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We discuss physical constructions and the boundary properties of various symmetry-protected topological
phases that involve 1-form symmetries from one spatial dimension to four spatial dimensions (4d). For example,
the prototype three-dimensional (3d) boundary state of 4d SPT states involving 1-form symmetries can be either
a gapless photon phase (quantum electrodynamics) or gapped topological order enriched by 1-form symmetries;
that is, the loop excitations of these topological orders carry nontrivial 1-form symmetry charges. This study
also serves the purpose of diagnosing anomalies of 3d states of matter. Connection between SPT states with
1-form symmetries and condensed-matter systems such as quantum dimer models at one lower dimension will
also be discussed. Whether a quantum dimer model can have a trivial gapped phase depends on the nature of its
corresponding bulk state in one higher dimension.
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I. INTRODUCTION

Symmetry-protected topological (SPT) phases [1,2] have
greatly enriched our understanding of quantum states of mat-
ter. With certain symmetries, the boundary of these SPT
states cannot be trivially gapped without degeneracy. In par-
ticular, many exotic states of matter can be realized at the
two-dimensional (2d) boundary of three-dimensional (3d)
bosonic SPT states. For example, exotic quantum critical
points (QCPs) in 2d with spatial symmetries (both on the
square or triangular lattice) can be realized at the boundary
of certain 3d SPT states [3,4], and the conjectured emer-
gent symmetry of the deconfined QCP matches well with the
bulk symmetry of the SPT state, sometimes these emergent
symmetries are only revealed through certain dualities [5,6]
between (2 + 1)-dimensional [(2 + 1)D] quantum field the-
ories.1 The analysis of the SPT state in the (d + 1)D bulk
can also be used as a diagnostic of the “Lieb-Schultz-Mattis
theorem” in d-dimensional systems with spatial symmetries,
i.e., whether the d-dimensional system can be gapped without
degeneracy [7–12] is related to the nature of the corresponding
bulk state in one higher dimension.

In recent years it was realized that the very concept of sym-
metry can be generalized to higher-dimensional objects rather
than just point-like operators [13–21]. Examples of SPT states
that involve these generalized symmetries were discussed in
previous literature [18,21–30]. For example, a classification
of SPT states based on generalized cobordism theory was
given in Refs. [27,28], and exactly soluble lattice models for
a class of SPT states were constructed in Refs. [29,30]. In the

1In this work the symbol “d” labels spatial dimensions, and “D”
labels space-time dimensions. For example, the 3d space is identical
to the (3 + 1)D space-time.

current paper we focus on physical construction and boundary
properties of a series of SPT states with generalized concepts
of symmetries, from (1 + 1)D to (4 + 1)D. We do not seek
exactly soluble models, instead we focus on general physical
pictures of these states. For example, the prototype 4d [or
(4 + 1)D] SPT state we will discuss can be constructed by
“decorated Dirac monopole loop” picture, which is analogous
to the flux attachment construction in the 2d SPT state. And
the prototype 3d boundary state of the four-dimensional (4d)
SPT state is a photon phase with various constraints of dy-
namics, quantum numbers, and statistics on the electric and
magnetic charges. We assume that the gauge-invariant objects
or excitations, i.e., objects that do not couple to a dynamical
gauge field, are always bosonic. These include point particles
and higher-dimensional excitations such as loops.

The 1-form symmetry transformation acts on loop-like
operators such as the Wilson loop or the ’t Hooft loop of a
dynamical gauge field. The existence of an electric 1-form
symmetry demands that the electric charge of the gauge field
is infinitely heavy. In condensed-matter systems the quantum
dimer model [31] naturally fits this criterion. It is well known
that the quantum dimer model can be mapped to a lattice
gauge field [32]. In a quantum dimer model, every site of the
lattice is connected to a fixed number of dimers, which implies
that there is a background electric charge distribution, but no
dynamical charge in the system. Hence the quantum dimer
model naturally has a 1-form symmetry. The quantum dimer
model on certain d-dimensional lattice may be mapped to the
boundary of a (d + 1)D SPT state with 1-form symmetry in a
certain limit, and the spatial symmetries of the quantum dimer
model is mapped to the onsite symmetry of the bulk SPT state.
The analysis of the SPT state in the bulk has strong indications
on the allowed phenomena of the quantum dimer model at d
dimensions.
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Due to the inevitable complexity of notations used in this
paper, we keep a self-consistent conventions of notations:

The N− form symmetry G will be labeled as G(N ), such as
U(1)(1), Z (1)

n , etc. Ordinary 0-form symmetry will be labeled
without superscript.

Gauge symmetries associated with a dynamical gauge field
will be labeled as u(1)(1), z(2)n , etc. depending on the nature of
the gauge fields. A topological order which corresponds to
a dynamical discrete gauge field will also be labeled as, for
example, a zn topological order.

Gauge symmetries associated with background gauge
fields will be labeled as U (1)(1), Z (2)

n , etc.
Classifications of SPT states will be labeled as Z, Zn, etc.
For space and space-time dimensions, for example, 3d

space refers to three spatial dimensions; (3 + 1)D refers to
the space-time dimension, which is the same as 4D Euclidean
space-time. Also, QED4 refers to quantum electrodynamics in
(3 + 1)D or 4D space-time dimensions.

For QED4, there are point-like particles such as electric
charge, and Dirac monopole. We label bosonic (fermionic)
electric charges as eb(e f ), and bosonic (fermionic) Dirac
monopoles as mb(mf ). Some of these point excitations have
no dynamics (infinitely heavy) due to the 1-form symme-
tries; we label these immobile point particles as e0b, e0 f , etc.
A QED4 with bosonic electric charge and fermionic Dirac
monopole is labeled as “QED4{eb,mf }.”

II. BUILDING BRICKS: 1d SYMMETRY-PROTECTED
TOPOLOGICAL STATEWITH 1-FORM SYMMETRIES

The simplest SPT state that involves a 1-form symmetry
exists in one-dimensional (1d) space or (1 + 1)D space-time.
1d SPT state with a 1-form symmetry is analogous to an
ordinary SPT state in zero-dimensional (0d) space. For a
U(1)(1)1-form symmetry, a SPT state in 1d simply corre-
sponds to a state with integer electric flux through the system.
Let us take a 1d chain with electric-field operators defined
on the links. Due to the Gauss law constraint, ∇xê(x) = 0,
the electric field ê(x) takes a uniform integer eigenvalue on
the entire chain [in a compact u(1) lattice gauge theory, the
electric-field operator ê(x) takes discrete integer value, while
its conjugate operator â(x) is periodically defined], hence for a
U(1)(1)1-form symmetry, the classification of 1d SPT states is
Z, which corresponds to different integer eigenvalues of ê(x).
It is analogous to the Z classification of a zero-dimensional
ordinary SPT state with U(1) symmetry [1,2].

The Hamiltonian of a 1d lattice U(1) gauge field is also
very simple, for example:

H =
∑
x

g[ê(x) − k]2. (1)

Due to the Gauss law constraint, a Hamiltonian must be in-
variant under gauge transformation â → â + ∇x f (x), where
â is the conjugate operator of ê. A local 1d Hamiltonian that
involves â cannot be gauge invariant, hence a local gauge-
invariant Hamiltonian is only a function of ê. In Eq. (1) k can
take continuous values. When k is half integer, the system is at
the transition between two SPT states, and the ground state of
the Hamiltonian is twofold degenerate with ê(x) = k ± 1/2,
namely, the transition is a level crossing between two eigen-

values of ê(x). This transition should be viewed as a first-order
transition.

One can also couple the electric field to a background
2-form U (1)(2) gauge field:

S =
∫

dτdx i fμνBμν (2)

In (1 + 1)D the stress tensor of the u(1) gauge field is just the
electric field: f10 − f01 = e(x), and B01 = −B10 is a Lagrange
multiplier. Hence the (1 + 1)D topological response theory
for the SPT state is

S1d−topo =
∫
(1+1)D

ikB, (3)

which is a (1 + 1)D Chern-Simons action of the 2-form gauge
field B, and its level k takes only integer values. For each
integer level k, the electric field (the 1-form symmetry charge)

e(x) = δS1d−topo

iδB(x)
= k. (4)

The 1d SPT state with 1-form symmetries will be the
building bricks for SPT states in higher dimensions. Suppose
we break the U(1)(1) down to Z (1)

n symmetry, the topological
response theory Eq. (3) still applies, but B is now a 2-form
Z (2)

n background gauge field. The classification of the SPT
state will reduce toZn, which means that in Eq. (3) the integer
k + n = k.

III. 4d SYMMETRY-PROTECTED TOPOLOGICAL
STATES WITH G(1)

1 × G(1)
2 SYMMETRY

A. Parent 4d symmetry-protected topological state
with U(1)(1) × U(1)(1) symmetry

We now discuss SPT states in 4d space that involves
1-form symmetries. This discussion is useful for diagnosing
anomalies of 3d states of matter, namely, some 3d states of
matter can only be realized at the boundary of a 4d SPT
state. The parent SPT state that we start with is the (4 + 1)D
state with the U(1)(1) × U(1)(1)1-form symmetry. With two
U(1)(1)1-form symmetries, the system can couple to two
background U (1)(2)2-form gauge fields B1 and B2, and the
response theory in (4 + 1)D reads

S4d−topo =
∫
(4+1)D

ik

4π
εIJB

I ∧ dBJ , (5)

where εIJ = iσ y. For each integer k, Eq. (5) is a different
Chern-Simons theory, and the system should correspond to
a different SPT state, hence these SPT states described by
Eq. (5) have a Z classification. The (3 + 1)D boundary of
this state is a QED4 without dynamical electric or magnetic
charge (Dirac monopole). This QED4 has a U(1)

(1) × U(1)(1)

mixed ’t Hooft anomaly as was derived in previous literature
[18,21,22].

To construct this 4d SPT state, we can start with two
(4 + 1)Du(1) gauge fields �a1 and �a2. These two gauge fields
both have electric 1-form U(1)(1) symmetry, namely, both
gauge fields have no dynamical electric charges, i.e., the
Gauss law constraint on the electric field is strictly enforced.
This is equivalent to tuning the electric charges in the 4d bulk
to be infinitely heavy. Both u(1) gauge fields allow dynamical
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FIG. 1. The decorated Dirac monopole loop construction of the
parent SPT state in 4d space. The Dirac monopole loop of gauge
field �a1 is decorated with the 1d SPT state of the U(1)(1)1-form
symmetry associated with gauge field �a2. After the condensation of
the decorated Dirac monopole loops, the 4d system is driven into a
SPT state described by response theory (5).

Dirac monopole loop or line defects in 4d space. We first
discuss the cases where the charges of �a1 and �a2 are both
bosons, otherwise �a1 and �a2 would be SpinC connections.
Situations with fermionic gauge charges of �a1 and �a2 will be
discussed later.

We use the analog of the “flux attachment” (or “decorated
defect”) construction of the SPT state which was used to con-
struct a 2d bosonic SPT state [33]. In 2d space, a U(1) × U(1)
SPT state (the parent state of many 2d SPT states) can be con-
structed by binding the vortex defect of one U(1) symmetry
with the charge of the other U(1) symmetry, and condense the
bound state, which drives the system into a gapped SPT phase.
In 4d space, the analog of the vortex defect of an ordinary
U(1) 0-form symmetry, is the Dirac monopole loop or line of
a u(1) gauge field. We decorate the Dirac monopole loop of
�a1 with the 1d SPT state defined with the 1-form symmetry
associated with �a2 with level (+k) in Eq. (3), and condense
or proliferate the decorated loops (Fig. 1). Once the bound
state between the monopole loop of �a1 and the (+k) unit of
electric flux of �a2 is condensed, the monopole loop of �a2 will
be automatically bound with (−k) unit of electric flux of �a1.

Condensation of Dirac monopole loops would normally
drive a (4 + 1)Du(1) gauge field to the gapped confined phase
(the loop excitation is coupled to a dual dynamical 2-form
gauge field, and the condensate is gapped due to the Higgs
mechanism). But because the Dirac monopole loop is dec-
orated with another SPT state with 1-form symmetry in our
case, after the condensation of the decorated monopole loops,
the phase in the 4d bulk is not an ordinary confined phase, it
is actually a SPT phase described by Eq. (5). In fact, Eq. (5)
directly implies that the 1-form symmetry charge (electric
field) �e 2(x), which is the variation δS4d−topo/(iδB2

01), equals
to the flux of B1, which is attached to the monopole of �a1.

The 3d boundary of the 4d SPT state is most naturally
a (3 + 1)D QED4 with both magnetic and electric 1-form
symmetries. The electric 1-form symmetry of the boundary,
QED4 is inherited from the 1-form symmetry of �a1 in the bulk,
while the magnetic 1-form symmetry of QED4 corresponds
to the electric 1-form symmetry of �a2 in the bulk, because
the Dirac monopole line of �a1 in the 4d bulk is boundor
decorated with the electric 1-form symmetry charge of �a2.
As we mentioned previously, we first discuss the situation
with bosonic point particles, hence in this QED4 the infinitely
heavy electric charge and Dirac monopoles are both bosons.

We label this QED4 as QED4{e0b,m0b}. Even though these
point particles have infinite mass, their statistics still matter,
because their Wilson loops (or ’t Hooft loops) still exist. If
these point particles are fermions, the Wilson loop will need a
framing structure, and the Wilson loop or ’t Hooft loop with a
twist will acquire a minus sign.

B. Descendant 4d symmetry-protected topological state
with U(1)(1) × Z(1)

n symmetry

Now we break one of the U(1)(1)1-form symmetry down to
the Z (1)

n symmetry. The topological response theory remains
unchanged from Eq. (5), although one of the background
2-form gauge fields will become a Z (2)

n background 2-form
gauge field. The decorated monopole line construction dis-
cussed in the previous section still applies here. One key
difference is that, because the 1d SPT phase with Z (1)

n 1-form
symmetry has a Zn classification itself, the flux attachment
or decorated defect construction mentioned in the previous
section will naturally lead to a Zn classification of the 4d SPT
state also. Namely, when k = n in Eq. (5), this bulk SPT state
will be trivialized, because the 1d SPT state decorated on the
Dirac monopole line is trivial.

We can always start with QED4 as a candidate boundary
state. Now since the magnetic 1-form symmetry is only Z (1)

n ,
it means that there are dynamical Dirac monopoles with n
magnetic charges (Dirac monopole with 2πn flux quanta).
As we mentioned before we first focus on the cases where
the point excitations are bosons, then we can condense the
n magnetic charge at the 3d boundary without breaking any
symmetry. The condensate of the 2πn Dirac monopole will
drive the boundary into a 3dzn topological order.

An ordinary 3dzn topological order is the deconfined phase
of a dynamical z(1)n gauge field. In an ordinary 3dzn topo-
logical order, normally there are two types of excitations: a
point particle which is the remnant of the 2π Dirac monopole;
and also another line or loop excitation which is coupled to
a z(2)n 2-form gauge field. If the loop excitation is condensed
(proliferated in 4D Euclidean space), the zn topological
order is trivialized, and the system becomes gapped and
nondegenerate.

The dynamics of the loop excitation can be schematically
described by the following Hamiltonian:

Hloop =
∑
C

−tC cos

⎛
⎝∑

�l∈C
ĉ�l −

∑
�p∈AC

b̂ �p

⎞
⎠ + · · · . (6)

In this equation, C represents certain loop configuration; �l
is a link which is part of this loop, and AC is a membrane
whose boundary is the loop C (∂AC = C); �p is a plaquette that
belongs to AC . 	

†
�l ∼ exp(iĉ�l ) is the creation operator of the

loop segment on link �l , and b̂ �p is a 2-form gauge field defined
on plaquette �p. The direction of the link and the unit plaquette
can be absorbed into the definition of ĉ and b̂ and render them
a 1-form and 2-form fields.

For an ordinary zn topological order, both ĉ�l and b̂ �p take
eigenvalues 2πN/n with integer N . Hence the “condensation”
of the loop excitation will not lead to degeneracy because
of the existence of the z(2)n 2-form gauge field b̂. Or in other
words, the condensation of the loop excitation will be fully
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“Higgsed” due to the coupling to the z(2)n dynamical gauge
field b̂, and this Higgs phase is the confined phase of the z(1)n
gauge theory.

However, if the loop excitation carries a U(1)(1)1-form
charge, the situation would be very different. Now ĉ�l can take
continuous values between 0 and 2π . Condensing the loop
would just drive the system back into a gapless photon phase.
Physically because the loop excitation carries a U(1)(1)1-form
charge, condensing the loop excitations would lead to sponta-
neous U(1)(1)1-form symmetry breaking, whose “Goldstone
mode” is precisely the photon.

With the bulk response action Eq. (5), the loop excitation of
3d boundary carries charge quantum k/n of the U(1)(1)1-form
symmetry. However, when k = n, the quantum number of
the loop excitation can be screened by binding with unfrac-
tionalized integer 1-form symmetry charge, hence the loop
excitations become completely neutralized. Then when k = n
the neutralized loop excitation can proliferate and drive the
boundary to a fully gapped and nondegenerate state, just like
the case of an ordinary z(1)n gauge theory. This argument again
leads to a Zn classification.

C. Descendant 4d symmetry-protected topological
state with Z(1)

q × Z(1)
n symmetry

We can further break the left U(1)(1)1-form symmetry
down to Z (1)

q from the previous example. Now in the conden-
sate of the 2πn Dirac monopole, the loop excitation will carry
k/n units of the Z (1)

q 1-form symmetry charge, and the loop
excitation is coupled to a dual z(2)n gauge field. Our interest
is to ask when this 3d boundary can be fully gapped without
degeneracy.

Let us start with the simple example with k = 1, q = 3,
and n = 2. Following the discussion in the previous section,
we consider the z2 topological order after condensing the 4π
Dirac monopole at the boundary QED4 (the 2πn monopole
has dynamics and can condense). There is a loop excitation
of this z2 topological order, which couples to a dual z

(2)
2 gauge

field, and carries half charge of the Z (1)
3 1-form symmetry. Now

consider a loop excitation whose creation operator is P†
C :

P†
C ∼

∏
�l∈C

	
†
�l ∼ exp

⎛
⎝i

∑
�l∈C

ĉ�l

⎞
⎠. (7)

P†
C carries half charge under Z (1)

3 , and it also couples to a dual

z(2)2 gauge field. Under both the Z (1)
3 symmetry and the z(2)2

gauge symmetry, C transforms as

Z (1)
3 : P†

C → ei
1
2
2πN
3 P†

C,

z(2)2 − gauge : P†
C → −P†

C, (8)

with integer N . One can check that, by combining the loop
operator PC with unfractionalized integer 1-form charges,
the Z (1)

3 transformation can be completely cancelled by a
z(2)2 gauge transformation. In other words the fractional Z (1)

3

charge carried by the P†
C can be “neutralized” by binding a

gauge invariant Z (1)
3 charge, and the 3d boundary system can

be driven into a trivial gapped phase by condensing this Z (1)
3

neutral loop excitation.
The discussions above can be generalized to other q and n.

With k = 1 in Eq. (5), after condensing the 2πn monopole,
the 3d boundary system is driven into a zn topological order
whose loop excitation carries 1/n fractional Z (1)

q 1-form sym-
metry charge. Our interest is to check when this fractional
1-form symmetry charge can be “neutralized” by integer
1-form symmetry charge, namely, by binding integer 1-form
symmetry charge the Z (1)

q transformation can be completely
absorbed or cancelled by the dual z(2)n gauge transformation.

Under a Z (1)
q transformation, the loop creation operator

PC acquires phase angle 2π/(nq); after binding with Q units
of integer Z (1)

q charge, the loop would acquire phase angle
2π/(nq) + 2πQ/q. Now we seek for a pair of integers (Q,N )
which satisfies the following equation:

1

nq
+ Q

q
= N

n
. (9)

This would mean that the Z (1)
q transformation can be totally

absorbed or cancelled by a gauge transformation. For (q, n) =
(3, 2) one can choose (Q,N ) = (1, 1). In general the question
is equivalent to finding a pair of integers (Q,N ) that satis-
fies Nq − Qn = 1, which is only possible when q and n are
coprime. When q and n are not coprime, the loop quantum
number can be fully neutralized when k = gcd(q, n). This
implies a Zgcd(q,n) classification.

More states
All the SPT states discussed so far have bosonic electric

charge and Dirac monopoles at its boundary QED4, namely,
the boundary of all the SPT states are QED4{e0b,m0b} states.
Let us revisit the starting point of our bulk construction of
Eq. (5). The two u(1) gauge fields �a1 and �a2 can have either
bosonic or fermionic electric charges with infinite mass in
the bulk, which become the static electric charges and Dirac
monopoles of the boundary QED4. Hence logically there will
also be QED4{e0b,m0 f }, QED4{e0 f ,m0b}, QED4{e0 f ,m0 f }
states that we need to discuss. As we pointed out before, the
statistics of static particles still affect the Wilson and ’t Hooft
loops. We defer discussions of these states to Sec. V.

IV. 4d SYMMETRY-PROTECTED TOPOLOGICAL
STATE WITH U(1)(1) × G SYMMETRY
AND 3d QUANTUM DIMER MODEL

Here we consider 4d SPT states with both a U(1)(1) sym-
metry and an ordinary 0-form symmetry G. The decorated
defect construction in the previous section can be generalized
here: we start with one (4 + 1)D u(1) gauge field �a with a
1-form electric symmetry, and decorate its Dirac monopole
line with the 1d SPT state with symmetry G, then condense
the monopole line in the bulk. A prototype 4d SPT state
with such construction was discussed previously, whose G
symmetry is SO(3), and its topological response theory is [34]

S4d−topo = iπ
∫
(4+1)D

w2[A
SO(3)] ∪ dB

2π
, (10)

where ASO(3) is the external 1-form SO(3) gauge field.
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Generally speaking the discussion of 4d SPT state with
1-form symmetry has implications on properties of 3d sys-
tems with loop-like excitations. If in certain limit a 3d system
with spatial symmetries can be mapped to the boundary of
a 4d state with onsite symmetries, then whether the 4d bulk
is a nontrivial SPT state has strong implication on whether
the 3d system can be trivially gapped, i.e., the nature of
the 4d bulk helps us prove a Lieb-Schultz-Mattis (LSM)
theorem [35,36] of the 3d system. In recent years much
progress has been made in understanding the LSM theorems
for quantum spin systems using the anomaly analysis of its
corresponding higher-dimensional bulk states [7–12,37]. In
condensed-matter theories the quantum dimer model is an
example of systems with loop-like excitations. Dimers are
defined on the links of the lattice, and each site of the lattice
is connected to a fixed number of dimers. Previous literature
has shown that the 3d quantum dimer model can be mapped
to a QED4 without dynamical electric charge [38], but its
monopole can carry a nontrivial quantum number under spa-
tial group due to the Berry phase, and in particular, for the
quantum dimer model on the cubic lattice, the monopole of
the QED4 carries a “spin-1/2” representation (projective rep-
resentation) of an emergent SO(3) symmetry [39,40]. Hence
this quantum dimer model is analogous to the boundary of
a 4d SPT state with symmetry U(1)(1) × SO(3), and there
should be a LSM theorem for this quantum dimer model.

This LSM theorem for the quantum dimer model is consis-
tent with the LSM theorem for spin-1/2 systems on the cubic
lattice. In Ref. [7], various quantum spin systems on the cubic
lattice were considered. For example, a SU(N ) spin system on
the cubic lattice with fundamental and antifundamental repre-
sentations on the two sublattices of the cubic lattice has a LSM
theorem for even integer N , but there is no LSM theorem for
odd integer N , i.e., the quantum spin system described above
with odd integer N can have a featureless gapped ground state
on the cubic lattice. However, a quantum dimer model on the
cubic lattice could be the low-energy effective description of
all these systems, since two nearest-neighbor AB sites can
always form a dimer (spin singlet), regardless of even or odd
integer N .

One simple extension of Eq. (10) is that, when we break
SO(3) down to its subgroup U(1) � Z2, Eq. (10) reduces to

S4d−topo = i



(2π )2

∫
(4+1)D

dB ∧ dA, (11)

where A is the background U(1) gauge field. The integral
in Eq. (11) is quantized, hence 
 is periodically defined:

 = 
 + 2π . Under the Z2 subgroup of SO(3), A changes
sign, hence a symmetric response theory demands 
 = kπ
with integer k. Equation (11) with k = 1 corresponds to the
nontrivial 4d SPT phase.

Equation (11) also describes the corresponding 4d bulk
state if instead we consider a quantum dimer model defined
on a 3d tetragonal lattice, here the U(1) symmetry is further
reduced to a Z4 symmetry, and the Z4 corresponds to the
rotation of the square lattice in each layer. In this case, in
the topological response theory (11), A is a background Z4
gauge field. Equation (11) still describes a nontrivial 4d SPT
state with 1-form symmetry.

The situation will be very different if we consider a quan-
tum dimer model on a 3d bipartite lattice with an effective
Z3 � Z2 = S3 symmetry. The Z3 should correspond to a three-
fold rotation C3 in the XY plane, and Z2 is a π rotation about
the x axis. Such quantum dimer models can potentially be
mapped to the boundary of a 4d system with U(1)(1) × S3

symmetry. But there is no 1d SPT state with the S3 symmetry,
hence the 4d bulk with the U(1)(1) × S3 symmetry is also
trivial as a descendant state of the SPT state described by
Eq. (11). Hence there should be no LSM theorem for these
quantum dimer models, i.e., these quantum dimer models can
in general have a gapped ground state without degeneracy,
unless this model has higher symmetries than the lattice itself.

V. OTHER 4d SYMMETRY-PROTECTED
TOPOLOGICAL STATES

With just a U(1)(1) symmetry, there is already a nontrivial
4d SPT phase, whose boundary is a QED4 with a 1-form elec-
tric symmetry, and the Dirac monopole is a fermion (labeled
as mf ). The unit electric charge (labeled as e0b) is infinitely
heavy at the boundary QED4 due to the U(1)(1) symmetry.
We label this boundary QED4 as state QED4{e0b,mf }. The
bulk is a nontrivial SPT state, namely, its boundary QED4
cannot be trivially gapped. One can condense a Cooper pair
of the fermionic Dirac monopole mf , and drive the QED4 to
a “monopole superconductor,” which is also a z2 topological
order. The loop excitation of the z2 topological order will carry
a fractional half charge of the U(1)(1)1-form symmetry and
hence cannot lead to a fully gapped and nondegenerate state
after condensation for the reasons explained previously in this
paper. Although the electric charges are infinitely heavy due
to the 1-form symmetry, its statistics still matters to physical
observables such as the Wilson loops of the QED4. And in this
QED4 the infinitely heavy electric charge is a boson.

This state remains a nontrivial SPT after breaking the
U(1)(1) down to Z (1)

n with even integer n, the cases with
n = 2, 4 were discussed in Refs. [27,28]. But this state will
be trivialized if n is an odd integer. For odd integer n, in the
monopole superconductor constructed above, the loop exci-
tation carries half charge of the Z (1)

n 1-form symmetry, and
it can be “neutralized” by binding unfractionalized 1-form
symmetry charge, i.e., the Z (1)

n transformation on the loop
excitation can be completely canceled by the z(2)2 gauge trans-
formation on the loop excitation, then the condensation of the
neutralized loop can lead to a trivially gapped phase.

There is even a nontrivial bosonic SPT state in 4d space
without any symmetry; its boundary is a QED4 whose
both electric charge and Dirac monopole (including their
bound state dyon) are fermions [41,42]. We label this QED
as the QED4{e′

f ,m
′
f } state. We view QED4{e0b,mf } and

QED4{e′
f ,m

′
f } as two root states, and by “gluing” these two

QED4 states together, another new state can be constructed.
One can condense the bound state of the Dirac monopoles
[labeled as (mf ,m′

f )] of both QED4 systems, then the gauge
fields from both QED4 will be identified due to the Higgs
mechanism, and e0b and e f are both confined since they
both have nontrivial statistics with the condensed bound state
of monopoles. Although e0b is infinitely heavy, its confine-
ment can still be defined by the behavior of the Wilson loop
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of its gauge field. In the condensed phase of bound state
(mf ,m′

f ), the Wilson loop of each individual gauge field
obeys the area law. But the bound state (e0b,−e′

f ), which
has trivial mutual statistics with (mf ,m′

f ), remains decon-
fined, although it is still infinitely heavy. This new QED state
has infinitely heavy fermionic electric charge, and dynami-
cal fermionic Dirac monopole. This new state is labeled as
QED4{e0 f ,mf }. One can also exchange e and m and label the
state as QED4{e f ,m0 f }, i.e., a state with dynamical fermionic
gauge charge, but infinitely heavy fermionic Dirac monopole.

Summary of 4d symmetry-protected topological
states with 1-form symmetries

Let us reinvestigate the states discussed in the end
of Sec. III. As we briefly discussed there, besides the
states QED4{e0b,m0b}, logically there should also be
QED4{e0b,m0 f }, QED4{e0 f ,m0b}, QED4{e0 f ,m0 f }, which
can all be boundary states of (4 + 1)D SPT bulk. It turns
out that these states can be constructed by gluing states in
Secs. III and V. For example, starting with the state
QED4{e0b,m0b} discussed in Sec. III (we label its gauge
field as �a), one can combine it with the state QED4{e′

0b,m
′
f }

(with gauge field �a′) discussed in Sec. V, and consider the
charge bound state (e0b,−e′

0b). This bound state carries zero
total gauge charge of �a and �a′. We assume that there is
only one U(1)(1)1-form symmetry, hence the charge bound
state (e0b,−e′

0b), which carries zero total gauge charge, is no
longer necessarily infinitely heavy and can acquire dynamics
and condense. Its condensate would render �a = �a′ through
the Higgs mechanism, and in the condensate the monopole
bound state (m0b,m′

f ) remains deconfined, because it has
trivial mutual statistics with (e0b,−e′

0b). The final state is
identical to state QED4{e0b,m0 f } discussed in Sec. III. Fol-
lowing the same argument, through gluing QED4{e0b,m0 f }
and state QED4{e′

f ,m
′
0 f } discussed in Sec. V [by condensing

the bound state (m0 f ,−m′
0 f )], one can obtain another state

QED4{e0 f ,m0 f } discussed in Sec. III.
The construction of all these states discussed so far can

be summarized mathematically in a single unified topological
response theory in the (4 + 1)D bulk:

S4d−topo =
∫
(4+1)D

ik0
2π

B1 ∧ dB2

+ ik1
2
dB1 ∪ w2 + ik2

2
dB2 ∪ w2 + iπk3w2 ∪ w3. (12)

w2 and w3 are the second and third Stiefel-Whitney class
of the space-time manifold. k0 takes arbitrary integer values,
while k1, k2, and k3 only take value 0 and 1, since the Stiefel-
Whitney class is defined mod 2. This topological response
theory is equivalent to the discussion based on the cobordism
theory in Refs. [27,28]. We also note that the state with only
k3 
= 0 corresponds to the state that does not need any sym-
metry protection discussed earlier in this section.

The classification of 4d SPT states discussed so far is
summarized as follows:

U(1)(1) : Z2 × Z2,

Z (1)
n : Z2 × Zgcd(2,n),

U(1)(1) × U(1)(1) : Z × Z3
2,

U(1)(1) × Z (1)
n : Zn × Z2

2 × Zgcd(2,n),

Z (1)
q × Z (1)

n : Zgcd(q,n) × Zgcd(2,q)

×Zgcd(2,n) × Z2. (13)

VI. 3d SYMMETRY-PROTECTED TOPOLOGICAL
STATE WITH G(1)

1 × G2 SYMMETRY

A. Parent 3d symmetry-protected topological
state with U(1)(1) × U(1) symmetry

The parent 3d SPT state we consider is a state with
U(1)(1) × U(1) symmetry. We can couple its symmetry cur-
rents to a background 2-form gauge field B, and a 1-form
gauge field A. The response theory for this SPT state is

S3d−topo =
∫

ik

2π
B ∧ dA =

∫
ik

2π
A ∧ dB. (14)

To construct such a state, again one can rely on the decorated
defect picture. We can start with a photon phase with an elec-
tric U(1)(1)1-form symmetry, namely, there is no dynamical
electric charge, or equivalently the electric charge is infinitely
heavy, but there are dynamical Dirac monopoles. Then we
decorate the Dirac monopole with a zero-dimensional bosonic
SPT state with U(1) symmetry, which is a bosonic charge
with U(1) symmetry. This zero-dimensional bosonic SPT
state has Z classification, which corresponds to states with
integer charges of a boson with U(1) symmetry. These states
can also be equivalently constructed by decorating the vortex
line of the U(1) order parameter with a 1d SPT state with
U(1)(1)1-form symmetry, i.e., the building bricks discussed
in Sec. II.

After condensing the decorated Dirac monopole, the 3d
bulk of the system is driven into a fully gapped state with-
out degeneracy. The 2d boundary of the system would most
naturally be a QED3 whose dynamical u(1) gauge field �a
has no dynamical gauge charge, but its magnetic flux carries
conserved U(1) quantum number that couples to A. The QED3
is a dual of the superfluid phase with spontaneous breaking
of the U(1) symmetry. And the assumption that there is no
dynamical electric charge of gauge field �a is equivalent to the
statement that there is no dynamical vortex of the dual super-
fluid, hence the superfluid cannot be disordered by condensing
the vortices.

B. Descendant 3d symmetry-protected topological
state with U(1)(1) × Zn symmetry

We can break the U(1) 0-form symmetry coupled to A in
Eq. (14) down to a Zn symmetry—now the entire symme-
try becomes U(1)(1) × Zn. The topological response theory
(14) still applies, but now A becomes a Z (1)

n background
gauge field. The decorated defect construction in the previous
case would lead to a Zn classification, because the zero-
dimensional SPT state with Zn symmetry decorated at the
Dirac monopole has a Zn classification.

This classification can be understood at the boundary as
well. The (2 + 1)D boundary is a QED3 whose flux carries k
units of the Zn quantum number, where k is given in Eq. (14).
With k = n, the flux of the QED3 basically carries a trivial
quantum number, and the QED3 can be driven into a trivial
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confined phase. This boundary state is similar to the quantum
dimer model on a 2d bipartite lattice, such as the square
lattice. The quantum dimer model can be mapped to a compact
QED3 with no electric charge (the quantum dimer constraint,
i.e., every site is connected to precisely one dimer, is strictly
enforced), but the flux of the compact QED3 carries nontriv-
ial lattice quantum number. The description of the quantum
dimer model in terms of QED3 is analogous to the boundary
of the 3d SPT state with U(1)(1) × Z4 symmetry at k = 1. It
is well known that the confined phase of the quantum dimer
model on the square lattice cannot be a trivial gapped phase,
instead it must have ground degeneracy due to spontaneous
breaking of lattice symmetry. But in the quantum dimer model
because the Z4 symmetry is a non-onsite lattice symmetry, the
quantum dimer model exists as a well-defined system in 2d .

This effect is inherited from the LSM theorem for spin-1/2
systems on the square lattice. There is no LSM theorem for a
spin-2 system on the square lattice, and a spin-2 system can
be viewed as four copies of spin-1/2 systems glued together,
or a system with four spin-1/2s in each unit cell. All these
observations are consistent with the Z4 classification of the
3d SPT state with U(1)(1) × Z4 symmetry discussed in this
section.

C. Descendant 3d symmetry-protected topological
state with Z(1)

q × U(1) symmetry

Next we consider the 3d SPT states as descendant states of
Eq. (14) with Z (1)

q × U(1) symmetry. Again we first consider
the cases where all the point particles in the bulk are bosons.
When we break the U(1)(1) symmetry down to Z (1)

q , the 2d
boundary is a QED3 whose flux carries U(1) quantum number,
and there are dynamical q-fold electric charges. The boundary
can only be driven to a zq topological order by condensing
the q-fold electric charge. One of the point-like anyons of
this topological order is the remnant of the 2π/q flux of the
QED3, which carries k/q charges of the U(1) symmetry quan-
tum number. When k = q this anyon carries unfractionalized
quantum number, and hence can be neutralized by binding
with gauge-invariant integer charge of the U(1) symmetry.
This neutralized anyon is a self-boson, and after condensation
it drives the boundary into a trivial gapped state. Hence this
3d SPT state should have a Zq classification.

To facilitate further discussions let us also consider a
different 3d bulk state with U(1) global symmetry only.
This is a QED4 whose electric charge is fermion, and Dirac
monopole is a boson (using the notations introduced before,
this bulk state is QED4{e f ,mb}). Again one can bind the
Dirac monopole with another boson that carries U(1) quantum
number, and condense the bound state in the 3d bulk. Then the
bulk is gapped and nondegenerate, while the 2d boundary is a
QED3 whose electric charge is a fermion, while the gauge flux
carries U(1) quantum number. However, this 3d bulk is not a
SPT state, since one can put the electric charge at the boundary
in a 2d Chern insulator with Hall conductivity 1, then the
2d boundary is gapped without breaking any symmetry. This
is consistent with the classification of ordinary SPT states
without higher form symmetries. With only U(1) symmetry,
there is no nontrivial SPT state in 3d . One needs another
time-reversal symmetry to construct a 3d bosonic SPT state,
since the boundary Chern insulator of the fermionic gauge

charge as we constructed above necessarily breaks the time
reversal.

One can again glue the 2d boundary states in the previous
two paragraphs together. Let us recall that the boundary of a
nontrivial 3d SPT state with Z (1)

q × U(1) symmetry is a QED3
whose flux carries a U(1) quantum number, and its bosonic
electric charges are infinitely heavy; the boundary of the trivial
state discussed in the last paragraph is a QED3 whose flux
also carries U(1) quantum number, and its electric charge is
a fermion with nonzero dynamics. Once we couple the two
2d systems together, the tunneling between the gauge fluxes
between the two QED3 will be turned on, which identifies the
two gauge fields. Now the 2d boundary state is a QED3 whose
gauge flux still carries U(1) quantum number, but its static
electric charge is a fermion. This state is not a new SPT state
since it can be constructed by gluing the 2d boundaries of the
two systems discussed above.

D. Descendant 3d symmetry-protected topological
state with Z(1)

q × Zn symmetry

Finally, we can break the U(1)(1)1-form symmetry in
Eq. (14) to Z (1)

q . Again we can start with the QED3 state
at the (2 + 1)D boundary. In this case there are dynamical
q-fold electric charge of the u(1) gauge field, and the magnetic
flux of the u(1) gauge field still carries Zn quantum number.
One can condense the charge-q bound state, and drive the 2d
boundary into a 2dzq topological order. In an ordinary 2dzq
topological order, there are two sets of anyons. The e anyon is
a remnant of the unit charge excitation of the QED3 before the
condensation of the q-fold electric charge, and the m anyon
is a 2π/q flux quantum of the u(1) gauge flux. Both e and
m anyons are self-bosons but have a mutual 2π/q statistical
angle. In our current case, due to the Z (1)

q 1-form symmetry,
the e anyons are not dynamical, and a m anyon carries a
fractional quantum number 1/q of the Zn symmetry [assuming
k = 1 in Eq. (14)]. Both e and m anyons are coupled to zq
gauge fields. Following the arguments in Sec. III, we can
demonstrate that when q and n are coprime, the fractional
quantum number of the m anyon can always be “neutralized”
by binding with integer charges of the Zn symmetry, in the
sense that the Zn transformation on the decorated m anyon can
always be canceled by a zq gauge transformation. When q and
n are not coprime, the quantum number of the m anyon can be
neutralized when k = gcd(q, n). The neutralized m anyon can
condense and drive the 2d boundary to a trivial gapped state
without degeneracy. Hence as a descendant state of Eq. (14),
the classification of the 3d SPT state with Z (1)

q × Zn symmetry
is Zgcd(q,n).

Summary of 3d SPT states with 1-form symmetries
Here we summarize the classification of 3d SPT states that

are descendants of Eq. (14). If there are special SPT states that
cannot be described by Eq. (14), such as some of the states
discussed in Refs. [29,30], they are not included in this list:

U(1)(1) × U(1) : Z,

Z (1)
q × U(1) : Zq,

U(1)(1) × Zn : Zn,

Z (1)
q × Zn : Zgcd(q,n). (15)
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Using the SPT states discussed in this section, one can also
construct 1-form symmetry-enriched topological states. For
example, for the SPT state with U(1)(1) × Zn symmetry, one
can “gauge” the Zn symmetry by coupling the system to a Z (1)

n
dynamical 1-form gauge field. This will generally drive the
system into a 3dZn topological order. There are line excitation
and point excitation in the Zn topological order. The line exci-
tation will carry the U(1)(1)1-form symmetry charges. Hence
this topological order is a 1-form symmetry enriched topo-
logical order. The same construction applies to the Z (1)

q × Zn
SPT. By coupling the Zn symmetry to a dynamical Z (1)

n 1-form
gauge field, the system is driven into a 3dZn topological order
enriched by Z (1)

q 1-form symmetry, in the sense that the line ex-
citation of the Zn topological order carries Z (1)

q 1-form charge.
But when q and n are coprime, the fusion of Zn line excitation
is incompatible with the Z (1)

q 1-form symmetry charges, hence
in this case the 1-form symmetry-enriched Zn topological
order is the same as Zn topological order without symmetries,
which is consistent with the classification in Eq. (15).

VII. 2d SYMMETRY-PROTECTED TOPOLOGICAL
STATEWITH G(1)

1 × ZT
2 SYMMETRY

Several different (2 + 1)D SPT states that involve 1-form
symmetries can be described by the following topological
response term:

S2d−topo =
∫
(2+1)D

i


2π
dB. (16)

In principle 
 can take arbitrary value, because dB is gauge
invariant. But some extra symmetry can pin 
 to a specific
value, like the 
 term of the ordinary topological insulator
[43] and the bosonic SPT state [3].

As an example of such states, we assume that the 2-form
background gauge field B is unchanged under time-reversal
transformation, this means that the 1-form symmetry charge
will change sign under time reversal. This implies that
the total symmetry of the system is a direct product be-
tween the 1-form symmetry and time reversal. 
 is clearly
defined periodically, namely 
 + 2π = 
, hence the time-
reversal-invariant states correspond to 
 = πk with arbitrary
integer k.

For even integer k, the (2 + 1)D topological response
theory (16) reduces to a boundary topological term that is
identical to the topological response theory with 1d SPT state
with a 1-form symmetry (Sec. II). This means that, for even
integer k, the boundary corresponds to a well-defined 1d state,
hence an even integer k would correspond to a trivial state in
(2 + 1)D. On the other hand, for odd integer k, the boundary
is a “half” 1d SPT state with 1-form symmetry G(1). Then the
(2 + 1)D bulk could be a SPT state.

As we mentioned before, due to the strict constraint
∇xê(x) = 0 for 1-form charge in one dimension, a 1d system
with 1-form symmetry is analogous to a 0d system with or-
dinary 0-form symmetry. Then whether there is a (2 + 1)D
SPT state with G(1) × ZT

2 symmetry can also be determined
by the existence of a projective representation of G × ZT

2 .
And there is a two-dimensional projective representation of
U(1) × ZT

2 , but not for U(1) � ZT
2 . Indeed, if the symmetry of

the system is G(1)
� ZT

2 , namely, B is odd under time reversal,

the
 coefficient is unchanged under time reversal, hence time
reversal will not pin 
 to any specific value.

To summarize our result in two spatial dimensions, there
is a nontrivial 2d SPT state with U(1)(1) × ZT

2 symmetry, and
this state remains nontrivial when U(1)(1) is broken down to
Z (1)
q with even integer q.
The decorated defect construction also applies in this sce-

nario, which is analogous to what was discussed in Ref. [44]
for ordinary SPT states. We can construct the SPT state with
k = 1 in Eq. (16) by first creating a domain wall of time-
reversal symmetry, then embedding each domain wall with a
1d SPT state described by Eq. (3), and finally proliferating
the domain walls. Besides construction from 1d SPT state,
we can also obtain this 2d SPT state by reduction from higher
dimensions. For example, starting with the 3d SPT state with
U(1)(1) × U(1) symmetry described by the response theory
(14), one can compactify one of the three spatial dimensions
(the 3d space R3 becomes R2 ⊗ S1), and insert a π flux of the
1-form gauge field A through S1. Then the response theory
Eq. (14) reduces to Eq. (16) with k = 1. This is the same
procedure of dimensional reduction introduced in Ref. [43].

VIII. DISCUSSION

In this work we discussed the classification, construction,
and boundary properties of SPT states involving higher sym-
metries, from one to four spatial dimensions. Our discussion is
mostly based on physical arguments. As an application of our
discussion, we make connection between the SPT states with
1-form symmetry to a quantum dimer model at one lower di-
mension. The quantum dimer model with spatial symmetries
can be mapped to the boundary of a bulk state with onsite
symmetries. Some of the universal features of the quantum
dimer model is dictated by the nature of the corresponding
bulk state.

In this work we only discussed quantum dimer models
on bipartite lattices, which can be mapped to a QED with
U(1)(1)1-form symmetry. It is well known that some other
dimer models can be naturally mapped to a z2 gauge field,
such as quantum dimer model on the triangular lattice [45].
Then these models would be examples of systems with Z (1)

2
1-form symmetry, and they can also be potentially mapped
to the boundary of one higher dimensions. Insights for these
systems gained from higher dimensions will be studied in later
works.

In this work we have also briefly discussed the construc-
tion of 1-form symmetry-enriched topological states. These
1-form SET states can appear at the boundary of a higher
dimensional SPT states (these would be anomalous 1-form
SET states), or can be constructed by gauging the symmetries
of the SPT states in the bulk. The 0-form SET states have been
studied very actively in the past. We believe a full systematic
study of 1-form SET states, either anomalous or not, is worth
exploration in the future.
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