that the TIR domain of SARMI is structurally
similar to bacterial nucleotide-processing enzymes led to the
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FIGURE 4 | TIR NADases were recently reported in animals and prokaryotes. (A) Diverse eukaryotic organisms, including invertebrates (e.g., C. elegans, D.
melanogaster) and vertebrates, utilize TIR-domain containing proteins in cellular innate immunity. Non-enzymatic TIR-domain containing proteins in animals promote
signal complex formation via TIR — TIR interactions. The SARM1 NADase TIR from animals functions in axon degeneration, and is reported to function in immunity in
C. elegans (Shivers et al., 2009). (B) Numerous bacteria and archaeal species encode TIR-NADases. Prokaryotic TIR-domain containing proteins are reported to
function in anti-phage immunity (Thoeris system and variants of cBASS) (Doron et al., 2018; Cohen et al., 2019). TIR-domains from pathogenic bacteria are reported
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recognition that the SARM1 TIR has an intrinsic enzymatic
activity: NAD™-hydrolase function (Figure 3B) (Gerdts
et al, 2015; Essuman et al, 2017). Axon degeneration
requires SARM1 TIR domain NADase activities (Essuman
et al., 2017). The unusual enzymatic activity of SARM1 TIR
relative to other animal TIR domains is perhaps reflected
in an unusual evolutionary history, as the SARMI1 TIR
appears to have been horizontally transferred into animals
(Zhang et al, 2011). TIRs that function in canonical
TLR pathways (TLR4 and MyD88) do not have NADase
activity, although the family has not been exhaustively tested
(Essuman et al., 2017).

Like NLRs, SARMI is a multidomain TIR protein that is auto-
inhibited. SARMI has two tandem sterile alpha (SAM) domains,
which enable oligomerization, and an N-terminal Armadillo
domain, which is required for auto-inhibition (Figures 3B,C)
(Essuman et al, 2018). SARM1 TIR NADase function is
dependent upon oligomerization and TIR-TIR associations. The
mechanism of activation during axon degeneration is unclear, but
NADase activity of SARMI can be enhanced by phosphorylation
or treatment with a cell-permeant mimetic of nicotinamide
mononucleotide, an NAD"' precursor (Murata et al, 2018;
Zhao et al., 2019).

NAD™-hydrolysis by SARM1 generates ADPR (ADP-ribose),
cyclic ADPR (c-ADPR) and NAM (nicotinamide) (Essuman
et al, 2017) (see Figure 3D). The products of SARMI-
mediated NAD"-hydrolysis ((ADPR, ADPR) are known Ca?™
mobilization agents and may thus effect cellular Ca?* signaling
(Lee, 2012; Guse, 2015; Lee and Zhao, 2019; Zhao et al.,
2019). SARM1 readily hydrolyzes NADPT as well as NAD-
analogs with substitutions to the adenine ring, such as amino

group additions (Essuman et al., 2017). However, FAD (flavin
adenine dinucleotide) and NADH or NAD-analogs lacking the
amino group of the nicotinamide ring could not be hydrolyzed
(Essuman et al., 2017, 2018). Depending on local cellular pH,
SARM1 is also reported to generate NAAD (nicotinic acid
adenine dinucleotide) (Zhao et al., 2019).

A recent crystal structure of the SARMI1 TIR reveals
conservation with both plant and prokaryotic TIR-domains
(Horsefield et al., 2019). The active site of the SARM TIR-
domain includes a conserved glutamic acid (E642) which is
required for NAD-hydrolysis (Figure 5A). Recent crystal and
cryo-EM structures of SARMI1 complexes, and of the tandem
SAM-domains, indicate that the active SARM1 NADase complex
forms a ring-shaped octamer (Horsefield et al., 2019; Sporny
etal.,, 2019) (Figure 5B). The crystal structure of the SARM1 TIR
active site revealed close proximity of ribose with the putative
catalytic glutamate (E642) and may suggest potential substrate-
active site interactions (Figure 5C) (Horsefield et al., 2019). The
exact catalytic mechanism of SARM1 is unknown, but appears
distinct from CD38, which also produces cADPR from NAD*
(Loring et al., 2020).

Strikingly, SARMI1 triggers cell death when transiently
expressed in the leaves of the plant, Nicotiana benthamiana
(Horsefield et al., 2019; Wan et al., 2019). Like axon degeneration,
plant cell death triggered by SARMI requires NADase function,
however, SARM1-mediated cell death occurs independently
of the known plant TIR-signaling components EDSI and
NRG1 (Horsefield et al, 2019; Wan et al,, 2019). Notably,
supplementation of exogenous NAD™ reduces axon degeneration
mediated by SARM1 (Gerdts et al.,, 2015). As such, SARM1
depletion of cellular NAD(P)™ is likely to underlie both animal
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FIGURE 5 | Structures of individual animal and plant TIR-domain NADases, and the higher order SARM1 SAM octamer. (A) Crystal structure of the SARM1-TIR
domain (PDB ID: 600Q) with ribose (shown green) positioned near putative catalytic glutamate residue (E642), colored orange. (B) Crystal structure of tandem SAM
domains of the animal TIR-NADase, SARM1 (PDB ID: 600S). The SARM1 SAM domains adopt a closed octameric ring conformation. C-terminal end of SAM tipped
with red (arrow shown for one unit). (C) Close-up view of SARM1 TIR active site, as in (A). Arrows indicate ribose and putative catalytic E642 (ribose ~2.6A from
E642). (D) Close-up of active site of the TIR-domain from plant TNL, RUN1 (PDB ID: 600W). A bis-Tris molecule (dark blue) positioned near putative catalytic
glutamate (E100, orange) precludes access of NADP*-substrate (aqua); bis-Tris ~3 A from E100.
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axon degeneration and plant cell death resulting from its ectopic
expression. However, some cell lines are reported to tolerate low
levels of SARM1 expression (Lee and Zhao, 2019; Zhao et al,,
2019). Whether low level SARM1 activity in particular cellular
contexts might generate signaling molecules vs. deplete cellular
NADT stores, is not yet clear.

TIR NADases IN PROKARYOTES: PHAGE
IMMUNE SYSTEMS AND VIRULENCE
FACTORS

Numerous bacterial and archaeal species encode TIR-domain
containing proteins, primarily of unknown function (Spear et al.,

2009; Doron et al, 2018; Essuman et al., 2018). However,
some prokaryotic TIRs are reported to function in anti-phage
immunity, while other TIRs may act as virulence factors which
manipulate host responses (Figure 4B) (Alaidarous et al,
2014; Doron et al., 2018; Coronas-Serna et al., 2019). TIR-
domains encoded by Brucella and Paracoccus are reported
to mimic animal TIR-adaptors and disrupt TLR immune
signaling, potentially via physical interactions with animal
TIR domains (Chan et al., 2009; Alaidarous et al., 2014;
Snyder et al., 2014). However, many apparently non-pathogenic
bacteria encode TIR-proteins, suggesting that some TIR-domains
could possess functions outside of virulence or immunity
(Spear et al., 2009). NAD"-hydrolase activities have recently
been shown for several bacterial and archaeal TIRs, and
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thus, it has been suggested that ancestrally, the TIR-domain
belongs to a large family of nucleotide hydrolase enzymes
(Essuman et al., 2018).

Like the SARM1 TIR NADase, all examined prokaryotic
TIRs also require the putative catalytic glutamate for NADase
function (Essuman et al., 2018). Prokaryotic TIRs are likely
to also require TIR-TIR self-associations, as local crowding
(via TIR protein laden beads) enhanced NADase function
(Essuman et al., 2018). Prokaryotic TIR-domains show variation
in terms of NADT-hydrolysis kinetics, as well as in the
type and ratio of products produced from NADT-hydrolysis
(Essuman et al, 2017). For example, the TirS TIR domain
from Staphylococcus aureus generated ADPR and cADPR, while
the TcpO TIR domain from the archaea Methanobrevibacter
olleyae produced a novel product initially termed metabolite
X, which is likely a variant of cyclic ADPR (v-cADPR),
whose structure remains unresolved (Essuman et al., 2017;
Wan et al., 2019).

Recent studies from the Sorek lab may provide a glimpse
into the origins of TIR-mediated immunity (Figure 4B)
(Doron et al, 2018; Cohen et al, 2019). A survey of
tens of thousands of prokaryotic genomes, coupled with
functional screening, unveiled multiple new classes of anti-
phage defense systems. Among these, an anti-phage system
termed Thoeris, was found in ~2,000 bacterial and archaeal
genomes (Doron et al., 2018). The Thoeris defense operon
encodes an NAD™ binding protein (ThsA) and a TIR-domain
protein (ThsB). Both ThsA and B are required for anti-phage
immunity. Amino acid alignment of the ThsB TIR-domain
with the SARM1-TIR indicated conservation of the catalytic
glutamate (Doron et al., 2018). We used Phyre2 to model the
B. amyloliquefaciens encoded ThsB (BaThsB), and retrieved
a top-match (60% identity, 100% confidence) to the crystal
structure (PDB ID: 3HYN) of a putative signal transduction
factor from Agathobacter rectalis (Figures 6A,B). A comparison
of the SARM1 TIR and plant RPS4 TIR structures with the
BaThsB TIR-domain model indicates positional conservation
of the putative catalytic glutamate (Figure 6A). The putative
catalytic glutamate (E99) of ThsB was required for phage
protection, suggesting that TIR domains may have an ancient
enzymatic-based immune function (Doron et al, 2018). It
will be interesting to assess if Thoeris functions via NAD™-
depletion, akin to SARMI, or could generate NAD™-derived
immunomodulatory signals.

The Sorek group further reported that some prokaryote
genomes harbor an ortholog of the cGAS-STING defense
system found in animals (Cohen et al., 2019). Upon detecting
invading DNA, cGAS (cyclic GMP-AMP synthase) generates
cyclic GMP-AMP (cGAMP) via oligonucleotide cyclase
activity. The ¢cGAMP signal then promotes host cell demise
through activating a phospholipase which disrupts membrane
integrity (Cohen et al, 2019). This prokaryotic system was
dubbed CBASS for cyclic oligonucleotide-based anti-phage
signaling system. Notably, variants of CBASS-mediated
immunity can encode TIR-domains (Cohen et al, 2019).
Whether the TIR-domains of particular CBASS variants require
NADase function is uncertain. Nonetheless, it is becoming

clear that TIR-mediated immunity to phages is common
in both bacteria and archaea. CBASS and Thoeris appear
to trigger host cell death prior to the completion of viral
replication, thereby restricting phage release into the bacterial
population. Elucidating the molecular mechanisms of these
prokaryotic TIR-based systems may provide insights into the
evolution and function of both immunity and cell death in
plants and animals.

TIR NADase ACTIVITY IN PLANTS

Similar to animal SARM1, plant TIRs were recently demonstrated
to be NAD™ hydrolases, and this NADase activity is required
to relay immune signals (Horsefield et al, 2019; Wan et al,
2019). Sequence analysis of the TIR-domain encoding genes
from Arabidopsis, as well as ~8,000 TIR sequences found
from 108 available plant genomes, indicates high conservation
(~90%) of the putative catalytic glutamate required for NADase
activity (Wan et al, 2019). The minority of TIR-domains
that lack this conserved glutamate appear to be from ‘sensor-
type’ TNLs which function via a signal-competent, genomically
paired TNL. These sensor-type TNLs lack the ability to
trigger cell death or immunity without their partner TNL
(Wan et al., 2019).

Like SARMI1 of animals, the NADase activity of plant TIRs
was required for TIR-domain function; i.e., to relay immune
signals (Horsefield et al., 2019; Wan et al,, 2019). In vitro
NADase cleavage activity was demonstrated by TIR-domains
from full length TNLs, as well as TIR-only proteins from
dicot plants (Horsefield et al., 2019; Wan et al., 2019). Similar
to SARM1 TIR and prokaryotic TIRs, plant TIR-domains
could utilize NADT and NADP™ as a substrate, but not the
structurally related NADT precursor NAAD (nicotinic acid
adenine dinucleotide) (Essuman et al., 2018; Horsefield et al.,
2019; Wan et al,, 2019). Intriguingly, a TIR-only protein from
the monocot, Brachypodium distachyon (BATIR), also displayed
NAD™-hydrolysis, in addition to triggering an EDS1/NRGI-
dependent HR, suggesting that TIR-immune signaling may be
conserved among dicot and monocot plants (Wan et al,, 2019).
The products generated by plant TIR NADase reactions include
NAM, ADPR, and v-cADPR. Unlike the SARM1 TIR, production
of cyclic-ADPR by plant TIRs was not detected. v-cADPR has
a near identical HPLC retention time and molecular mass to
the product of an archaeal TIR, TcpO (Essuman et al., 2018;
Wan et al., 2019).

A crystal structure of the plant TIR-domain, RUNI, with
bound NADP™ substrate was determined by Horsefield et al.
(2019) (Figure 5D). The putative catalytic glutamate of RUN1
was associated with a molecule of bis-Tris, while NADPT was
bound near the periphery of the proposed active site (Figure 5D).
Accordingly, bis-Tris addition to RUN1 NADase assays inhibited
activity, suggesting that bis-Tris association with active site
residues may preclude NADP* access and subsequent hydrolysis
(Horsefield et al., 2019). How the NAD(P)™ substrate interacts
with and positions in the active site of plant TIRs during catalysis
remains to be determined.
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Agathobacter ThsB match: 59%.

SARM1-TIR BaThsB-TIR RPS4-TIR
(PDB ID: 600Q) (Modeled (PDB ID: 4C6R)
to SARM1-TIR)

BaThsB-TIR Agathobacter hit
(Modeled to to BaThsB
Agathobacter-TIR) (PDB ID: 3HYN)

FIGURE 6 | Structural modeling of ThsB (Thoeris TIR) from Bacillus amyloliquefaciens (Ba). (A) Center: Phyre2 modeling of BaThsB TIR-domain to the SARM1-TIR
structure. Phyre2 model confidence: 96.2%; BaThsB-TIR amino acid identity to SARM1-TIR: 15%. Left: Alignment of SARM1-TIR (PDB ID: 600Q) to BaThsB-TIR.
Right: Alignment of RPS4-TIR structure (PDB ID: 4C6R) to BaThsB-TIR (and to SARM1-TIR). (B) Phyre2 modeling of full length BaThsB to a putative signal
transduction protein from Agathobacter rectales (a putative Thoeris system ThsB TIR). Phyre2 model confidence: 100%; BaThsB amino acid identity to

PLANT TIR-DOMAIN
SELF-ASSOCIATION IS NECESSARY
FOR NADase ACTIVITY

Plant TIR-TIR self-association occurs through at least two
known interfaces formed by pairs of alpha helices (denoted as
‘@’) (Bernoux et al., 2011; Williams et al., 2014, 2016). Both
AE- (i.e., the aA/aE surface) and DE-type (aD/aE surface)
helical interfaces are necessary for TIR-TIR self-association, and,
subsequent activation of the hypersensitive response. The DE
interface was first revealed by the crystal structure of the flax
L6 TIR domain (Bernoux et al, 2011). The RRS1 and RPS4
TIR heterodimer crystal indicated TIR-TIR contacts at the AE

interfaces, while the RPP1 crystal revealed both AE and DE
contacts (Williams et al., 2014; Zhang et al., 2017). Plant TIR-
domains vary in strength of TIR-TIR self-associations and in
some cases, self-association strength correlates with function
(Schreiber et al, 2016; Zhang et al, 2017). The TIR-only
protein, RBA1 (Response to HopBALl), self-associates using both
AE and DE interfaces (Nishimura et al., 2017). RBA1 self-
association is detectable via co-immunoprecipitation or yeast
2-hybrid assay, and both self-association interfaces must be intact
to trigger cell death (Nishimura et al, 2017). Similarly, the
isolated TIR-domain of the RPV1 TNL is sufficient to activate
HR (Williams et al., 2016). However, self-association of RPV1
TIR-domains was not detectable by yeast two-hybrid analysis
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RPP1 TNL TIR-domains
(3 of 4 units shown)

PDB ID: 5TEB

FIGURE 7 | Crystal structure of RPP1 plant TIR-domains showing TIR-TIR
interfaces. Three of four RPP1 TIR-domain units shown (PDB ID: 5TEB). The
AE (SH 108-109) and DE interfaces (G 229) are shown purple and red,
respectively, while putative catalytic glutamate E164 shown orange.
Connecting loop above putative catalytic glutamate is colored green. Potential
loop interactions between putative ionic pairs of adjacent RPP1 monomers
(residues E128 — K234, and R129 — E238) shown with dashed yellow lines.
Distances between putative ionic pairs measured using Pymol: E128 to K234
(8.0 A) and R129 to E238 (4.8 A).

or size exclusion chromatography (Williams et al., 2016), yet
disruption of the AE interface did abolish RPV1-mediated HR
(Williams et al., 2016). Thus, intact TIR-TIR interfaces appear
necessary for TIR-immune function, and can vary in strength.
Additionally, the NBS-LRR domains of modular TNLs also
promote oligomerization, and whether TIR-only proteins must
evolve stronger TIR-TIR interfaces due to lack of NBS-LRR
mediated organization is unclear.

Similar to cell death and disease resistance phenotypes, the
activation of plant TIR NADase function requires both AE
and DE self-association interfaces (Horsefield et al., 2019; Wan
et al., 2019). It seems likely that the NADase activity of plant
TIRs is dependent on some higher-order oligomer that has
simultaneously engaged both AE and DE interfaces. Intriguingly,
the RPP1 crystal structure (Figure 7) suggests that a loop
that covers the catalytic glutamate could play this role, as it
is positioned near a neighboring monomer only once both
interfaces are engaged. Whether or not crystal structures of
isolated TIR domains reflect the orientation in the activated TNL
context remains to be determined. Currently, no structure of a
full length TNL is available, and thus, how TNL oligomerization
mediated by the NBS domains influences TIR-TIR associations,

remains unclear. The activation of NADase activity following
higher-order TIR oligomerization seems consistent with the
behavior of the RBA1 E86A putative catalytic mutant (Wan
et al., 2019). RBA1 E86A still self-associates (as measured by
co-immunoprecipitation), suggesting that activation of NAD™ -
hydrolysis follows the self-association of TIR-domains.

OLIGOMERIC PLANT “RESISTOSOMES”

The N-terminal coiled coil (CC) domain of some CC-domain
type NLRs (e.g., Sr71, NRG1, MLA) can induce HR (Collier
et al,, 2011; Bai et al,, 2012; Casey et al., 2016). Modeling of
RPW8-type CC-domains suggests that they may adopt a 4-
helix bundle fold similar to that of the mixed-lineage kinase-like
protein family of animals, which insert into host membranes
and promote cell death (Jubic et al., 2019). Recently, cryo-EM
structures for active (ATP-bound) and inactive (ADP-bound)
ZARI ‘resistosomes’ were determined (Wang et al., 2019a,b).
The ZAR1 (HOPZ-ACTIVATED RESISTANCE 1) resistosome
complex forms a ring-shaped pentameric structure, and contains
bound RKS1 pseudokinase, and an effector-modified kinase,
PBL2. The pentameric resistosome structure is driven by the
ZAR1 NBS-LRR domains, however, the presence of associated
host guardee and adaptor proteins (e.g., RKS1, PBL2) will also
influence overall resistosome structure (Wang et al., 2019a).
The N-terminal CC-domains of ZARI subunits undergo a
conformational change, each extending a helix to form a funnel-
like structure, which is hypothesized to disrupt membrane
integrity and promote cell death (Wang et al., 2019a).

Can the pentameric structure of the ZARI resistosome - a
CC-domain type NLR - inform what higher order complexes
an activated TNL might form? It is enticing to speculate that,
like ZAR1 and animal NLRs, an oligomeric TNL NADase
complex also forms a ring-shaped resistosome? A variety of
stoichiometries are observed for the animal NLR oligomers that
form the apoptosome and inflammosome rings (Zhang et al.,
2015). The hypothetical TNL resistosome could be of a range
of stoichiometries, and most likely forms a ring. However, given
the existing structures of plant TIR domains, it seems difficult
to reconcile the radial (head to tail) symmetry of a ring-shaped
resistosome, no matter the stoichiometry. In these structures, the
AE and DE interfaces are in a “head to head” orientation that
seems at odds with a circular chain. Perhaps an increase in local
concentration of TIR domains is sufficient to promote signaling.
Or possibly, these interfaces will not be seen in the context of a
full-length TNL oligomer structure. Fusion of the SARM1 SAM
domains to either the N-terminus (Horsefield et al., 2019; Wan
et al., 2019) or C-terminus (unpublished) of plant TIR-domains
enables NADase activity and HR-induction. The SAM domains
of SARMI1 form an octameric ring (Figure 5B) (Horsefield et al.,
2019; Sporny et al., 2019). Even in the context of a fusion protein
with forced oligomerization, the RPS4 SAM:TIR protein still
requires both AE and DE interfaces (Wan et al., 2019). These
results suggest that an octameric ring structure can accommodate
plant TIR function, and also that there is surprising flexibility in
how functional TIR domain oligomerization can be promoted.
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NBS-LRR of ZAR1
(ADP-bound)
(PDB ID: 6J5W)

NBS-LRR of ZAR1
(ATP-bound)
(PDB ID: 6J5T)

%5;7 [ Y RPS4-TIR
S "% - (PDBID: 4C6R)
linker

RPS4 NBS-LRR
modeled to 6J5T

Hypothetical RPS4

FIGURE 8 | Modeling of the RPS4 NBS-LRR (a TNL) to the NBS-LRR of ZAR1 resistosome (ATP-bound) or ZAR1 monomer (ADP-bound). (A) Left: ADP-bound
ZAR1 monomer structure as determined by Wang et al. (2019a). Center: single ATP-bound ZAR1 (CNL) subunit from the cryo-EM determined resistosome structure
by Wang et al. (2019b). Right: Activated ZAR1-resistosome. Coiled coil (CC) domain of ZAR1 colored red. NBS (nucleotide binding site) colored blue and LRR
(leucine rich repeat) colored gray. ZAR1 N-terminal linker regions colored purple, and gaps in linker indicated by arrow. Resistosome-associated proteins RKS1 and
effector-modified UMP-PBL2 shown tan and green, respectively. (B) Left: Phyre2 modeling of the RPS4 NBS-LRR (including final helix of RPS4 TIR-domain shown in
red) to ATP-bound NBS-LRR of the ZAR1 resistosome (PDB ID: 6J5T). The putative RPS4 linker is colored teal and indicated with arrow. Above and right: crystal
structure of RPS4 (TNL) TIR-domain (PDB ID: 4C6R) with putative catalytic glutamate (E88) colored orange. (C) The RPS4 TIR manually docked onto the RPS4
NBS-LRR model. The red helix shown on RPS4-TIR is the same red helix included in the NBS-LRR model.

ZAR1 Resistosome
(PDB ID: 6J5T)

TNL model

Using Phyre2, we modeled the NBS-LRR domains of RPS4
onto the structures of inactive and active ZAR1 NBS-LRRs
(Figure 8). The NBS and N-terminal linker regions of RPS4, as
compared with ZARI, are similar in length and potentially in
orientation (Figure 8). While entirely speculative, there would
appear to be limits on the amount of rotational flexibility the TIR
domains would have in a hypothetical resistosome to engage in
simultaneous AE and DE interfaces. The oligomerization state
of so-called “paired NLRs” — where individual partners typically
assume a ‘sensor’ or ‘signal’ role — may be even more complex.
Given that RPS4 and RRS1 appear to function in a complex (Huh
et al, 2017), what would the stoichiometry and organization
of a hetero-oligomeric resistosome look like? The fact that the

RRS1 TIR lacks a catalytic glutamate makes the situation even
more interesting.

Plant TIR-only proteins can signal despite their lack of
C-terminal NBS-LRR domains (Nishimura et al.,, 2017; Wan
et al,, 2019). In the absence of oligomerizing NBS-LRR domains,
what higher order structures might naturally occurring TIR-
only proteins form? The TIR-only protein, RBA1, self-associates
and requires the conserved AE and DE-type interfaces. Are
TIR-only oligomers different than TNL oligomers? RBA1 also
requires EDS1 and NRGI, but like TNL receptors there
is still no clear mechanistic link between TIR activation
and downstream signal transduction (Nishimura et al., 2017;
Wan et al., 2019).
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HOW MIGHT PLANT TIR-NADases
TRANSMIT IMMUNE SIGNALS?

NAD™ is a major cellular metabolite, redox carrier, and substrate
for numerous processes including DNA repair, epigenetic
modifications, immunity and signaling (Adams-Phillips et al.,
2010; Petriacq et al., 2013; Petriacq et al., 2016). Activated plant
TIR-domains are NAD™-hydrolases, but how might NAD™-
consumption activate immune responses? SARMI1 apparently
triggers cell death by depleting NAD™, but plant TIRs do
not cause detectable NAD™ reductions in planta (Wan et al.,
2019). One possibility is that NAD" consumption by plant
TIRs generates signal molecules that turn on downstream
immune components.

Unlike SARM1, plant TIRs did not generate c-ADPR, but
instead produced v-cADPR, both in vitro and after transient
expression in N. benthamiana (Wan et al., 2019). Moreover,
v-cADPR was also produced by activation of RBA1 after bacterial
delivery of the Pseudomonas syringae effector HopBA1 (Wan
etal., 2019). Neither EDS1 or NRG1 - downstream TIR-signaling
components - were required for v-cADPR generation by activated
TIRs in planta (Wan et al., 2019). These results indicate that
v-cADPR accumulation is upstream of both cell death and
the known signaling components downstream of TIR proteins.
Curiously, the in planta generation of v-cADPR by TIR-domains
isolated from TNLs was nearly 100-fold lower than that of TIR-
only proteins (Wan et al., 2019). Is this difference an artifact
of truncating TNL proteins, or an intrinsic difference between
TIR-only and TNL TIR-domains? Whether an auto-active variant
of a full length TNL might produce comparable v-cADPR to
TIR-only proteins has not been examined. It is also unclear if
the context of a full length NLR could influence the ratio or
type of products generated by NAD™-hydrolysis, apart from
hydrolysis kinetics.

The v-cADPR molecule appears to uniquely identify plant
TIR-driven ETI, as MLA10 expression and RPM1 activation
(both CNLs) did not elevate v-cADPR (Wan et al.,, 2019). The
chemical structure of v-cADPR is presently unknown, and could
vary significantly from cyclic-ADPR. It is possible that v-cADPR
shares signaling properties with other NAD ™ -derivatives such as
cyclic-ADPR, ADPR, and NAAD (a product of the SARM1-TIR),
which are potent Ca?™t channel activators (Lee, 2012; Guse, 2015).
Numerous studies reveal Ca>* signaling is necessary for plant
immunity and HR-driven cell death (Grant et al., 2000; Ma and
Berkowitz, 2007, 2011; Marcec et al., 2019). Intriguingly, cyclic-
ADPR has been reported to trigger plant defense gene expression,
and a calcium channel blocker, lanthanum chloride, prevents
plant cell death and HR (although this is not specific to TIR
phenotypes) (Durner et al., 1998; Grant et al., 2000).

At this point v-cADPR can be considered a biomarker for
plant TIR activity, as its production is correlated with TIR
function, however, it is not clear if it is either necessary or
sufficient to trigger cell death or disease resistance. In vitro
assays indicate that the TIR-only proteins RBA1 and BdTIR
are also capable of cleaving NADPT (Wan et al., 2019), and
it remains to be determined what the putative v-cADPRP
product looks like and if it is produced in planta. Are

there other, as yet, unidentified products? How NADase-
produced signaling products might activate immune responses
is entirely speculative, but a reasonable candidate to receive
a signal would be EDSI, potentially mediated by an EDS1
hetero-oligomer surface. The fact that EDS1/SAG101 and
EDS1/PAD4 heterodimers can have non-redundant functions,
with specificity in regards to the particular activating TIR (Cui
et al.,, 2017; Castel et al., 2019; Lapin et al., 2019; Wu et al,
2019), complicate simple models where TIR proteins generate
a generic signal.

Because NAD™ levels influence numerous cellular processes,
the consumption of NAD™ by plant TIRs during immunity could
impact myriad cellular responses. For instance, extracellular
NADT (eNADT) is a potent immunostimulatory signal
and reducing NAD™ levels compromises disease resistance;
conversely, eNAD™ application can bolster immunity (Zhang
and Mou, 2012; Wang et al., 2016; Mou, 2017; Alferez et al., 2018).
Likewise, the AvrRxol and RipN, virulence-promoting effectors
of plant pathogens, can modulate host NAD™ homeostasis and
defense responses (Schuebel et al., 2016; Shidore et al., 2017;
Sun et al, 2019). While total NAD™ levels did not obviously
change with TIR expression (Wan et al., 2019), it’s possible that
localization of NADase activity could have an impact on output.

TIR-PROTEINS ACROSS PLANT
PHYLOGENIES

TIR-domain encoding genes can be found in almost all plant
lineages. However, the class and abundance of encoded TIR-
proteins can vary widely between species (Collier et al., 2011;
Yue et al., 2012; Nandety et al, 2013; Sun et al, 2014; Gao
et al, 2018). Particularly, between dicot and monocot plant
species, the complement of CNL vs. TNL-type NLRs can vary
greatly (Sun et al., 2014; Gao et al., 2018). Canonical TNL-
type resistance genes are absent from all examined monocot
genomes, as are the TIR-pathway mediators, SAG101 and NRG1
(Collier et al., 2011; Wagner et al., 2013). Remarkably, convergent
loss of TNLs and downstream genes has occurred several times
during plant evolution (Collier et al., 2011; Baggs et al., 2019).
Monocots do, however, encode several TIR-NBS and TIR-only
genes, although in low abundance relative to the high number
of TNLs commonly present in dicots (Sun et al, 2014; Gao
et al., 2018). Whether or not these monocot TIR proteins are
functioning as immune receptors remains to be determined.
However, the TIR-only protein RBA1, can trigger cell death
in response a specific pathogen effector, and both TIR-NBS
and TIR-X proteins from various plant species are reported to
enhance immunity (Meyers et al., 2002; Staal et al., 2008; Nandety
et al,, 2013; Zhao et al, 2015; Nishimura et al., 2017; Chen
et al., 2018; Santamaria et al., 2019). Thus, while TNLs may be
absent from monocot genomes, TIR-signaling could play roles in
regulating physiological responses and immunity in monocots.
BdTIR, a TIR-only protein from the monocot Brachypodium,
has many of the hallmarks of dicot TIR domains: it has the
conserved putative catalytic glutamic acid, produces v-cADPR
and triggers EDS1-dependent cell death in N. benthamiana (Wan
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et al,, 2019). Intriguingly, BATIR cell death in N. benthamiana
is also dependent on the downstream TIR signaling component
NbNRGI, despite the fact that monocots have lost NRGI
from their genomes. Therefore, it is possible that TIR-domains
from distant plant phylogenies produce common signals from
NAD™-hydrolysis, while the putative immune output depends
on which downstream components (e.g., EDS1-members, NRG1)
are present to enact the signal.

While TNLs are absent from monocots (and several dicot
lineages), they are present broadly across the plant phylogeny,
including bryophytes and conifers (see also Figure 2C) (Baggs
et al,, 2019). For instance, the moss Physcomitrella patens carries
TNL loci, as does the western white pine, Pinus monticola
(Liu and Ekramoddoullah, 2011; Tanigaki et al,, 2014). Two
pine TNL loci, TNL1 and TNL2, are correlated with blister
rust resistance (Liu and Ekramoddoullah, 2011). TIR-domain-
encoding genes were more recently reported in the agriculturally
important red algae, Pyropia yezoensis, which is used for
nori production (Tang et al., 2019). At least one TIR-domain
encoding gene, along with several NBS genes of Pyropia are
upregulated by challenge with the oomycete pathogen, Pythium
(Tang et al, 2019). Genes with TIR immune receptor-like
domain combinations have been found in the genomes of green
algae. Botryococcus contains TIR-NBS encoding genes, while
remarkably, Chromochloris has NLR-like genes that contain all
three canonical NLR domains (TIR, NBS and LRR) (Shao et al.,
2019). More functional evidence for algal TIRs or TNLs in
immunity is needed, as well as investigation into the algal relatives
of downstream TIR pathway components defined in dicots. It
seems likely that TIR-domains across photosynthetic organisms
harbor NADase activities, however, this has not been explored.
Nor is it clear if these TIR-domains could produce similar
molecules from NAD™-hydrolysis. An expanded collection of
genomic data from algae and early plant clades will help to
assess both the conservation and abundance of putative TIR-
immune pathways.

(MORE) UNANSWERED QUESTIONS?

TIR-domains encoded by species from all domains of life
are now known to play roles in immunity. Recent studies
now suggest a new paradigm of TIR-mediated immunity in
plants: the oligomerization and self-association of TIR-domains,
and subsequent hydrolysis of NAD" (Zhang et al, 2017;
Horsefield et al., 2019; Wan et al,, 2019). Many important and
intriguing questions about TIR-immunity remain. For instance,
the stoichiometry and confirmation of active plant TNL or TIR-
immune complexes is not known. Furthermore, does the NADase
activity of plant TIRs generate immunomodulatory signals? And
if so, how are these signals transduced and decoded? Finally, the
extent of plant TIR functional conservation is not fully known;
i.e,, are the TIR-domains encoded by more distantly-related
photosynthetic lineages also NADases and do they function in or
outside of immunity?

If plant TIRs generate immunomodulatory signals from
the hydrolysis of NAD(P)", then what is that signal? For

instance, might variant-cADPR per se be sufficient to activate
transcriptional defenses, or the hypersensitivity response? Or
might different TIR-derived signal molecules communicate
different outputs? Additionally, plant TIR-NADases could
potentially regulate NAD™ levels and cellular metabolism apart
from immune signal generation. Do TIR-domains from all plant
lineages generate the same type(s) of signals, and how has
evolution shaped the components which sense and translate
outputs from these signals? The subcellular localization and
expression of both signal generating TIRs, and downstream signal
receivers could influence potential response outcomes.

TIR-based immunity appears to have an ancient role in
prokaryotes as an anti-viral defense system (Doron et al., 2018;
Cohen et al,, 2019). The conservation of NADase activity among
animal, plant and prokaryotic TIRs suggests that an ancient
enzymatic activity has been re-purposed multiple times in
eukaryotic evolution to promote cell death or immune function.
A particularly intriguing question is how did plant TNLs and
TIRs evolve to become reliant on the downstream EDSI-
family and ‘helper’ NLR partners? Presumably, these components
independently provided host benefits, prior to co-evolution into
overlapping networks. An in-depth analysis of genomes from
early plant lineages may provide insights into how TIRs, EDS1-
members and ‘helper’ NLRs co-evolved to function in a core
pathway, and provide clues into the mechanisms of TIR-signaling
networks of higher plants.

Combined biochemical and evolutionary approaches may
provide guidance into how variation in the TIR active site or
TIR association interfaces could affect immune outputs. In the
future, such findings may be able to offer predictions regarding
the kinetic properties of specific TIR-domains, as well as a
likely profile of NADT-derived products. For instance, might
modulating NAD™-hydrolysis kinetics and/or product profile
influence the type or strength of immune output? Can in vitro
evolution enable ‘tweaking’ of TIR-active sites, or of TIR-TIR
self-association interfaces, and thus alter the profile of products
derived from NAD ™ -hydrolysis?

The recognition that TIR domains across the tree of life
have conserved enzymatic functions has opened new avenues of
investigation into the plant immune system. While much remains
undiscovered, the field is poised to describe fully connected NLR
signaling pathways that lead to immune outputs. This synthesis
will enable rational engineering of plant immunity to help address
the increasing demands on our agricultural systems.
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