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Abstract. Non-Fermi liquid and unconventional quantum critical points
(QCP) with strong fractionalization are two exceptional phenomena beyond
the classic condensed matter doctrines, both of which could occur in strongly
interacting quantum many-body systems. This work demonstrates that using a
controlled method one can construct a non-Fermi liquid within a considerable
energy window based on the unique physics of unconventional QCPs. We will
focus on the ‘nearly-marginal non-Fermi liquid’, defined as a state whose fermion
self-energy scales as Σf(iω) ∼ i sgn(ω)|ω|α with α close to 1 in a considerable
energy window. The nearly-marginal non-fermi liquid is obtained by coupling
an electron fermi surface to unconventional QCPs that are beyond the Landau’s
paradigm. This mechanism relies on the observation that the anomalous dimen-
sion η of the order parameter of these unconventional QCPs can be close to
1, which is significantly larger than conventional Landau phase transitions, for
example the Wilson–Fisher fixed points. The fact that η ∼ 1 justifies a perturba-
tive renormalization group calculation proposed earlier. Various candidate QCPs
that meet this desired condition are proposed.
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1. Introduction

In the past few decades, a consensus has been gradually reached that quantum many-
body physics with strong quantum entanglement can be much richer than classical
physics driven by thermal fluctuations [48, 50]. Classical phase transitions usually hap-
pen between a disordered phase with high symmetries, and an ordered phase which
spontaneously breaks such symmetries. Typical classical phase transitions can be well
described by the Landau’s paradigm, but the Landau’s paradigm may or may not apply
to quantum phase transitions that happen at zero temperature. Generally speaking, the
Landau’s formalism can only describe the quantum phase transition between a direct-
product quantum disordered state and a spontaneous symmetry breaking state; but it
can no longer describe the quantum phase transition between two states when at least
one of the states cannot be adiabatically connected to a direct product states, i.e. when
this state is a topological order [51]; nor can the Landau’s paradigm describe generic con-
tinuous quantum phase transitions between states with different spontaneous symmetry
breakings [11, 41, 42].

Phenomenologically, in contrast with the ordinary Landau’s transitions, non-Landau
transitions often have a large anomalous dimension of order parameters, due to frac-
tionalization or deconfinement of the order parameter [23, 35, 39, 43]. The ordinary
Wilson–Fisher (WF) fixed point in (2 + 1)d space-time (or three dimensional classical
space) has very small anomalous dimensions [3], meaning that the Wilson–Fisher fixed
point is not far from the mean field theory. In particular, in the large −N limit, the
anomalous dimension of the vector order parameter of the O(N) Wilson–Fisher fixed
point is η ∼ 0; while the CPN−1 model, the theory that describes a class of non-Landau
quantum phase transition [41, 42], has η ∼ 1 in the large −N limit [13]. Numerically
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it was also confirmed that the quantum phase transition between the Z2 topological
order and the superfluid phase has η ∼ 1.5 [9, 10], as was predicted theoretically. The
large anomalous dimension has been used as a strong signature when searching for
unconventional QCPs numerically.

In this work we propose that the unique physics described above about the uncon-
ventional QCPs with strong fractionalization can be used to construct another broadly
observed phenomenon beyond the classic Landau’s theory: the non-Fermi liquid whose
fermion self-energy scales Σf(iω) ∼ i sgn(ω)|ω|α with α < 1. When α = 1, this non-fermi
liquid is referred to as marginal Fermi liquid [46]. Signature of marginal Fermi liquid
and nearly-marginal Fermi liquid have been observed rather broadly in various materials
[4, 19, 33]. In this work we will focus on the non-Fermi liquid that is ‘nearly-marginal’,
meaning α is close to 1.

We assume that there exists a field O (x, τ) in the unconventional QCP that
carries zero momentum, and it couples to the fermi surface in the standard way:∫
d2x dτ gψ†TψO, where T is a flavor matrix of the fermion. We assume that we first

solve (or approximately solve) the bosonic part of the theory, i.e. the strongly interacting
QCP without coupling to the fermi surface, and calculate the anomalous dimension η
at the QCP:

〈O(q,ω)O(−q,−ω)〉 ∼ 1

Ω2−η (1)

where Ω ∼
√

v2q2 + ω2. Then the fermion self-energy, the quantity of central interest to
us, is computed perturbatively with the boson–fermion coupling g.

When the anomalous dimension η is close to 1, we can take η = 1− ε with small
ε. Reference [26–28] developed a formalism for the boson–fermion coupled theory with
an expansion of ε, though eventually one needs to extrapolate the calculation to ε = 1
for the problems studied therein [26–28], and the convergence of the ε-expansion at
ε = 1 is unknown, i.e. even if we start with a weak boson–fermion coupling, it would
become nonperturbative under renormalization group (RG). But we will demonstrate
in the next section that in the cases that we are interested in, ε is naturally small
when η is close to 1, due to the fractionalized nature of many unconventional QCPs.
To the leading nontrivial order, our problem can be naturally studied by the previously
proposed perturbative formalism with small ε.

Here we stress that our goal is to construct a scenario in which a non-Fermi liq-
uid state within an energy window can be constructed using a controlled method.
Recently many works have taken a similar spirit, and various non-Fermi liquid states
especially a state that mimics the strange metal were constructed by deforming the sol-
uble Sachdev–Ye–Kitaev (SYK) and related models [14, 15, 22, 37, 52]. Then within the
energy window where the deformation remains perturbative, the system resembles the
non-Fermi liquid [5, 29, 30, 44, 56, 58]. Our current work also starts with (approximately)
soluble strongly interacting bosonic systems (in the sense that the gauge invariant order
parameters in these systems are bosonic), and then we turn on perturbation, which
in our case is the boson–fermion coupling. We will demonstrate that a non-Fermi liq-
uid can be constructed based on the unique nature of the strongly interacting bosonic
system.
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2. Expansion of ε

A controlled reliable study of the non-Fermi liquid problem is generally considered
as a very challenging problem, one example of the difficulties was discussed in refer-
ence [17]. Over the years various approximation methods were proposed. We begin by
reviewing the ε-expansion developed in reference [26–28], and demonstrate how pertur-
bation of ε is naturally justified for some unconventional QCPs. It is often convenient to
study interacting fermions with finite density by expanding at one patch of the Fermi
surface. The low-energy theory of the fermions expanded at one patch of the fermi
surface is

Lf = ψ† (ξ∂τ − ivF∂x − κ∂2
y

)
ψ, (2)

where x is perpendicular to the fermion surface and y is the tangent direction. The
initial value of ξ is ξ0 = 1, and it will be renormalized by the fermion self-energy. Our
main goal is to evaluate the fermion self-energy to the leading nontrivial order of the
boson–fermion coupling. We will show that this is equivalent to the leading nontrivial
order of ε = 1− η. At this order of expansion of ε, for our purpose it is sufficient to
consider a simple ‘effective action’ of O(x, τ):

Seff ∼
∫

d2x dτ O(x, τ)(−∂2
τ − v2∇2)1−

η
2O(x, τ) (3)

which will reproduce the correlation function of O(x, τ), assuming we have fully solved
the interacting bosonic system first.

When the boson–fermion coupling is zero, i.e., g = 0, the system is at a Gaussian
fixed point with the following scaling dimensions of spacetime coordinates and fields

[τ ] = −2, [x] = −2, [y] = −1,

[ψ (x, τ)] =
3

2
, [O(x, τ)] =

3

2
+

η

2
= 2− ε

2
. (4)

We then turn on the boson–fermion interaction∫
d2x dτ gψ†TψO (5)

and consider the perturbative RG at the Gaussian fixed point. We find that the scaling
dimension of g is [g] = ε/2, hence it is weakly relevant if ε is naturally small, and it may
flow to a weakly coupled new fixed point in the infrared which facilitates perturbative
calculations with expansion of ε. Indeed, the beta function of g2 at the leading order of
ε was derived in reference [26–28]:

dg2

dlog b
=

ε

2
g2 −Υg4. (6)

Thus there is a fixed point at weak coupling g2∗ = ε/(2Υ), where the parameter Υ ∼
1/(4π2vFv).
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Under the rescaling x ′ = xb−1, namely after integrating out the short scale degrees
of freedom, the fermion acquires a one-loop self-energy

δΣf (iω,p) ∼ g2
∫

dν dq〈O∗
q,νOq,ν〉Gf(iω + iν, q+ p)

∼ g2
∫

dν dqx

∫ Λ

Λ√
b

dqy
1∣∣v2q2x + v2q2y + ω2

∣∣ 1+ε
2

1

i (ω + ν) − vF (px + qx)− κ(py + qy)
2 .

(7)

In the boson correlation function, v2q2x and ω2 are irrelevant compared with v2q2y ,
hence we first integrate over qx, and the fermion propagator contributes a factor
sgn (ω + ν) i/(2vF). We then perform the ν integral and finally integrate qy over the

momentum shell Λb−1/2 < |qy| < Λ. The last integral is evaluated at ε = 0, which is
valid at the leading order perturbation of ε. This procedure leads to

δΣf (iω,p) = −iωg2Υ log b+O
(
ε2
)
. (8)

Combining the calculations above, at the fixed point g2∗, the renormalized iξ(ω)ω in the
fermion Green’s function reads

iξ(ω)ω ∼ −i sgn (ω) |ω|1−ε/2. (9)

The fermion self-energy, hence the decay rate of the fermion, scales in the same way as
equation (9). The calculation above gives a nearly-marginal non-Fermi liquid behavior
for small but finite ε. For small η such as the cases in the Wilson–Fisher fixed points,
the calculation of the scaling of fermion self-energy is not reliable with the leading order
expansion of ε described above.

Here we stress that, our main purpose is to compute iξ(ω)ω, or the fermion self-energy
to the leading order of boson–fermion coupling g2∗ ∼ ε, assuming a weak initial coupling
g. At higher order expansion of the boson–fermion coupling, corrections to the boson field
self-energy (for example the standard RPA diagram) from the boson–fermion coupling
needs to be considered. The RPA diagram is proportional to LRPA ∼ |Oω,q|2g2|ω|/(vFκq).
Several parameters can be tuned, including the weak coupling fixed point value of g2∗,
to make this term weak enough to allow an energy window where the calculations in
this section apply. At the elementary level, we need the terms in equation (3) to dom-
inate the RPA effect |Oω,q|2g2|ω|/(vFκq). A field O at momentum q should correspond
to energy scale ω ∼ vq. For equation (3) at η = 1 to dominate the RPA effect, we need
q > g2/(vFκ), or ω > g2v/(vFκ). If we start with a weak initial bare coupling constant
g0, and also ε 	 1 hence the fixed point value of g∗ is also perturbative, there is a
sufficiently large energy window for our result. Tuning the parameter v/vF and κ can
further expand the energy window. A full analysis of the term LRPA ∼ |Oω,q|2g2|ω|/(vFκq)
in the bosonic sector of the theory in the infrared limit requires more detailed analy-
sis because Oω,q is a composite operator in the field theories discussed in the next
section.
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3. Candidate unconventional QCPs

3.1. Bosonic-QED-Chern–Simons theory

In the following we will discuss candidate QCPs which suffice the desired condition η ∼ 1,
or ε 	 1. When we study the pure bosonic sector of the theory, we ignore the coupling
to the fermions, assuming the boson–fermion coupling is weak, which is self-consistent
with the conclusion in the previous review section that the boson–fermion interaction
will flow to a weakly coupled fixed point g2∗ ∼ ε. As we stated in the previous section, we
will start with a weak boson–fermion coupling g, and eventually we only compute the
fermion self-energy to the leading nontrivial order of the fixed point g2∗ ∼ ε. In the purely
bosonic theory, the scaling of the space-time has the standard Lorentz invariance. To
avoid confusion, we use ‘[ ]’ to represent scaling dimensions under the scaling equation (4)
of the one-patch theory in the previous section, and ‘{ }’ represent the scaling dimension
in the Lorentz invariant purely bosonic theory. At a QCP, multiple operators will become
‘critical’, namely multiple operators can have power-law correlation. We will demand
that the operator with the strongest correlation (smallest scaling dimension) satisfy the
desired condition, since this is the operator that provides the strongest scattering with
the electrons.

We consider (2 + 1)d bosonic quantum electrodynamics (QED) with N flavors of
bosons coupled to a noncompact U(1) gauge field with a Chern–Simons term:

LbQED =

2∑
α=1

N/2∑
a=1

|(∂μ − ibμ)zα,a|2 + r(z†α,azα,a)

+ u

(∑
α,a

|zα,a|2
)2

+ u′
2∑

α=1

⎛
⎝N/2∑

a=1

|zα,a|2
⎞
⎠
2

+
ikN

4π
b ∧ db. (10)

The following operators are gauge invariant composite fields, which we assume are all
at zero momentum:

O0 =

2∑
α=1

N/2∑
a=1

z†α,azα,a, O1,3 =

N/2∑
a=1

z†aσ
1,3za. (11)

Potential applications of this field theory to strongly correlated systems will be discussed
later (figure 1).

To compute their scaling dimensions, we introduce two Hubbard–Stratonovich (HS)
fields to decouple the quartic potentials:

L′
bQED =

2∑
α=1

N/2∑
a=1

|(∂μ − ibμ)zα,a|2 + r(z†α,azα,a) + iσ+O0 + iσ−O3

+
1

2u′ + 4u
σ2
+ +

1

2u′σ
2
− +

ikN

4π
b ∧ db. (12)

We will consider the following two scenarios: (1) u′ → 0, u > 0, where σ− is fully sup-
pressed and the system has a full SU(N)×U(1)T symmetry, where the U(1)T is the
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Figure 1. The self-energy of field σ+ and gauge field bμ in the large −N limit.

‘topological symmetry’ that corresponds to the conservation of the gauge flux; and (2)
u, u′ > 0 when the SU(N) symmetry is broken down to SU(N/2)× SU(N/2)×U(1)� Z2,
where the U(1)� Z2 is the symmetry within the Pauli matrix space in equation (11).

In scenario (1) with a full SU(N) symmetry, at the critical point r = 0, the field σ+

acquires a self-energy in the large −N limit (figure 1)

Σσ+(p) = N

∫
d3q

(2π)3
1

q2(q + p)2
=

N

8p
. (13)

Hence the propagator of field σ+ in the large −N limit reads

Gσ+(p) = 1/Σσ+ =
8p

N
. (14)

Similarly, for the gauge field, the self-energy in the large −N limit is

Σb,μν(p) = −N

∫
d3q

(2π)3
(2q + p)μ(2q + p)ν

q2(q + p)2

=
N

16p
(p2δμν − pμpν). (15)

When combined with the Chern–Simons term, in the Landau gauge, the gauge field has
the following large −N propagator [51]

Gb,μν(p) =
1

Np

(
F

(
δμν −

pμpν
p2

)
+H

εμνρp
ρ

p

)
, (16)

where

F =
16π2

π2 + 64k2
, H = − 128πk

π2 + 64k2
. (17)

After introducing the HS fields, the scaling dimension of the composite operator O0

of the original field theory equation (10) is ‘transferred’ to the scaling dimension of the
HS fields σ+. To the order of O(1/N ), the Feynman diagrams in figure 2 contribute to
the σ+ self energy, which was computed in reference [51].

But it is evident that in the large −N limit, the scaling dimension of σ+ (and
the scaling dimension of operator O0 of the original field theory equation (10)) is
limN→∞{O0} = 2, hence it does not meet the desired condition. When O0 couples to
the Fermi surface, the boson–fermion coupling will be irrelevant in the one patch theory
discussed in the previous section according to the scaling of space-time equation (4).

https://doi.org/10.1088/1742-5468/ab99a0 7
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Figure 2. In scenario (1), diagrams (a)–(e) contribute to the anomalous dimension
of O0 in equation (10) or equivalently σ+ in equation (12); while only diagrams
(a)–(d) contribute to the anomalous dimension of O1,3. The solid line represents
the propagator of zα,a, the dashed and wavy lines represent the large−N propagators
of σ+ and bμ respectively.

The scaling dimension of σ1,3 equal to each other with a full SU(N) symmetry, and
unlike O0, they have scaling dimension 1 in the large −N limit. The 1/N corrections
to their anomalous dimensions come from diagram (a)–(d) in figure 2, or equivalently
through the standard momentum shell RG:

{O1,3} = 1 +
16

3π2N
− 4

3π2N
F. (18)

Reference [13] and references therein have computed scaling dimensions of gauge invari-
ant operators for theories with matter fields coupled with a U(1) gauge field, without
a Chern–Simons term. Our result is consistent with these previous references, since
limk→0{O1,3} = 1− 16/(π2N), which is the result of the CPN−1 model with a noncom-
pact gauge field. Also, in the limit of k→ +∞, our result is consistent with reference
[13] when the fermion component is taken to be infinity, since both limits suppress the
gauge field fluctuation completely. In general operators O1,3 have stronger correlations
than O0, hence they will make stronger contributions to scattering when coupled with
the fermi surface. As an example, the anomalous dimension of O1,3 with k = 1/2 reads

η1,3 ∼ 1− 0.57

N
, (19)

which is reasonably close to 1 even for the most physically relevant case with N = 2.
In scenario (2) we should keep both σ+ and σ− in the calculation, and both σ±

(operator O0 and O3 in theory equation (10)) have scaling dimension 2 in the large −N
limit [1]. Now O1 has the strongest correlation, and at the order of O(1/N ), its scaling
dimension reads:

{O1} = 1 +
8

3π2N
− 4

3π2N
F. (20)

When k = 1, its anomalous dimension reads

η1 ∼ 1− 0.037

N
, (21)

https://doi.org/10.1088/1742-5468/ab99a0 8
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which is always very close to 1. Using the formalism reviewed in the previous section,
by coupling to O1, the fermion self-energy would scale as Σf (iω,p) ∼ −i sgn (ω) |ω|0.99
for N = 2.

The field theory equation (10) describes a quantum phase transition from a topologi-
cal order with Abelian anyons to an ordered phase that spontaneously breaks the global
flavor symmetry. The flavor symmetry can be either a full SU(N) symmetry (scenario 1)
or SU(N/2)× SU(N/2)×U(1)� Z2 (scenario 2). So far we have assumed that the gauge
invariant O1,3 have zero momentum, hence they cannot be the ordinary antiferromag-
netic Néel order parameter. They must be translational invariant order parameters with
nontrivial representation under the internal symmetry group, for example they could be
the quantum spin Hall order parameter for N = 2.

The topological order described by the Chern–Simons theory with N = 2, k = 1 is
the most studied state in condensed matter theory. This topological order is the U(1)2
or equivalently the SU(2)1 topological order with semionic anyons. It is the most natural
topological order that can be constructed from the slave particle formalism [49]. And
recently it was conjectured that this topological order is also related to the parent state
of the cuprates high temperature superconductor [38] motivated by the giant thermal
Hall signal observed [7].

Another interesting scenario is when N = 2, k = 0 and u > 0. In this case
equation (10) is the same field theory as the easy-plane deconfined QCP between the
inplane antiferromagnetic Néel order and the valence bond solid state on the square
lattice. Recent numerical studies have shown that this quantum phase transition may
be continuous, and the scaling dimension of both O0 and O3 are fairly close to 1 based
on numerical results [12, 35]. It has been proposed that this field theory is self-dual [25],
and it is dual to the transition between the bosonic symmetry protected topological
(SPT) phase and the trivial phase [34, 47], which is directly describe by a noncompact
QED with N = 2 flavors of Dirac fermion matter fields [8, 21]. The tuning parameter for
this topological transition is instead coupled to O3. Hence this SPT-trivial transition is
also a candidate quantum phase transition which meets the desired criterion proposed in
our paper that leads to a nearly-marginal fermi liquid. But in these cases there are other
fields (for example the inplane Néel order parameter) with smaller scaling dimensions,
and we need to assume that these operators carry finite lattice momentum hence couple
to the Fermi surface differently.

3.2. Gross–Neveu–Yukawa QCP

Another candidate QCP that likely suffices the desired condition η ∼ 1 is the
Gross–Neveu–Yukawa QCP with N-flavors of Dirac fermion:

LGNY =
N∑
a=1

χ̄aγμ∂μχa + gφχ̄aχa + (∂φ)2 + rφ2 + uφ4. (22)

At the critical point r = 0, both u and g flows to a fixed point. In our context, the
QCP describes a bosonic or spin system, hence χ is viewed as a fermionic slave particle
of spin, i.e. the spinon, and we assume that χ is coupled to a Z2 gauge field, namely
the system is a Z2 spin liquid with fermionic spinons. But the dynamical Z2 gauge field
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does not lead to extra singular corrections to low energy correlation functions of gauge
invariant operators, hence the universality class of equation (22) is still identical to
the Gross–Neveu–Yukawa (GNY) theory, as long as we only focus on gauge invariant
operators.

The GNY QCP can still be solved in the large −N limit, and the cases with finite N
can approached through a 1/N expansion. At the GNY QCP coupled with a Z2 gauge
field, the gauge invariant operator with the lowest scaling dimension is φ, and its scaling
dimension can be found in reference [2] and references therein:

{φ} ∼ 1− 16

3π2N
. (23)

Other gauge invariant operators such as χ̄Tχ with an SU(N) matrix T have much larger
scaling dimension at the GNY QCP, for example {χ̄Tχ} = 2 in the large −N limit. If we
replace the Z2 gauge field by a U(1) gauge field, the U(1) gauge fluctuation will enhance
the correlation of φ, hence increases ε = 1− η compared with the situation with only a
Z2 gauge field. Hence a GNY QCP with a U(1) gauge field is less desirable according to
our criterion.

The GNY QCP coupled with a Z2 gauge field can be realized in various lattice model
Hamiltonians for quantum antiferromagnet. For example, for SU(M ) spin systems on the
triangular lattice with a self-conjugate representation on each site, using the fermionic
spinon formalism, when there is a π-flux through half of the triangles, there are N = 2M
components of Dirac fermions at low energy [20]. SU(M ) quantum magnet may be
realized in transition metal oxides with orbital degeneracies [18, 32, 45], and also cold
atom systems with large hyperfine spins [6, 53–55]. Recently it was also proposed that
an approximate SU(4) quantum antiferromagnet can be realized in some of the recently
discovered Moiré systems [40, 57, 59], and an SU(4) quantum antiferromagnet on the
triangular lattice may realize the Z2-gauged GNY QCP with N = 8 (with lower spatial
symmetry compared with SU(2) systems as was pointed out in reference [60]). On the
other hand, an SU(M ) spin systems on the honeycomb lattice can potentially realize
the GNY QCP with N = 2M (with zero flux through the hexagon) or N = 4M (with
π-flux through the hexagon).

The operator φ is odd under time-reversal and spatial reflection, hence physically φ
corresponds to the spin chirality order. Hence the Z2-gauged GNY QCP is a quantum
phase transition between a massless spin liquid and a chiral spin liquid.

4. Conclusion

In this work we proposed a mechanism based on which a nearly marginal non-fermi
liquid can be constructed with a controlled method in an energy window. This mech-
anism demonstrates that two exceptional phenomena beyond the standard Landau’s
paradigm, i.e. the non-Landau quantum phase transitions and the non-fermi liquid may
be connected: a non-Landau quantum phase transition can have a large anomalous
dimension η ∼ 1, which physically justifies and facilitates a perturbative calculation
of the boson–fermion coupling fixed point. Several candidate QCPs that suffice this
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condition were proposed, including topological transitions from Abelian topological
orders to an ordered phase, and a Gross–Neveu–Yukawa transition of Z2 spin liquids.

Non-Fermi liquid is often observed only at a finite temperature/energy window in
experiments. At the infrared limit, the non-Fermi liquid is usually preempted by other
instabilities, for example a dome of superconductor [16, 24, 36]. In reference [24] the
instability of non-Fermi liquid towards the superconductor dome was systematically
studied in the framework of the ε-expansion. According to reference [24], when O is
an order parameter at zero momentum, at ε = 0 the superconductor instability will
occur at an exponentially suppressed temperature/energy scale Δsc ∼ Λω exp(−A/|g0|),
where g0 is the bare boson–fermion coupling constant. In our case the estimate of the
superconductor instability is complicated by the fact that O is a composite field, but
the qualitative exponentially-suppressed form of Δsc is not expected to change because
g is still at most a marginally relevant coupling. When ε = 0, the imaginary part of the
fermi self-energy (the inverse of quasi-particle life-time) scales linearly with ω. Because
the bare electron dispersion has no imaginary part at all, the imaginary part of the self-
energy should be much easier to observe compared with the real part, assuming other
scattering mechanisms of the fermions are weak enough. This linear scaling behavior
of the imaginary part of self-energy is observable for fermionic excitations at energy
scale ω > Δsc. Hence above the superconductor energy scale Δsc, the non-Fermi liquid
behavior is observable. This result should still hold for small enough ε.5

We would like to compare our construction of non-Fermi liquid states and the con-
structions based on the SYK related models. In the constructions based on SYK-like
models, the existence of a strange-metal like phase was based on the fact that in the
soluble limit, i.e. in the SYK model the scaling dimension of fermion is 1/4 (scal-
ing with time only). But since the definition of the electric current operator in these
constructions is proportional to the perturbation away from the SYK model, the cur-
rent–current correlation function and the electrical conductivity is small in the energy
window where the construction applies. Recently an improved construction was pro-
posed which can produce the Planckian metal observed in cuprates materials [31].
In our construction, since the boson–fermion coupling will flow to a weakly coupled
fixed point, the scattering rate of the fermion due to the boson–fermion coupling is
expected to be low. We will further study if a Planckian metal like state can be con-
structed by developing our current approach. In this future exploration, a mechanism
of momentum relaxation, for instance the disorder, or Umklapp process, needs to be
introduced.
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