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Abstract

We are concerned with the Dirichlet energy of mappings defined on domains in the
complex plane. The Dirichlet Principle, the name coined by Riemann, tells us that
the outer variation of a harmonic mapping increases its energy. Surprisingly, when
one jumps into details about inner variations, which are just a change of independent
variables, new equations and related questions start to matter. The inner variational
equation, called the Hopf-Laplace equation, is no longer the Laplace equation. Its
solutions are generally not harmonic; we refer to them as Hopf harmonics. The nat-
ural question that arises is how does a change of variables in the domain of a Hopf
harmonic map affect its energy? We show, among other results, that in case of a
simply connected domain the energy increases. This should be viewed as Riemann’s
Dirichlet Principle for Hopf harmonics. The Dirichlet Principle for Hopf harmonics in
domains of higher connectivity is not completely solved. What complicates the mat-
ter is the insufficient knowledge of global structure of trajectories of the associated
Hopf quadratic differentials, mainly because of the presence of recurrent trajectories.
Nevertheless, we have established the Dirichlet Principle whenever the Hopf differ-
ential admits closed trajectories and crosscuts. Regardless of these assumptions, we
established the so-called Infinitesimal Dirichlet Principle for all domains and all Hopf
harmonics. Precisely, the second order term of inner variation of a Hopf harmonic
map is always nonnegative.
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1 Introduction
1.1 Motivation

Before embarking upon the results, let us consider arbitrary bounded domains X and
Y in R” . We shall actually investigate in detail only the case n = 2. Although the n -
dimensional Riemannian manifolds are not in the center of our investigation, the ideas
really crystalize in a differential-geometric setting. Thus we suggest, as a possibility, to
think of X and Y as Riemannian n -manifolds or surfaces when n = 2. The subject

matter is about Sobolev mappings h£: X — Y of class V/I;QP(X, R, 1 <p<
oo . The chief part of this paper is highly motivated by the mathematical models of
Nonlinear Elasticity (NE) originated in [1,3,4,13,49]. The reference configuration X,
the deformed configuration Y , and the elastic deformation, usually a homeomorphism
h: X %% Y, thus named, have a well defined linear tangent map Dh : T, X —
T,Y, y = h(x), at almost every point x € X, called a deformation gradient. In the
Euclidean setting D#h is just a measurable function on X whose values are n x n -
matrices, so we write Dh(x) € R"*" . The adjoint differential D*h(x) : T, Y —

T, X, represented by the transpose matrix of Dh(x), gives rise to the Hilbert-Schmidt

norm |Dh| 2L /Te(D*h - Dh) = /(Dh|DR) .

The theory of hyperelasticity is concerned with the stored energy,

g[h]:/E(x,h, Dh)dx < oo, (1.1)
X

onto

for the purpose of determining the infimum subject to given deformations 2: X — Y.
The major player is the Jacobian determinant J;(x) = J(x, h) = det Dh(x) which
is often assumed to be nonnegative in order to comply with so-called Principle of
Non-Interpenetration of Matter [4,5,9,13,15,30,34]. Accordingly, it is energetically
impossible to compress part of the hyperelastic body to zero volume; the Jacobian
must be positive, [8]. It is a persistent misconception that the energy-minimal homeo-
morphisms must satisfy the Lagrange-Euler equation. Whereas, upon a little reflection
on the outer variation

he(x) 2L h(x) + en(x) . with € (X, R"),

such a view becomes well out of reality. The variations s, are generally not homeo-
morphisms of X 2% Y and, even more, the Jacobian may change sign. This being so,
one quickly runs into serious difficulty when trying to apply the Direct Method in the
Calculus of Variations by passing to a weak limit of an energy-minimizing sequence
of Sobolev homeomorphisms; injectivity is lost. That is why, one must accept limits
of homeomorphisms as legitimate hyperelastic deformations [10-12,21,35,36,48,50].
We refer to [14,51] for a different approach to enlarge the class of admissible home-
omorphisms. Besides these concerns, even if such a limit possesses the least energy
it is not generally possible to write down a Lagrange-Euler equation for the minimal
mapping. An immediate example is the Neo-Hookean energy:
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The Dirichlet principle for inner variations

Eg[h] :/ (|Dh(x)|P + []h(x)]fq) dx, l<p<oo, g>0, (1.2)
X

which does not authorize to use outer variations. But it allows for the inner variations.

Definition 1.1 By the (total) inner variation of h : X — R" we mean a family of

mapping hg : X e Re, heg(x) def h(¢(x)), in which ¢ : X 2% X are -
diffeomorphisms, referred sometimes as change of variables in X.

One of the reasons why the inner variations are advantageous over outer variations
is that hy(X) = h(X). Although in this most general setting we do not prescribe
the boundary values of #, its boundary behavior is still involved via the assumption
h(X) = Y. In nonlinear elasticity [3,5,6,13,14] this is called frictionless problem as it
allows for “tangential slipping” along the boundary. In the Geometric Function Theory
(GFT) [2,17,19,20,22,29,31,32,37], on the other hand, the frictionless deformations
naturally occur in generalizing Riemann’s Mapping Theorem, where prescribing the
boundary values of # is an ill posed problem.

Minimization of the energy (1.1), subject to frictionless deformations, leads to
a variational equation on X and additional equations on 0X, see e.g. [28,32]. In
order to cover the boundary value problems as well, we shall confine ourselves to
diffeomorphisms ¢ : X ®% X that are equal to the identity map on 9X. It will
simplify the arguments and cause no loss of generality to assume that ¢ (x) = x near
0X. Thus, we choose and fix a test function n € %;°(X, R"). For all sufficiently

small ¢ € R the mappings ¢ (x) &y +en(x) are diffeomorphisms of X onto itself.

Definition 1.2 The (internal or local) inner variation of 4 is defined by

he(x) et h(x 4+ en(x)), where n € €5°(X,R") and ¢ € R. (1.3)
Here the parameter ¢ is small enough to ensure the Jacobian condition:
det[/ + ¢ Dn] > 0, everywhere in X. (1.4)

Clearly, if & is an energy-minimal deformation among all inner variations, then it
satisfies the so-called inner variational equation:

d
— &1h°] =0, forall n € G5°(X,R"). (1.5)
de e=0

It is generally a highly nontrivial question whether the converse holds; and this is
our primary question that we address in this paper.

onto

Question 1.3 [General Dirichlet Principle] Suppose that a mapping 7 : X — Y
of finite energy at (1.1) solves the equation (1.5). Does every inner variation of &
increase its energy? Precisely, is it true that &[h] < &[h®]?
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Inner-variational equations are also known as energy-momentum or equilibrium
equations, see [16,53,57]. In continuum mechanics the inner variation is often called a
domain variation [18,23,24,46]. In recent studies there has been an intense exploration
of the inner variations. Applications are plentiful and quite significant. For example,
in the study of the regularity of energy-minimal mappings the unavailability of the
Lagrange-Euler equation is a major source of difficulties. Such a difficulty is well
recognized in the theory of nonlinear elasticity [7,8,55]. In different circumstances, a
deeper understanding of the Hopf-Laplace equation, see formula (1.16) below, helped
us to gain Lipschitz regularity of solutions (not necessarily energy-minimal) of a wide
class of conformally invariant equations [28].

Question 1.3, as posed in such a generality, seems to be over-committed at the
current stage of developments. That is why in this paper we undertake a detailed study
of the Dirichlet energy in the planar domains. The use of complex methods (quadratic
differentials in particular) are encouraging enough to merit such investigation.

1.2 Planar Dirichlet energy

From now on h: & — C is a Sobolev mapping of class #?(Q) defined on a
domain © C C in the complex plane C = {z = x +iy: x, y € R}, which we dress
with d’ Alambert’s complex derivatives.

oh 1[0 il oh 1[0 0
PO A VT B Sy A P
dz 2 \0x dy az 2 \ox dy

In this notation the Dirichlet energy takes the form:

ef 1
mﬂgzéwmﬁwmw=éommﬁmeﬂ&.

Hereafter dz stands for the area elementin C, dz = dxdy = ’5 dz A dz.

1.3 Dirichlet principle

Historically, the existence of the energy-minimal solutions was hinged on physical
interpretations. This was taken for granted (until K. Weierstrass’ constructed a counter-
example) by numerous eminent mathematicians, including Bernhard Riemann who
actually coined the term Dirichlet’s Principle. Let us encapsulate this principle as:
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The Dirichlet principle for inner variations

Riemann’s Dirichlet Principle

A function i € #'12(Q) solves the Laplace equation

oh
h;; = 8—; = (in the sense of distributions) (1.6)

if and only if its outer variations increase the energy.

1.3.1 Quter variation

The term outer variation of & : Q — C refers to a one parameter family {h® },cr of
mappings h? : @ — C defined by the rule:

h®(z) = h(z) + en(z) where n € C3°(2). 1.7)

The energy of h® is a quadratic polynomial in €.
e _ dh, 2 2 2
SN = SIn —deRe [ Ho2d + ¢ (P +1n2P) dz. (18)

The Dirichlet Principle is now readily inferred from the first order power term by
letting & go to zero. Since the test functions 1 assume complex values, we conclude
that & is harmonic if and only if

d
3 1’ =0, forall n € €X(Q). (A)
&

e=l

Now, having this equation, the second order power term (named second outer
variation) turns out to be nonnegative,

d2
— &[h®
) [h°]

o > 0, foralln e 6;°(). (B)

e=l

This inequality actually holds for every parameter ¢, so we have
&lh] <&h+n], forall n € €5°(Q). (®)
The equality occurs if and only if n =0.

1.3.2 Inner variation

Let h:  — C be a mapping of Sobolev class #12($2) inadomain Q C C. Where
it is important to distinguish different meanings of €2, one as the domain of definition
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of the variation and the other as its image, we designate different letters z and £ for
the notation of the variables in 2. Accordingly, h = h(€), where & can also be

ontq

viewed as € -smooth diffeomorphism of & : Q@ — Q. Precisely £(z) = z+ ¥ (2),
where Y € €2°(S2) satisfies the positive Jacobian condition:

Je(2) = 16 (@1* = 1&@P >0 forallz € Q. (1.9)

Implicit Function Theorem and topological degree arguments combined reveal that
£:Q ™ Q has an inverse, also denoted by z: @ &% Q| thus z = z(£). Both

ontq ontq

diffeomorphisms & : Q — Q and z: Q — € are understood as change of variables
in Q.

Definition 1.4 (The Total Inner Variation) Recall that the term total inner variation of
a function i : Q — C refers to any function H = H(z) defined by the rule:

H(z) = h((z)) , for z € Q (1.10)
where & = £(z) is any diffeomorphism of 2 onto itself.
In Sect. 3 we inaugurate the following general formula:
&[H] — &[h]
=f9(| H(2) P+ |H() 1) dz —/Q(wzg(s) 2+ 1hg®) 1) de

|z¢|*
=2/ he@® P + hg® 1) g de
Q( ¢ £ e — [z
4R/hh_ % % (1.11)
—4Re P ——— .
o T Jzgl? — Iz
Hereafter, the differential expression
H ="H() = heh; is called Hopf product. (1.12)

This name is given in recognition of Heinz Hopf’s work, see his book [25, Ch. VI].
It is immediate from (1.11) that:

Corollary 1.5 (The borderline case) If H = 0 almost everywhere, then no inner
variation of h decreases its energy; in symbols, &'[h] < &[H].

For the equality and for further discussion of this case see Sect. 5.

1.4 First and second order terms of the inner variations
Choose and fix an arbitrary complex valued function n = n(&) of class €;°(R).

For sufficiently small ¢ € R the mapping z = z(§) = & + en(§) represents a
diffeomorphic change of variables in €2.

@ Springer



The Dirichlet principle for inner variations

Definition 1.6 (The Range of &) Given n = n(§) € 6;°(R), the largest positive
number emax for which the mappings z = z(§) = & £ en(€), with 0 < ¢ <
emax are diffeomorphisms will hereafter be referred to as the maximal variational
parameter. Certainly, &max depends on the choice of the test function n € 6;°(R2) ;
for convenience we ignore this dependence.

This just amounts to the inequality
L@ =1 Een@F - EF >0, forallgeQ  (1.13)

whenever 0 < & < emax -

Our ultimate goal is to expand formula (1.11) in powers of ¢ . Therefore, we consider
a one parameter family of inner variations of /, defined for sufficiently small ¢ € R
by formula (1.10). Equivalently,

He2) ZL he), wherez = 2(6) &L £ 4 en(e) with £ e Q. (1.14)

This will bring us to an analogue of formula (1.8).

Theorem 1.7 (Power Type Expansion) The following expansion in powers of ¢ ~ 0
is in effect.

E&[H,] = &[h] +4e Re/ hg@ ng d
Q

1 —
+ 42 <§/Q<|hs|2+|h§|2>ln§|2d€ +Re [ hefg neng dé)
+ terms with higher powers of €.
(1.15)

The ¢ -term is called the first (inner) variation of /4 . This term vanishes if and only

if Re fQ th ng d§ =0, for every test function 1 € 6;°(R2) . However, since 7 is
complex -valued this equation also holds when “Re ” is dropped.

1.5 Hopf harmonics

We have the following equation parallel to (A).

Proposition 1.8 The equation

/ d
(A) T & He]

0 = 0 holds for all 1 € €;°(S2)

e=|
if and only if h satisfies the so-called Hopf-Laplace equation:

0 _
@ (hg hg) = 0 (in the sense of distributions). (1.16)
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In other words, the Hopf product H(§) &t he E e Z(Q) is a holomorphic

function in .

Definition 1.9 (Hopf Harmonics) The term Hopf harmonics refers to %géz(Q)-
solutions of (1.16).

1.6 Infinitesimal Dirichlet principle

We shall show that the second order variation; that is, the &2 -term in (1.15) is non-
negative. Thus the condition parallel to (B) reads as,

d? ,
@ (go[hs] 0 > 0 for all ne %(?O(Q) . B
Precisely, we shall prove the following:

Theorem 1.10 (Infinitesimal Dirichlet principle) Let h € 7/](])&2(9) be Hopf har-
monic. Then for every n € 6;°(2) it holds

1 _
5‘/Q(|hg|2+|h§|2)|n§|2dé + Re/gh;hg neng d& > 0. (1.17)

The proof of this theorem needs considerable work, see Sects. 6, 7, 8 and 9.
There are computational tricks that enable us to prove even more general estimate than
(1.17). Namely, we have

Lemma 1.11 Let 'H be a holomorphic function in Q2. Then

/Q|H(§>| > dt = /QH@) e 1z ds‘ (1.18)

for all test functions 0 # n € 65°(), see Theorem 9.2 for an equality.
It should be noted that establishing a strict inequality in (1.18) would imply that

&[H] > &[h], for sufficiently small ¢ £ 0. (1.19)

This case actually arises when J, # 0 a.e.in 2, see Theorem 9.1.

Proceeding in this direction to the higher order variations does not look promising.
Instead, we shall explore the length-area method for the Hopf differential H(z) dz®dz.
This will lead us to the exact analogue of Dirichlet Principle for simply connected
domains:

Theorem 1.12 Let Q C C be simply connected domain and h : Q@ — C a Hopf
harmonic mapping. Then no inner variation of h decreases its energy. Precisely,

&lh] = &[H],  H(z) = h((2) (1.20)

onto

whenever & : Q — Q is a diffeomorphism equal to the identity near 0S2.
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The Dirichlet principle for inner variations

Question 1.13 The question arises whether Theorem 1.12 is still valid for multi-
ple connected domains, so as to complete Riemann’s Dirichlet Priciple for all Hopf
harmonics.

Our partial answers to this question are furnished with a number of examples based
on the additional assumptions about trajectories of the Hopf differential H(z) dz ®
dz. Precisely, we shall consider the Strebel type differentials with leminiscate type
trajectory structure, see Theorem 13.1.

Remark 1.14 To make this text available to readers whose knowledge about quadratic
differentials may be limited, we provide definitions and include some computational
details when clarity requires it. A standard reference to quadratic differentials is the
book of K. Strebel [56].

The topics presented in this paper open new directions toward mathematical foun-
dations of Hyperelasticity. In particular, the use of quadratic differentials in the context
of hyperelasticity should appeal to both mathematical analysts and researchers in the
engineering fields.

2 Outer variation versus inner variation
By way of illustration consider amap h(z) = |§—‘ defined in an annulus € & {z: 0 <
r < |z| < 1 }.Thereader may wish to verify that it satisfies the Hopf-Laplace equation

Therefore, by [33] and by Theorem 13.1 herein, its (nontrivial) inner variations increase
the energy. On the other hand, there are outer variations which decrease the energy.
For, consider the following variation of /4,

r def 1 r Z
z+ =), where n(z) = 74+ - - =.
( z) 1@ 1+r< z) ]

Note that the function n € €°°(2) vanishes on 92. Since i + n is a harmonic
function with the same boundary values as % its energy is smaller than that of /. Of
course one may modify slightly n near 92 to obtain a test function of class €;°(£2).
This does not affect the energy of & 4 n to the extent that it will remain smaller than
thatof & .

h(z) +nz) =

1
14+r

3 Proof of formula (1.11)

We start with a derivation of Formula (1.11). For, recall that H(z) = h(&(z)). The
chain rule yields:
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H,(z) = hE & + héé_i
H:(z) = hg &+ hg g

Hence

|H(2)]> = |he*|&: > + |hz*18:1” + 2Re (heh; &.£:)
|H:(2)|* = |he P1€21* + |hg P16 ° + 2Re (hehg £.:)

and
H@P + 1H: @ = (el + hgl?) (16: + 16:%) + 4 Re (hehg &.2)

Here both the left and the right hand side are functions in the z-variable. Thus we
integrate both sides with respect to the area element dz. However, in the integral of
the right hand side we make change of variable z = z(£) . The transformation rule of
the area element takes the form:

g 9 _ d&
() &R — &P

Hence

/IHZ(Z)|2+|H2(Z)I2dz
Q
2 2
/g<' e+ 1hel) (g ) %€ + e/sz(f ier jen)

We need to express &;(z) and &;(z) as functions of the & -variable. For, we compute
g—i =£.(z) and % _ &:(z) by means of the derivatives of the inverse map z = z(§)

0z
@ —%®) e
£ = e 5T TLe where J.(€) = |z¢|* — |z¢* > 0.

Now, formula (1.11) is readily inferred from these equations.

4 Proof of Theorem 1.7
We take z = z(§) et &+ en() in (1.11), where n = n(&) can be an arbitrary
function of class 4;°(2), provided & is small enough. We substitute the derivatives

z¢ =1+ eng and zz = e nz into formula (1.11) to obtain,
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E[H] — Eh] =
Ing|?
[T+ eng|> — |eng

=22f he@®) 1P + |hz @) |? d
| (1@ P+ he@) 1) 7 dé

4.1
ng 1+ en;g

—48Re[ heh; 2 dg.
Q

|1+ ene|* — |enz

Since we are interested only in terms up to order ¢2 we only need to take into account
the following expansions

1
~ 1 (in the first integral
el —femglP ¢ grah
1 N 1

~ ~ 1 —2eRe in the second integral).
[l +enel> —leng|*> 1+ 2eRens e ¢ &

Also observe that (1 +¢eng) (1 —2sReng) = 1 —ene + higher powers of ¢.

Substituting these equations into (4.1), in view of f o hg@ U dé = 0, we conclude
with formula (1.15), as desired by Theorem 1.7.

5 The case H = th =0
On the key issue of Dirichlet Principle the following equation

he E =0 (homogeneous Hopf product) 5.1
lies around the borderline of behavior with respect to the inner variations, see

Remark 5.2 on n -dimensional variant of (5.1). We call such solutions the singular
Hopt harmonics.

5.1 Proof of Corollary 1.5

Proof In the singular case formula (1.11) simplifies as,

2 (|hel® + Ihgl?) |zzI* dg
E[H] - E[h] = f N > 0. (5.2)
Q lzg|” — Izgl
Hence Corollary 1.5 is immediate. O

The identity 5.2 also tells us that we have equality £(H) = £(h) iff 4z (&)-Dh(§) =
0. In terms of the inverse map & = &(z) this condition reads as &;(z) - Dh(z) = 0.
Suppose for the moment that Dh(z) # 0 almost everywhere. Then all inner variations
(& #£ 0) strictly increase the energy. Indeed, otherwise we would have &;(z) = 0 so
the function & = &(z) would be holomorphic and, being equal to z near the boundary
of 2, would be identically equal to z, resulting in no change of variables.
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Examples abound in which the Hopf product vanishes.

5.2 Origami folding

into

Surprisingly, in [39] there has been constructed a Lipschitz map 4 : C — C which
vanishes in the lower-half plane C_ &t {£ : Im& < 0} and is a piecewise linear

isometry on the upper-half plane C; &t {§ : Im& > 0}. Precisely, C4 has been
triangulated so that on each of its triangles the differential dh = he d§ + hg d§
assumes one of the following six constant values.

dé¢, id&, —idég (in which case & is orientation preserving)

dh = (5.3)

—dé, —i d§ , id§ ( where h is orientation reversing, foldings).

An interested reader is referred to an explicit construction by Formula (1.7) in Propo-
sition 1 of [39]. Thus, at almost every & € C, we have either hz = 0 or hg =0.
Therefore, the Hopf product vanishes almost everywhere in C . The change of orienta-
tion of & in CL occurs more and more frequently when one approaches the common
boundary dCL = dC_ =R.

We have the following formulas:

2 B 2 _ _ 1 in (C+
he @) P + 1@ 2 = 1©)| = {0 . (5:4)
a0 =/Q (1h@ P + hg@®1?) de = |21, where 24 £ 2NCy.
+

Consider an arbitrary change of variables £ = £(z) in Q2 that equals z near 9S2.

Formula (1.11), with H(z) det h(&(2)), cuts down considerably to:

2)zz|* d&
ELH] — &ELh) =/ : 7z

—_— (5.5)
a, lzel? — Iz

Equality occurs if and only if z; = 0 on €24 , meaning that z = z(§) is holomorphic
on 2 . It then follows (by unique continuation property) that z(£§) =& on Q.

Remark 5.1 A natural question to ask is whether it is possible that, in spite of a change
of variables in 2, the equation &[H] = &[h] forces H = h on Q . The answer is
“yes”. To see such a possibility look at H (z(£)) = h(§) where the change of variables
is given by therule z(§) =& for £ e C4,s0 H(§) = h(§),and z(§) =& + n(§)
for £ € C_ with n € 5°(2_). In this latter case, regardless of the choice of 7,
both functions H (&) and k(&) vanishon Q_ .
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Fig. 1 Circular reflections result in a vanishing Hopf product

There is quite a general way to construct singular Hopf harmonics; typically, these
are piecewise holomorphic/antiholomorphic functions. The orientation of /4 changes
when passing through the adjacent pieces of €2.

5.3 Reflections about circles

Consider a multiply connected domain U with (rn — 1) discs as bounded components
of its complement, and the unit circle as its outer boundary, see Fig. 1 on the left.
Reflect U about its inner boundary circles. This gives us (n — 1) circular domains
Uy, ..., U,—1,eachof connectivity n . Their outer boundaries are just the inner bound-
ary circles of U. Next we reflect each Uy, ..., U,—; about its own inner boundary
circles. This gives us (n — 1?2 circular domains of connectivity n, say U;; with
i,j=1,2,...,n—1,seeFig. 1 on the right. Continuing this process indefinitely, we
cover the entire unit disc D, except for a Cantor type limit set C of zero measure.
Precisely, we have

n—1 n—1 n—1
D\C = U[Ui U U [Uij U U Uijk U...
i=1 ij=1 i jk=1

Our construction of the vanishing Hopf product 4,4 = 0 begins with an antiholomor-
phic function ¢(z) = z in U.Weextend z to U; U... UU,_; by orientation reversing
inversions about the inner boundary circles of U, respectively. This gives us orientation
preserving linear fractional functions ¢; : Uj o2 U, .., On—1:U,_1 25 U. They
admit further circular inversions. Accordingly, we extend each ¢;, i = 1,2, ....,n—1
to U;; U Ujp U ... UU; »,—1 via the inversions about inner boundaries of Uj;.
Next, for every i, we perform inversions about each inner boundary circle of U .

ontq

This gives us orientation reversing linear fractional transformations ¢;; : U;; —

onto

Ui, oo @in—1:U;n—1 — U; . Next, for every ij , we perform inversions about each
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Fig.2 Circular reflections of higher connectivity

Reflecting about

concentric circles

Fig.3 Construction of a vanishing Hopf product for a map of finite energy

inner boundary circle of U;; . This gives us orientation preserving linear fractional

onto onto

transformations ¢;;1 : U;j1 — Ui, ..., @iju—1: Uij a1 — U;;. Continuing
such reflections, we arrive at a map & : D\C > D\C which holomorphic on
each Uy, ..., U,_1, antiholomorphic on each Ujy, ..., U; ,_1, again holomorphic each
Uij1, ..., Uij n—1 and so on. Therefore i has vanishing Hopf product, see also Figure 2
for more reflections. The change of orientation of /& occurs more and more frequently
once we approach the limit set C. However, in general the energy of /4 need not be
finite.

The simplest such a construction of finite energy can be furnished via reflections
about concentric circles, see Fig. 3. For this purpose, we decompose the punctured
disk into annuli D\{0} = A U A, U...UA, U ---,where A, ={ze€C:ryq <
lz| < rp}, with r, = n=2, for n = 1,2, .... We define the map h = h(z) in the
annulus A, by the rule
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The Dirichlet principle for inner variations

— . 1 _
Bz = nz, forp, <|z| <r,,where p, = /—n(n+l)3 (thus h, =0) (5.:6)

m , for rpp1 <lz| <pn (thush;=0)

The energy of 4 in the annulus A, is estimated as follows

En, 1]

m n
:/ |h: | dz +/ |hzl*dz < ———— + =, respectively.
rn+1=1z|=pn Pon<|z|<rn (n + l) n
5.7

. . . 3
Summing up these estimates , we obtain &plh] < 27 Y {° n% =T

Remark 5.2 The theory of n -dimensional quasiconformal mappings is concerned with

onto

mappings h : X — Y of finite n -harmonic energy, also called conformal energy.

ETh] E/ IDh(x)[" dx < oo. (5.8)
X

Let us see how the associated variations might look like by analogy with the complex
case. The outer variation results in the n -harmonic equation

div|Dh|"?>Dh =0. (5.9)

The inner variations bring us to what we call Hopf n-harmonics [32]. These are

7/1;5" - solutions of the equation

i
div (|Dh|"2[D*h-Dh _ —|Dh|21]) —0. (5.10)
n

The radial squeezing h(x) = \;_I turns out to be Hopf n -harmonic in an annulus, but
not n -harmonic. An exact analogue of the singular Hopf harmonic equation (5.1)

takes the form,
* 1 2
D*h - Dh — —|Dh|“1=0. (5.11)
n
Among other solutions are the conformal inversions about the (n — 1) -spheres, both

orientation reversing and orientation preserving. All our planar constructions presented
above can be carried over to singular Hopf n -harmonics as well.

5.4 Solutions that are nowhere holomorphic and nowhere antiholomorphic
We shall construct a Lipschitz solution to the equation 4,h; = 0 in C which is

neither holomorphic nor antiholomorphic in any open subset of C. When constructing
h : C — C we shall be dealing with two measurable sets. Let us reveal in advance
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that these sets and A will be related as follows F = {z; % =0}, and F_ =
{z; % = 0} . Here z runs over the points of differentiability of 4 ; thus a set of full

measure in C.

Proposition 5.3 There are sets F_ and F such that

e The sets F and F_ are “measure disjoint”; thatis, T NIF_ has zero measure.
e The union FL UF_ has full measure on C.
e Both Fy and F_ are “measure dense” in C; meaning that,

IF+ N Q| >0 and |[F_- N Q| > 0, forevery open set 2 C C.

Proof The map in question will be defined by the rule h(z) = u(x) + iy , for z =
x +iy.Here u = u(x) is a Lipschitz function on R whose derivatives at the points
of differentiability assume only two values £1, say +1 onaset E; and —1 ona
set E_ . Moreover,

e |ELNE_|=0,andtheunion E; U E_ has full measure in R.
e The sets £+ and E_ are “measure” dense on R ; meaning that |[E;L N 1| > 0
and |[E_NI|> 0, for every open interval I C R.

A construction of such sets £ and E_ , known as well-distributed measurable sets,
can be found in [52,54]. Having those sets in hand we define:

x 1. onE
u(x)g/ x()dt . where y(r) = {1 O E (5.12)
0 —1, on E_.

Obviously u is Lipschitz continuous, so differentiable almost everywhere. Cut slightly
those sets to obtain:

° E;L - the set of density points of E at which u is differentiable.
e E_ -thesetof density points of E_ at which u is differentiable.

We readily infer from these definitions that

ulx +¢) —ulx) 1 [¥te

1,onE
wx) = 8111}) — " =1lim - x () dt = [+ on By

—1, on E/_

& e—>0¢€ Jy

as desired.
Now the sets in Proposition 5.3 are given by

Fy L E xR and F_ & E/ xR.

The computation of complex derivatives of 4 runs as follows:

1
hy = E(hx —ihy) = [W/(x) +11=0 on F_.

hz

[W'(x)—1]1=0 on F,.

O = N =

1
5 s + ihy) =
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Furthermore,

DR ZL |, + |hz)?

In(2)

1
5 ([l/(x)]2 + 1) =1, almost everywhere .

|ho|> — |hz|> = u’(x) £ 1, almost everywhere.
o

Remark 5.4 Analogously, in higher dimensions, one may consider the singular Hopf
n -harmonic map

1
h(x1, X2, ooy Xp) = (u(x1), X2, .., Xn), D*h-Dh = =|Dh*’L  (5.13)
n

Remark 5.5 Complete description of 7/1552(9) -solutions to the singular Hopf equa-
tion s hz = 0 remains open.

6 Proof of Lemma 1.11in case H(¢) = A?(¢)

For the sake of clarity, before we present the full proof of Lemma 1.11, let us first
demonstrate the case when H admits a continuous branch of the square root, say

VH=A.

Consider a mapping f &t nA : Q — C. As a starting point, we record the
identity

/ _ _l 7. 29 _i /29 =
/SZAAnnEdE_4/SZ[Hn]SdS_S/Q[Hn]sdg/\dg
_ F2ge) = —F 2 dE —

== /Qd<7-ln dg) < /aQHn deE =0 (6.1)

because H' 7> =0 on 92 .
Now the computation runs as follows:

H ,2:/A2,2:f 2
/Q| ©1 gl = | 1Al = | 1]

=5 [ (P +15P) (o [ sy@rae=0)

/Qlfgfslz /Qfgfs’

= ‘/Q(Ang) (Ang + A/n)‘

v
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o
|
IR SS SN D p
3 N 7 Y =
v — 1T N S S D N
k\ |
T ~ {
¥ { N
1 .__ ‘ ,
j T J/ <
/ f ] S
{ ? (f AN -
\ - - L/
T T

e c {z,20,0.,2,} = ZCK \ oK

Fig. 4 The ¢ -mesh of squares in RrR2 , its refinement .#¢(z1, 22, ..., 2n) and the family .# of selected
rectangles

= ‘[ <A r/§> (Ang) ‘ (due to identity (6.1) )
Q

‘/ A%z ns‘= ‘/ H(E) ng 7)5‘ (6.2)
Q Q

as desired.

7 A partition into rectangles

For the full proof of Lemma 1.11, we need additional geometric considerations to
deal with the lack of continuous square root of the Hopf product H(§) = hg@.

Suppose we are given a domain 2 C C, a compact subset K C 2 and a finite
set Z2 = {z1,22,...,2n} C K. In the applications Z will consist of zeros of a
holomorphic Hopf product H(z) = h;h; . The goal is to construct disjoint simply
connected domains Ry, Ra, ..., Ry, whose closures are contained in €2 and cover
K . In symbols,

KCRIUR,U..URy CQandRy N Rg =W for o, f=1,2,..., N, a # B.

It will also be required that for every pair {Ry, Rg}qp the intersection Ry N R_,g
is either empty, a single point called corner of the partition, or a ¢! -regular closed

Jordan arc denoted by I'yp et Ry N R_ﬁ This is the common side of R, and Rg.
We refer to such R, and Rg as side-wise adjacent domains. Furthermore, each point
21, 22, ---» Zn 1S acorner of the partition and, as such, does not lie in any of the domains
R, Ry, ..., Ry (Figs. 4,5).

Remark 7.1 For our purposes here, the simplest way to build such a partition is to take
for Ry, ..., Ry coordinate rectangles (sides parallel to the x, y coordinate axes).
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C\Q o9~
Q\ K -
I T :L/l {\ |" / Ve 4
99 Al B s KT @) 50

7 > ,z'
[ *L I < /

O\ Q Ly

Fig.5 Covering a compact subset K € Q by oriented rectangles in . Their adjacent sides have opposite
orientation
a0 '
\v 90
\ Q ) ‘ > —

T

P S SSE— e
a9 ™t R
aQ Q= 2(2,)

Fig.6 A strip type domain 2, is swept out by vertical trajectory arcs with endpoints at 92 . The conformal

transformation ® = ®(z) def f V¢ (z)dz (so-called distinguished parameter) takes those arcs into vertical
straight line segments I'; ,r <t < R, which form a Euclidean strip 7

However, for various specific purposes, the theory of critical horizontal and vertical
trajectories of the Hopf quadratic differential H(z) dz ® dz (as sides of the domains
R, ) gives us a tool of much wider applicability, see Sect. 11 and Fig. 6.

7.1 A rectangular partition

Choose and fix an ¢ > 0 small enough so that dist(K, 02) > 2¢. As a first step,
we divide R? into squares of side-length & by cutting R? along the horizontal lines
{(x,ie) e R? : x e R}, i = 0,41, +2, ..., and the vertical lines {(je,y) e R? :
yeR}, j=0,£1, £2, .... This gives us an ¢ - mesh of Cartesian squares,

def . . . .
My = {Qij )i jez, Where Qi = {(x,y): ie <x <ie+e, je<y<jete)

Itis not generally possible to construct a mesh of Cartesian squares whose corners cover
all points z1, 22, ..., Zn ; we need additional (finite number) horizontal and vertical cuts

of R2, Through every point z, = x, +iy, € Z, v = 1,2, ..., n, there pass two
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lines: a horizontal line {(x, y,) : x € R}, and the vertical line {(x,, y): y € R}.
Removing all these lines (additional cuts together with the ones for the ¢ - mesh of
Cartesian squares), leaves us a family of open rectangles. Let us denote this family
by (21,722, ..., 2n) - Clearly, #.(z1, 22, ..., Zy) is a refinement of .# . It then
follows that each side of a rectangle in .#.(z1, z2, ..., Zn) is shorter or equal to ¢.
Let us record this observation as:

diam R < V2¢e <2¢, for every R € M (21,22, -os Zn)-

Therefore, whenever the closure R of a rectangle R € .#.(z1, 22, ---, Zn) intersects

K it lies entirely in €. Now comes the construction of the desired family 7 &t

{R1, Ry, ..., Rn}.

Definition 7.2 The family % det {R1, Ra, ..., Ry} consists of all open rectangles
in .#:(z1, 22, ..., Z») Whose closures intersect K.

Let us take a look at the sides (horizontal and vertical) of rectangles in .% . Every
such a side, denoted in a generic way by I', either lies entirely in Q\K oris acommon
side of two adjacent rectangles, say I' = Ry N R_,g for some Ry, Rg € % . In this
latter case there comes an issue of orientation.

Every rectangle R € .#.(z1, z2, ...z,) Will be oriented positively with respect to the
orientation of R? . This gives us the so-called positive (with respect to R ) orientation
of dR . Geometrically, traveling along d R in the positive direction (counterclockwise)
the rectangle R remains on the left hand side.

Consider a pair of side-wise adjacent rectangles Ry, Rg € #:(z1, 22, ..., z,) and

their common side I' = Tgg &t Ry N R_ﬂ When T is positively oriented with
respectto R, , we indicate it by writing I = Fg . Accordingly, Fg , being positively
oriented with respectto Rg ,is negatively oriented with respectto Ry . In other words,
1“5 and Fg have opposite orientation.

The above family .%# of oriented rectangles is particularly convenient when inte-
grating an exact differential 2-form d w, where the 1-form @ can only be locally
defined. This is typical when one needs to select locally defined branches of w differ-
ing in sign. An analogy to taking square root of a holomorphic quadratic differential
can be found, see also [26] for far reaching abstraction. Let us look at a particular
situation of this kind.

7.2 2-valued mappings

Recall that we are given a holomorphic function H # 0 in @ C C and a complex
valued function n € 4;°(£2) with compact supportin K & Q. In particular, H has
only a finite number of zeros in K C Q,say Z ={z1,22,....,2,} CK.

Suppose, as a starting point, that H # 0 in some simply connected Lipschitz
subdomain R € 2. Thus, in particular, H admits a continuous branch of square root
therein; precisely, H = .A? fora function A thatis continuousin R and holomorphic

in R. We consider the mapping f | n = ++/H 7. Its Jacobian area-form does
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not depend on the choice of the +sign for +/H; precisely,
2iJp(z)dz = df Adf = d(f Adf) = do (7.1)
where o is a differential 1-form given on R by the rule

- 2 Hd 2|H|* 7d
0 8 F oagqp = [T AR 4 2RI R dn
2[H|

(7.2)

It should be noted that the latter expression defines a differential 1-form, still denoted
by w, on the entire domain 2\ Z irrespective of which =+ sign for f is used. Also
note that  is bounded and % -smooth in 2\ Z . This makes it legitimate to apply
integration by parts.

1
/ / Jr(z)dz = / w (0R— oriented counterclockwise). (7.3)
R 2i Jor

We shall now make use of the family .# = { Ry, Ry, ..., Ry } of rectangles as simply
connected domains in which H # 0. On each R € % we are at liberty to choose
a continuous branch of /. Once this is done, we obtain a family of mappings
f¥: Ry — C, a=1,2,..., N, defined by the rule f* = 'H 1 where the branch
of VH depends on « , whence the superscript «.

Before proceeding further in this direction, assume for the moment that H admits
continuous square root in the entire domain €2, so that f € 6°(2) . Consequently,
[fq Jr (@) dz = 0, where we recall that J7(z) = | f]* — |f§|g . In our more general
setting the above ideas still work to give similar identity.

Lemma 7.3 Due to the cancellation of boundary integrals we have,

// Jfl(Z)dZ + // sz(z)dz + .- +// JfN(Z)dZ =0. (74
R, Ry Ry

Equivalently,

//R1|le|2 + .- +//;eN|fZ'1V|2 - //Rl|le'|2 T+ +//RN|f§v|2_ (7.5)

Proof Upon integration by parts, each integral over R, in (74), « = 1,2,...., N,
takes the form

1
/ / Jra(z)dz = — /  (0Ry is oriented counterclockwise)
Ro 2i Jyr,

where o is independent of o, see formula at (7.2). We are reduced to showing that

N
Zf(m 0 =0. (7.6)
a=1 o
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The oriented boundary of the rectangle R, consists of four oriented straight line
segments. There is nothing to integrate over a segment that lies entirely in Q\K,
because w = 0 therein. Therefore, we need only consider the segments that intersect
K. These segments are exactly the common sides of two side-wise adjacent rectangles
in the family .% = { Ry, R», ..., Ry }, which is immediate from our definition of .7 .
In other words, we are reduced to showing that

N
Z /r{j w = 0. (1.7)

Here 1"5 and Fg represent the same straight line segment R, N R_,g , but with opposite
orientation. This results in |, rf @ + /i re w = 0, completing the proof of Lemma 7.3.
O

8 Proof of Lemma 1.11 and Theorem 1.10

8.1 Proof of Lemma 1.11

Recall from Sect. 7 the family % def {R1, Ry, ..., Ry} of rectangles. Let A, be a
continuous branch of v/H in Ry,a =1,2,...,N; that is, Ag, = H in R, . Also
recall the mappings f¢ : Ry — C defined by therule f% = Ay 1.

First note the following identity

N L 1
/ o' ST | ) 2
(XE:l/l?aAaAanné_‘L;/Ra[Hn ]g—4/§2[Hn lt =0, 8.1

because H' n* € C5° ().
Now the computation runs as follows:

/Qm(sn Iz I?
N N
= Aa 21z 12 = / o2
;/Ra| 12 1mg| ; ]
1 N
= 5(12::1 /Ra (|f§|2 + |fga|2> (by formula (7.5))
N
Gy =3 [ g
a=1 o
N
i) =y /R fgfg‘
a=1 o
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> é/mfg‘f;

/ »Aang (Aame + Ayn)

(v)

zuMz

(due to identity (8.1) )

Z/ Aang (Aane)

i
Z/A’?zs”é

completing the proof of Lemma 1.11.

‘ fg HE) ne g ‘ 8.2)

8.2 Proof of Theorem 1.10

Take a quick look at two simple estimates:

1 _
E/Q(Ihslz-i-lhglz)lnglzZ/SzlhshglInglz - /QIH(E)IInglz (8.3)

and
RefghsEnsngdé > — ‘/th@nsng’ =- ‘fQH(E)nsnng‘- (8.4)

If we appeal to (1.18) in Lemma 1.11, then (1.17) itself follows as a consequence.

9 Backwards analysis

When reading the above proof backwards, we recover precise circumstances under
which we have equality at (1.17) of Theorem 1.10.

For the equality in (1.17) it is necessary and sufficient that equality occurs in (8.3),
(8.4) and in every link (iii), (iv), (v) of the chain (8.2). We begin with (8.3), where the
equality occurs if and only if

|he)? Ing ? = |h§|2 g >, almost everywhere in 2. 9.1
Equivalently,
@) ) =0 . where Ju(§) = |[he®)* — |hz(§)I%. 9.2)
def

Thus J,(§) = 0 almost everywhere in Q2, = {£ ; g (&) # 0}. This observation
gives a necessary condition for the desired Inequality (1 19). Precisely, we have
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Theorem 9.1 Let Q C C be any bounded domainand h € #'->(Q) a Hopfharmonic
map whose Jacobian determinant J,(§) # 0 almost everywhere in 2. Then for every
test functions n # 0, we have strict inequality

Elh] < E1He],

provided ¢ is sufficiently small (depends on the test function) and different from 0.

Now, resuming the backward analysis, we see that equality in (8.4) occurs if and
only if the following integral is a real nonpositive number,

f th ngng = 0 (anonpositive real number). 9.3)
Q

Next we take a look at the chain of inequalities in (8.2). For equality in(8.2) (iii) it
is necessary and sufficient that | fs‘x| = | fg‘l almost everywhere in R, for all o =

1,2, ..., N.This means that forall « =1, 2, ..., N, we should have:
fE=c® ff ©.4)

where the complex coefficients have constant modulus, |c,(§)| = 1.
With these equations in hand, we see that (8.2) (iv) becomes an equality if an only if

/ |f§‘|2=)/ cal® 1fEP], foreverya =1,2,.., N.
Re Ry

This, in view of (9.4), is possible if and only if forall « = 1,2, ..., N,

fé‘" =cqy f_g, where the complex coefficients ¢, are constants. 9.5)

On the other hand, to have, equality in (8.2) (v) it is required that

N N
Z/ fEP = ]anf 17212
a=1 Ra a=1 Ra

This means that ¢, should be the same constants whenever | R, | fg‘)‘|2 #0, a =
1,2, ..., N.

All the above conditions boil down to one equation. Namely, there is a complex
constant ¢ of modulus 1 such that é‘" = cf_g‘", on every rectangle R, . In this way

we arrive at the Cauchy—Riemann equations
—[f% — ¢f¥] =0, onevery rectangle Ry.

_Itisnot generally true that the holomorphic functions f* — ¢ f%on Ry and [P —
¢ fP on the adjacent rectangle Rg agree along the common boundary T'eg = Ry N
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R_ﬁ. But their squares do agree, so the following function ¥ = W (&) is holomorphic
on the entire domain.

— 72
W(E) =Hn? = 2e[HIInf + P HR? = [f®) = c[*®) | . fors € Re.

Such a function W, being equal to zero near 9€2, must vanish in the entire domain.
This yields

fYE) — ¢ f*(€) =0, onevery rectangle R,. (9.6)

Since f* = Agn ., this reads as Ayn = cAy 7. Multiplying by A, we arrive at the
condition free of the index « € {1, 2, ..., N}; namely, Hn = c|H|7. Let us name
such n € %OOO(Q) a critical direction in the change of the variables.

Theorem 9.2 Let h € 7/1(;2(52) be Hopf harmonic and H(z) = h.hz . Then we have
equality in (1.18) and in (1.19) if and only if there is a complex constant ¢ of modulus
1 such that

Hn =c|H|7, everywherein 2. 9.7

We leave it to the reader to describe when such condition actually occurs.

10 A brief recollection of quadratic differentials

The reader is referred to [41,42,47] for definitions and additional information. There
is an interesting abstraction, invented by Thurston [58] under the name measured
foliations, of the trajectory structures and metrics induced by quadratics differentials,
see [26]. To a certain extent the 2-valued mappings in Sect. 7.2 are reminiscent of
these ideas. However, our discussion is confined upon results found in the seminal
book by Strebel [56]. Let us extract the following useful facts from this book.

10.1 Simply connected domains

Let us begin with:

e Theorem 14.2.1 in [56] (page 72)
Let ¢(z)dz ® dz  # 0 be a holomorphic quadratic differential in a simply
connected domain 2. Then any two points of 2 can be joined by at most one
geodesic arc. In particular, the union of two geodesic arcs cannot contain a closed
Jordan curve.

e Theorem 15.1 (page 74)
Every maximal geodesic arc (in particular every noncritical trajectory) of a holo-
morphic quadratic differential in a simply connected region is a cross cut.
This means that a noncritical trajectory has two different end-points, both are at
the boundary of 2.
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e Theorem 16.1 in [56] (page 75)
Let 'H #£ 0 be a holomorphic quadratic differential in a simply connected domain
Q and y its geodesic arc (in particular noncritical trajectory arc) connecting
Zo and 7y . Then the H -length |Y|n of any curve Yy # y which connects z,
and z1 within Q is strictly larger than |y |y .

We recall what this means,

|)7|Hg/;\/|7'f(§)| dg| >
Y

/\/H(z) dz
Y

fN JH® ds'

Y

=f @ 1d2] % 1y gy (10.1)
Y

As a consequence of the above facts, we see that:

Theorem 10.1 (Partition into strip domains) Let ¢(z) dz®dz # 0 be a holomorphic
quadratic differential defined in a simply connected domain 2. Denote by C C Q2
the union of vertical trajectories passing through the zeros of ¢, the so-called critical
graph of ¢(z)dz @ dz. Then Q\ C has full measure in Q2 which can be decomposed
into vertical strips.

e\C= [ Q. (10.2)

aeN

Definition 10.2 Here and in the sequel the term vertical strip refers to a simply con-
nected domain swept out by vertical crosscuts of ¢(z)dz ® dz # 0. We emphasize
that in our terminology the vertical crosscuts are the noncritical vertical trajectories
with two different endpoints in 9€2.

10.2 Multiply connected domains

One of the inherent difficulties to deal with the multiply connected domains is the
presence of recurrent trajectories of a Hopf differential. Actually, it holds that:

e No trajectory ray of a Hopf differential H(z) dz ® dz in a domain of connectivity
< 3 is recurrent.
For a proof see Jenkins [40,43], and Kaplan [45].

e Theorem 17.4 in [56] (page 82)
Suppose H(z)dz @ dz # 0 is a holomorphic quadratic differential defined in a
domain Q and y C Q is a closed geodesic of H(z)dz ® dz. Then, any closed
curve Y C S in the homotopy class of y has H -length |V > |y -

From now on, we make a standing assumption that H(z) dz ® dz admits only two
types of configuration domains (possibly a countable number of them); namely,

e The strip domains and
e The circular domains,
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Fig.8 Meromorphic differential with three critical points at 0 and %3, and with four double poles at £2
and +4

each of which is swept out by closed vertical trajectories. Precisely, we have a disjoint
union of full area in

Q & Jao ca @\Q=0 (10.3)

aeN

where €, is either a circular domain or a strip domain. Such configurations typically
occur upon restriction to € of a Strebel quadratic differential on the Riemann sphere
C (that is, having only closed trajectories). In this case the vertical crosscuts are non
other than the fragments of closed trajectories that lay within €2, see Figs. 7 and 8.
We refer to such H(z) dz ® dz as Strebel type differential on Q2.

11 The length-area inequalities

We note that for 1 € #1-2(Q) the differential 7(z) dz ® dz has finite area; meaning
that [, |H(z)|dz < 00.
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Proposition 11.1 (Length-area inequalities) Let H(z) dz ® dz # 0 be a Strebel dif-
ferential in 2 of finite area, and let F and G be measurable functions in £ such
that

/|F(z)||H(z)|dz < oo and /IG(Z)IIH(z)Idz - .
Q Q

Suppose that for every vertical trajectory y C €2 (either circular or crosscut, see
formula 10.3) the following inequality holds:

/IF(Z)I\/IH(Z)IIdZI = /IG(Z)I\/IH(Z)IIdZI- (1L.1)
14 14

Then

A

/QIF(Z)IIH(Z)Idz < /QlG(z)l [H(z)| dz. (11.2)
Remark 11.2 This Proposition reduces to Fubini’s Theorem upon a conformal change

of variables in both the line and the area integrals.

Proof Since the set 2 C 2 is a disjoint union of configuration domains in which the
line inequalities (11.1) hold, the problem reduces equivalently to showing that

/ |F(2)| [H(2)|dz < / |G(2)| /H(z)|dz , forevery a. (11.3)
Qy Qq

Case 1. Q is a strip domain. The so-called distinguished parameter ®(z) &t

f VH(z)dz defines a conformal transformation of €2, onto Euclidean strip
®(2,) C C which is swept out by straight line vertical segments, say I'; = {w €
D(RQy); New =1t} forr <t <R, see Fig. 6.

The area element dz upon the transformation z = dL(w), reads as dw =
|®'(2)|>dz where w € ®(Qq) Accordingly, we have

/ IF()| [H() dz = / IF(2)] 10/ (2)] dz
Qqy Qy

R
/ P&~ ()l dw = / ( f |F<<1>—1<w>>||dw|) i
D (Qy) r Iy

R R
/ ( |F ()] (2)] IdZI> dr =f ( |F(2)IVIH()I |dz|> dr.
r Vi r Vi

(11.4)

Here y; et o1 (I'y) C 4 isone of the vertical trajectory arcs in €2, with endpoints
in 02. By virtue of (11.1), if one replaces F with G in the line integral over y; it
will increase the integral. Then, upon such replacement, we return to the area integral

@ Springer



The Dirichlet principle for inner variations

for G by reversing the sequence of the identities in (11.4). This results in the desired
inequality (11.3).

Case 2. Q, is a circular domain. The proof goes through in much the same way as for
the strip domains. In this case, however, 2, is swept out by closed vertical trajectories

y C Qg . They have the same H -length ¢ et fy VIHE@) |dz| = £i fy VH(z) dz.
Here we choose a continuous branch of +/H(z) in €, \ C, where C is a horizontal
cut of €2 . This gives us a conformal transformation

®(2) det exp (2771 / VH(2) dz)

of Q, onto an annulus swept out by concentric circles, say

Q) = U Iy, where I, = {w € C; |w| =1t}.

r<t<R

The rest of the proof runs as in (11.4) with hardly any changes. O

12 Proof of Theorem 1.12

We follow analysis similar to that in [38]. Let & : 2 — C be a mapping of Sobolev
class #1'2(Q). For the moment both Q2 and & are arbitrary, to be specified later.

ontq

Consider a diffeomorphism f : 2 — Q and the corresponding inner variation of &
defined by the rule

Hw) = h(f_l(w)) ; equivalently, H (w) = h(z) for w = f(2).

Lemma 12.1 We have the following inequality:

_? £ 2
E[H] — &Lh] = 2/ [M _ 1:| lp|dz
Q

12— 1f12
(lhe] — [hz D* | f51?
+2 d (12.1)
o P12 ©

lfz — ‘%fﬁ |2
2 _— — 1 d
= fg[w R

where ¢ &t h.hz € LY(Q) is a Hopf type product (not necessarily holomorphic).
By a convention, % S0 at the points where ¢ = 0.

onto

Proof We begin with the inverse map f~!: Q % Q and its complex derivatives.

aftw) L@ A Tw) - @
ow  Jr T w Jr(@)

, Where z = f_l(w).
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Using chain rule we obtain

: of ! ho f: — he f:
) = () L g fm@f
! of~w)  hifs — h. f:
Hy ) = heo) L a>@f”=zﬁﬂyﬁ (122)

Hence

1t 2 [ (1H, P+ 1HoP ) dw
Q

=/ |h, f — hz fz > + |hzﬁ—hzfz|2dZ
Jr(2)

(12.3)

Here we have made a substitution w = f(z), so dw = J(z) dz. Recall the energy
formula for 1, &[h] = [q (1hz|* + | hz|?) dz. Therefore,

E[H] — &Th]

_/ lhe fo — bz fo 12 + |hz fo — he fo 12 = (Ihe)? + 1 hz) (1117 — Ifz\z)dz
e T5(2)

(12.4)

We leave it to the reader a routine computation that leads to the desired formula

S[H] — &[h]
2/ |fz - T%fi |2 1 101a
= — s 5 Z
o| T2 = 1fP v
() — Thz D? 1 f1?
+2/ dz. 12.5
o IAE - e © (123
Hence
S1H] ﬂm:>2/|ﬁ__%ﬁp|(nd 2/|(nd (12.6)
— — Y 5 Z I — Z Z. .
= o er =g 0
This ends the proof of Lemma 12.1. O

Next, using Holder’s inequality, we estimate the first integral in the right hand side
of (12.6).

| fo— 5 2 PP
L|m%wmzwm&
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2

—1
> [/ |<p(w)|dw] </ | fz — £ £ 1V1e@] Vie(f ()] dZ) .27
Q Q o]

Here is a simple direct computation for this.

Jalfo = & £ | VO] VT ds
= Jo P T e 4

1
=2 P ez 2 1
< [fg Lok L dz] [ 15@ l0(f )] dz ]

=L 2 2 1
= [fg —I";;,z ‘_“’";;l‘z |¢(Z)Idz] [fqlpw)|dw]?. (12.8)

Whence the estimate (12.7) is readily inferred.
For the proof of Theorem 1.12 we need the following identity.

Lemma 12.2 Let ¢ = H # 0 be any holomorphic function and y C Q2 a vertical

onto

trajectory arc of H(z) dz ® dz. Then for every diffeomorphism f : Q — Q it holds
that

f I fe = %fz | VIe(f @) ldz| = /f( )vlfp(w)l jdw| <1 £ (). (12.9)
14 Y

Proof We use the arc-length parametrization of y, y = {z(t); a <t < b, |2(t)| =
1}. Upon a substitution w = f(z) in the line integral over f(y), we obtain,

/f( )vlw(w)lldwl :/ Vie(f @)1 1df ()] 2/ ViIp(f @) | fzdz + fzdz].
14 14 14

Recall the relation dz = - ﬂg\ dz along any vertical trajectory, in which
@(z(1)) [2(1)]*> < 0. This results in (12.9), completing the proof of Lemma 12.2.
]

From now on y will be any noncritical trajectory of ¢(z)dz ® dz, ¢ = H . We
shall appeal to the theorems listed in Sect. 10.1.

First, Theorem 15.1 in [56] (page 74) tells us that y is a cross-cut connecting two
different boundary points. Since the diffeomorphism f : @ 2% Q equals the identity
map near 92 the arcs y and f(y) coincide near the boundary. By Theorem 16.1 in
[56] (page 75), the H -length of f(y) is larger (or equal) than the H -length of y . In
symbols,

lfwl, z1vl, = /\/|¢(z)||dz|. (12.10)
14
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Now Lemma 12.2 gives the inequality
%
[ Vie@iiezi < | 17, - L 1@ el
Y Y
Next the length-area inequalities (11.1) and (11.2) combined give

/IF(Z)IldJ(Z)IdZS/ G219 ()] dz
Q Q

where F(z) =1 and

G =1f - %fz VisG@l | Vis@l.

This reads as:

/|fz — L a1 Vle@l Vie(F@)l dz = /|¢(w>|dw. (12.11)
Q |l Q

Substituting this into (12.7), in view of (12.6), we conclude with the desired inequality
&[H]— &[h] = 0.

13 Dirichlet principle in multiply connected domains

Theorem 13.1 (Dirichlet principle for multiply connected domains) Suppose that a
Hopf holomorphic differential h hz for h € #2(Q) is of a Strebel type. Then every
nontrivial inner variation of h increases its energy.

Proof The arguments are essentially the same as presented in the proof of Theo-
rem 1.12. The estimates over a strip domains €2, are exactly the same. If, however,

2, 1is a circular domain and y C 4 is a closed trajectory, we still have the desired
length inequality (12.10). The rest of the proof runs in the same way. O

13.1 lllustrations of Theorem 13.1 by hyperelliptic trajectories

The term hyperelliptic quadratic diffferential refers to a meromorphic quadratic dif-
ferential on the Riemann sphere C, see [44].

13.1.1 Leminiscate

Consider a quadratic differential

2
—22> dz®dz, z#+£l. (13.1)

H(z)dz ®dz = (1 <

@ Springer



The Dirichlet principle for inner variations

Thus H has one critical point (double zero at z = 0) and two double polesat z = +1.
To every parameter 0 < r < 1 there corresponds a closed vertical trajectory around
the pole at +1.

(13.2)

z2(t) =1 + r2e%t | where — % <t<

T
2 .

Here the continuous branch of the square root is chosen to make z(0) = +/1 +r2.
Indeed, we have

2 2
T —

)
Hz@) [z()]° = 120
The borderline case r = 1 results in a closed geodesic curve passing through the crit-
ical point z(§) = z(ZF) = 0. In fact this is the right-half portion of a leminiscate,
7(t) = v/2cos 2t ¢!’ , see Fig. 7. Changing the sign of the square root gives us closed
trajectories around the pole at 1. In particular, the borderline case r = 1 results in
the left-half portion of the leminiscate.
There are also closed trajectories surrounding both poles. To every R > 1 there
corresponds a closed trajectory:

2(t) = F(Re'"), 0 <t <2m, where F(§) =&J/1+£2, |E] > 1. (13.3)

The continuous branch of square root is chosen to make F (1) = V2.

Let us restrict H(z) dz ® dz to a bounded domain €2 which contains no poles,
+1 ¢ Q. Every vertical noncritical trajectory in § is either a closed Jordan curve
or its intersection with €2. The latter consists of a number (possibly countable) of
cross-cuts. In Fig. 7 the shaded area occupies the domain €2 of connectivity 4. Two
darker fragments represent ring and strip regions. Every closed curve ¥ C € that is
homotopic to a closed trajectory y C €2 around the double pole at 1 has H -length

Vi =lyIn=m.

13.1.2 Leminiscates with four poles

Here is another example of a rational quadratic differential with leminiscates as tra-
jectories, see Fig. 8.

5 v 5 v 7 v 77 wed (13.4)
z7—2 z+2 z7—4 z+4 . < '

Remark 13.2 In the above examples of leminiscates the meromorphic function H
admits a continuous square root on C. In this case there is a simple direct proof of
the minimal length property of closed trajectories as stated in Theorem 17.4 in [56]
(page 52). The proof goes through as for (10.1) in two lines with hardly any changes.
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Fig. 9 Hyperelliptic trajectories with n double poles and 2n — 2 critical points counting multiplicity

13.1.3 A hyperelliptic differential having no square root

Consider the polynomial with roots a; = exp (2/“;& ,k=0,1,...,n—1
P+ 1=(@—a)(z—a) --(z2—an-1),
Upon differentiation we get the formula,
nz" ! 1 1 1
" +1 Z—ap z—a Z—ap—1
Second differentiation yields,
nZ" 2" —n+1) 1 1 1 def
= + 4+t —5 =H(z
(" + 1)? (z—ap)?>  (z—a)? (z = an—1)? ©

whence H(z) dz ®dz has a critical point of order n —2 at z = 0. Moreover, ithas n
critical points of order 1 at zx = ~/n — 1 exp @ ,k=0,1,...,n—1,seeFig. 9.

Our interest in this example comes from [27], where certain sharp estimates for
hyperelliptic differentials have been established in connection with the area distortion
inequality for quasiconformal mappings.
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