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Abstract
Polymer nanocomposites (PNC) have attracted enormous scientific and technological interest
due to their applications in energy storage, electronics, biosensing, drug delivery, cosmetics and
packaging industry. Nanomaterials (platelet, fibers, spheroids, whiskers, rods) dispersed in
different types of polymer matrices constitute such PNC. The degree of dispersion of the
inorganic nanomaterials in the polymer matrix, as well as the structured arrangement of the
nanomaterials, are some of the key factors influencing the overall performance of the
nanocomposite. To this end, the surface functionalization of the nanomaterials determines its
state of dispersion within the polymer matrix. For energy storage and electronics, these
nanomaterials are usually chosen for their dielectric properties for enhancing the performance of
device applications. Although several reviews on surface modification of nanomaterials have
been reported, a review on the surface functionalization of nanomaterials as it pertains to
polymer dielectrics is currently lacking. This review summarizes the recent developments in the
surface modification of important metal oxide dielectric nanomaterials including Silicon dioxide
(SiO2), titanium dioxide (TiO2), barium titanate (BaTiO3), and aluminum oxide (Al2O3) by
chemical agents such as silanes, phosphonic acids, and dopamine. We report the impact of
chemical modification of the nanomaterial on the dielectric performance (dielectric constant,
breakdown strength, and energy density) of the nanocomposite. Aside from bringing novice and
experts up to speed in the area of polymer dielectric nanocomposites, this review will serve as an
intellectual resource in the selection of appropriate chemical agents for functionalizing
nanomaterials for use in specific polymer matrix so as to potentially tune the final performance of
nanocomposite.
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Introduction

Consumer electronic devices [1, 2], smart and wearable
electronics [3, 4], aerospace parts [5], telecommunications
equipment [6, 7], the military industry [8], and the automobile
industry [9, 10] require high-performance capacitors and
other energy-storage devices. To meet the demand for capa-
citors in the above applications, capacitors based on ceramic
materials have attracted increasing attention [11, 12]. Among
the various ceramic materials, BaTiO3 nano-materials have
drawn special attention due to their high dielectric constant
(as high as 7000) [13], low dissipation, and impressive
piezoelectric properties [14, 15]. By tuning the morphology
(e.g. nanoparticles, nanorods, nanowires, nanocubes), crystal
type (e.g. cubic, tetragonal, orthorhombic), surface chemical
composition, porosity, filler loading, and distributions, a
range of dielectric composite material loaded with BaTiO3

nanoparticles have been formulated [16–22].
On the other end of the spectrum, there are applications

such as integrated circuit (IC) technology where dielectric
materials having a low dielectric constant (κ) are particularly
important [23, 24]. In the systems where close to a billion
transistors have to be interconnected in an area below 1 cm2, the
low-κ materials are needed as inter-level dielectrics (ILD) to
minimize the effects caused by reduced line widths and minimal
line-to-line spacings. The ILD material can decrease relative
capacitance delay, cross-talk noise, and power consumption
[25] which is especially important for fast signal propagation in
high-density devices and high-speed electronic circuits [26, 27].
In addition to their primary function of electrical isolation of
circuit and device components, these materials also provide
useful chemical and interfacial properties. For example, n-MOS
and p-MOS transistors are commonly isolated with a dielectric
in metal–oxide–semiconductor field-effect transistor (MOS-
FET) technology, by depositing SiO2 in trench structures. The
pictorial representation of MOSFET technology is shown in
figure 1. A schematic of the MOSFET structure of field-effect
transistor (FET) (figure 1(a)) and a modern CMOS transistor
(figure 1(b)), consisting of the n-FET and p-FET pair, is shown
in figure 1. The dopant profile in the source- and drain-region
reflects modern planar CMOS technologies where an extended
doped region is shown under the gate region in the channel.
Additionally, a halo or pocket dopant implantation region is
also shown in figure 1(b). These dopant regions have been
incorporated in MOSFET to permit transistor channel scaling
and increase the performance.

Several examples of low-κ dielectrics that include SiO2,
SiOxNy or SiN have been used as spacer dielectrics. Spacer
dielectrics when used around the transistor gate stack promote
isolation and implantation-profile control. The gate stack is
defined here as the films and interfaces comprising the gate
electrode, the underlying gate dielectric, and the channel
region. The interface between the gate dielectric and the
channel regions is particularly important in regard to device
performance.

Organic thin-film transistor (OTFT) based on poly-(3-
hexylthiophene) and aluminum oxide (Al2O3) have found
utility as the gate dielectric [29] because Al2O3 has relatively

moderate dielectric constant (between 7.5 and 9.5), is robust
and it can be prepared on a variety of substrates with easy
processing conditions. Furthermore, using Al2O3 as the top
dielectric material, the transistor performance such as mobi-
lity and ON/OFF current ratio can be substantially enhanced.
This is because the applied gate voltage in Al2O3 dielectric is
much less compared to the SiO2 dielectric [30].

Other nanocomposites including TiO2 filled nanocompo-
sites have been studied for use in capacitors and thin-film
transistor (TFT) applications. Maliakal and coworker [31] for-
mulated polystyrene (PS)/TiO2 nanocomposite for use as a
high-κ gate dielectric in flexible electronics applications (di-
electric constant of composite ∼8). Polystyrene/TiO2 as TFTs
exhibited carrier mobilities of ∼0.2 cm2 V−1.

A recent review article by He et al [32], highlights the
benefits of using nanoparticles as additives to effectively
control the crystal growth, film morphology, substrate wett-
ability, and charge carrier mobilities, so as to promote the use
of nanofilled organic semiconductor in TFT and other elec-
tronic device fabrication. Several review articles have been
published to address the chemistry of low and high-κ mate-
rials [33–38]. And also there have been several review articles
on polymer grafting of nanomaterials [39–41]. The review on
surface functionalization of nanomaterials as it pertains to
polymer dielectrics is currently lacking. Therefore, the aim of
this review article is to provide a comprehensive overview of
the efforts dedicated towards the synthesis of SiO2, TiO2,
BaTiO3, and Al2O3 nanomaterials and their surface mod-
ifications using traditional agents for use in electronics and
dielectric applications.

Synthesis of nanomaterials

Nanomaterials are generally synthesized by two different
approaches, (a) ‘top-down’ which is primarily a physical
approach, (b) ‘bottom-up’ which is primarily a chemical
approach. Table 1 compares the top-down and bottom-up
approaches for the synthesis of nanomaterials.

For top-down approach, several physical methods have
been reported including mechanical milling/ball milling,
chemical etching, thermal ablation/laser ablation, explosion
process, sputtering, etc. For bottom-up approach, several
chemical methods have been reported such as chemical/
electrochemical precipitation, vapor deposition, atomic/
molecular condensation, solvothermal/hydrothermal, sol–gel
process, microemulsion, spray pyrolysis, aerosol process, and
biochemical reductions [42–47]. The attractive feature of
bottom-up approach is that the nanomaterials of different
shapes viz., nanoparticles, nanorods and nanowires, can be
synthesized using different reaction conditions and the use of
different types of surfactants and/or solvents [33–37]. As an
example, sol–gel method is primarily used to synthesize SiO2

and Al2O3 nanomaterials while the hydrothermal method is
primarily used to synthesize TiO2, and BaTiO3 nanomaterials.
In this review, we initially describe the synthesis of SiO2,
TiO2, BaTiO3, Al2O3 nanomaterials followed by their surface
functionalization.
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Synthesis of SiO2 nanomaterials

Silica nanomaterials have been synthesized by various
methods such as microemulsion, chemical vapor deposition,
combustion, hydrothermal, plasma, and sol–gel techniques
[48–53]. Among the various methods, sol–gel method is the
most widely used method for the synthesis of SiO2 nano-
particles and is based on simultaneous hydrolysis and con-
densation of the silicon alkoxides (scheme 1). Stober et al
[49] used low-temperature synthesis to tune the nanoparticle
characteristics by varying the composition of reactants, sol-
vents, etc. A mixture of tetraethylorthosilicate (TEOS) or
other silicates are reacted with water, in an alcohol and
ammonia mixture to obtain particles whose final size (size
range from 50 to 2000 nm) is influenced by the concentration
of silicate, solvents, and additives used. The particle aggre-
gation model seems to best describe the kinetics and mech-
anism of nanoparticles formation. Variations to Stöber
method (such as the inclusion of surface-active agents and
low pH) have resulted in the synthesis of mesoporous,

hollow, and particles of different morphology as well as core–
shell particles. Yamada and coworkers [54] synthesized four
types of colloidal mesoporous silica particles with different
particle diameters (ca. 20–80 nm) from tetraalkoxysilanes
(Si(OR)4, R=Me, Et, Pr, and Bu) by manipulating the
hydrolysis rates of alkoxysilanes in a one-pot synthesis.
Larger mesoporous particles can be synthesized by slowing
the hydrolysis rate and allowing particle growth to dominate
over nucleation. Alternatively, the size of nanoparticles can
be manipulated using a sequential addition method of reacting
TEOS to an aqueous alcohol mixture followed by the addition
of NH4OH [55].

Mesoporous silica particles of different morphology
(nanospheres and nanorods) can be synthesized by using
surfactant and solvent in varying concentrations [56]. The
pore sizes and shapes of mesoporous nanoparticles were
found to be highly dependent upon the characteristics of the
surfactant (size, length, etc) and the micelle formation
[57, 58]. For example, Vazquez et al [59] synthesized small

Table 1. Top-down and bottom-up approaches for the synthesis of nanomaterials.

Top-down approach Bottom-up approach

Scaling bulk materials to nanomaterials Growing from atoms/molecules to nanomaterials
Synthesize in large amounts Synthesize in small amounts (grams)
Nanomaterials synthesized can have defects and heterogeneous
chemical composition

Nanomaterials synthesized have uniform size distribution with con-
trolled size

Less ordered structures More ordered structures
Easy and Cheap Can be expensive
Generally, the physical technique is adopted Generally, the chemical and/or biological technique is adopted
E.g. mechanical milling/ball milling, chemical etching, thermal
ablation/laser ablation, explosion process, sputtering, etc

e.g. chemical/electrochemical precipitation, vapor deposition, atomic/
molecular condensation, solvothermal/hydrothermal, sol–gel process,
microemulsion, spray pyrolysis, aerosol process, and biochemical
reductions

Scheme 1. General scheme for the synthesis of silica nanoparticle via sol–gel method.

Figure 1. A pictorial representation of MOSFET technology. (a) A metal-oxide-semiconductor (MOS) field-effect transistor, and (b) a planar
CMOS transistor structure [28].
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and large spherical as well as rod-shaped mesoporous silica
nanoparticles by varying the cetyl trimethyl ammonium bro-
mide (CTAB) (surfactant) to water ratio. The morphology of
the particles can be tuned from spherical to rod by promoting
particle growth in a certain direction. For example, an
increase in the concentration of water changes the config-
uration of the surfactant micelles forming aggregates which
encapsulate the silica precursor TEOS leading to decreasing
the hydrolysis of TEOS and promoting the growth of the
silica particle nonuniformly [60]. Additionally, the type of
interactions between alkoxysilane and CTAB at the micelle/
water interface could contribute to the changes in the growth
of the particles in a certain direction. Figure 2 presents the
FESEM and HRTEM images of mesoporous silica particles.
The mesoporous silica particles are highly useful in nano-
composite dielectrics as ‘degradation inhibitors’ since they
can sequester the electrical degradation products and slow the
electrical aging especially under high-temperature condi-
tions [61].

Synthesis of TiO2 nanomaterials

Titanium oxide (TiO2) nanomaterials have been synthesized
using solvothermal/hydrothermal methods, sol–gel, templated-

assisted approaches, electrochemical methods, chemical/phy-
sical vapor deposition, atomic layer deposition, pulsed laser
deposition, pyrolysis, sonochemical, microwave-assisted, elec-
trospinning methods, electrochemical etching methods, and
photoelectrochemical etching methods, etc [62–64]. Among
these methods, the hydrothermal method is preferred for the
synthesis of TiO2 nanoparticles because of the simple setup,
facile operations, and desirable nanoparticle growth results etc.
Like silica nanomaterial, TiO2 nanomaterials can be synthesized
by hydrolysis of the precursor titanium isopropoxide,
Ti[OCH(CH3)2]4 in isopropanol/water mixture with vigorous
agitation followed by hydrothermal treatment [65, 66]. The
hydrothermal treatment of the mixture at 95 °C for 24 h yields
TiO2 nanoparticles of defined shape. Hydrothermal treatment of
TiO2 precursor nanoparticles and acid washing can be used to
introduce change to the crystallinity of the precursor nano-
particles from the anatase phase to a monoclinic phase, as well
as the formation of TiO2 nanosheets, and nanotubes. TiO2

nanomaterials in anatase phase are generally obtained during
solution-based or low-temperature vapor deposition prepara-
tions while high temperature deposition or annealing would
usually yield rutile TiO2 nanostructures. Brookite and TiO2 (B)
phases that are less common have also been obtained from
solution-based growth systems [63]. Table 2 summarizes the
precursors used and the variations adopted for the synthesis of

Figure 2. FESEM images of mesoporous silica particles with different concentration of surfactant (CTAB) (a) 0CTAB:45H2O,
(b) 0.1CTAB:45H2O, (c) 0.3CTAB:45H2O, (d) 0.3CTAB:600H2O and (e) 0.3CTAB:1200H2O; TEM images of mesoporous silica
(f) and (g) [59].

Table 2. Synthesis of TiO2 nanomaterial yielding various morphologies of varying aspect ratios.

Sr No. Precursor
Surfactant/base/solvent/temp
°C/[time] Size and shape (phase) References

1 Thiobenzoate Complex
with Ti

Benzyl alcohol [30 min] 5–7 nm NPs (anatase) [67]

Ethanol [10 min]
2 TiCl4 Ethanol 10 nm NPs clustered into 500 nm aggre-

gates (anatase)
[68]

150°C [10 min]
3 Ti (OCH(CH3)2)4 Oleic Acid/Toluene, 250 °C [20 h] D=3–6 nm [69]

L=20–25 nm rod (anatase)
4 Ti(OBu)4 Lauryl alcohol/Triethyl amine D=4–20 nm [70]

NH4CO3/Hexane L=25–50 nm rod (anatase)
150 °C [24 h]
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TiO2 nanorods and nanospheres through the hydrothermal
method.

Synthesis of BaTiO3 nanomaterials

Barium titanate (BaTiO3) nanomaterials have received sig-
nificant importance in recent years owing to their excellent
dielectric, piezoelectric, and ferroelectric properties, flex-
ibility in tuning its morphology, and broad use in energy
storage, electronics, and devices applications [16, 42–44,
71–74]. Several methods have been reported for the synthesis
of BaTiO3 nanomaterial including hydro/solvothermal, tem-
plate-assisted, molten salt, and sol–gel methods. These
methods differ in chemistry and the type of organometallics
used. Table 3 summarizes the methods and conditions
employed to synthesize BaTiO3 nanomaterial of various
morphology. Among the various methods, the hydrothermal
method has received significant attention because of the
flexibility to control particle growth at low temperature,
especially with the use of a single step processing protocol.

Reaction below outlines the condensation of titanium oxide
and barium hydroxide yielding barium titanate

( ) ⟶+ +
D

Ba OH TiO BaTiO H O.2 2 3 2

Synthesis of Al2O3 nanomaterials

Nano-sized alumina is a highly insulating, optically trans-
parent, and chemically stable dielectric material with broad
use in microelectronics. Several techniques have been
employed for the synthesis of Al2O3 nanoparticles including
ball milling [86], sol–gel [87], laser ablation [47], spray
pyrolysis [88], hydrothermal [89, 90], atomic layer deposi-
tion, laser ablation [91, 92], co-precipitation, etc. The phase
and morphology of synthesized alumina nanoparticles depend
on the method of synthesis [93] which in turn dictates the
dielectric properties of the nanomaterials [94, 95]. The sol–gel
method is one of the widely used methods for the synthesis of
Al2O3 nanoparticles. It involves the formation of oxide

Table 3. Experimental conditions used for the synthesis of BaTiO3 nanoparticles.

Precursors Reaction conditions Size and shape References
Temp and time

Hydrothermal method
Ba(OH)2.8H2O and HClO4-TiO2 or HCl–TiO2 DI water, 160 °C, 3–24 h Ba/Ti ratio: 1.2 80–90 nm agglomerated

nanoparticles
[75]

Ba(OH)2.8H2O, and Ti(OC4H9)4 C2H5OH, ammonia solution, polyvinyl
alcohol (PVA 1799), and NaOH, 200 °C
for 48 h

68.8–75 nm nanoparticles [76]

BaCl2.2H2O and TiCl4 DI Water, polyoxyethylene (20) sorbitan
monooleate, KOH (pH=13.5)

77.8±23.5 nm tetragonal
nanoparticles

[77]

230 °C, for 0.5–2 h
Ba(OH)2 and TiO2 particles Ethanol, water, ammonia solution, 170 °C,

3 d
Nanowires, D=50–200 nm
and L=few to tens of μm

[78]

Ba(NO3)2 and Ti(C4H9)4 DI water, NaOH, oleic acid, BuOH,
135 °C 18 h

22 nm cubic nanoparticles [79]

Solvothermal method
TiO2 anatase, Ba(OH)2.8H2O EtOH: H2O (3:2); 90 °C–250 °C 30–200 nm, Nanotori, bulk

or hollow nanospheres and
nanocubes

[80]

Ba(NO3)2, Ti(Bu)4 Oleic acid, BuOH 16–30 nm for spheres [81]
180 °C 18 h

Ba(OH)2.8H2O and titanium isopropoxide Ethanol, and aq. NH4OH solution, die-
thanolamine and triethanolamine

80–100 nm Tetragonal
nanoparticles

[82]

200 °C 48 h
Sol–gel method
BaTi[OCH2CH(CH3)OCH3]6 H2O, n-butanol and

2-methoxypropanol, HCl
6 nm nanoparticles [83]

16 °C 15 h
Ba(OH)2.8H2O, Ti(OC4H9)4 polyvinyl pyrrolidone (PVP), ethylene

glycol (EG), diethylene glycol (DEG),
triethylene glycol (TEG), 45 °C–55 °C
2–10 h

2.8 and 5.1 nm nanoparticles [84]

(Ba(OCOCH3)2 Acetic acid, EtOH Nanotubes with L=50 μm [85]
Titanium isopropoxide (62 °C), Masked Whatman anodisc mem-

branes (200 nm pores)
D=200 nm
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network structure via the polycondensation reaction of pre-
cursors like aluminum nitrate and aluminum chloride when
exposed to hydrous condition. Various factors like organic
and inorganic additive precursors, solvents, stirring time, pH,
water content and type of surfactants control the rate of
hydrolysis and condensation during the sol–gel process [96].
For example, Mirjalili et al [46], synthesized nano α-alumina
using sol–gel method with aluminum isopropoxide and alu-
minum nitrate as precursors along with 1, 3-benzene dis-
ulfonic acid disodium salt (SDBS) or sodium bis-2-ethylhexyl
sulfosuccinate (Na(AOT)) as surfactant. SDBS facilitated the
formation of well-defined spherical shaped amorphous α-
alumina nanoparticles (20–30 nm) as opposed to (Na(AOT)).
Adsorption of the SDBS surfactant on the surface of the
intermediate boehmite nuclei phase hindered the aggregation
of nanoparticles and restricted the grain growth of α-alumina
nanoparticles [97].

A slight modification to the sol–gel method is the sol–gel
auto combustion method where stable alpha phase alumina
nanoparticles have been obtained at a by simultaneous
decomposition of aluminum nitrate nonahydrate along with
the use of urea or urea-glycine mixture as fuel [98]. Sharma
et al concluded that the use of urea in high concentration as
fuel produced crystalline phase nanoparticles whereas
excessive use of glycine as fuel generated an amorphous
phase of Al2O3 nanoparticles [99]. Various reports have
concluded that processing temperature (calcination) is equally
important in synthesizing thermodynamically stable alumina
nanoparticles. The average crystallite size of alumina nano-
material increases as the calcination temperature increases
[98, 100–104].

Surface-functionalization of nanomaterials

Nanomaterials are highly reactive due to their relatively large
surface area and small size. Additionally, due to the high
surface energy of the inorganic nanofillers, the nanomaterials
tend to aggregate, which is detrimental to the use of nano-
material as additives in polymer matrix for dielectric and
microelectronics application. The surface energy and di-
electric permittivity values of the various oxides corresp-
onding to their polymorphs are listed in table 4 [105].

For homogenous dispersion of nanofillers in the polymer
matrix, the surface energy of the nanofillers generally has to
be reduced. There are several approaches for decreasing the

surface energy of nanomaterials and they include (a) intro-
ducing appropriate functional groups to the nanomaterial
surface, (b) tethering monomers to the nanomaterial so as to
promote polymerization under appropriate conditions (graft-
ing from method), and (c) adding a linker group to the
nanomaterial so that the linker could be used to covalently
bond the terminal end of the grafted polymer chain to nano-
material (grafting to method) [114]. The grafting to and
grafting from methods are based on the use of harsh exper-
imental conditions (water-free and oxygen-free), laborious,
and use specialized equipment. Therefore, there is a need to
evaluate less laborious and less equipment-intensive methods
for the surface modification of nanofillers in the fabrication of
polymer nanocomposites (PNC). Schmidt [115] initially
proposed the concept of chemical modification of surface of
nanoparticles along with the synthesis of silica nanoparticles
based of sol–gel method. Thereafter, several surface mod-
ification approaches have been proposed including the use of
organic or inorganic modifiers to functionalize nanomaterial
[116]. Figure 3 shows the various chemical routes of mod-
ifying nanomaterials and the significance of chemical mod-
ification of nanomaterial as it relates to aggregated state as
well as dispersed state [117–123].

Treatment of nanomaterial with hydrogen peroxide
solution

Surface modification of nanomaterial with H2O2 is one of the
effective ways to hydroxylate BaTiO3, Al2O3 or TiO2 nano-
materials. Table 5 summarizes the dielectric properties of
PNC loaded with peroxide modified nanomaterial. Any
enhancement in the dielectric properties of nanocomposite
could be attributed (i) to the increased orientation polarization
because of the introduction of polar –OH groups on the
nanomaterial surface and (ii) hydrogen bond formation
between nanoparticles and the polymer matrix. Chang et al
[124] demonstrated the utility of hydroxylated BaTiO3

nanoparticles to form oleophilic layers by reacting with
sodium oleate (SOA) (figure 4). The SOA-modified BaTiO3

was found to be readily dispersible in several polymer casting
organic solvents.

TEM analysis of sodium oleate (SOA) modified BaTiO3

nanoparticles revealed that SOA prefers to bond to the highly
hydroxylated BaTiO3 surface to form a homogeneous coating
layer that is about 2 nm in thickness whereas without H2O2

Table 4. Surface energies and permittivity for various nanomaterials oxides [105].

Nanoparticles Surface energy (J m−2)/permittivity Nanoparticles Surface energy (J m−2)/permittivity

α-Al2O3 2.6±0.2/10.1 @ 1MHz [106–108] TiO2 (anatase) 0.4±0.1//∼31 @1 kHz [109]
γ-A12O3 1.7±0.1 Zeolitic silicas 0.09±0.01/∼4 [110]
A1OOH (boehmite) 0.5±0.1 SiO2 (Amorphous, hydrated) 0.129±0.008/3.8 @

1MHz [107] [111]
TiO2 (rutile) 2.2±0.2/114 @ 1 kHz [109] SiO2 (Amorphous, anhydrous) 0.259±0.003 [111]
TiO2 (brookite) 1.0±0.2/93 @40 Hz [112] BaTiO3 [113] 1.01/1235 @ 1 kHz
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pretreatment, only a little SOA binds to BaTiO3 surface.
Characteristic carbonyl peaks were noticed in the IR spectrum
of SOA modified BaTiO3 nanoparticles, unlike untreated
nanoparticles. The amount of –OH groups formed on the
nanoparticle surface increased with the duration of
H2O2-treatment, reaching a maximum upon treatment for 4 h
with 35% H2O2 aqueous solution. Using the Ghormley
triiodide method [128], the decomposition of H2O2 on
BaTiO3 surface and the production of –OH groups can be
followed. Figure 4(b) depicts the reaction mechanism for the
production of –OH groups on the surface of the metal oxide
via decomposition of H2O2. H2O2 upon decomposition form

the hydroxyl radicals (·OH) as shown in equation (1). Then,
the OH reacted with H2O2 to form the hydroperoxyl radical
(·OOH) (equation (2)). The ·OOH radical then reacted with
hydroxide radical to form water and oxygen (equation (3).
Additionally, the ·OOH can react with the oxide ions of
the metal oxide (O2−

(oxide)) to produce the hydroxyl group
(OH−

(oxide)) on the surfaces of nanoparticles. The conjugated
base of ·OOH, the O2

−· radical, produced from equation (4)
can react with water to produce hydroxyl anions in aqueous
solution (OH−

(aq)) and ·OOH (equation (5)). Thus reactions
(2)–(5) can self-propagate. Equation (6) shows the overall
reaction of hydroxylation of nanomaterial surface.

Figure 3. Pictorial representation of (A) common routes for surface modification of metal oxide nanoparticles; (B) surface modification
reaction; (C) agglomeration of unmodified nanoparticles and (D) uniform dispersion of surface-modified nanoparticles in the polymer matrix.

Table 5. Summary of dielectric properties of polymer nanocomposites obtained with peroxide treated nanomaterials.

Filler Mean Dia.
Volume

fraction (%) Matrix
Processing

agent εr tan δ Eb

B A B A B A

BaTiO3
(NP)

[125]
70 nm 50 vol% PEI H2O2 33.87 52.78 NA <0.03@1 kHz NA NA

BaTiO3
(NP)

[126]
85–100 nm 30 vol% PVDF H2O2 ∼80 ∼49 >0.075

@100 Hz
∼0.075@100 Hz NA NA

Al2O3
(NP)

[127]
100 nm 0.5 wt% cured

resin
H2O2 3.69 3.71 NA 0.007@1 kHz 64.82 68

Note. A is functionalized nanoparticle filled polymer nanocomposite and B is bare nanoparticle filled polymer nanocomposite.
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Choudhury [125] performed dielectric measurements of
polyetherimide (PEI)/hydroxyl-functionalized BaTiO3 nano-
composite films that were prepared by thermal imidization of the
cast sample. The improved interaction between the hydroxyl-
functionalized BaTiO3 and the PEI matrix was found to improve
the dispersion of the nanoparticles in the matrix and promote
enhanced interfacial adhesion between polymer and nano-
particles. Additionally, the enhanced interaction between the
–OH groups of functionalized BaTiO3 and the imide groups of
the PEI was found to reduce the void or pores formation in the
nanocomposite films. The PEI nanocomposite with hydroxyl-
functionalized BaTiO3 nanoparticles showed an increased di-
electric permittivity (52.78 at 1 kHz, 50 vol% BaTiO3

loading) compared to the dielectric permittivity (33.87) of
PEI/unmodified-BaTiO3 composite. The dielectric loss was
reduced (less than 0.03) when the loading of hydroxyl-functio-
nalized BaTiO3 was 50 vol%. Zhou and coworker [126], noted a
similar benefit when hydroxylated BaTiO3 nanoparticles were
mixed with PVDF. For example, hydroxylated BaTiO3/PVDF
nanocomposite showed higher dielectric breakdown strength
along with weaker dependence of dielectric permittivity as a
function of temperature and frequency as compared to the
unmodified- BaTiO3/PVDF nanocomposites [126]. This is
probably because of hydrogen bonding between hydroxylated

nanoparticles and functional groups of PVDF backbone chain
which promotes enhanced breakdown strength of nanocompo-
site. These observations are tabulated in table 5 and presented in
figure 4. Similarly, an improved interaction between the
hydroxyl group of hydroxylated-Al2O3 (h-Al2O3) and carboxyl
groups on UV-cured resin resulted in an enhancement in the
breakdown strength (64.82–68 kVmm−1), and volume resistiv-
ity (5.47×1016–10.2×1016 Ω cm−1) of h-Al2O3 nano-
composite as compared to the untreated c-Al2O3 nanocomposite
at 1 kHz with 0.5 wt% nanoparticle loading (table 5). The
introduction of hydroxylated h-Al2O3 nanoparticles enhances the
space charge suppression (3 kVmm−1 compared to 9 kVmm−1

of pure UV-cured resin) of nanocomposite [127].
There are examples where H2O2 modified SiO2 can cause

weakened interaction with substrate i.e. pentacene-based
organic thin-film [129]. In this regard, it is important to
understand the underlying chemical changes introduced on
SiO2 due to H2O2 treatment. In one of our earlier studies, we
have observed a higher conversion of Si/Si–H to SiOx/SiOH,
and the growth of a thicker oxide layer on Si wafer upon long
term exposure of silicon wafer to H2O2 and H2SO4 solution
[130]. The formation of silanol groups (Si–OH) on the SiO2

surface was based of the water contact angle measurement of
the surface. The silanol groups on SiO2 surface could promote

Figure 4. (A) The processes for hydroxylation and surface modification of BaTiO3 nanoparticles; (B) reaction mechanism for surface
hydroxylation; (C) schematic of the hydrogen bond in h-BT/PVDF nanocomposites; (D) temperature dependence of dielectric permittivity of
nanocomposite obtained from hydroxylated BaTiO3 (h-BT/PVDF) and unmodified BaTiO3 (c-BT/PVDF) filled with various compositions
at 100 Hz [126].
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weakened interaction with pentacene, and reduction in field
carrier mobility. However, Lin et al [129] contrary to the
general observation [126, 127], reported an increase in the
field-effect carrier mobility (μ) despite weak interaction
between SiO2 and pentacene. The increase in field-effect
carrier mobility was attributed to the degradation of the C–V
characteristics and reduction in the activation energy. Table 6
summarizes the transistor properties of surface-modified
nanoparticles filled active layer.

Silane coupling agent treatment of nanomaterial

One of the common approaches adopted to modify the func-
tionality of metal oxide nanoparticles is to react with silane
coupling agents viz., alkoxysilanes, halosilanes. Yuan and co-
workers [139] fabricated PTFE composite with modified SiO2

nanoparticles (silanized by different compositions of silane
agents (per-fluoro octyl triethoxysilane (PFOTES) and amino
propyl triethoxy silane (APTES)). Interestingly, they observed
that SiO2 modified with 1.1 wt% PFOTES and 0.4 wt% APTES
when added to PTFE resulted in an improvement in the di-
electric properties (εr ∼ 2.89 (3% increase) and , tanδ ∼ 0.0007
(A) (50% decrease) compared to the bare SiO2 filled nano-
composite) [139]. Table 7 summarizes the dielectric properties
of PNC loaded with silane-modified nanomaterial.

Instead of using amino-terminated short-chain silane
agent to functionalize SiO2, Bai et al [131], used a long alkyl
chain silane agent (octadecyl trichlorosilane) to modify SiO2

for gate dielectric purpose. A reduction in SiO2 gate dielectric
was observed resulting in significant improvement in the
performance of OTFTs. The OTFT with octyl trichlorosilane
(OTS) functionalized SiO2 bilayer gate insulator configura-
tion showed an increase in the field-effect mobility
(6×10–4–1.5×10−3 cm2 V−1 s−1) and reduction in the
threshold voltage (−9 V to –6 V) when compared to OTFT
with bare SiO2. The connectivity of the evaporated copper
phthalocyanine (CuPc) thin-film on the OTS-treated SiO2 was
significantly improved due to the improved compatibility
between the (aromatic and conjugated system CuPc) active
layer and the long alkyl chain of silanized SiO2.

Various silane coupling agents have been employed to
modify SiO2 in organic transistor (table 6). Dong et al [132]
reported a five-fold increase in charge-carrier mobilities for
OTFTs composed of P3HT films on trichloro (1H, 1H, 2H,
2H perfluorooctyl) silane (FTS) monolayers supported on
SiO2 dielectric substrates (P3HT/FTS/SiO2/Si) when sub-
jected to supercritical carbon dioxide (scCO2) processing.
Here again, it appears the improved compatibility between the
active layer and the functionality present on SiO2 surface
resulted in improved OTFT performance.

Majewski et al [137], showed that long alkyl chain silane
coupling agent can also be used to functionalize TiO2 and can
be used in conjunction with the solution-processed polymeric
organic semiconductor poly(triarylamine) (PTAA) to improve
the performance of organic field-effect transistors (OFETs).

The mobility of the octadecyl trichlorosilane (ODTS) -treated
TiO2/PTAA was found to be 3.5×10−3 compared to
<10−5 cm2 V−1 s−1 for untreated TiO2/PTAA at threshold
voltage of −0.28 V. The results indicated that the carrier
mobility in the amorphous organic semiconductor is highly
sensitive to the interfacial interaction between the active layer
and the functionality introduced on TiO2. The study also
concluded that the nonpolar, alkyl chain of ODTS anchored
on the oxide surface shields PTAA from most of the energetic
disorder at the inorganic surface and also promotes
enhancement in the carrier mobility.

The silanization of TiO2 nanoparticles can be a two-step
process. The first step is the activation of TiO2, through the
acid treatment commonly by the use of methane sulfonic acid
to increase the surface concentration of hydroxyl groups
present on the nanoparticle surface as per Cheng et al [154].
The second step is the surface modification of the acid-treated
nanoparticles using silane coupling agent. Commonly, the use
of modified nanoparticles with appropriate functional groups
can promote the good dispersion of the nanoparticle in the
polymer matrix. On the other hand, the bare nanoparticles
tend to aggregate and serve as the defect site in the nano-
composite and distort the local electric field and lower the
breakdown strength of the nanocomposite. The reason for
the field distortions in aggregated system is the difference in
the conductivity and permittivity between fillers and the
polymer matrix under DC and AC conditions. In certain
cases, despite the incompatibility between the functional
group on the nanoparticle surface and the polymer, higher
breakdown strength of nanocomposite has been reported
[155]. This may be due to the dipoles at the particle/polymer
interface affecting charge carrier transport and trapping. The
polar groups could act as charge scattering centers, traps or
play other roles in preventing the electrical treeing pathways
from being readily formed [156].

Apart from the use of silanized nanoTiO2 to increase the
carrier mobility of OTFT, silanized nanoTiO2 has been used
to enhance the dielectric performance of PNC. For example,
when 5% APTES modified nano-TiO2 was used to fabricate
PVDF-based nanocomposite, Khodaparst et al [145] reported
a 74% increase in the permittivity at 0.1 Hz and a 30%
increase in the permittivity at 1 kHz. The enhancement in the
performance of the nanocomposite was primarily a result
of the closeness of the surface tension values of PVDF
(33.2 dynes cm−1) and APTES (35 dynes cm−1). Loading of
aminopropyl trimethoxysilane treated TiO2 nanofillers at
5 wt% to PE also resulted in the enhancement of the DC
breakdown strength of polyethylene nanocomposite by 40%
compared to untreated TiO2 nanocomposite [155]. Similarly,
loading of 1% 3-glycidoxypropyl-trimethoxy-silane (GPTMS)
treated TiO2 nanofiller to low-density polyethylene (LDPE)
also yielded nanocomposite films that had breakdown strength
of 265 kVmm−1 compared to 223 kV mm−1 for pure LDPE
[144]. In these systems, it is conceivable that the terminal
functional groups of the functionalized nanoparticles bend
inward and hydrogen bonds with the hydroxyl group of the
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Table 6. Summary of the transistor properties of the surface-modified nanoparticles incorporated in the active layer.

Filler Mean Dia. Volume F (%) Matrix Processing agent Capacitance (nF cm−2) Eb (MV cm−1) VT (V) μ FET cm2 (V−1 s−1 )

SiO2
(NP) [129] 265 nm NA Pentacene- OTFTs H2O2 1.0 NA NA 0.05

SiO2
(NP) [131] 230 nm NA CuPc-OTFT OTS NA NA −6 1.5×10−3

SiO2
(NP) [132] 300 nm NA OTFTs OTS NA NA ∼−1.5 0.003

SiO2
(NP) [132] 300 nm NA P3HT -OTFTs FTS NA NA ∼−16 ∼0.011

SiO2
(NT) [133] 500 nm NA CNT-TFTs OTS ∼35 @100 Hz NA 2.1 91

SiO2
(NP)[134] 200 nm NA P3HT-OFET APTMS NA NA −1.9 3.2×10−2

SiO2
(NP) [135] 300 nm NA NDI-C14-OTFTs ODPA NA NA 16 4.2×10−2

SiO2
(NP) [135] 300 nm NA NDI-C14- OTFTs NAPA NA NA 15 1.3×10−2

SiO2
(NP) [135] 300 nm NA NDI-C14- OTFTs TDPA NA NA 22 3.8×10−2

SiO2
(NP) [136] 100 nm NA PTCDI-C13-TFTs ODPA NA NA NA 0.9

TiO2
(NP) [137] 7.5 nm NA PTAA- OFETs OTS 460 @ 800 Hz NA −0.28 0.0035

TiO2
(NP) [137] 7.5 nm NA Pentacene—OFETs OTS 465 @ 800 Hz NA −0.23 0.25

Al2O3
(NP) [138] 20-nm 7 wt% Ph-BTBT-C10 TFTs ODPA ∼14 @ 10 kHz NA −8.3 1.26±0.06
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Table 7. Dielectric properties of nanocomposites with silane-modified nanomaterials.

Filler Mean Dia. Volume F (%) Matrix
Coupling agent

(silane) εr tan δ Eb (kV mm−1)

B A B A B A

SiO2
(NP) [140] 10–80 nm 5 wt% Epoxy APTES 4.53 4.70 0.0049 0.0076 @ 50 Hz NA NA

SiO2@BCZT (NF) [141] 20 nm 1 vol% PI APTES 3.4 3.87 @ 1 Hz NA NA 318.9 358.81
SiO2

(NP) [142] 7–20 nm 1 wt% PSR APTES ∼4.8 ∼5.0 @ 800 KHz NA NA NA NA
SiO2

(NP) [139] 9 μm 1 wt% PTFE PFOTES 2.82 2.886 0.0015 0.0007@ 10 GH NA NA
TiO2

(NP) [143] 50 nm 17 wt% SR γ -MPTMS NA NA ∼0.037 <0.02 @ 1000 Hz ∼74 ∼92
TiO2

(NP) [144] 30 nm 1 wt% LDPE GPTMS NA 2.3 @ 1 kHz NA NA 223 265
TiO2

(NP) [145] 15 nm 5 vol% PVDF APTES 8.75@ 1 kHz 12.5 @ 1 kHz NA NA NA NA
TiO2

(NP) [142] 10 nm 1 wt% PSR APTES ∼4.6 ∼4.8 @ 800 KHz NA NA NA NA
BaTiO3

(NP) [119] 700 nm 40.0 vol% PVDF APTES ∼41 ∼48 <0.05 <0.05@ 100 kHz NA NA
BaTiO3

(NP) [146] 100 nm 20 vol% PVDF APTES ∼18 ∼21 @ 100 Hz NA NA 71.64 Eo 116.24
BaTiO3

(NP) [147] 1.1 μm 60 vol% P
(VDF–TrFE)

APTES 65 85 <0.2 <0.05@ 10 kHz NA NA

BaTiO3
(NP )[146] 100 nm 20 vol% PVDF APTMS ∼18 ∼20 @100 Hz NA NA 71.64 125.54

BaTiO3
(NP) [148] 0.83 μm 8 wt% Resin APTES NA 32 NA 0.014@ 10 Hz NA 20.8

BaTiO3
(NP) [149] 75 nm 60 vol% Epoxy resin GPTMS ∼38 50 @10 kHz NA NA NA NA

BaTiO3
(NP) [150] 0.1 μm 70 vol% Epoxy resin APTES NA 49 NA 0.02@ 100 kHz NA NA

BaTiO3
(NP) [151] 100 nm 50 vol% EVM APTES 4 @ 100 Hz 14@ 100 Hz 0.01 0.019 @ 100 Hz ∼28 13

BaTiO3
(NP) [152] 3 μm 40 wt% BADCy APTES 7.3 @20 MHz 9.3 @20 MHz ∼0.0025 ∼0.0025

@20MHz
NA NA

Al2O3
(NP) [108] 30 nm 5 wt% Epoxy APTES 4.65 ∼4.75 NA ∼0.019 @100 Hz 28.5 30

Al2O3
(NP) [153] 2 μm 70 wt% Epoxy GPTMS 19.6 34.1 0.015 0.0075 @ 100 Hz NA NA

Al2O3
(NP) [153] 2 μm 70 wt% Epoxy APTES 19.6 21.2 0.015 0.006 @ 100 Hz NA NA

Note. A is functionalized nanoparticle filled polymer nanocomposite and B is bare nanoparticle filled polymer nanocomposite.
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nanoparticles thereby exposing the hydrocarbon backbone of
the coupling agent for favorable interaction with LDPE matrix,
hence the enhancement in the breakdown strength (figure 5).

Similar efforts to silanize BaTiO3 nanoparticles have
resulted in significant improvement in the dielectric perfor-
mance of functionalized nanoparticles filled PNC. For
example, Dang et al [119] noticed an improvement in the
dispersion of nanoparticles when BaTiO3 nanoparticles were
modified with APTES and dispersed in polyvinylidene
fluoride (PVDF) matrix. The study revealed that the nano-
composite of BaTiO3 modified with 1 wt% of APTES has
lesser pores and lesser voids. As indicated in figure 6,
hydrogen bonding seems to play an important role in pro-
moting the interaction between the functionality of the sila-
nized nanoparticles and the polymer matrix and hence the
improved dispersion and permittivity of the nanocomposite.

APTES modified BaTiO3 nanoparticles have also been used
as filler to enhance the dielectric properties of BPA cyanate ester
and ethylene-vinyl acetate elastomer. For example, Chao et al
[158] fabricated BPA cyanate ester nanocomposite with 40 wt%
loading of APTES modified BaTiO3 nanoparticles and it was
found that APTES modified BaTiO3/BADCy composites

exhibited improved dielectric constant (9.3 at 20MHz) and
lower tanδ (0.0025 at 20MHz) [152] compared to unmodified
nanoparticle loaded nanocomposite.

Similarly, Xingyi and coworker [151], evaluated the effect
of APTES functionalized BaTiO3 nanoparticles on electrical,
mechanical and thermal properties of ethylene-vinyl acetate
elastomer (EVM) nanocomposites. It was found that the incor-
poration of surface modified BaTiO3 nanoparticles into the
EVM matrix not only increased the permittivity, thermal con-
ductivity and the mechanical strength but also resulted in a
comparatively lower dielectric loss tangent δ compared to pure
EVM elastomer. The EVM nanocomposite exhibited relatively
high dielectric strength and good ductility even at the 50 vol%
nanoparticle loading [151].

When 3-glycidoxypropyl trimethoxysilane (GPTMS)
functionalized nanoparticles were used along with epoxy
resin as expected an improvement in the dispersion of BaTiO3

nanoparticles in the epoxy resin was reported largely due to
improved chemical compatibility [149]. As a part of the
study, the silanization of BaTiO3 nanoparticles with GPTMS
was carried out in water, ethanol, and xylene to understand
the importance of solvent selection in retaining the

Figure 5. Hydrogen bonds formation between terminal amine of APTES and the hydroxyl group of the nanoparticles [157].

Figure 6. (A) Possible reaction between alkoxysilanes and hydroxylated nanoparticles; (B) schematic image of chemical reaction process of
APTES with both surfaces of BaTiO3 and PVDF. Rectangle with thick and black lines shows the bridge-linked action between BaTiO3 and
PVDF, which is benefit to the movement of polarized dipoles along the bridge.
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functionality of functionalized nanoparticles. FT-nIR analysis
revealed that the extent of terminal epoxy ring-opening was
significantly higher when silanization was carried out in water
and ethanol whereas it was minimum in xylene (i.e. maximum
retention of epoxy groups on the surface of silanized
BaTiO3). The FT-nIR peaks attributed to epoxy ring were
observed at 4522 and 5909 cm−1 for BaTiO3 nanoparticles
silanized using xylene, whereas the peaks corresponding to
epoxy group were weaker for BaTiO3 nanoparticles when
silanized using ethanol. Furthermore, no peaks of epoxy ring
were detected in the case of BaTiO3 nanoparticles when
silanization was conducted in water. The nanocomposite
formulated with silanized BaTiO3 nanoparticles (using
xylene) exhibited a uniform composite structure with the
highest dielectric constant (εr=52) (nearly 40% greater than
that of unmodified BaTiO3 filled nanocomposite) while the
dielectric constant of nanocomposite where BaTiO3 nano-
particles were silanized in ethanol and water was found to be
32 and 30, respectively. These results indicate that the
selection of solvent for silanization plays a critical role in
retaining the terminal end group of the functionalized nano-
particle. This has important implications in promoting the
improved compatibility between resin and nanoparticles and
enhancing the dielectric properties of the nanocomposite.

Apart from varying the end group functionality of the silane
agent used in the functionalization of nanoparticles, there have
been silanization studies performed wherein the nanoparticles
were functionalized with silane agent of similar end group
functionality but different hydrolyzable groups. For example, the
silanization of hydroxylated BaTiO3 (BT-OH) nanoparticles was
carried out using 3-aminopropyltriethoxysilane (APTES) and
3-aminopropyltrimethoxysilane (APTMS) in toluene and etha-
nol [146]. The influence of the molecular structure of alkox-
ysilane attached to the surface of BaTiO3 nanoparticles had a
significant impact on the dielectric properties of PVDF-based
nanocomposites. The breakdown strength of APTES modified
BaTiO3/PVDF nanocomposite (Eb=125.14 MV m−1) was
higher than that of APTMS modified BaTiO3/PVDF nano-
composite (Eb=116.24 MV m−1). The difference in the
breakdown strength of the two systems can be attributed to the
multilayer crosslinks formed between the adjacent silanized
groups and/or the rate of hydrolysis of alkoxy groups that fol-
low the trend MeO->EtO->t-BuO- and the ability to form a
hydrogen bond between terminal functional group and the sur-
face -OH group.

Apart from varying the end group functionality and the
type of hydrolysable groups of the silane agent used in the
functionalization of nanoparticles, there have been silaniza-
tion studies performed wherein the nanoparticles were func-
tionalized with silane agent of having mono-hydrolyzable and
multi-hydrolyzable functional groups. It was found that
silanes with multi-hydrolyzable functional groups are pre-
ferred for silanization of Al2O3 nanoparticles due to their
better stability towards hydrolysis [159]. For example, (3-
aminopropyl) dimethyl ethoxysilane, formed a self-assembled
monolayer (SAMs) with Al2O3 nanoparticle which was sen-
sitive to hydrolysis while the (3-aminopropyl) triethoxy sila-
nized nanoparticle was significantly more robust due to the

formation of a cross-linked multilayer siloxane linkage [160].
However, the cross-linked structure formed from the (3-
aminopropyl) triethoxy silanized alumina nanoparticles was
found to entrap the terminal amine groups in the multilayer
and limit the availability of the amine group for further
attachment [161]. On the other hand, APDMS (aminopropyl
dimethoxy silane) formed a slightly thinner layer and afforded
a larger fraction of functional groups from being available for
further interaction with polymer. In other words, APDMS
seems to the better candidate from the standpoint of robust-
ness and availability of functional groups to enhance the
interaction with polymer [162].

Yu and coworkers [108] have reported that surface
modification of Al2O3 nanoparticles with γ-aminopropyl-
triethoxysilane (APTES) can improve the dispersion of
nanoparticles in epoxy matrix. A slight increase in the di-
electric breakdown strength and dielectric constant was
observed due to the functionalization of nanoparticles. The
values for dielectric constant and breakdown strength were
reported to be 4.65 and 28.5 kV mm−1 for 5 wt% epoxy/
Al2O3 nanocomposite as opposed to 4.75 and 30 kV mm−1

for 5 wt% epoxy/silanized Al2O3 nanocomposite. Gong
et al [163] modified core–shell structured Al@Al2O3

(where Al is the core and Al2O3 the shell) nanoparticle
using γ-aminopropyl-triethoxysilane (APTES) and subse-
quently dispersed it in polyvinylidene fluoride (PVDF)
matrix. An enhancement in the interfacial bond strength
between the filler and the matrix was reported. For PVDF
with 50 wt% of functionalized Al@Al2O3 the dielectric
permittivity was reported to be 130 at 100 Hz frequency
which was nearly 160% higher than that of PVDF with
untreated Al@Al2O3 nanoparticle at the same filler content.
This increase was attributed to the molecular bridge
(hydrogen bonding) created by the silane coupler of the
filler and the matrix.

Surface modification with phosphonic acid

Phosphonic acids and phosphate esters have been widely
explored for the surface modification of hydroxylated sur-
faces [116]. Phosphonic acid shows superior reactivity with
metal-oxide surfaces compared to conventional silane-based
SAMs such as octadecyl trichlorosilane (OTS) and hexam-
ethyldisilazane (HMDS) [164, 165]. Chemisorption can occur
via the formation of covalent and hydrogen bonding between
phosphonic acid and the hydroxyl groups on nanoparticle
surfaces. Scheme 2 shows the mechanism of surface mod-
ification by phosphonic acid.

Several studies have used phosphonic acid-modified
SiO2 surfaces for gate dielectrics applications [135, 167]. For
example, SiO2 gate dielectric was modified by octadecyl
phosphonic acid (ODPA), tetradecyl phosphonic acid
(TDPA), and 6-naphthoxy-hexyl phosphonic acid (NAPA).
The ODPA functionalized SiO2 exhibited an increase in the
electron mobility of N,N′-dialkyl-1,4,5,8-naphthalenedii-
mides (NDI-Cn) (by nearly three orders of magnitude) com-
pared to that of unmodified SiO2. The modification of SiO2
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with ODPA resulted in an enhanced growth of NDI-C14 with
fewer defects, the buildup of percolation pathways for elec-
tron accumulation and electron transport so as to prevent high
charge density accumulation at the dielectric interface [135].
As shown in the AFM image (figure 7), NDI-C14 on bare
SiO2 exhibited poorly connected 3D grains with open grain
boundaries that extend down the underlying substrate similar
to that of NDI-C14 film on NAPA functionalized SiO2.
However, the ODPA/SiO2 showed uniform coverage of NDI-
C14 film with well-connected height circular grains asso-
ciated with island growth mode, and these results support the
observed enhancement in the field effect carrier mobility.

Similarly, the interaction between phosphonic acid-
modified nanoparticles and the polymer matrix played a vital
role in the dielectric performance of the nanocomposite. core–
shell Ag/TiO2 (Ag core and TiO2 shell) nanoparticles mod-
ified with two phosphonic acids i.e. octyl phosphonic acid
(OPA) and pentafluorobenzyl phosphonic acid (PFBPA),
were dispersed in PTFE matrix [168]. The nanocomposites of
PFBPA-modified core–shell Ag/TiO2 (nanoparticles in PTFE
(εr=80, tanδ 0.4) exhibited better dielectric performance
compared to OPA modified core–shell Ag/TiO2 nano-
particles in PTFE (εr=40, tanδ 0.5) at the same nanoparticle
loading amount. This is because fluorinated structure of
PFBPA promotes improved miscibility of TiO2 nanoparticles
in the PTFE matrix and promotes uniform dispersion of
nanoparticles in the matrix [168]. Although OPA modified
nanoparticles loaded PTFE showed inferior performance
compared to PFBPA modified nanoparticles filled PTFE
nanocomposite, the OPA functionalized nanoparticle filled
PVDF nanocomposite fared better than octadecyl phosphonic
acid (ODPA) modified nanoparticle filled PVDF nano-
composite. The dielectric constant of the PVDF nano-
composite with OPA modified nanofiller (148 at 1 kHz) was
almost three times greater than that of nanocomposites with
ODPA modified nano filler (58 at 1 kHz). The higher di-
electric constant of the nanocomposite with OPA modified
nanofiller was attributed to the enhanced dispersion of
nanoparticles in PVDF matrix due to lesser steric hindrance
and higher inorganic volume fraction of nanoparticles in the
nanocomposite (figure 8) [169].

The type of phosphate ligand grafted on nanoparticles
can equally influence the dielectric properties of phosphonic

acid-modified nanoparticle filled nanocomposite [170]. Var-
ious organophosphate ligands namely phenyl phosphate (PP),
aminophenyl phosphate (APP), nitrophenyl phosphate,
(NPP), chlorophenyl phosphate (CPP), and aminoethyl
phosphate (AEP) (figure 9) were used for the surface mod-
ification of TiO2 nanoparticles [170]. It was observed that the
nitrophenyl phosphate (NPP) modified TiO2 nanoparticles
filled nanocomposite exhibited significant improvement in
breakdown strengths with reduced dielectric losses and
leakage currents. This is because the NPP ligand has an
electropositive phenyl ring with electron-withdrawing
(−NO2) groups which renders the molecule to be highly polar
(as supported by Hammett correlation). The dipoles at the
particle/polymer interface may affect charge carrier transport
and trapping. The polar groups could act as charge scattering
centers, traps or play other roles in preventing the electrical
treeing pathways [170]. The maximum energy density of
∼3.2 J·cm−3 was observed for TiO2-epoxy nanocomposites
and ∼4.1 J·cm−3 for BaTiO3-epoxy nanocomposites when
5 vol% of NPP modified nanoparticles was loaded [170] com-
pared to ∼1.6 J·cm−3 and ∼2.9 J·cm−3 for unmodified TiO2

filled epoxy nanocomposite and unmodified BaTiO3-epoxy
nanocomposites, respectively.

The selection of phosphate ligand for functionalizing
nanoparticles for improving the functionalized nanoparticle’s
interaction with polymer matrix is also dependent on the type of
the matrix. Kim et al [120] studied the effect of loading of
different volume fractions of modified BaTiO3 nanoparticles
(with octylphosphonic acid (OPA), 2-[2-(2-methoxyethoxy)
ethoxy]ethyl} phosphonic acid (PEGPA) and 2,3,4,5,6-penta-
fluorobenzyl phosphonic acid (PFPA)) on the dielectric prop-
erties of poly(vinylidene fluoride-co-hexafluoropropylene) (P
(VDF-HFP)) and polycarbonate (PC) nanocomposite. An
improved dispersion of PFPA modified nanoparticles was
observed within the fluorinated polymer matrix and an increase
in the relative permittivity of the resulting nanocomposite was
observed compared to the nanocomposite with OPA modified
nanoparticles (figure 10) [171]. For example, at 30 vol% nano-
particle loading, the permittivity of PFPA modified BaTiO3

nanoparticle filled (P(VDF-HFP)), OPA modified BaTiO3

nanoparticle filled (P(VDF-HFP)) and pure poly(VDF-HFP) was
20, 16 and 5 respectively. On the other hand, PEGPA modified
BaTiO3 nanoparticles was well dispersed in polycarbonate
matrix as compared to the unmodified BaTiO3 nanoparticles and
enhanced dielectric performance (εr= 20±2 at 1 kHz, tan δ

<0.01 at 1MHz, breakdown strength = 210±20 kVmm−1,
Energy density = 3.9 J cm−3) of 50% loaded PEGPA modified
BaTiO3 nanoparticle filled polycarbonate nanocomposite was
noticed [172]. These results clearly highlight the importance of
the selection of matrix-specific phosphonic acid for functiona-
lizing nanomaterials so as to achieve potential improvement in
the dielectric performance of nanocomposite.

The phosphonic acid-functionalized nanoparticle could
induce a change in the crystal structure of the matrix which
could impact the performance of the nanocomposite. When

Scheme 2. Surface modification of metal oxides by phosphonic acid
(1) hetero-condensation taking place between the phosphorus and a
hydroxyl group on the surface, (2) repeating the hetero-condensa-
tion, (3) forming bidentate bound state, and (4) hydrogen bond
formed between phosphoryl group and surface hydroxyl [166].
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Figure 7. (A) Chemical structure of NDI-C14, SAMs molecules and schematic cross-section of TFTs (B) 3D AFM image of 80 nm NDI-C14
film on (a) ODPA/SiO2, (b) TDPA/SiO2 (c) NAPA-SiO2 and (d) bare SiO2 surface.

Figure 8. Modified nanoparticle filled polymer matrix. Chemical structures of pentafluorobenzyl phosphonic acid (PFBPA),
polytetrafluoroethylene (PTFE), octyl phosphonic acid (OPA), and polyvinylidene fluoride (PVDF).

Figure 9. Molecular structures of organophosphate ligands: phenyl phosphate (PP), aminophenyl phosphate (APP), nitrophenyl phosphate
(NPP), chlorophenyl phosphate (CPP), and aminoethyl phosphate (AEP) used to modify the surface of TiO2 before dispersing in polymer.
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40 vol% tetradecylphosphonic acid (TDPA) modified BaTiO3

nanoparticles were loaded to PVDF system, the nano-
composite exhibited a very high dielectric constant of 74.9 at
100 Hz and very low dielectric loss (0.05) compared to pure
PVDF ∼10.5 [173]. This is because the addition of
TDPA-BaTiO3 nanoparticles to PVDF causes a change of the
crystal structure from the α-phase to β-phase. Moreover, in
the applied electric field, the relaxation and orientation of
dipoles are not restrained because of weak interaction
between PVDF and TDPA functional group. This could
possibly explain the enhanced dielectric constant in the PVDF
nanocomposite compared to PVDF. Dielectric properties of
phosphonic acid-functionalized nanomaterial filled PNC are
tabulated in table 8.

The selection of the functional group on the nanoparticle
could also have an impact on the thermal stability of the
nanoparticles. A long-alkyl-terminated octadecyl phosphonic
acid (ODPA) has been used as SAM for surface modification
of α-Al2O3 for use on organic gate insulators (OGI). The
results showed a remarkable decrease in the surface energy of
OGI and enhanced molecular compatibility of the SAM layer
with organic semiconductor (Ph-BTBT-C10) (table 6). The
mobility of the Ph-BTBT-C10 TFTs was approximately
doubled, from 0.56±0.05 cm2 V−1·s−1 to 1.26±0.06
cm2 V−1·s−1, after the surface treatment. The report also
suggests that the surface treatment of α-Al2O3 with ODPA
significantly decreased the threshold voltage from −21.2 V to
−8.3 V by reducing the trap sites in the OGI and improving
the interfacial properties [138].

Surface functionalization with Dopamine

One of the characteristics of dopamine modified nanoparticles
is the versatility of dopamine to promote ‘adhesion’ with a

variety of matrices [175]. Scheme 3 presents dopamine
coordination to the metal oxide nanoparticles and the for-
mation of an assembly of polydopamine thin-film on the
surface of nanoparticles [176].

A systematic study of the functionalization of 1D nano-
material with dopamine and its impact on the performance of
nanocomposite was investigated using nanorods, nanorod
arrays, and nanowires. When dopamine functionalized TiO2

nanorod arrays were loaded at 6% to form P(VDF-HFP)
nanocomposite, the nanocomposite had an ultrahigh energy
density of 17.5 J cm−3 compared to 14.35 J cm−3 for pristine
P(VDF-HFP) film at 509 kV mm−1. Also at an electrical field
as high as ∼500 kVmm−1, the charge-discharge efficiency of
the nanocomposite was 86% compared to 76% in P(VDF-
HFP). The results indicated that nanorod arrays along with
dopamine modification can greatly improve the performance
of dielectric composites [177]. Similarly, dopamine modified
TiO2 nanowires were loaded at 7.5 vol% to form P(VDF-
HFP) nanocomposite and the dielectric constant of nano-
composite was 12.04 at 1 kHz compared to 5.01 for the neat
P(VDF-HFP). The energy density of the nanocomposite was
1.35 J cm−3, which was two times higher than that of the neat
P(VDF-HFP) at field strength of 150 KV mm−1 [178]. Wang
et al also established similarly the importance of dopamine
modified TiO2 nanowire for formulating high energy density
P(VDF-HFP) nanocomposites (figure 11). The nanocompo-
site with 2.5 vol% dopamine modified TiO2 nanowires
exhibited an ultrahigh-energy storage density of 11.13 J cm−3

at 520 KV mm−1 whereas that of pure P(VDF-HFP) was
8.75 J cm−3 at 500 KV mm−1 [179]. All these results strongly
suggest that one-dimensional (nanorods, nanowires, nanoar-
rays) with high aspect ratio along with surface modification
by dopamine offer an opportunity to enhance the permittivity
as well as the energy density of the nanocomposite. This is
because one-dimensional nanofillers provide significant

Figure 10. (A) The surface modification of BaTiO3 with PEGPA and PFBPA; (B) surface and cross-sectional SEM images of spin-coated
nanocomposite thin-films. (a), (c) BT/PC, (b), (d) PEGPA-BT/PC, (e), (g) BT/P(VDF-HFP), and (f), (h) PFBPA-BT/P(VDF-HFP). For
unmodified BT, the nanocomposite contained 2 wt% of the BYK-w-9010 surfactant. All scale bars are 1 μm [172].
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Table 8. Summary of dielectric properties of polymer nanocomposites obtained with phosphonic acid surface modification of nanomaterials.

Fillers Mean Dia. Volume F (%) Matrix Processing agent εr tan δ Eb (kV mm−1) U (J cm−3)

B A B A B A B A

Ag/TiO2
(NP) [169] 12 mm 50 vol% PVDF ODPA NA 58 NA ∼0 .05 @ 1 kHz NA NA NA NA

Ag/TiO2
(NP) [169] 12 mm 50 vol% PVDF OPA NA 148 NA ∼0 .05 @ 1 kHz NA NA NA NA

Ag/TiO2
(NP) [168] 8–10 nm 70 vol% PTFE PFPBA NA ∼120 NA ∼0.58 @ 100 Hz NA NA NA NA

Ag/TiO2
(NP) [168] 8–10 nm 60 vol% PTFE OPA NA ∼40 NA ∼0.5@100 Hz NA NA NA NA

TiO2
(NP) [170] 32 nm 30 vol% Epoxy NPP 5.8 14.4 <0.024 <0.022 @ 10 kHz NA NA 1.6 ∼8 @ 355

BaTiO3
(NP) [173] 70 nm 40 vol% PVDF TDPA 11 74.9 0.065 0.05 @ 100 Hz NA NA NA NA

BaTiO3
(NP) [120] 30–50 nm 50 vol% P(VDF-HFP) PFBPA 12.5 35 ∼0.03 ∼0 .01 @ 1 kHz ∼380 ∼220 NA 3.2 @ 164

BaTiO3
(NP) [171] 20–50 nm 50 vol% P(VDF-HFP) PFBPA 5 ∼20 NA 0.04 @ 10 kHz NA ∼220 NA 3.2 @ 64

BaTiO3
(NP) [174] <100 nm 50 vol% P(VDF-HFP) PFBPA ∼5 57 NA ∼0.08 @ 1 kHz NA 90 NA NA

BaTiO3
(NP) [170] 30–50 nm 30 vol% Epoxy NNP 5.8 21.3 <0.024 <0.025 @ 10 kHz NA NA NA 8.5 @ 300

Note. A is functionalized nanoparticle filled polymer nanocomposite and B is bare nanoparticle filled polymer nanocomposite.
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scattering centers for charge dissipation and serve as obstacles
for electrical treeing, while increasing the tortuosity of the
breakdown path, resulting in higher energy density [177].

If indeed scattering centers are responsible for charge
dissipation than 1D nanomaterial nanocomposites should
show superior performance compared to 0D nanomaterial
nanocomposite. A comparative dielectric study of PVDF
nanocomposites based of dopamine modified TiO2 nanowires
and nanoparticles at 3 vol% was conducted. Assuming
dopamine thickness is similar in both systems, the results
indicate that the nanocomposites of nanowires (Eb=
380 MV m−1) exhibited higher breakdown strength than
the nanocomposites of nanoparticles (Eb=220 MV m−1),
further confirming that the 1D nanomaterials provide more
scattering centers compared to 0D nanomaterials. The di-
electric properties of dopamine functionalized PNC are
summarized in table 9.

Apart from the dimensionality of nanofiller playing an
important role in the dielectric performance of nanocompo-
site, studies have also investigated the effect of dopamine
functionalization of 0D material on the permittivity of the
nanocomposite. Nano BaTiO3@TiO2 core@shell nano-
particles with gradient permittivity were coated with dopa-
mine and used as filler to fabricate nanocomposite with
P(VDF-HFP). The dielectric constant of the 20 vol% loaded
BaTiO3@TiO2/P(VDF-HFP) nanocomposite was found to be
32.15 at 1 kHz which is significantly higher than that of pure
P(VDF-HFP) (6.92) and exhibited low dielectric loss of
0.052. Additionally, the energy density of the nanocomposite
was found to be 0.23 J cm−3 at 40 kVmm−1, which was two
times higher than that of pure P(VDF-HFP) [180] at lower
field strength suggesting the role of dopamine and nanofiller

in enhancing the dielectric performance of 0D nanomaterial
filled nanocomposite.

Clearly, the above studies have demonstrated that dopamine
functionalization of TiO2 indeed improves the permittivity,
breakdown strength and energy density of nanocomposite
regardless of the dimensionality of the TiO2 nanomaterial.
Similar observations were also reported for dopamine functio-
nalized BaTiO3 nanocomposite. For example, when dopamine
modified BaTiO3 nanofibers were used as filler in poly(VDF-
TrFE), an improvement in breakdown strength (200 kVmm−1)
and an enhancement in the dielectric constant (∼30 for
10.8 vol% loading) of nanocomposite was observed compared to
pure poly(VDF-TrFE) matrix (Eb∼170, εr=13) [117] Simi-
larly, when dopamine modified BaTiO3 nanowires were used as
filler in P(VDF-CTFE), the nanocomposite exhibited enhanced
energy density of 8.4 J cm−3 at a relatively low electric field of
2800 kV cm−1 compared to pure P(VDF-CTFE) (5.4 J cm−3 at
3600 kV cm−1). The dopamine modified BaTiO3 nanowires/
nanofibers contributed to the enhancement in the dielectric
properties of the nanocomposite. At 3 vol% loading of dopamine
modified nanowires of whiskers, a 36% improvement
(3000 kV cm−1) in breakdown strength of P(VDF-CTFE) was
observed compared to that of unmodified nanowires at similar %
of nanowires of whiskers loading (2200 kV cm−1) [184]. Nie
and coworker [183], used dopamine-functionalized BaTiO3

whiskers along with P(VDF-HFP (5% vol) and observed dis-
charged energy of 9.0 J cm−3 which was nearly twice that of
pure P(VDF-HFP)) [183]. Regardless of whether the nanoma-
terial was nanowire/nanofiber/whisker, the dopamine modified
BaTiO3 nanomaterial contributed to the enhancement in the
dielectric properties of the PNC.

Scheme 3. Illustration of the proposed binding mechanism of DOPA to TiO2 and mica surfaces.
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The significant enhancement in the energy density of the
dopamine functionalized nanomaterial filled nanocomposite
was attributed to the (i) phase change of the polymer near the
interface induced by the BaTiO3 nanomaterial and (ii) the
improved dispersion of nanomaterial in the polymer matrix a
result of improved H-bonding between OH group and NH2

group of dopamine functionalized nanomaterial and the
polymer matrix. Additionally, the polydopamine shells
formed on the surface of the BaTiO3 nanofibers can serve as
the buffer layer in lowering the electric field concentration
inside the polymer matrix, thereby preventing electrical
treeing [117].

To understand the role of dopamine in influencing the
polymorphs of polymer at the interface of the nanocomposite,
Li et al [192] used dopamine modified BaTiO3 nanowires/
PVDF composite films. Clear phase transition of PVDF from
α-phase to β-phase was noticed and it seems to originate from
polydopamine interaction with PVDF matrix (figure 12).
Furthermore, x-ray diffraction, Fourier transform infrared,

and electric displacement-electric field (D-E) measurements
revealed that nanocomposites of dopamine functionalized
BaTiO3 nanowires exhibited a higher fraction of β-phase
content as compared to that of dopamine functionalized
BaTiO3 nanoparticles and unmodified BaTiO3 nanowires.
Since the β phase of PVDF shows improved piezo-, and
ferro-electric properties among the various polymorphs of
PVDF, the functionalization of nanomaterial by dopamine
indeed is expected to improve the dielectric properties of the
nanocomposite.

To establish the effect of polydopamine thickness of
functionalized nanoparticles on the performance of
BaTiO3/PVDF nanocomposites Li and coworkers synthe-
sized BaTiO3 particles coated with different thicknesses of
polydopamine layers of 5.5, 8 and 30 nm. Although the di-
electric constant of composites filled with modified BaTiO3

particles was found to be slightly lower than that of the
composites filled with unmodified BaTiO3 particles, sig-
nificant suppression in the value of tanδ in the range of

Figure 11. (A) Dopamine surface modification of TiO2 nanowires into DOPA@TiO2 NWs; (B) the dielectric constant and dielectric loss
(tan δ) as a function of frequency at room temperature for h-DOPA@ TiO2 NWs/P(VDF-HFP) nanocomposites. (C) Breakdown strength of the
P(VDF-HFP)-based nanocomposites with different volume fractions of h-DOPA@ TiO2 NWs and 15 vol. % raw TiO2 NWs. (D) Discharged
energy densities of h-DOPA@ TiO2 NWs/P(VDF-HFP) nanocomposites with different volume fractions under varied applied fields [179].
Copyright permission received.
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Table 9. Summary of dielectric properties of polymer nanocomposites obtained with polydopamine surface modification of nanomaterials.

Filler Mean Dia./length Volume F (%) Matrix εr tan δ Eb (kV mm−1) U (J cm−3)

B A B A B A B A

TiO2
(NR) [177] 100–200 nm/1.6 μm 6 vol% P(VDF-HFP) ∼13.1 18.2 ∼0.05 ∼0.05 @ 1 kHz 521 509 10.48 17.5 @509

TiO2
(NW) [178] 5 μm 7.5 vol% P(VDF-HFP) 5.01 12.04 0.033 0.048 @ 1 kHz ∼330 200 0.675 1.35 @ 160

TiO2
(NW) [179] 30 nm 2.5 vol% P(VDF-HFP) ∼9.5 10.5 ∼0.06 0.04 @ 10 kHz <250 520 8.75 11.13 @520

BaTiO3@TiO2
(NP) [180] NA 20 vol% P(VDF-HFP) 6.92 32.15 <0.052 0.052 @ 1 kHz NA NA 0.115 0.23 @40

TiO2
(NP) [181] 30 nm 30 phr NBR ∼13.5 16 ∼0.02 ∼0.02 @ 1 kHz ∼62 65 NA NA

BaTiO3
(NT) [182] 150–250 nm/10 μm 10.8 vol% PVDF 8.26 47.05 ∼0.04 0.04 @100 kHz 175 ∼200 NA 7.03 @ 330

BaTiO3
(NF) [117] 200–250 nm/10 μm 10.8 vol% (PVDF-TrFE) 14 27 ∼0.14 0.14 @ 100 kHz 170.9 204.8 NA NA

BaTiO3
(WH) [183] NA 5 vol% P(VDF-HFP) ∼12 17.5 ∼0.05 0.05 @ 1 kHz ∼275 ∼330 ∼5.5 9.02 @300

BaTiO3
(NW) [184] 70 nm/10 μm 3 vol% P(VDF-CTFE) 12 15.5 ∼0.06 0.06 @ 1 kHz 3700 3000 5.4 8.4 @ 2800

BCZT (NP) [185] NA 25 vol% epoxy resin 6.37 51 <0.2 0.25 @ 1000 Hz NA NA NA NA
BaTiO3

(NP) [186] NA 12 wt% Epoxy resin 2.45 10.38 NA NA NA NA NA NA
BaTiO3

(NP) [187] 177 nm 40 wt% PEN 3.5 10.7 0.03 0.07 @1000 Hz NA NA NA NA
Al2O3

(NP) [188] 300 nm 30 phr NBR 10.95 11.43 ∼0.35 0.35 @ 1 kHz NA NA NA NA
Al2O3

(NP) [189] 300 nm 30 vol% SR 2.59 4.06 0.001 0.003 @ 1 kHz NA NA NA NA
Al2O3

(NP) [190] 3 μm 25 wt% PI 2.6 3.4 ∼0.08 0.02 @100 Hz 46.08 146.3 NA NA
Al(Al@Al2O3)

(NP) [191] 70 nm 50 wt% PDVF 50 90.7 NA 0.24 @ 100 Hz NA NA NA NA

Note. A is functionalized nanoparticle filled polymer nanocomposite and B is bare nanoparticle filled polymer nanocomposite.
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frequency lower than 103 Hz was observed. As the thickness
of the polydopamine increases, the dielectric constant of the
nanocomposite continues to decrease while an improvement
in the dielectric loss was noticed [192].

Similarly, studies have indicated that the beneficial effect of
dopamine modification of Al2O3 on lowering the interfacial
tension between the nanoparticles and the polymer phases and
preventing the agglomeration of the nanoparticles during pro-
cessing [153, 163]. When 50 wt% of dopamine modified
core@shell structured Al@Al2O3 nanoparticles was dispersed in
PDVF, the dielectric permittivity increased to 90.7 at 100 Hz
compared to 50 for unmodified Al@Al2O3/PVDF nano-
composite. The introduction of dopamine act as a molecular
bridge between the matrix and the filler, which reduces the
defects and voids at the interface and also helps with the
polarization of the space charge under the action of the electric
field [191]. Similarly, Ruan et al [188] synthesized surface-
treated Al2O3 nanoparticles with mussel-inspired poly(dopa-
mine) and dispersed the nanoparticles into nitrile rubber (NBR)
and noticed an enhancement in the dielectric constant of
Al2O3-PDA/NBR composite compared to composite filler with
untreated Al2O3 nanoparticles loaded NBR composite.

Dopamine have also been used as a shell for core sphe-
rical alumina (PDA@Al2O3) along with hydroxyl grafted
nano-sized boron nitride (nBN) as the outermost shell to
generate a core-double shell bridge with 1,6-diisocyanato-
hexane (HDI) as the coupling agent. In the double core–shell
structured nanomaterial filled polyimide nanocomposite, the
polydopamine and nBN was reported to enhance the inter-
facial compatibility of the filler and polyimide. The reported
breakdown strength was 68.5% higher than that of a pure PI
and the dielectric constant was about 3.4 with 25 wt% f-BA as
compared to 2.6 for the pure PI at 100 Hz [190]. These results
indicate that the dopamine modification of nanomaterial
contributed to the enhancement in the dielectric properties of
the PNC irrespective of the type of nanomaterial.

Table 10 lists the advantages and disadvantages and
suitability of the four surface modification methods for
functionalizing nanoparticles.

Summary

High-k dielectric constant nanomaterials are important for
formulating high-performance capacitors for potential use in
consumer electronic devices, smart and wearable electronics,
telecommunications equipment, while low-k nanomaterials
are relevant for IC technology. This review highlights the
various strategies that can be used to synthesize high-k and
low-k nanomaterials. For example, sol–gel is primarily used
to synthesize SiO2 and Al2O3 nanoparticles while hydro-
thermal approach is primarily used to synthesize TiO2, and
BaTiO3 nanoparticles. By using surface-active agents and
acidic pH, sol–gel method can be used to synthesize meso-
porous, hollow SiO2 nanomaterial of different morphology
and the core–shell nanoparticles. Likewise, hydrothermal
treatment of TiO2 precursor and acid washing can be used to
introduce changes to the crystallinity of the precursor nano-
particles, from anatase phase to a monoclinic phase, to form
TiO2 nanosheets, nanotubes, nanoparticles and nanorod
structures [193]. Varied approaches to synthesize nanocubes,
nanotori, nanowires, and nanorods of BaTiO3 have been
presented, ranging from using sol–gel to solvo-hydrothermal
approaches.

As the synthesized nanomaterials have high surface
energies, they tend to aggregate strongly. An approach to
improve the chemical compatibility of nanomaterial with
polymer matrix is the treatment with peroxide, silane agent,
phosphonic acid and/or dopamine. The peroxide treatment
results in the formation of –OH groups (as outlined by the
mechanism) which reached a maximum, upon treatment for 4 h
with 35% H2O2 aqueous solution. Hydroxylated BaTiO3

nanoparticles filled PVDF nanocomposites showed higher
breakdown strength along with weaker dependence of di-
electric permittivity as a function of temperature and frequency,
as compared to the unmodified- BaTiO3/PVDF nanocompo-
sites. This is because of the hydrogen bonding interaction
between hydroxylated nanoparticles and functional groups of
PVDF backbone chain. Hydroxylated BaTiO3 nanoparticles
have also been silanized using 3-aminopropyltriethoxysilane
(APTES) and 3-aminopropyltrimethoxysilane (APTMS) and

Figure 12. (a) The polymerization process of dopamine; (b) hydrogen bond formation between poly-dopamine and PVDF [192].
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the breakdown strength of APTES modified BaTiO3 was found
to be higher than that of APTMS modified BaTiO3 filled
nanocomposite, which was attributed to the multilayer cross-
links formation between the adjacent silanized groups and/or
the rate of hydrolysis of alkoxy groups which obeys the fol-
lowing trend MeO->EtO->t-BuO-. Solvents used for sila-
nization of nanoparticles also influence the molecular structure
of alkoxysilane grafted on nanoparticles and the dielectric
properties of the overall nanocomposites. The dielectric
permittivity of the nanocomposites filled with BaTiO3 nano-
particles silanized in nonpolar solvent showed maximum
permittivity, while nanocomposites filled with BaTiO3 nano-
particles silanized in polar solvent showed minimum permit-
tivity. Also, the number of hydrolyzable groups in the silane
agent influences the molecular structure of alkoxysilane grafted
on nanoparticles and the dielectric properties of the overall
Al2O3 nanocomposites. From the standpoint of robustness and
availability of functional groups, the silane agent with two
hydrolyzable groups was found to be the best. Hydrogen
bonding seems to play an important role in promoting the
interaction between the functionality of the silanized nano-
particles and polymer matrix and thereby improving the dis-
persion and permittivity of the nanocomposite.

The type of phosphate ligand grafted on nanoparticles
play an important role in influencing the dielectric properties
of phosphonic acid modified nanoparticle filled nanocompo-
site. Various organophosphate ligands were used for the
surface modification of TiO2 nanoparticles. It was observed
that the nitrophenyl phosphate (NPP) modified TiO2 nano-
particles filled epoxy nanocomposite exhibited significant
improvement in breakdown strengths with reduced dielectric
losses and leakage currents. This is because the NPP ligand
has electropositive phenyl ring with electron-withdrawing
(−NO2) groups which renders the molecule to be highly
polar. The dipoles at the particle/polymer interface may affect

charge carrier transport and trapping and could act as charge
scattering centers, or play other roles in preventing the elec-
trical treeing pathways from being readily formed.

The type of phosphate ligand grafted on nanoparticles is
dictated by the type of polymer matrix used in the formulation
of PNC. The improved dispersion of fluorinated phosphonic
acid-modified nanoparticles was observed within the fluori-
nated polymer matrix, while the PEGPA-modified BaTiO3

nanoparticles were well dispersed in polycarbonate matrix
resulting in enhanced dielectric performance of the nano-
composites. These results clearly highlight the importance of
the selection of matrix specific phosphonic acid agent for
functionalizing nanomaterials so as to achieve optimum
interaction and an improvement in the dielectric performance
of nanocomposite.

Given the versatility of dopamine to promote ‘adhesion’
with a variety of the metal oxide nanoparticles and the ability
of polydopamine thin-film to form on the surface of nano-
particles, it was noticed that one-dimensional nanomaterial
(nanorods, nanowires) with high aspect ratio along with sur-
face modification by dopamine offer an opportunity to
enhance the permittivity as well as the energy density of the
nanocomposite. This is because one-dimensional nanofillers
provide significant scattering centers for charge dissipation
and serve as obstacles for electrical treeing, while increasing
the tortuosity of the breakdown path, resulting in higher
energy density. Regardless of the type of nanomaterial or the
dimensionality of the nanomaterial, the dopamine modified
BaTiO3 nanomaterial contributed to the enhancement in the
dielectric properties of the PNC. The significant enhancement
in the energy density of the dopamine functionalized nano-
material filled nanocomposite was attributed to the (i) likely
phase change of the polymer near the interface induced by the
dopamine functionality of the nanomaterial and (ii) the
improved dispersion of nanomaterial in the polymer matrix a

Table 10. Comparison of the advantages and the disadvantages of the surface modification methods.

Surface functionalization
method Advantages Disadvantages

Hydrogen peroxide
(H2O2)

Useful for the generation of hydroxyl groups on the
surface

Reaction conditions are harsh and may cause
decomposition of some nanomaterials

It activates the surface of Nanomaterials for further
reactions

One of the disadvantages of this technique is that the
method produces only hydrophilic nanoparticle
surfaces

Silane coupling agents Variety of functionality anchored on the surface Possibility of side reactions
Useful for most of the metal oxide NPs Such as multilayer formation, physical adsorption of

silane coupling agent, etc
Phosphonic acids (PA) PAs bind strongly to metal oxides and form robust

monolayers on many different metal oxide materials
The limited reactivity of phosphonates towards SiO2

causes weak physisorption and therefore can
easily be washed off

Modification of the functional R-groups on PAs allows
us to control and tune the surface energy

The modification of nanoparticles with PAs can
result in a side reaction—the formation of inso-
luble metal phosphonate salts

Dopamine (DA) DA was used to cover the surface of nanoparticles to
form a polydopamine layer which can be subse-
quently modified with molecules carrying nucleo-
philic groups

PDA works ideally for TiO2, however, it has weaker
attachments with substrates such as SiO2, mica,
nanoparticles, etc
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result of improved H-bonding between OH group and NH2

group of dopamine functionalized nanomaterial and the
polymer matrix. Also, the polydopamine shells formed on the
surface of the nanomaterial can serve as the buffer layer in
lowering the electric field concentration inside the polymer
matrix, thereby preventing electrical treeing. Dopamine
functionalization of nanomaterial of optimum thickness can
be extremely useful in promoting significant enhancement in
the energy density of the nanocomposite.

Recently the benefits of using nanoparticles as additives
to effectively control the crystal growth, film morphology,
substrate wettability, and charge carrier mobilities, so as to
promote the use of nanofilled organic semiconductor in TFT
and other electronics device fabrication was highlighted.
Generally, a strong interaction between the SAM layer on the
surface and the active layer could enhance the field carrier
mobility and reduce the threshold voltage. For example, Bai
et al used long alkyl chain silane coupling agent (octadecyl
trichlorosilane) to modify hydroxylated SiO2 gate dielectric.
A reduction in SiO2 gate dielectric was observed resulting in
significant improvement in the performance of OTFTs which
may be a result of the improved compatibility between the
organic (aromatic and conjugated system copper phthalo-
cyanine (CuPc)) active layer and the long alkyl chain of
silanized SiO2 nanoparticles. Similarly, long alkyl chain
silane coupling agent was used to functionalize TiO2 and was
used in conjunction with the solution-processed polymeric
organic semiconductor poly(triarylamine) (PTAA) to improve
the performance of organic field-effect transistors (OFETs).
The nonpolar, alkyl chain of ODTS anchored on the oxide
surface shields PTAA from most of the energetic disorder at
the inorganic surface and also promotes enhancement in the
carrier mobility vis improved interfacial interaction. Simi-
larly, the octadecyl phosphonic acid-functionalized SiO2

exhibited an increase in the electron mobility of N,N′-dialkyl-
1,4,5,8-naphthalenediimides (NDI-Cn) (by nearly three orders
of magnitude) compared to that of unmodified SiO2. The
modification of SiO2 with ODPA resulted in an enhanced
growth of NDI-C14 with fewer defects, buildup of percola-
tion pathways for electron accumulation and electron trans-
port so as to prevent high charge density accumulation at the
dielectric interface [135]. The selection of surface active-
agent on the surface of nanoparticles/layer governs the di-
electric properties of the nanocomposite as well as the per-
formance of the bilayer as it relates to gate dielectrics.
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