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Abstract

One dimensional (1d) interacting systems with local Hamiltonians can be studied with
various well-developed analytical methods. Recently novel 1d physics was found nu-
merically in systems with either spatially nonlocal interactions, or at the 1d boundary
of 2d quantum critical points, and the critical fluctuation in the bulk also yields effec-
tive nonlocal interactions at the boundary. This work studies the edge states at the 1d
boundary of 2d strongly interacting symmetry protected topological (SPT) states, when
the bulk is driven to a disorder-order phase transition. We will take the 2d Affleck-
Kennedy-Lieb-Tasaki (AKLT) state as an example, which is a SPT state protected by the
SO(3) spin symmetry and spatial translation. We found that the original (1+ 1)d bound-
ary conformal field theory of the AKLT state is unstable due to coupling to the boundary
avatar of the bulk quantum critical fluctuations. When the bulk is fixed at the quantum
critical point, within the accuracy of our expansion method, we find that by tuning one
parameter at the boundary, there is a generic direct transition between the long range
antiferromagnetic Néel order and the valence bond solid (VBS) order. This transition
is very similar to the Néel-VBS transition recently found in numerical simulation of a
spin-1/2 chain with nonlocal spatial interactions. Connections between our analytical
studies and recent numerical results concerning the edge states of the 2d AKLT-like state
at a bulk quantum phase transition will also be discussed.
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Our understanding of one dimensional (1d ) quantum many-body systems with local Hamil-
tonians is far more complete compared with higher dimensional systems, since many power-
ful analytical methods such as Bethe ansatz [1], Virasoro algebra [2], etc. are applicable
only to 1d systems (or (1 + 1)d space-time). We also understand that 1d systems have many
unique features that are fundamentally different from higher dimensions. For example, with
local Hamiltonians, generally there can not be spontaneous continuous symmetry breaking in
(14 1)d even at zero temperature (with exceptions of the scenarios when a fully polarized
ferromagnet is the exact ground state), the closest one can possibly get is a quasi-long range
power-law correlation of order parameters that transform nontrivially under a continuous sym-
metry. There is also no topological order in 1d systems analogous to fractional quantum Hall
states which have a gap and simultaneously ground state topological degeneracy [3]. This
means that many phenomena that are found in higher dimensions do not occur in 1d systems.
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To seek for richer physics in one dimensional systems, we need to explore beyond the
restriction of local Hamiltonians. One way to get around this restriction is to consider 1d
systems at the boundary of a 2d systems, and drive the 2d bulk to a quantum phase transition.
The physics becomes especially interesting when the disordered phase in the phase diagram of
the 2d bulk is a symmetry protected topological (SPT) phase, which already has topologically
protected 1d edge state. The interplay between the topological edge state and gapless quantum
critical modes can lead to very nontrivial physics, which has been studied through numerical
methods recently [4-7]. One can also directly turn on nonlocal spatial interaction in a 1d
Hamiltonian. 1d quantum spin chains with nonlocal spatial interactions have also been studied
recently, and very intriguing physics was found [8,9]. We will discuss the results of these
numerical works later in this paper.

In this work we investigate the 2d SPT state protected by symmetry SO(3) x G, where
SO(3) is the ordinary spin symmetry, while G is a discrete symmetry, which could be an onsite
unitary Z, symmetry, or an anti-unitary time-reversal ZZT . G can also be a lattice symmetry
such as translation by one lattice constant. For example, when G is the translation along the
x axis (T,), this state can be realized as the Affleck-Kennedy-Lieb-Tasaki (AKLT) state of the
spin-2 system on a 2d square lattice [10]. In the example of spin-2 AKLT state, there is a chain
of dangling spin-1/2 at the boundary of the system, as long as the boundary is along the % axis
and preserves the translation symmetry T,.. The nature of the SPT states, and the Lieb-Shultz-
Mattis (LSM) theorem [11-13] guarantee that this boundary system cannot be trivially gapped,
i.e. it must be either gapless, or gapped but degenerate (For a closed 1d system without 0d
boundaries, a generic ground state degeneracy can only originate from spontaneous discrete
symmetry breaking [3]). In this work we will take the AKLT state as an example, but our
results can be straightforwardly generalized to other discrete symmetries G.

Our study will mainly focus on the 1d boundary of strongly interacting 2d bosonic SPT
phases, using a controlled renormalization group method. We would like to mention that
previous literature has discussed the coupling between quantum criticality and topologically
localized gapless states in various fermionic topological insulators [ 14]; other approaches such
as constructing soluble models and various numerical methods have also been used to study
edge states of interacting SPT states at a bulk quantum criticality [15-17]. Our main finding
is that there is a generic continuous quantum phase transition between a long range antifer-
romagnetic Néel order which spontaneously breaks the SO(3) spin symmetry, and a valence
bond solid state, at the 1d boundary of an AKLT state that couples to the bulk quantum criti-
cal modes. The bulk quantum critical modes effectively yield nonlocal interactions at the 1d
boundary, which makes the long range Néel order possible.

In principle the 1d boundary of this AKLT state should be effectively described by an ex-
tended Heisenberg model

J

where § ; is the spin-1/2 operator, and the ellipsis includes other possible terms allowed by
SO(3) x T,. The ground state of Eq. 1 depends on the entire lattice Hamiltonian. But a useful
starting point of analyzing this boundary system is the SU(2); conformal field theory (CFT)
described by the following Hamiltonian in the infrared limit:

1 - > - -
Hy= | dx ——(J; -J; +Jg - Jg). 2
o= | x T Giodit Ty @

The SU(2); CFT has a larger symmetry than the lattice Hamiltonian Eq. 2, since J; and Jy
generate the SU(2), r symmetries for the left and right chiral modes respectively. The relation
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between the microscopic operator S and the low energy field is [18]

500 ~ 5 (60 + () + (C1)C), 3)

where 7i(x) is the Néel order parameter at the boundary. J, 1 r both have scaling dimension +1
at the SU(2); CFT fixed point, while 7i(x) has scaling dimension 1/2 at the SU(2); CFT.

The diagonal SU(2) symmetry (simultaneous SU(2) rotation between the left and right
modes) corresponds to the original SO(3) spin symmetry on the lattice scale. And because
the lattice Hamiltonian has a lower symmetry than the infrared theory Eq. 2, another term is
allowed in the low energy Hamiltonian:

lefdx A‘jL'jR' (4)

Since J L r have scaling dimension +1, power-counting indicates the coefficient A has scal-
ing dimension 0. Depending on the sign of A, this term can be either marginally relevant or
marginally irrelevant. When A is negative and marginally irrelevant the system flows back to
the SU(2); CFT with an enlarged SU(2); x SU(2)z symmetry. When this term is positive and
marginally relevant, it will flow to infinite (nonperturbative) and generate a mass gap, which
based on the nature of the SPT phase would imply that the system spontaneously breaks the
discrete symmetry G. For example, when this system is realized as the AKLT state, and G is the
translation T, the LSM theorem demands that when the boundary of the system generates a
mass gap, it spontaneously breaks the translation symmetry and develops a nonzero expecta-
tion value of a dimerized valence bond solid (VBS) order: v ~ (—1)j§j -§j+1. As a side-note,
we emphasize that the state we are studying here is different from the SO(3) or SU(2) SPT
state defined through the group cohomology of SO(3) or SU(2) [19-21], since in those states
the symmetry acts chirally, i.e. it only acts on either the left or right modes. While in our
case the spin symmetry acts on both the left and right modes of the 1d boundary, and another
discrete symmetry such as translation is demanded.

Our goal is to study the edge states when the bulk undergoes a disorder-order quantum
phase transition, and the disordered phase of the bulk phase diagram is the AKLT state. The
quantum critical fluctuation in the bulk may affect the edge of the AKLT state. To study the
interplay between the topologically protected edge states, and the quantum critical modes, we
adopt the “two layer" picture used in Ref. [22]: in layer-1, the system remains a gapped AKLT
state in the bulk with solid edge states described by Eq. 1 and Eq. 2; in layer-2 the system
undergoes a phase transition between an ordinary trivial disordered phase and an ordered
phase. These two systems are glued together at the boundary. We have used the common
wisdom that the transition between the SPT phase and the ordered phase is generically in
the same universality class as the transition between an ordinary disordered phase and an
ordered phase !. We will discuss two kinds of ordered phases: an SO(3) antiferromagnetic
order, and an Ising-like VBS order that spontaneously breaks T,, assuming the boundary is at
y = 0. In the bulk the two disorder-order transitions under discussion correspond to the three
dimensional (3D) SO(3) and Ising Wilson-Fisher transitions respectively, which can be studied
through a standard € = 4 — D expansion, where D = 2 + 1 is the space-time dimension in the
bulk. We only extend the bulk dimensionality of layer-2 to 3 — € spatial dimensions, while the
layer-1 still has a two-dimensional bulk and one-dimensional boundary.

IThis statement can be inferred based on the observation that, the topological effects of many of the SPT
states can be captured by a nonlinear Sigma model plus a topological ©—term at © = 21 [23,24]. The © = 27
topological term reduces precisely to a boundary term, and we do not expect this topological term to change the
bulk universality class.


https://scipost.org
https://scipost.org/SciPostPhys.10.2.033

Scil SciPost Phys. 10, 033 (2021)

We denote the bulk SO(3) antiferromagnetic order parameter, and the Ising-VBS order
parameter in layer-2 as 5 and ¢ respectively, which should couple to the Néel order parameter
i and the VBS order parameter v at the boundary theory of layer-1, and this coupling could
lead to new physics in the infrared. However, (5 and ¢ do not directly couple to 7 and v
due to the boundary condition of the Wilson-Fisher fixed point. Assuming the boundary of
the 2d system is at y = 0, the most natural boundary condition for fields $,¢ would be
q_§ (y =0) = ¢(y = 0) = 0 2. Then the leading nonvanishing boundary fields with the same
quantum number as qB and ¢ are & ~ 63,(5 and ® ~ J,¢ [25].

The SO(3) order parameter qg and the Ising order parameter ¢ will not become critical
simultaneously without fine-tuning, but they can be treated in the same framework. The
boundary quantum critical modes ® and & couple to the fields at the boundary of layer-1
through the following terms in the action

S = Jf' d?x g,®(x) - fi(x) + g,®(x)v(x)

.
+ d?xd?x’ %@a(x)cn_l(x, x) 5 @2 (%)

A
+ ) d?xd?x' %é(x)c; (x,x)e(x), ©

where x = (x, 7) is the space-time coordinate. C,(x,x’),; and C,(x,x’) are the normalized
correlation functions of & and ® at the boundary:

5
Calo0)ap = {#°(x, T)8(0,0)) = g,

1

CV(X, 0) = (‘I’(X, T)<I>(0, 0)) = m

(6)
The scaling dimension of & and ® is A, = D/2 —¢€, + O(e?) and A, = D/2 — ¢, + O(€2),
where D = 3 is the bulk space-time dimension. ¢,/ can be computed again through the
e = (4 — D) expansion, following the calculation of boundary criticality of the Wilson-Fisher
fixed points [25-29]: for an O(N) Wilson-Fisher fixed point in the bulk, the scaling dimension
of the boundary modes of the order parameter is

D N+2

v N+a 2
5 2(N+8)€+O(€ ). (7)

Bow) =
In our case €, = €(N +2)/(2(N + 8)) with N = 3,1 respectively. W(i again stress that the €
dimensionality was introduced for layer-2 only. The effective action of ® and ® in Eq. 5 already
received leading order correction from the e—expansion due to the self-interaction of the bulk
critical modes. These effective actions can in principle receive further corrections from the g,
and g, couplings with the boundary fields i and v, but this correction should be at least at the
order of gﬁ, gf, which will be at higher order of e—expansion. As we can see later, the main
physics we will discuss is at the vicinity of a fixed point where g, g, ~ €.

Eq. 2, 4, 5 together can be viewed as an effective non-local 1d theory, and this theory
will be the starting point of our discussion hereafter. Considering the fact that the scaling
dimension of both the Néel and VBS order parameter at the SU(2); CFT is 1/2, to the leading
order of € expansion, the scaling dimensions of the coupling constants must be

A, =€+ 0(e?), A, =€,+ 0(e?)

g

2This boundary condition corresponds to the “ordinary transition" in the standard boundary criticality litera-
tures; other possibilities can also occur such as special and extraordinary boundary transitions [25].

4
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Figure 1: The coupled RG flow of A and g, based on Eq. 11. A new fixed point
(A%, g1) = (2;”, 42”) is found, which separates two phases: the phase where
A — +00 is the VBS phase, and the phase with (A, g,) — (—00,+00) is the long
range Néel order at the 1d boundary. But on the Néel order side of the phase dia-
gram, the RG flow is complicated and nonmonotonic, hence it may take a long RG

scale, or a large system size to finally reveal the true long range order.

€, = %e, €, = %e. (8)
gn/v are hence weakly relevant assuming a small parameter €. Hence the SU(2), CFT at the
boundary of the AKLT state will be unstable against coupling to the quantum critical modes,
while fortunately due to the weak relevance of the coupling constants, this effect can be studied
perturbatively.

To proceed we need to compute the coupled renormalization group (RG) flow of A and
gn/v in Eq. 4 and Eq. 5. The RG equations can be derived based on the following operator
product expansion (OPE):

1
Z—Ww

_ _ 1 1 . N _
JEE)N (w, w) ~ i w (—i04pv(W, W) +i€qpcn(w, W),

T 0, ~ 5 —— (5w, 9) + €qnen (o ),

1
JLa(Z)V(WJ w) ~ _5 1 na(ws V_V))
Z —

—n%(w, w).

JRE)v(w,w) ~ 23

(Z na(z,z)cpa(z,z)) (Z n? (w, w)®° (w, V-V))

a b

3 1 1 1
~ = = JEwW)TE(w),
2z—wl|*  2|z—w|? Z L (W) (W)
a=1,2,3
3 1 3 1
+S T, W)+ > ———Tr(W) +...,
4(z2—w)? 1(w) 4 (z—w)? w()

(v(z,2)®(z,2)) (v(w, w)®(w, w))

1 1 1 1
~ — - = JEw)J 3 (w
2z—w|* 2z—w|? _Z: (W)
a=1,2,3
1 1 1 1
o T, (W) + ~———Tr(W) + ...,
4@—WPL() 4@—WVR()
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( > Jg(z)J;;(z))( > Jg(W)Jg(w)>

a=1,2,3 b=1,2,3

31 2 o
S e i a;gJL(W)JR(W)
3 1 3 1 )
+ — 5 (_ _)2 TL(W) + - 2( )2 TR(W) + ... (9)

In these equations, z and w are the chiral coordinates (z = 7 + ix); and the ellipsis contains
less singular terms of the OPEs. The fields T}z are the energy-momentum tensor of the left
and right movers, which are given via the Suguwara construction by T; = %Z . J7Jf s and
Tp = % DI JgJg :. Notice the form of energy-momentum tensors is similar to the Hamiltonian
Eq. 2 but with an extra factor of 27t. The OPEs above involving the fields  and ¢ are derived
to the leading order of €,,/,,.

These OPEs are sufficient to derive the desired RG equations to the second order of the
coupling constants. For example, using the first two lines of Eq. 9, we can derive another set
of secondary OPEs:

( > Jg(z)Jg(é)) (Z n”(w,ww”(w,m)

a=1,2,3 b

~ % ” _1W|2 (Z n® (w, w)d° (w, W)) ,

b

(qum%mmmw
a=1,2,3
3 1

“afwr
The coupled RG equations (beta functions) for A and g/, then read

(v(w,w)e(w,w)). (10)

dA T T
ﬁ(l)=m = 2n12—5g§+§g3,
n
B(gn) = m = €n&n— Ez’gn’
d 3
Ble) =T = gt A8 an

These RG equations are valid as long as we restrict our analysis to the parameter region with
A, ., 8, ~ €, since every term in the RG equations Eq. 11 would be at the same order of €2.
As we explained before, there is no general reason for d_; , ¢ to become critical simultane-
ously in the bulk. Hence let us ignore the & field first, and consider the coupled RG equation
for A, g, only. If there is no bulk quantum critical modes, an initial positive value A = A,
will be marginally relevant, and open up an energy gap when it flows to positive infinite. Ac-
cording to the LSM theorem, and the nature of the SPT state, this 1d boundary cannot be
trivially gapped, hence a nonperturbative positive A would drive the system into an SO(3)
invariant VBS state with spontaneous symmetry breaking of translation symmetry T,. But by
coupling to the boundary modes & of quantum critical fluctuation, the beta functions have an

new unstable fixed point at
2e, 4e
(A8 = ( ) . (12)

Y Y

6
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The two eigenvectors of RG flow expanded at the new fixed point have scaling dimensions
(8.9¢,,,—0.89¢,,).

Of course the RG analysis above is only at the leading nontrivial order of e—expansion, and
at this order of accuracy, no other fixed point is found in the phase diagram. The new fixed
point found above separates two phases: phase I where A flows to positive infinity, and phase II
where A and g, flow to negative and positive infinity respectively. Then both phases no longer
have scaling invariance, so both phases should have certain long range order considering the
fact that there is no topological order in one dimension [3]. Phase I with A — +00 is the
dimerized VBS phase as we discussed before; phase II with (A, g,) — (—00,+00) should
be a Néel ordered phase, i.e. the 1d boundary can develop the Néel order before the bulk,
even though the bulk is still at a quantum critical point. A negative A would enhance the
correlation of the Néel order parameter, and after integrating out @, a long range interaction
proportional g2 would be generated between the Néel order parameters. Hence the infrared
limits A — —o0 and g — +o0 of phase II both favor the long range Néel order.

The correlation length critical exponent v of this Néel-VBS transition is v ~ 1/(8.9¢,,). At
the transition point (1%, g%) = (2€,/m,4€,/n), the scaling dimensions of the Néel and VBS
order parameters can again be computed to the leading order of e—expansion:

Ay = P41
n - 2 2 - 2 n»
1 3xA% 1
AV = E— 5 = 5—36,1. (13)

One can see that compared with the SU(2); CFT, the Néel order correlation is suppressed while
the VBS order correlation is enhanced at the new transition fixed point, since A* > 0. This
also implies that this Néel-VBS transition has no enlarged symmetry of SU(2); x SU(2)z. An
enlarged SU(2); x SU(2)z ~ SO(4) symmetry would guarantee that the Néel and VBS order
parameters have the same scaling dimension, because (i, v) transform as a vector under SO(4).
Many previous studies suggest that at an unconventional quantum critical point between two
phases with different spontaneous symmetry breaking, an enlarged emergent symmetry in the
infrared is often expected due to a series of dualities [30-36]. But in our current case we expect
the infrared symmetry at the Néel-VBS transition is still the microscopic symmetry SO(3) x G.

As we mentioned before, suppose we integrate out the field & in Eq. 5, a long range in-
teraction in space-time will be generated between the Néel order parameter. The scenario is
similar to the spin-1/2 chain with a long range spin-spin interaction, the only difference is
that in the latter case the long range interaction is instantaneous and only nonlocal in space.
Recently a direct transition between the Néel and VBS order was found in a spin-1/2 chain
with nonlocal two-spin interaction and local four-spin interaction [8,9]. It was found numer-
ically that at the direct Néel-VBS transition the scaling dimension of the Néel order parameter
is greater than the VBS order parameter, which is fundamentally different from the SU(2),
CFT, but consistent with our RG calculations Eq. 13. We also note that a previous RG analysis
was performed for 1d spin-1/2 system with an instantaneous nonlocal spin interaction, but
the Néel-VBS transition was not found therein. Instead the previous analysis identified a tran-
sition between the true long range Néel order and a quasi-long range order at the parameter
region €, < 0 and A < 0 with our notation [37].

So far we have assumed that the fields 7, v and &, ® have the same velocity in our effective
1d theory Eq. 5, hence the theory we considered so far has a Lorentz invariance. We can also
turn on a weak velocity difference between these two sets of fields, and analyze how it flows
under RG. This velocity anisotropy corresponds to modifying the correlation function of &:

Cp(x,0)qp = (®%(x, 7)2°(0,0))
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— 5ab (14)

(1= 22)2x2 + (1 + &2)272)?

Here we have assumed that the velocity of & exceeds the velocity of i by a factor of (14 6v)
(to the first order of 6v). We have taken €, = O for the leading order calculation. 6v can
flow under RG as it is the “seed" for velocity difference. Based on symmetry, the RG flow of
6v should look like

dov

T = —ag§5v. (15)
And eventually we will plug in the fixed point value of g, = g*. Based on previous experience,
at an interacting fixed point, a weak velocity anisotropy is often irrelevant [38, 40], since
intuitively in the infrared all the interacting modes are expected to have the same velocity.
Hence we expect a > 0, i.e. a weak velocity difference between the boundary and bulk will be
irrelevant at the Néel-VBS transition fixed point.

To evaluate a, we expand the correlation function of & to the leading order of v:

1  36vz2+23?
C.(x,00=——=—"—"""40(6v?). 16
2(%,0) ZP  2RP 2 (6v*) (16)

Using the OPEs in Eq. 10, the second order perturabtion of g, would generate the following
term:

— & (Z na(z,z)cpﬂ(z,z)) (Z R (o, w)&P (w, M-/))

a b
2
oS8 el 1
4z—wl* ""4lz—w|?

> IEw)IEW)
a=1,2,3
+ 251/2#(T W)+ Tr(W)) +--- (17)
&n 32z—w2 "t R
Here we only kept the terms that will lead to nonzero effect under real space RG. The last
term in Eq. 17 would contribute a renormalization (or acceleration) for the velocity of #.
Under rescaling, the ratio between the two velocities reduces by a factor:

1
146y 110 (18)

1+ g26v2ZInl’

which leads to the RG equation for 6v:

2

=2 gy, (19
which confirms our expectation that §v is an irrelevant perturbation at the Néel-VBS transition
fixed point.

Suppose we start with §v > 0, namely the velocity of 7i is smaller than &, the velocity of 7
will increase under RG. This means that in this case the system will qualitatively behave like
z < 1, where z is the dynamic critical exponent (not to confuse with the chiral coordinate). On
the contrary, if we start with §v < 0, the velocity of 7i would decrease under RG, which means
that effectively z > 1. The former scenario is analogous to a spin chain with instantaneous
spatial nonlocal interaction [9], which is equivalent to taking the velocity of the effective action
of ® and & to infinity in our effective 1d theory Eq. 5. Although our calculation is for §v > 0,
rather than taking the velocity in the & action to be infinity, the “acceleration" of the modes

8
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1.0 15 2.0 25 3.0 3.5 4.0

Figure 2: The plot of In[371G,,(k)(1+A(g )?)] against In[1/|k|], where G, (k) is given
by Eq. 20. From top to bottom, A(g:')2 =0,1/2,2, and 5.

> A

Figure 3: The RG flow of (A, g,). As long as the initial value g, is nonzero, both
parameters will flow to positive infinity, which implies that the boundary will likely
develop the Ising-VBS order before the bulk.

derived here (including z < 1) is qualitatively consistent with what was observed in Ref. [9]
at the Néel-VBS transition in a spin-1/2 chain with nonlocal spatial interactions.

In the phase diagram Fig. 1, on the side of the Néel order, the path of the RG flow towards
the long range order can be complicated. It may take a long RG scale and hence large system
size to reveal the true long range order. For example, on part of the phase diagram, A changes
its sign and eventually flow away to the negative nonperturbative regime. While A changes
sign, g, first decreases its magnitude from the initial value g,, then after reaching its minimum
g along the RG flow, g, keeps increasing and eventually become nonperturbative. Hence it
is possible that for a relatively large intermediate scale, the system behaves like g, ~ g*’. The
effect of this nonmonotonic RG flow can be illustrated by a simple perturbation theory to the
correlation function of the Néel order parameter:

Gn(x) = (ii(x) - 7i(0))

31 3 */\2
——+—Jd2x1d2x2 (&) 3
2| 4 X — X1 [|x7 — %5 [3726n x5

+ O ) e (20)
Hence G, (k) in the momentum-frequency space k = (k, w) reads

1
GO(K) 1 —n(k)’

Gp(k) ~ (21
where GO(k) = 3n/|k|, (k) = —A(g:’)2|k|1_2€"/(37r), and A > 0 for 0 < ¢, < 1/2. The
system will have enhanced spin-spin correlation function compared with the SU(2); CFT of
the spin-1/2 chain, as was observed in numerical simulations [4,6,7]. The mixture of the two
terms in G~!(k) may yield results that appear to be power-law correlation with different scaling

9
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dimensions, which is illustrated in Fig. 2, where we have fixed €,, = 5/22¢ but chosen different
. This nonuniversal power-law like scaling of spin correlation was also observed in recent
numerics concerning the edge states of the AKLT state during a bulk phase transition [6, 7].
Now we briefly consider the situation when the bulk undergoes a disorder-order quantum
phase transition between the AKLT state and the Ising like VBS order, which is described by
order parameter ¢. The boundary mode of ¢ is & ~ J, ¢, and it couples to the VBS order
parameter v at the boundary CFT. In this case, the coupled RG flow of A and g, in Eq. 5 is
relatively simple: as long as we start with nonzero (1, g,0), both g, and A quite generally
flow to positive infinity, which corresponds to a nonzero long range order of v. Hence the
1d boundary of the system should develop the Ising-VBS order before the bulk. when the
bulk is tuned closer and closer to a VBS (Ising) transition, the boundary will go through a
transition between the gapless SU(2); CFT state to a VBS phase, before the bulk actually hits
criticality. This boundary transition should be in the same universality class as the transition
from an SU(2),; CFT to a VBS phase in a purely one-dimensional spin-1/2 chain with both
nearest and next nearest neighbor Heisenberg interactions (see, for example, Ref. [39] for
the one-dimensional transition). We note that this transition is not an ordinary 1 + 1d Ising
transition and, hence, is different from the “extraordinary transition" studied in the standard
boundary criticality literature. But if we start with a negative initial value A, it may take a
long RG time before the coupling constants become positive and nonperturbative. Hence the
VBS order parameter may still appear to have quasi long range correlation for a finite system.
In conclusion, we have found that there can be a direct continuous quantum phase transi-
tion between the long range antiferromagnetic Néel order, and the VBS order, in an effective
1d spin-1/2 system with nonlocal interactions (Eq. 5). Due to the nonlocality of the model,
even in a 1d system with a continuous SO(3) spin symmetry there can be a long range Néel
order. Within the accuracy of our method, the effective spin-1/2 system Eq. 5 arises from cou-
pling the 1d boundary of a 2d SPT phase to bulk quantum critical modes. Our results were
drawn from a controlled renormalization group study, and the critical exponents extracted
(including the anomalous dimensions of order parameters and the dynamical exponent) are
qualitatively consistent with the Néel-VBS transition found numerically in recent simulation of
a spin-1/2 chain with spatially instantaneous nonlocal interactions [8,9]. If a 1d system has
local interactions only, there can only be spontaneous discrete symmetry breaking. Previous
numerical and analytical works [41-43] have studied the analogue of deconfined quantum
critical point between two phases that spontaneously break different discrete symmetries.
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