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Abstract. We consider quantum many body systems with generalized symme-
tries, such as the higher form symmetries introduced recently, and the ‘tensor
symmetry’. We consider a general form of lattice Hamiltonians which allow a
certain level of nonlocality. Based on the assumption of dual generalized sym-
metries, we explicitly construct low energy excited states. We also derive the 't
Hooft anomaly for the general Hamiltonians after ‘gauging’ the dual generalized
symmetries. A 3d system with dual anomalous 1-form symmetries can be viewed
as the boundary of a 4d generalized symmetry protected topological (SPT) state
with 1-form symmetries. We also present a prototype example of a 4d SPT state
with mixed 1-form and 0-form symmetry topological response theory as well as
its physical construction. The boundary of this SPT state can be a 3d anoma-
lous QED state, or an anomalous 1-form symmetry-enriched topological order.
Insights are gained by dimensional compatification/reduction. After dimensional
compactification, the 3d system with N pairs of dual 1-form symmetries reduces
to a 1d system with 2N pairs of dual U(1) global symmetries, which is the
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boundary of an ordinary 2d SPT state, while the 3d system with tensor sym-
metry reduces to a 1d Lifshitz theory, which is protected by the center of mass
conservation of the system.

Keywords: topological phases of matter, gauge symmetry and gauge fields
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1. Introduction

Various lattice models with different emergent gauge invariance were constructed in
the context of quantum many-body condensed matter systems, including models with
emergent U(1) gauge invariance [1-3|, and models with more exotic tensor-like gauge
transformations [4-9]. The most well-known example is the quantum spin ice system
with emergent electromagnetism and photon-like excitations at low energy, as well as
Dirac monopoles [10]. The analysis of these lattice models usually relies on the ‘spin-
wave’ expansion, meaning to expand the theory at a certain presumed semiclassical
mean field minimum of the Hamiltonian, or the saddle point of the action in the path
integral. A low energy field theory is derived from this procedure (for example, Maxwell
theory), then it is expected that this field theory captures the infrared physics of the
lattice model at long scale. The stability of the state of interests described by low energy
field theory usually needs to be studied case-by-case for each particular example. The
general procedure of such analysis is that one treats the deviation from field theory as
perturbations, and demonstrates that these perturbations are irrelevant under renormal-
ization group flow at the desired state described by the field theory. But for a general
form of lattice Hamiltonian, it is unclear whether such a mean-field minimum (and its
corresponding field theory) really exists, or whether the perturbative renormalization
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group argument is reliable because the deviation from the desired state can be too
strong to be treated perturbatively. For example, it is known that the lattice model
for the emergent photon phase can be tuned into states very different from ordinary
Maxwell theory, such as a confined phase with various spin or valence bond solid orders,
and the Rokhsar—Kivelson point with nonrelativistic dispersion [2, 11, 12].

Sometimes, the argument for the stability of the desired low energy state can also be
translated to certain physical pictures, for example, the behavior of topological defects
such as Dirac monopoles; depending on whether the Dirac monopoles are gapped or
condensed, the lattice gauge theory is in its deconfined or confined phases. But this
argument relies heavily on the specific form of the theory, since the physical picture
and the theory describing the condensation of topological defects can vary significantly
between lattice theories with different generalized gauge transformations [9].

Recently, new tools and languages, such as generalized higher-form symmetries, have
been introduced to analyze gauge fields [13—21] and various features of gauge fields, for
example, the physical consequence of a topological term can be clearly studied following
this language [22]. In the current manuscript, the most fundamental assumption we
make about the systems under study is that, though our system is defined on a lattice,
at least at the long scale there exists a U(1)® symmetry. U(1)8 is a generalized U(1)
symmetry such as higher-form symmetry or a ‘tensor symmetry’, whose definition will
be spelled out later in the paper. The U(1) nature of the symmetry means that the
charges of the generalized symmetry take arbitrary discrete integer eigenvalues, and
charges with different supports in space all commute with each other. U(1)® can be
an actual symmetry on the lattice scale (UV scale), and it can also be of an emergent
nature, meaning it only exists at long scale.

Depending on the dimensionality, a topological soliton exists that is associated with
this presumed U(1)® symmetry. The topological soliton is defined in space but not space-
time, and it has a smooth spatial energy distribution without singularity (for example, a
Dirac monopole is considered as a defect, instead of a soliton). We then further assume
that at long scale, the topologically quantized soliton number is conserved, which means
that the system also has an emergent U(1)§ ., symmetry. Hence, at long scale, a dual
structure exists with an enlarged U(1)® x U(1)§,,, symmetry where the two U(1)* and
U(1)§,, symmetries act on two sets of degrees of freedom that are related to each other
in a non-local way. In this work, we will discuss the physical implications of the presumed
infrared U(1)# x U(1)5,,, symmetry of general lattice Hamiltonians, without relying on
any expansions around classical saddle points.

This manuscript is arranged as follows: in section 2, we start with the assumption of
dual generalized symmetries in infrared, then demonstrate the 't Hooft anomaly and a
stable gapless phase on general grounds, without assuming any space-time symmetry or
semiclassical treatment of the lattice model; in section 3, we identify the gapless phases
discussed in section 2 as the boundary of higher dimensional symmetry-protected topo-
logical (SPT) states with 1-form symmetries, and make a connection with ordinary SPT
states after dimensional compactification/reduction; section 4 introduces a prototype
example of a 4d SPT state with both 1-form and 0-form symmetries, whose boundary is
a prototype example of anomalous 1-form symmetry-enriched topological states (1-form
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SET) with fractionalization of 1-form symmetry; in section 5 we generalize the discus-
sions in the previous section for the case with ‘tensor gauge transformation’, meaning
we derive the 't Hooft anomaly of a pair of dual tensor symmetries and demonstrate
the gaplessness of the spectrum based on the assumption of dual tensor symmetries. We
also show that after dimensional compactification, the system with a pair of dual tensor
symmetries reduces to 1d Lifshitz theory.

2. 3d systems with U(1) 1-form symmetry

2.1. Consequences of 1-form symmetries

For our purpose, we do not take a specific example of state of matter and show that this
example has a 1-form symmetry. Instead, we start with the assumption that at least at
the long scale, our 3d system has a U(1)% symmetry, where U(1)? is a 1-form symmetry
[13—21]. We will explore what consequences this general assumption can lead to. Here,
3d means 3 spatial dimensions.

There is a 1-form charge density associated with this presumed U(1)® symmetry:

Qa= [ 449 - p. The integral is over a two-dimensional surface A. The conservation of
the charge density means that the 1-form charge cannot be created or annihilated, but
it can ‘leak’ through the boundary of A through a 1-form symmetry current. But if A
is a closed surface without any boundary, (), must be a constant, namely

A v
QA:/ dg-ﬁ:/ d%ﬁ-ﬁ:cons‘c. (1)
) )

A=0 V=A

Since this must be valid for any closed surface, it implies that V- p'is a time-independent
constant everywhere in the entire space at long scale. Hence p' can be viewed as an electric
field € which satisfies the Gauss law constraint. The equation of motion of the ordinary
electromagnetic field, i.e., Maxwell equations, can be viewed as the continuity equation
of the 1-form symmetries:

867;
81“]5“) = E - ajeijkbk = 0,
Ob;
O™ = o T diciner = 0. (2)

This means that for ordinary Maxwell theory, the currents of the two 1-form symmetries
are:

JO = (p, JN = (e, €ijibr),

i ij

gy = (b, —esren). (3)

i) i

Jm) — (
This is analogous to the more familiar fact that the equation of motion of a superfluid is

also the continuity equation of its super-current. Note that the conserved current .J () ig
associated with the aforementioned 1-form U(1)¢ symmetry. The conserved current J™
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will be associated with a different 1-form symmetry, denoted as U(1)5 .;, whose physical
meaning and definition will be explained later in this section.

Let us denote the operator of the electric field as €. When a quantized electric field is
realized in condensed matter systems, it usually only takes discrete integer eigenvalues
because the physical meaning of the electric field operator is usually the number operator
of certain quantum bosons (for example, the dimer number operator [2, 23]), or spin
component S* [1, 3]. We consider a lattice model for these electric field operators in the
same way as previous literature on quantum spin ices. If the Gauss law constraint is
imposed strictly on the lattice, the 1-form symmetry is a microscopic symmetry of the
system. However, in condensed matter realizations, the Gauss law constraint is usually
not imposed strictly on the lattice; instead, there is a large energy penalty for creating
defects that violate the Gauss law constraint (for example, in quantum spin ice, the
ice-rule of the spin configuration was enforced energetically). The Gauss law constraint
and hence the 1-form symmetry (now we refer to it as the electric 1-form symmetry) is
only an emergent symmetry at long scale.

Using the (emergent) Gauss law constraint, one can prove that the Hamiltonian of
the system must have a gauge invariance: @ (x) — @ (x) + Vf, where @; = a; + 2 is the
canonical conjugate operator of —é;, i.e., [¢; (xX),ay (x')] = 10;70 (x — x'). Here, we have
chosen the convention where —é; is the canonical conjugate momentum of a; to match
the convention of ordinary Maxwell theory. We will defer the proof to the example
with ‘tensor symmetry’ (section 5) which we will discuss later. Here, we state that by
assuming there is a U(1)% 1-form symmetry, the Hamiltonian of the system must have
a U(1) gauge invariance. Hence, a local Hamiltonian of the system will only involve

gauge invariant operators such as ¢and b=V x a. Generally, a local Hamiltonian of
the system that respects the 1-form U(1)® symmetry takes the form:

H = Z’Hé ), b)), (4)

H[X, Y] must be a periodic function of Y because b(x) and @(x) are both periodically
defined at any spatial location x. This means that a 27 flux has no physical effect if it
is only inserted through a single plaquette of the lattice. The flux only affects physics
when it is spread out in space, hence there are nontrivial fluxes through plaquettes
which are not multiples of 27. We do not assume any space-time symmetry in H, hence
H can involve mixture terms such as é(x)! sin (b(x);)” + H.c.. H also does not need
to be translationally invariant, i.e., it can have disorder. Here, we mainly focus on the
local Hamiltonian of the form in equation (4). But our analysis on the local Hamiltonian
equation (4) can be extended to systems with a certain degree of non—locality

Now we are ready to define the dual U(1)§ , symmetry. Since b=V x a it appears

dual

that the magnetic charge density vanishes V-b=0.But just like the existence of vortices
in a superfluid, singular defects like Dirac monopoles exist which complicate the scenario.

We assume that V - b = 0 holds at low energy or long scale, hence | ({14:0 dS - b =0 for a
large enough closed surface A (unless A has nontrivial winding over the entire space),
i.e., there is a U(1)®* x U(1)§,,, 1-form symmetry at long scale. This is similar to the
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physical picture that the Dirac monopole defect has a large energy gap, hence positive
and negative monopole pairs must be tightly bound at low energy. For ordinary Maxwell
theory, the current associated with the U(1)§ | symmetry is given by the second line of
equation (3). In the following, we will discuss the consequence of the U(1)% x U(1)§,,
symmetry in the general Hamiltonian equation (4) of which ordinary Maxwell theory is
only a special case.

For a general Hamiltonian given in equation (4), using the Heisenberg equation, we
can derive the 1-form currents for both the electric and magnetic 1-form symmetries:

8é2(x) . ~ o . aH ~ ~ _ aH
ot - 1[H7 €; (X)] - /dy lai)k (y) elyz’kayj [a'l’<Y)a €; (X)] - ezlykaxj ai)k(X) )
Obi(x) ... s . OH . N oM
at - 1[H7 b2<X)] - /dy 18ék’(}’) eijkaﬂ?j [ek/(y)7 ak<x)] - _ei]'kaxj aék(x)7 (5)

which can be viewed as the generalized 1-form electric and 1-form magnetic current
conservation equations. The charges associated with 1-form electric and 1-form magnetic

symmetries are still identified as € and b. The 1-form symmetry currents for a general
Hamiltonian are

(e) B OH (m) _ oH
PG = g T 0= T e

(6)
respectively.

The U(1)® x U(1)5,,, 1-form symmetries have the 't Hooft anomaly. For ordi-
nary Maxwell theory, this anomaly can be seen by the form of the 1-form currents
equation (3): the current of U(1)# symmetry is the charge density of the U(1)§,, sym-
metry, and vice versa. This means that the process of generating a current associated
with one symmetry necessarily violates the conservation of the charge of the other sym-
metry. Hence, there must be a mixed anomaly between these two symmetries. The mixed
U(1)8 x U(1)§,,; anomaly of ordinary (3 + 1)d Maxwell theory was derived in previous
literature, such as in [24].

In the following, we derive the 't Hooft anomaly for systems described by the gen-
eral Hamiltonian equation (4), which has the U(1)2 x U(1)§,, 1-form symmetries. To
demonstrate the anomaly, we start by gauging the 1-form symmetries, i.e., by coupling
J© and J™ to external gauge fields A and A™ . both of which are rank-2 tensor (2-
form) gauge fields. A and A™ carry with them the following gauge transformations:

A = AT+ 0,
Ag;z,m) N Af;\m) + ajfi(e,m) . ajf](e,m)' (7)
These tensor gauge fields are antisymmetric: AS’m) = —Ag-?m).

To explain how the rank-2 tensor gauge fields A©™ cbuple to the system described
in equation (4), we need to switch to a Lagrangian formalism of the problem. Before
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considering the coupling to the gauge fields A©™ the Lagrangian of the system is given
by

oH
i(x)

L= eilx) 5 — M), Beol. ®)

where &(x) and b(x) should be viewed as fields (instead of as operators). In the Legendre
transformation, a;(x) = —0H /de;(x), which allows us to express €(x) as a function of
d(x) and b(x), and further, to write the Lagrangian as a function of @(x) and b(x),
namely £[@(x),b(x)]. Under the electric 2-form gauge transformation (whose action on
A is given in equation (7)), the degrees of freedom in the Lagrangian L[d(x), b(x)]
transform as

a; = a; — fi(e)a
a; = a; — atfi(e)a (9)
bi — bz — ijkajflge).
When the system is coupled to the background two-form gauge fields A“™ | it can be
described by the Lagrangian

e 1 €
Ly =L {di + AE,(}, b; — ieijkAg'k)]
4+ Zi (A(-m) (X)J»(m) (x) + A (X)b‘(x)>
o\ ij w0 !
ol (e) 1 (e)
= a; + Ai707 b; — ieijkAjk
i —A(»I.n) . A(m) b 10
+ 2277 i (X)€ijear(x) + A" (x)bi(x) ) . (10)

One can easily check that, when A™ = 0, the Lagrangian L, is invariant under the
electric 2-form gauge transformations given by equations (7) and (9). The coupling to
the magnetic 2-form gauge field A™ is introduced in L, in the form of minimal coupling.
Here, we have made use of the general definition of JZ-(;H) given in equation (6) as well as
the fact that a;(x) = —dH /de;(x).

It turns out that, when A™ £ 0, the Lagrangian L, is no longer invariant under the
electric 2-form gauge transformation:

]- m e m e
Eg - Lg + Z% (Az('j )Gijk'atflg - Az(',o)eijkajflg )> ) (11)

which indicates a mixed 't Hooft anomaly of the U(1)® x U(1)§,, symmetry in the
system. In fact, this anomaly matches that of the boundary theory of a (4 + 1)d SPT
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state that has the 1-form U(1)® x U(1)§,,, symmetry and a topological response given
by [19, 24, 25]

1
Scs = [ drdiz —A©® A dA™, 12
2
T

Hence, if the U(1)® x U(1)5,, symmetries are microscopic symmetries, the 3d state
described by the Hamiltonian equation (4) must be a boundary state of a 4d SPT

state with 1-form symmetries. Here, A and A™ are treated as two-form fields in
(4 + 1)d.

2.2. Gapless excitations of systems with dual 1-form symmetries

Common wisdom says that a mixed 't Hooft anomaly of the dual U(1)® x U(1)5,, sym-
metry implies that the spectrum of the 3d system cannot be trivially gapped, namely the
Hamiltonian H cannot have a unique ground state and gapped spectrum in the thermo-
dynamics limit. Here, we explicitly construct an excited state of the general Hamiltonian
equation (4) with vanishing energy in the thermodynamics limit. We define our system
on a three-dimensional cubic lattice which forms a torus with size L?, and we assume
there is a unique ground state of H denoted by |£2). We consider the following state |¥):

R R . 2mé, (x
W) =0,/0). 0= exp <quL”> (13)

where Oq is a function of & only, and it creates a magnetic flux quantum 27q with size
L? along the % direction. Oq shifts a, by a, — a, + 27z /L?. Hence, the gauge invariant
Wilson loop W, = exp(i fOL dya,) still has a periodic boundary condition after the shift,
i.e., W,(x =0) =W,(z = L) for integer q. Notice that since O, is a function of ¢, 0,
must commute with any composite operator of €. This operator inserts flux 2mq/L*
on every plaquette in the XY plane. Using the language in [3], the state |¥) carries a
nontrivial topological charge, but using more recently developed language, |¥) carries
a different 1-form U(1)§ , symmetry charge compared with the ground state. To be
more precise, this symmetry charge here is [ dzdy b, (with the integration over the
XY-plane).

Since we made a powerful assumption that there is an emergent magnetic 1-form
symmetry U(1)5 ., at long scale, the assumption of |Q2) being the unique ground state
implies that it is also an eigenstate of the 1-form U(1)§ , charges. |¥) must be orthog-
onal to |©2) when the size of the created soliton is large compared with the lattice
constant, because these two states carry different charges under U(1)§ dual Though |¥) is
not necessarlly the eigenstate of the Hamiltonian, the energy of |¥) is evaluated as

Ey = (V[H|T) = (Q|O]HO,|2)

_ZQW—L{ (%), b(x )+@z Q)

https://doi.org/10.1088/1742-5468 /abe411 8
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= Bt Y L0 HIE), Heo)e) @q) , (14)

x m=1

where Z is the unit vector along the z direction. We have expanded the energy as a

polynomial of 1/L?. For our purpose, we only need to worry about the leading order

expansion of 1/L* because all the other terms will vanish under the limit L — oco.
The leading order expansion of Fy involves the following terms:

S (913, HIE), Bex)0) (15)

X

For a general state, this expectation value does not vanish. However, since |(2) is the

ground state, <Q|EX8,;NH[(A?(X), b(x)]|Q) must vanish because otherwise one can always
choose the sign of ¢ to make the energy of |¥) lower than |Q) for large enough L, which
violates the assumption that |€2) is the ground state.

Let us review our logic here: we do not first take ordinary Maxwell theory and demon-
strate that there is a 1-form symmetry; instead we start with the assumption that one
1-form symmetry U(1)® exists at long scale, then demonstrate that there must be a gauge
invariance as a consequence of the 1-form symmetry. And the gauge invariance allows us
to define the dual 1-form symmetry U(1)% dual” Then, by further assuming U(1)® x U(1)§
at long scale, we construct a state that is orthogonal to the ground state, with energy
approaching the ground state in the thermodynamics limit. The construction also does
not rely on the semiclassical ‘spin-wave’ expansion used often in the literature of lattice
quantum spin or boson models. A similar ‘soliton insertion’ argument was used in the
original Lieb—Shultz—Matthis theorem [26], and the Luttinger theorem [27].

The argument above can hold even with a certain degree of non-locality in the
Hamiltonian. For example, if there is a term in the Hamiltonian

Zfrx x|V Fb(x)] F[5(x)], (16)

one can show that as long as f(|x|) falls off faster than 1/|x|* at the long distance, the
state |¥) constructed above still has vanishing energy with L — oc.

3. Generalized SPT states and dimensional reduction

Helpful further insights can be gained through compactifying the system discussed in
the previous section to one dimension. The mixed 't Hooft anomaly between the two
dual 1-form symmetries will reduce to a mixed anomaly of two ordinary (0-form) U(1)
symmetries. The 4d bulk will reduce to a 2d bosonic SPT state with ordinary (0-form)
symmetries.

We compactify the YZ plane to a 2d torus with a small size. Since the 1d system is
along the & direction, a 2d surface A wrapping around the 1d line could be either in the
XY plane, or the XZ plane. In 3d systems with the U(1)¢ x U(1)% . 1-form symmetry,

dual

https://doi.org/10.1088/1742-5468 /abe411 9
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there is a 1-form charge associated with the compactified XZ plane:

/X EXZdzfz: é,(x) ~ / dz n(x). (17)

Since the system is highly compact in the Y and Z directions, we ignore the modes
with finite discrete momenta in these directions. In other words, all the fields are con-
stants in these two directions. Then, we can define a 1d particle density n(x) ~ é,(z) in
this compactified system. After proper normalization, we can also define the canonical
conjugate variable of n(x), i.e., the phase angle operator 6(x) as

/xeXngx b.(x) ~ /dx V.0(z), (18)

0(x) ~ a,(xz). O(x) and A(z) obey the standard commutation relation: [(x), n(z)] =
—id, . The 1-form symmetries discussed in previous examples become the ordinary
global symmetries (0-form symmetries) in 1d.

The U(1)§,, charge now becomes the topological soliton number in this 1d system:

1 [* ;
Ny = _— [ dz V,0(z). 19
= /0 © V,0(z) (19)
The general Hamiltonian we considered in equation (4) becomes a 1d Hamiltonian with
an ordinary U(1) symmetry

H =Y Hl(z),V,0(x)] (20)

All the analysis in section 2 has counterparts in the compactified system. We assume
that at long scales, both the particle number f dz n(x) and the topological soliton
number Nt are conserved, namely there is a U(1) x U(1)guu symmetry at long scale.
We denote the ground state of the Hamiltonian described above as |€2), and then consider
the following state |W):

W) = 0,0 = exp (mZ 27”2%) ) (21)

The operator Oq is the analogue of the operator Oq in equation (13) compactified to
1d. With ¢ = 1, |¥) contains one extra soliton N7 compared with the ground state [£2):
O, creates one extra winding of 6 in the 1d system. Since we have assumed that the
U(1)gual is an emergent symmetry at long scale, |¥) must be orthogonal to the ground
state. The evaluation of the energy of |¥) is similar to the discussion in section 2. We
can show that the energy of |¥) approaches the energy of |Q2) as L — oo.

When the system is reduced to 1d, its U(1) x U(1)gua symmetry has an ordinary ’t
Hooft anomaly. In fact, the action of the U(1) x U(1)g4ya in the reduced 1d system mimics
the spin and charge U(1) symmetry action on the boundary of a 2d quantum spin Hall
insulator. It is known that the boundary of the quantum spin Hall insulator with both
charge and spin U(1) symmetries has a mixed perturbative 't Hooft anomaly. To show
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this anomaly formally, one can couple the charge U(1) current to a U(1)® background
gauge field A and couple the spin U(1) (or the U(1)qy) current to another background
U(1)™ gauge field A™. This mixed anomaly is identical to the boundary of (2 + 1)d
bulk Chern—Simons theory

S = / drdz —= A A dAW), (22)
27
Physically, this anomaly simply means that the current of one U(1) symmetry is the
charge density of the other U(1) symmetry, hence a process of creating the current of
one U(1) symmetry would necessarily violate the conservation of the charge of the other
U(1) symmetry.

There is another pair of dual U(1) symmetries in the 1d system after compactifi-
cation, which originates from the 3d dual U(1) 1-form symmetries: the U(1) symmetry
generated by fxe Xydzas é.(x), and the U(1)qua symmetry associated with the conserva-

tion of [ _ Zd293 By(x). There is also a mixed 't Hooft anomaly between these two dual
U(1) symmetries. Hence, one pair of dual 1-form symmetries in 3d will reduce to two
pairs of ordinary dual symmetries in 1d. In general, if we start with N pairs of dual
U(1)e x U(1)§,,; 1-form symmetries in 3d, after compactification to 1d, there will be 2N

pairs of dual U(1) x U(1)qua symmetries in 1d. The 4d bulk system for the 3d system
with a series of 1-form symmetries can have a Chern—Simons response theory

1
S = / drd'z EKUCI AdC, (23)

where C! is a two-form gauge field, and K'/ is an antisymmetric matrix. Then, after
dimensional reduction as discussed in this section, the corresponding 2d bulk theory for
the 1d system should have a CS response theory

1 0 -1
_ 2 L e AT J r_
S—/drdemKUC A dC7, K K®(1 0). (24)
In the (2 + 1)d system, C” is a 1-form gauge field, and K’ is a symmetric matrix. Hence,
the 4d generalized SPT state can be studied and understood as its 2d counterpart with
ordinary symmetries after dimensional reduction.

4. A prototype SPT state with mixed 0-form and 1-form symmetries, 1-form
symmetry enriched topological order

Equation (12) is a (4 + 1)d topological response theory involving only 1-form symme-
tries. In general, if there is an extra ordinary (0-form) symmetry G in the system, one
can also consider the mixed topological response theory between the 0-form symmetry
G and the 1-form symmetries. For example, we can consider a (4 + 1)d bulk system
which has a topological response

dA©
o

Siopo = T / drd*z w,[AS°®] U (25)
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Here, AS°®) is the background (1-form) gauge field associated with the 0-form symmetry
G = SO(3) and ws is the second Stiefel-Whitney class.

A candidate system with this response theory can be constructed as follows: we start
with a (4 + 1)d QED with a microscopic electric U(1)® 1-form symmetry. We will denote
the (4 + 1)d bulk dynamical gauge field as a,. There is no microscopic magnetic higher-
form symmetry, hence there are defects with their own dynamics analogous to the Dirac
monopole. The Dirac monopole defect in (4 4+ 1)d is a one-dimensional line/loop. It was
shown that the ‘decorated defect’ construction is a very powerful physical picture of
constructing SPT states with 0-form symmetries [28, 29], i.e., higher dimensional SPT
states can be constructed by decorating the topological defects of order parameters with
lower dimensional SPT states. Here, we also follow the method of decorated defects: we
attach the Dirac monopole line in (4 + 1)d bulk with a one-dimensional ordinary SPT
phase with G = SO(3) symmetry, i.e., the Haldane phase, and proliferate the Dirac
monopole line. The (4 + 1)d bulk will be driven into a gapped and confined phase,
while the most natural (3 + 1)d boundary state of the system will be a QED whose
Dirac monopole carries a spin-1/2 under the O-form SO(3) symmetry, while there is
no electric charge. A theory which describes this boundary state is the (3 + 1)dCP!
model:

2
Sboundary = /de3$ Z |(8 — ld)ZO/|2 —+ .- (26)
a=1

where z, represents a spin-1/2 representation of the SO(3) 0-form symmetry carried by
the boundary termination of the Dirac monopole line in the (4 + 1)d bulk, while a, is
the ‘dual’ gauge field of a, at the (3 + 1)d boundary whose gauge charge is the Dirac
monopole of a,. As we can see from its topological response Siqpo, this (4 + 1)d bulk is
an SPT state protected by the electric 1-form U(1) symmetry and the O-form symmetry
G. Its boundary state cannot be gapped with a unique ground state without breaking
the symmetries. One way to understand it is to consider the compactification of three
spatial dimensions to a three-dimensional sphere S® with a non-trivial flux /. S;,dA(e) = 2m.
The effective (14 1)d system after the dimensional compactification/reduction has a
topological response identical to the SO(3) symmetric Haldane phase in (1 + 1)d which
is a (14 1)d SPT whose boundary does not admit a unique fully symmetric ground
state.

This ‘decorated monopole line’ construction can be generalized to many other SPT
states with mixed 1-form and O-form symmetries. One just needs to decorate the Dirac
monopole line in 4d space with a nontrivial 1d bosonic SPT state with ordinary 0-form
symmetry, for example the 1d Haldane phase with PSU(N) symmetry with a SU(V)
fundamental at the boundary. Then the 3d boundary could be described by a CPN~!
model with N flavors of the bosonic field z, coupled with the dual U(1) gauge field in
equation (26).

The system with a 0-form SO(3) symmetry and a U(1)? 1-form symmetry can also
support other 3d boundary states. For example, one can condense the bound state of
a pair of Dirac monopoles, which can be a singlet of SO(3) 0-form symmetry. Then
the system enters a ‘monopole superconductor’, which is a Z, topological order with
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both point and loop excitations. The point excitation is a spin-1/2 of the SO(3) 0-
form symmetry (z, in equation (26)), while the loop excitation carries a half charge
of the U(1)% 1-form symmetry. This fractionalization of 1-form symmetry is identical
to the simple fact that in an ordinary superconductor, the vortex line carries half the
magnetic flux quantum. Due to the fractionalization of the 1-form symmetry, the loop
excitation must couple to a gauge field, which is precisely the 2-form gauge field dual
to the condensed Dirac monopole pair.

The 3d topological order constructed here is a 1-form SET state. Both the point
excitation, and the line excitation of the topological order carry nontrivial quantum
numbers, and the line excitations carry 1-form symmetry charge. Moreover, this SET
state is anomalous in the sense that it cannot be driven to a trivially gapped phase
without breaking either the U(1) 1-form symmetry, or the SO(3) 0-form symmetry. The
reason is that, in order to drive the 3d topological order to a trivial phase, we need
to either condense the point particle or the line excitation. However, condensing the
line excitation would lead to spontaneous breaking of the U(1) 1-form symmetry, while
condensation of the point particle would lead to spontaneous breaking of the SO(3)
symmetry.

This Z, topological order with fractionalized 1-form symmetry is the 3d analogue of
a 2dZ, topological order whose mutual semionic Anyon excitations (the so-called e and
m excitations) carry half charge and spin-1/2 representation of 0-form U(1) and SO(3)
symmetries respectively. This 2dZ, topological order is the boundary of a 3d ordinary
SPT state [28].

The example of a SET state discussed here is a prototype, and many 1-form SET
states can be constructed in a similar way. For example, if the 1d SPT state deco-
rated in the Dirac monopole line in the 4d bulk is the PSU(/N) Haldane phase, the 3d
boundary can be driven into a Zy topological order by condensing an N-body bound
state of the Dirac monopole, which can be a SU(N) singlet. The point particle of the
Z n topological order carries fractionalized quantum numbers of PSU(N ), and the line
excitation carries fractionalized 1-form symmetry. We leave the full discussion of higher
symmetry-enriched SET states to future exploration.

5. 3d system with tensor symmetries

Now we turn to a system with a generalized tensor 1-form symmetry, whose lattice
realization was discussed in [4-6]. A connection between this system as well as similar
tensor gauge theories [7-9] and the fracton states was pointed out in recent literature
(for instance, [30-48]). The fracton states are a series of novel gapped states of matter
which can be obtained by partially breaking the gauge invariance in generalized tensor
gauge theories. In our current paper, we will still focus on the gapless phase with tensor
symmetry instead of the gapped phase. This tensor 1-form symmetry is, to a certain
extent, similar to the three 1-form U(1)? symmetries discussed in the previous sections,

meaning that with a given closed surface A, there are three U(1) charges: Q% = |, ({14:0 ds -

g = /. a‘(/: A &’z V- p“. These charges are individual constants. We further demand that
p'" is a symmetric tensor: p = p’*. Then p* can be viewed as the generalized symmetric
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tensor electric field introduced in [4-6]: £¥, which is subjected to the constraints: 9,7 =
0;E" = 0.

Now we promote £ to an operator £, whose eigenvalues are again integers. We
can define the following operator G(fi(x)) parameterized by an arbitrary vector function

f(x):
G(f") = exp ( / d*z 12 ffajzf”)
= exp ( / B if'9,E7 +i fjaié”)
= exp (- / Pz i (9 + 0, f7) 5]) . (27)

Let us denote A% as the canonical conjugate operator of £9 (A is again periodi-
cally defined). More precisely, we impose the commutation relations [£7(x), A"/ (x)] =
(05105 + 0;70;7)0(x — x'). The G(f*) operator will generate a gauge transformation on

A

Al
G (AT (x)G(f) = AY(x) + 20,7 + 20, f". (28)

However, because of the constraint on £, G (f") is actually an identity operator, which
must commute with any Hamiltonian of £ and A%. It means that the Hamiltonian
of the system must be invariant under the gauge transformation equation (28). The
derivation of gauge invariance in this paragraph applies to other systems with local
constraints, such as systems with generalized gauge transformations [9].

_ Then the Hamiltonian must be a function of £ and the gauge invariant operator
B = €41€7:00,0.A". A general local Hamiltonian should take the form:

H=>Y H[E(x), BY(x)], (29)

and again H is a periodic function of Bi. B is completely dual to . In addition to
the more exotic gauge invariance, these Hamiltonians all have an extra center of mass
conservation: H is invariant under transformation

A” N Aij + Fij[x], (30)

where F"”/[x] is a linear function of the space coordinate. This extra conservation law
in the series of tensor models [4, 6, 9] was noticed in [30], and it was realized that this
center of mass conservation is a key feature of the fracton states of matter.

We can define a dual tensor 1-form symmetry U(1)§ ,,, whose charge corresponds to

the generalized tensor magnetic flux through a surface A: Q% = [ dS’ - B. We assume

that the generalized tensor magnetic 1-form charge density 9,57 = 9,87 = 0 remains
zero at low energy, meaning there is an emergent dual tensor symmetry U(1)5,,, at

long scale. Then again, one can insert magnetic flux through the system through (for
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example) the following operator:

= exp <1qz 27m ) . (31)

This operator is still compatible with the periodic boundary condition, and it will shift
A** by

4dmrqr?
12

If we denote the ground state of the system as |€2), then |¥) has nonzero extra quantized
flux of BY through any XZ plain compared with the ground state, and the extra flux
density is BYY ~ 1/L?. Or we can create a configuration of A% (x) as A" (x) = 272?/L>.
Then there is a nonzero flux of B, again with flux density ~1/L".

Again, we will demonstrate that the ground state of the system cannot be triv-
ially gapped if we assume the emergent U(1)¢ x U(1)5,,, symmetry is at the long scale.
Suppose there is a unique ground state |Q2) of the system, then |¥) = O,|Q) must be
orthogonal to |Q2) for large enough L because |2) must be an eigenstate of the tensor
1-form charge, and |¥) carries a different tensor 1-form charge from [2). And by going
through the same argument as section 2, we can demonstrate that when L — oo, the
energy of |¥) must also approach the energy of |€2). This statement still holds with
disorder, and also when there is a long-range interaction that falls off more rapidly than
1/|x)?.

We have argued that an emergent U(1)# x U(1)5 ., tensor symmetry rules out a
trivial gapped ground state. This result can be equivalently stated as that the U(1)8 x
U(1)8,,, tensor symmetry is anomalous. Again, the equation of motion of £Y and BY
can be viewed as the continuity equation of the currents of the tensor symmetries. For
the simplest semiclassical limit of the theory [4, 6], the Hamiltonian of the system is
approximately

M 1S [ (E700) + (B70)°] (33)

OA{I—IAzzOAq _ Azz(x) + (32)

then the equation of motion reads

ij
a:;t - aa <€iabac€jcd8bd) =0,
ij
aés; - aa, (Eiabacejcdgbd) =0. (34)

This means that the currents of the tensor symmetries are:
© — (0 7 ij o1
J (p7] 9 Jv 7.k ) g €7kb€](‘da B + 14> .7

R g1 o
T = (o T = (15”, S Cikb€ied0cE" + i HJ)- (35)
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Again, in a process that creates a nonzero current of one of the U(1) tensor symmetries,
the charge conservation of the other U(1) tensor symmetry must be violated, hence there
is a 't Hooft anomaly of the two U(1) tensor symmetries.

Formally we can still discuss the anomalies in a Lagrangian formalism. The
Lagrangian is given by

ﬁwﬁu:gsz)—wwﬂ, (36)

Where Al = §H /67 = £ is introduced through the Legendre transformation
= (> > 87 M) — H. The electric U(1)® tensor symmetry is defined by the sym-
metry transformation

AT = AT 4 A, (37)

where Af;) is a constant symmetric tensor, namely Af;) = Ag.?. In the following, we will
use the terms U(1)# tensor symmetry and electric tensor symmetry interchangeably. We

can gauge the electric tensor symmetry by promoting A(e) to a space-time function, and
introducing the electric tensor gauge fields G 0 and G 1 which are symmetrlc under

the exchange of the first two indices, namely Gim =G\ o , and G7 = = G Under the

electric tensor gauge transformation, we have Jist ik
455 AT )
AT = AT 4+ 9, AE?
BY — BY 1+ €iab€jcdDn0e Al()z)
Gy — G + 9
G —>G7]k+8kA . (38)

ij,k

7]0

When the electric tensor background gauge field is turned on, the system is described
by the Lagrangian

1
LAY — ” 0, B — D) (embeycd + Ezcbeyad) 0 de c:|

AU BZ] ZZ( 7]0 7] +Gzyk zyk)+"'7 (39)

ijk X

which is explicitly gauge invariant under the gauge transformation given by
equation (38). The ‘... part contains higher order terms in AY and BY. As a sanity
check, we notice that the Lagrangian above effectively introduces the minimal coupling

between the electric tensor gauge fields (G(?) G\

1109 WC> and the current J© introduced in

equation (35).
Similarly, we can introduce the magnetic tensor gauge fields ng()) and Gﬁm,i which

are also symmetric under the exchange of the first two indices, namely GU 0= GQH) and

71,0
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Gf;n,z = va .. The magnetic tensor gauge fields are associated with the emergent U(1)§

symmetry. They transform under the magnetic tensor gauge transformation as

el
el

_> GZ] 0 + 8t 17 ,

230

zyk zyk

We can mtroduce the minimal coupling between the magnetic tensor gauge fields and
the current J™ introduced in equation (35), which yields

1
Eg = L |:AU — GU 03 87] 2 (Eiabej(fd + eicbejad) aaGl()ch‘|
a ZZ ( ij, Opm 7] Mgmﬁ)
ijk  x

. 1
=L |:.A7’] — Gl] 0 BU (fzabeyd + EZ(bejad) a de c:|

-3 (G + 4G e+ o) 24Y). m

ijk  x

When the magnetic tensor gauge field (Gvy 05 Gfﬁ) is turned on, the Lagrangian £, is

no longer invariant under the electric tensor gauge transformation equation (38):

Ly Le=d > (Gt sadadA)

ijk X

1 e
+ in(;/Z (eikbejcd + ejkbeicd) 8C8tA,()d)> . (42)

The fact that £, is no longer gauge invariant once the magnetic tensor gauge field
(G(.F“) G

17,00 ij.k
tensor symmetry.

The 3d system with tensor symmetry can also be compactified to 1d. After com-
pactification, one can still define several ordinary 1d global U(1) symmetries. One of the

U(1) symmetries has the following charge:

/X A i~ / dz (). (43)

The conjugate variable of n(z), i.e., the phase angle é(x) is defined as

/ Lo Byy(x) ~ / dz V20(x), (44)
xeX7

A

and 0(z) ~ A..(z). The 3d Hamiltonian then reduces to 1d Lifshitz theory: H =
> H[(x), V20(x)).

> is turned on indicates a 't Hooft anomaly of the emergent U(1)® x U(1)5, .,
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The 1d Hamiltonian H inherits the center of mass conservation equation (30), which
in 1d becomes — 0 + Bx with constant B. This center of mass conservation prohibits
terms like cos(V,60) after compactification. Hence, after compactification, the 2d bulk
of the system should be an exotic SPT state with a special center of mass conservation,
whose nature deserves further studies.

6. Discussion

In this note, we explored the consequences of the assumption of a pair of dual gener-
alized symmetries. We discussed the implication of the dual symmetries on low energy
excitations, 't Hooft anomaly, their bulk description, and the corresponding state after
dimensional compactification. Then, we extended all these discussions to tensor gauge
theories.

Further studies can be pursued following the questions raised in this work. We have

shown that for N pairs of dual 1-form symmetries in 3d, there will be 2N pairs of dual
0-form symmetries after compactification to 1d. If we break the dual 1-form symmetries
to a certain combination of these two 1-form symmetries, a bound state of electric and
magnetic charges (a dyon) is allowed and has its own dynamics. The 3d system can
be driven to a gapped phase by condensing these dyons, and the gapped 3d system
may have a topological order which depends on the condensed object. There should
be a systematic formalism describing the relation between the gapped 3d systems and
the corresponding gapped 1d systems after dimensional compactification. The problem
would be further enriched if there is a topological O-term in the 3d system [49, 50].
_ The 1d system after compactification is described by ordinary boson operators 7 and
f, and these bosons do not fractionalize. Hence, it is sufficient to view the 1d system as
the boundary of a 2d SPT state instead of a 2d topological order with fractionalization.
The 4d bulk of the 3d system is also a generalized SPT state with 1-form symmetries
rather than a topological order. But a topological order with fractionalized 1-form sym-
metries would be an interesting direction to explore. In section 4, we presented one
prototype of such topological order. A more general and systematic discussion of the
fractionalization of higher form symmetry is worth studying in the future.

Besides the higher-form symmetries and tensor like symmetries, many other gen-
eralized concepts of symmetries have been discussed in the past (for early examples,
please see [51-54]). Much of the topics discussed in this paper, such as the SPT states
and anomalies involving these generalized symmetries, also provide interesting future
directions.
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