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Data-driven Bus Crowding Prediction Models Using Context-specific Features
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Public transit is one of the first things that come to mind when someone talks about “smart cities.” As a result, many technologies,
applications, and infrastructure have already been deployed to bring the promise of the smart city to public transportation. Most of
these have focused on answering the question “when will my bus arrive?”; little has been done to answer the question “how full will
my next bus be?” which also dramatically affects commuters’ quality of life. In this paper, we consider the bus fullness problem. In
particular, we propose two different formulations of the problem, develop multiple predictive models, and evaluate their accuracy
using data from the Pittsburgh region. Our predictive models consistently outperform the baselines (by up to 8 times).
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1 INTRODUCTION

The rapid growth of urbanization during the past decades is necessitating increased efficiency in city operations.
This is manifesting as sensing technologies for data collection, advanced models and algorithms, and relevant data
dissemination to city dwellers, whose lives these big data and technologies are ultimately trying to improve [1, 3, 13, 42].
Collectively these techniques are often referred to as “smart city” technologies.

A textbook example domain for a smart city technology is that of public transportation. Everybody who lives in a
city would wish for public transportation to be “better.” Problems such as bus delays, crowded buses, and general lack
of public transportation options especially during rush hours make commuters dissatisfied and unhappy about the
city’s public services.

A plethora of technologies, applications, and infrastructure have been deployed already to bring the promise of
the smart city to public transportation. These include GPS tracking of buses to reliably predict their arrival times, the
standardization of transit schedule data [16], and mobile applications (e.g., Transit App [39] and MoovIT [25]) to make
such transit information available in real-time to commuters.
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2 Tahereh Arabghalizi and Alexandros Labrinidis

Although a lot of work has been done towards figuring out the answer to the question “whenwill my bus arrive?”, little
has been done to answer the question “how full will my next bus be?” which also dramatically affects the commuters’
quality of life. This is exactly the focus of this work.

1.1 Problem Statement

In order to effectively answer the “how full will my next bus be?” question, we take a multipronged approach. First of
all, we explore two different formulations of the problem. Second, we develop predictive models for the different problem
formulations. Third, we evaluate the performance of the different techniques using real data. Lastly, we consider the
real-life applicability of the proposed problem formulations and predictive models.

When one considers the “how full will my next bus be?” question, there are two possible types of answers:

(i) a specific number of people currently in the bus, which can be used to determine the number of seats/spots that
would be available; we refer to this as bus load, or

(ii) a “fullness” level that provides an approximate degree of how crowded the bus will be; we refer to this as bus
crowding level.

These give us the following formulation to the fullness problem:

predict the bus load or the bus crowding level for a certain route arriving to a specific bus stop

within a given 15-minute time interval.

where a bus route is defined as a set of stops with a starting point, an end point, and a direction (inbound or outbound).
Note that this formulation does not restrict the input variables for the prediction techniques; we can use additional
features such as weather data, historical information, etc.

Clearly, the two problem formulations require different techniques for prediction (e.g., regression for bus load
and classification for bus crowding levels) and different metrics for measuring performance. However, both problem
formulations can lead to predictions that can help travelers make more informed decisions about which bus to take,
while considering the quality of their trip instead of just the time.

We are investigating this exact trade-off as part of the PittSmartLiving project. In particular, we plan to design,
develop, deploy, and evaluate a platform that will integrate information from and align the incentives of all involved
stakeholders (commuters, mobility providers, and local businesses) towards increasing the utilization and quality of
public transportation [33]. For example, while waiting at the bus stop, a commuter will receive a push notification
alerting them to the next bus being full. In addition, they may also receive a discount towards coffee/tee at the coffee
shop around the corner (say $2 off), if they would take a later bus. This would alleviate bus crowding and make
everybody’s bus ride a more pleasant experience.

1.2 Our Contributions

This work makes the following contributions:

(1) We frame the “how full will my next bus be?” question as two different prediction problems: bus load prediction
and bus crowding level prediction.

(2) We formulate the bus load and bus crowding level prediction problems as intuitive regression and classification
problems respectively and develop appropriate models for prediction (Section 3 and Section 4).
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Data-driven Bus Crowding Prediction Models Using Context-specific Features 3

(3) We explain the extensive data preparation strategies employed over the real-world data received from the Port
Authority of Allegheny County (Section 5).

(4) We perform experimental evaluation using real-world data and compare our proposed models to baseline models
(Section 6 and Section 7). Although our analysis used data for the Pittsburgh area, our techniques are trivially
generalizable to other areas.

2 RELATEDWORK

The reliability of the public transportation system, in particular with regards to travel time and available space, greatly
affects commuters’ quality of life in urban travel [36]. Many research works have proposed techniques to predict
bus arrival times, optimize planning and design customized bus (CB) systems that can provide more efficient transit
services [5, 6, 11, 28–30, 37]. However, only a few previous studies have focused on predicting the space availability
as a transit reliability issue. Some works like [40, 41, 46] have studied forecasting passenger flow in the whole urban
public transit system by integrating regression analysis with time-series, neural networks and SVM respectively. On
the other hand, former research such as [35] and recent ones including [24] focused on finding optimal bus capacity.
Utilizing bus smart card data and GPS data is also another method that has been proposed by [43, 45]. Zhang Jun et al.
[45] predicts the passenger flow in real time by finding the flow pattern based on the Extended Kalman Filter model.

Among the works about forecasting bus passenger occupancy, Gayah et al. [19] has the most resemblance to our
research. They have developed regression models to predict the real-time passenger occupancy for each bus-stop.
However, their work is limited to only one bus route with 15 stops serving the Pennsylvania State University (PSU)
University Park campus. We believe that the characteristics of each bus route and stop can be very different from other
bus routes and stops. Therefore, one predictive model cannot be applicable for all the routes at all stops. As a point of
reference the network of the Port Authority of Allegheny County, serving the Pittsburgh Area, has almost 200 routes
and 7,000 bus stops1.

A just released feature of Google Maps is claimed to predict how full the bus will be for 200 cities world-wide [21, 22].
They rely on crowdsourced data along the lines of the Tiramisu project [38] from a few years ago. Although the Google
Maps problem formulation is close to one of the two we consider in this work, their techniques suffer from a well-known
sample bias. Their data is providing good coverage only where there are a lot of smartphone users (that also utilize
Google Maps in their commutes). This can trivially lead to over- or under-reporting, as has been the case with other
smart city projects in the past [15].

To the best of our knowledge there is no other work that considers the bus crowding level problem using real
passenger count data (instead of crowdsourced “experience” data). We believe utilizing bus crowding levels to be a
more intuitive way of sharing information with travelers (instead of bus load or passenger occupancy counts). Because
public transit is inherently human-facing, utilizing predictive models that are intuitive is of paramount importance.
At the same time, we believe using just crowdsourced data is not a reliable not equitable approach to predicting bus
crowding levels.

Finally, to the best of our knowledge there is no other work evaluating different formulations of (and solutions to)
the bus fullness question.

1https://www.portauthority.org/inside-Port-Authority/Transparency/system-data-and-statistics/
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4 Tahereh Arabghalizi and Alexandros Labrinidis

3 MODELING FRAMEWORK

To construct our modeling framework, we utilize the typical workflow that can be used to solve any machine learning
problem as described in [12]. This process consists of 7 steps as follows:

(1) Defining the problem and assembling a dataset: Sections 1.1 and 5.1
(2) Choosing a measure of success: Section 6.1
(3) Deciding on an evaluation protocol: Section 3.4
(4) Preparing your data: Sections 3.2, 5.2 and 5.3
(5) Developing a model that does better than a baseline: Sections 4.1, 7.1 and 7.2
(6) Developing a model that overfits: Sections 4.2 and 7.3 to 7.12
(7) Regularizing your model and tuning your hyperparameters: Section 4.2

In this section, we also explain the details of our formulation for bus crowding levels, as well as the different variables
to be used.

Table 1. Bus crowding levels

Level Description Condition
CL1 many seats available Load Factor <0.5
CL2 a few seats available 0.5 <= Load Factor <0.8
CL3 a few people standing 0.8 <= Load Factor <1.1
CL4 many people standing 1.1 <= Load Factor <1.4
CL5 crushed Load Factor >= 1.4

3.1 Definitions (Table 1)

As mentioned in the previous section, we consider two formulations of the bus fullness problem:

(i) prediction of bus load, i.e., number of passengers in the bus, or
(ii) prediction of bus crowding level, i.e., a characterization of how full the bus is.

Zheng Li et al. [27] has reviewed the specifications of crowding measures in public transportation in different
countries. As stated in their research, many US transit authorities utilize Load Factor (as the number of passengers
divided by the number of seats) to evaluate in-vehicle crowding. Accordingly, we define the Load Factor of busi as the
ratio of the number of current passengers on that bus to its maximum seating capacity, i.e.,

LoadFactori =
number o f current passenдers on busi
maximum seatinд capacity o f busi

(1)

Given the above definition, a Load Factor value of 1.0 means that there are as many passengers in the bus as seats,
whereas a value of 1.2 means that there are 20% more passengers in the bus than seats2. The Transit Capacity and
Quality of Service Manual [2] from the Federal Transit Administration defines the thresholds for the level of service
with respect to the load factor (e.g. load factor > 1.5 represents the crush loading level). In this work, we define our own
five crowding levels (explained in Table 1) which were developed after many discussions with the Port Authority of
Allegheny County. We used 1.4 load factor as the threshold for over-capacity (CL5) because this is an industry best
2It is worth noting that modern automatic passenger counting systems cannot determine how many people are seated versus how many people are
standing, just how many people entered or exited the bus.
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Data-driven Bus Crowding Prediction Models Using Context-specific Features 5

Table 2. Descriptions of the independent variables used in our models

Variable Description

TOD 96 variables for time of the day (each 15-min time-interval)
DOW 5 variables for day of the week (only weekdays)
MOY 12 variables for month of the year
BusType one variable (if the bus is single or double, i.e., articulating)
Temperature one variable for average temperature per hour
Rainfall one variable for average rainfall per hour
Snowfall one variable for average snowfall per hour
PLoad 10 variables for bus loads in the 10 previous stops.

PLoad1 is the bus stop immediately before the one we are predicting for.
Stop N variables for stops.

N is the number of stops for a route in one direction.
Stop variables are only used in models with route-direction data inputs.

Table 3. Feature Sets to be used in models. The last row is only used for models with route-direction input data.

Features FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9

TOD2 - TOD96 ✓ ✓ ✓ ✓ ✓ ✓ ✓
DOW2 - DOW5 ✓ ✓ ✓ ✓ ✓ ✓
MOY2 - MOY12 ✓ ✓ ✓ ✓ ✓ ✓

BusType ✓ ✓ ✓ ✓ ✓ ✓
Temperature, Rainfall, Snowfall ✓ ✓ ✓ ✓ ✓ ✓

PLoad1 - Pload5 ✓ ✓
PLoad1 - Pload10 ✓ ✓

PLoad5 ✓
PLoad10 ✓

PLoad5 - Pload10 ✓
Stop2 - StopN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

practice and something the Port Authority is using in its own reporting. The other levels are determined based on the
seating and standing availability where all passengers can sit (CL1 and CL2) or some/many passengers need to stand
(CL3 and CL4).

3.2 Feature Selection (Table 2 and Table 3)

We have carefully considered all possible input features (independent variables) that can impact bus fullness to include
in our models. These context-specific Features include time of the day (TOD), day of the week (DOW), month of the
year (MOW), bus type, reflecting if the bus is articulating (i.e., double) or not, and weather conditions (i.e., temperature,
rainfall, snowfall). We have also considered the bus load in the previous stops, as measured by automated passenger
counters, assuming such signals would be “live”. Some of the features are categorical which were converted to dummy
variables and some are numerical. Descriptions of the independent variables3 are provided in Table 2.

As part of our evaluation of the different models, we want to have a broader perspective of the performance of the
models in connection to the different sets of features chosen. Towards this, we defined nine combinations of features

3The number of dummy variables for each categorical feature is later reduced by one in order to be used in the models.
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6 Tahereh Arabghalizi and Alexandros Labrinidis

Table 4. Selected route-stop pairs for modeling

Cluster Route Stop Name

CL1 61B FIFTH AVE AT BIGELOW BLVD
71D FIFTH AVE AT THACKERAY AVE

CL2 12 ANDERSON ST AT GENERAL ROBINSON
56 GREENFIELD AVE AT IRVINE ST

CL3 Y1 E CARSON ST OPP STATION SQUARE STATION
28X LIBERTY AVE AT GATEWAY 4

CL4 P1 EAST BUSWAY AT NEGLEY STATION A
G31 WEST BUSWAY AT INGRAM STATION C

CL5 P1 EAST BUSWAY AT NEGLEY STATION C
61C FORBES AVE AT BEELER ST

(Feature Set 1, ..., Feature Set 9) to identify which ones perform best in our evaluation. These sets and their selected
features are represented in Table 3.

3.3 Route Sampling (Table 4)

There are close to 100 different routes on two different directions (inbound and outbound) per route and about 7,000
stops in Pittsburgh’s bus transit system. In order to conduct simpler experiments before running the proposed models
for all the routes in Pittsburgh, we define and apply a clustering method for partitioning routes and then select the top
two routes from each cluster as representatives of all routes in that cluster.

In order to identify representative routes, we partitioned routes in the dataset using their “most common” crowding
levels. That gave us five different clusters of routes that can be defined as follows (using the same names as each
corresponding crowding level):

CLi : routes in clusteri whose most common crowdinд level is CLi , where i ∈ {1, 2, 3, 4, 5}
For each of the five CLi clusters, we selected the top two routes, that have the highest number of records, after
normalizing by the number of stops to account for differences in the number of stops among routes. These routes
include 61B, 71D, 12, 56, Y1, 28X, P1 (which appears in two clusters), G31 and 61C.

For some of our proposed models, we build a model for each route at a particular stop, that is why we also need to
specify one stop for each selected route. You can see the list of selected routes-stops in Table 4.

3.4 Training and Testing Phase

The primary goal in a Machine Learning process is basically creating a model to make prediction using the test data.
Therefore, we use a subset of the available data as the training set to fit the model and the remaining data as the
testing set to test it. The generated models predict the results using unknown data which is named as the test set. In
our experimental setup, we randomly selected 80% of each preprocessed and transformed dataset to be used as our
training data. The remaining 20% of each dataset was used as test data for evaluation. This split is done using the
Python Scikit-Learn library and specifically the train_test_split() method. More information about the data preparation
procedures and the challenges we faced are discussed in Section 5.
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Data-driven Bus Crowding Prediction Models Using Context-specific Features 7

4 PROPOSED MODELS

In this section we introduce our proposed models plus the baseline models that we used for our evaluation. Our goal is
to predict bus load and bus crowding levels; towards this, we employ two types of machine learning models including
Regression and Classification with two different types of data inputs namely route-stop and route-direction (see Table 5).

Table 5. Sections Related to Proposed Models

Models
Data Inputs route-stop route-direction

Regression 4.1 (a) 4.1 (b)
Classification 4.2 (a) 4.2 (b)
Baseline 4.3 (a) 4.3 (b)

Having predictive models for each route-stop pair was our very first approach which resulted in good accuracy but
with the price of building plenty of models (~12,000). We then came up with a new approach to reduce the total number
of predictive models while improving their accuracy. In the new approach, we build a model for each route in each
direction (inbound and outbound) while adding the route’s stops as new independent variables to the existing ones.
In addition to the number of predictive models decreasing from near 12,000 to less than 200, we also found that the
accuracy of the models increases based on our experiments.

Furthermore, after running different experiments (see section 7), we decided to build predictive models for all
the routes using classification with the route-direction approach. Although the obtained results from the regression
models completely correspond with the results from the classification models, we choose the latter which is more
understandable for the real-world. We firmly believe that getting a descriptive “crowding level”, as we propose in this
work, is much more intuitive than a “number of seats remaining” count, especially since the number of seats is often
less than the total number of people in the bus.

4.1 Regression Models

Our first problem formulation is to predict the bus load, i.e., the number of passengers on a bus. In the modeling
framework for this problem, the dependent variable of interest is a numerical count. As such, we need to rely on
Regression Models with Count Data. There are several count data models among which the Poisson, Negative Binomial,
and Zero-inflated are the most popular. The Poisson regression model often fits the data poorly, because it assumes
that the conditional variance of the dependent variable is equal to the conditional mean while in most count data
sets, the conditional variance is greater than the conditional mean [9]. A Zero-inflated model should be considered
when analyzing a dataset with an excessive number of outcome zeros and two possible processes that arrive at a zero
outcome [18]. This case also does not apply on our data because we do not have an excessive number of zeros in load
due to different processes. Therefore, it seems that fitting a conventional Negative Binomial Regression Model is an
appropriate predictive model for our data. As mentioned, we build our models with two different data inputs as follows:

(a) Route-Stop : In this approach, we have a separate dataset for each route at each stop, fit each Negative Binomial
model with its relevant training data and then predict the load for each data record in the relevant test set.
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8 Tahereh Arabghalizi and Alexandros Labrinidis

(b) Route-Direction : In this approach, we filter out data for each route in each direction (inbound and outbound)
from the main dataset and use the relevant stops as independent variables in each Negative Binomial model.
After fitting each model with its relevant training dataset, we can predict loads using its test set.

4.2 Classification Models

As described earlier, we view predicting bus crowding levels to be a multinomial classification problem. Given the set of
independent variables we have, we employed Logistic Regression, Artificial Neural Network and Random Forest
algorithms. Thus, for each dataset we fitted a separate classifier using the relevant training set and then predicted
the crowding level using the test set. Most of our experimental evaluations utilize Random forest Classifier because
it produces more accurate predictions, limits over-fitting and therefore yields more useful results [8]. However, for
completeness we also report results with Logistic Regression and Artificial Neural Network in sections 7.3 and 7.4.

The following are the two data inputs used for classification models:

(a) Route-Stop : In this approach, we have a separate dataset for each route-stop pair, fit each classification model
with its relevant training data and then predict the crowding level for each data record in the relevant test set.

(b) Route-Direction : In this approach, we filter out data for each route in each direction from the main dataset and
then use the relevant stops as independent variables in each classifier. After fitting each model with its relevant
training dataset, we can predict crowding levels using its test set.

Hyperparameter Tuning
Logistic Regression: The Logistic Regression class in Python offers two regularization schemes (L1 and L2) and four
optimizers: newton-cg, lbfgs, liblinear, and sag [26]. Among these, newton-cg with L2 regularization produced models
with higher prediction accuracy.

Neural Network: The first step before building a neural network is to normalize the data and change the values of
features to a common scale (using StandardScaler or MinMaxScaler in Python). The next step is to build the neural
network using a tool such as Keras which is a high-level framework based on Tensorflow [17]. We also need to specify
the number of hidden layers and their size (number of neurons), the input and output size. In our case, the number of
output neurons is fixed for all datasets and is equal to the number of crowding levels. The number of input neurons,
however, varies from one dataset to another because the number of features varies depending on the route or data input.
We add one hidden layer to each network (adding more layers did not improve the models) that consists of different
number of neurons depending on the dataset. There are some empirically-derived rules-of-thumb to determine the
optimal size of the hidden layer. Heaton et al. [23] introduces a few of these such as the following equation that works
the best for our case:

Nh =
Ns

(α ∗ (Ni + No ))
(2)

where Ni is the number of input neurons, No is the number of output neurons, Ns is the number of samples in training
data set and α is an arbitrary scaling factor usually between 2 and 10.

Since there are more hyperparameters involved in the Keras framework, we use a grid search technique to find their
best values. we achieved the best results with a batch size = 64, epochs = 100, dropout rate = 0.5 and an Adam optimizer
while training a Sequential model in Keras. Thus, we use these tuned values in all neural networks and then fit and
Manuscript submitted to ACM
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Data-driven Bus Crowding Prediction Models Using Context-specific Features 9

Fig. 1. The Spatiotemporal average load for 61C-inbound using the route-stop baseline data. The x-axis represents 61C’s stops in
geographical order, the y-axis shows 15-minute time intervals of the day, and the color scale indicates the value of the average load

for the corresponding bus stop, time of day combination.

evaluate each model after randomly selecting an 80-20 split for the training-validation sets and an 80-20 split for the
training-test sets. It is noteworthy that we use "softmax" as the activation function and "categorical crossentropy" as
the loss since we are dealing with multinomial classification.

Random Forest: In order to reach the highest accuracy in Random Forest Classifiers, we conducted a grid search on
three desired hyperparameters including the number of trees in the forest, the function to measure the quality of a split
and the maximum depth of the tree. The optimized values for the first two hyperparameters obtained by the grid search
were 500 trees and "entropy" respectively while the optimized value for the third hyperparameter was the same as the
default value of this parameter in the Python scikit-learn’s Random Forest Classifier [26].

Manuscript submitted to ACM



469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Tahereh Arabghalizi and Alexandros Labrinidis

4.3 Baselines

We need different baselines corresponding to the introduced models. The simplest model that we can propose as
a baseline to be compared with a regression model is a model that includes average loads of a route at a specific
stop/direction within a 15-minute time interval. On the other hand, for having a comparison with a classification model,
we also need to assign a crowding level to each route at a specific stop/direction within a 15-minute time interval which
can be computed using the load factor. Our baseline models are listed as below:

(a) Route-Stop : In these baselines, we obtain the average load and crowding level for every route at each related
stop, for every 15-minute interval of a day. To have a better perception of this type of baselines, we present
an example here. Figure 1 illustrates the average load, obtained from the baseline, for 61C which is one of the
busiest routes in Pittsburgh. In this heatmap, the x-axis represents 61C’s stops in geographical order only in
one direction (inbound, i.e., to downtown), the y-axis shows 15-minute time intervals of the day and the color
scale indicates the value of the average load for the corresponding bus stop, time of day combination. As one can
see, the average load dramatically increases during the rush hours in the morning between 7 and 10 at some
specific stops in Oakland where the University of Pittsburgh campus is located. It is not surprising because many
University of Pittsburgh students, faculty, and staff take this route and the similar ones to get to campus in the
morning.

(b) Route-Direction : Each baseline in this category is obtained by computing the average load and crowding level
for every route at each related stop in each direction, for every 15-minute time span. This baseline will be used
for evaluation of our regression and classification models with route-direction data inputs.

Table 6. Statistics about the Pittsburgh area bus data

First Dataset Second Dataset
Duration March 2017 - March 2018 June 2018 - June 2019
number of routes (in-/out-bound) 98*2=196 98*2=196
number of stops 6,923 6,876
number of records in dataset before cleaning 100,869,765 102,809,399
number of records in dataset after cleaning 89,901,555 91,807,584
number of columns in dataset 189 215
number of useful columns 18 18

5 DATA PREPARATION/CHALLENGES

We have received two types of Pittsburgh-area bus data from the Port Authority of Allegheny County:

• Schedule Data are given in GTFS format [16]; these contain the published bus schedules (i.e., are equivalent to
printed bus schedules).

• Historical Data are given in a STEP 4 file format; these contain data about the exact time each bus arrives at a
bus stop, along with how many people board or alight the bus. These data are generated using automated people
counting devices that are mounted at the doors of every bus. We convert the STEP file to a text standard format
like CSV 5.

4STandard for the Exchange of Product
5Comma Separated Values
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(a) inbound (b) outbound

Fig. 2. Distribution of the number of stops among the different routes

5.1 Data Selection

We conducted our experiments with two historical datasets from two different time periods: March 2017 to March 2018
and June 2018 to June 2019. Each data record relates to a bus’s boarding and alighting history at a bus stop. Table 6
shows a few basic statistics about the data we used in this study. In addition, the relationship between the number
of stops and routes in Pittsburgh, for both inbound and outbound directions, is shown in Figure 2. As we can see in
Figure 2a, about 55% of inbound routes have between 50 and 80 stops whereas only about 20% have more than 80 stops
and nearly 25% have less than 50 stops. Almost the same pattern is observed in Figure 2b for outbound routes. More
than half of the outbound routes have 50-80 stops while the other half have more than 80 or less than 50 stops in total.
Routes 59 and O1 are two examples that have the highest and the lowest number of stops respectively.

5.2 Data Preprocessing

We first converted the selected data into a form that we could work with. That meant converting the STEP file into a
text standard format like CSV. The next step is to detect data anomalies and correct or entirely remove them from the
data. The following is the list of data inconsistencies we identified and removed before starting any data analysis:

• Invalid values: we found out that there were some invalid characters such as a star(*) in some of the data
which make their type incorrect. Theses values were removed or replaced by the correct ones after they were
discovered.

• Missing records: After comparing the available records in historical data and schedule data, we found out that
the data coverage is about 80 percent; we decided to use the existing data for the next phases without imputing
the missing records.

• Missing values: During data analysis we found out that bus stop information (Stop ID and Stop Name) was
unidentified in a number of data records which means they would be useless for the subsequent analysis and
modeling. Therefore, such data records were evicted from the data (Figure 3). This included data that showed
buses being in the river (possibly a result of an urban canyon effect6 on the GPS) and following completely
different bus routes (possibly a result of human error).

6https://en.wikipedia.org/wiki/Street_canyon
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Fig. 3. Missing stops for 61C inbound in April 2017 - The yellow-green path with orange dots represents the actual route for 61C
inbound and the red markers show the locations where the latitude and longitude of the missing stops in data specify. As you can see

many of the markers do not match the true locations of stops in this route during this specific time period.

• Duplicate records: we observed that for some of the records, there was at least another copy which contained
the same features such as date, bus, trip and stop just like that record, but the copy was different in other features.
Our hypothesis was that when a bus driver dwells at a stop behind a red light, he/she probably opens the bus’
doors to board and/or alight passengers more than once which leads to creating such duplicates in data. Tracking
a few examples of this scenario proved that our assumption is true up to a certain level. Such records were also
eliminated to increase the consistency of the following analysis.

5.3 Data Transformation

To prepare the preprocessed data for the machine learning models that we will apply in the next section, we need to
perform the following transformations:

• Attribute Decomposition: The date and time features need to be split into their constituent parts before they
can be used by the machine learning models. For example, we decomposed date and time from each data instance
into month of the year, hour, and minute respectively.

• Encoding Categorical Attributes: One task of data transformation is converting categorical data into numeric
data. One of the methods for this conversion is to create dummy variables for all categorical attributes which in
our case include month of the year, day of the week, time of the day and stops.

• Adding new features: Because of our modeling needs, we had to add two different kinds of features to the
preprocessed data:
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– Features obtained from a secondary data source: Weather is one of the important features that can affect
the crowding level in public transportation. We used weather data including average temperature, rainfall
and snowfall per hour from the Pennsylvania State Climatologist [14], the National Weather Service Climate
of Pittsburgh [34] and National Operational Hydrologic Remote Sensing Center [10] and integrated these
features into our data.

– Features obtained from original data: Some of the features we need for the modeling such as the type of each
bus, the load of a bus at previous stops, and the current crowding level were constructed from other features
and/or other data instances and then were added to the preprocessed data.

6 EVALUATION FRAMEWORK

The goal of our evaluation is two-fold:

• Determine the usefulness of the different feature sets in predicting bus load and crowding levels, and
• Evaluate the performance of the proposed models compared to the baselines.

We have used 20% of each dataset as test data, for model evaluation. In particular, we fed the models with the test
data and let them predict the corresponding loads, crowding levels and their uncertainties. To qualify the performance
of the models and the baselines, we used three metrics including RMSE, Log Loss and F1 Score, which we explain next.

6.1 Metrics

We have chosen three performance metrics namely RMSE, Log Loss and F1 score to evaluate the predictions coming
from the baselines, Negative Binomial and Random Forest models.

• The Root Mean Square Error (RMSE) is the standard deviation of the prediction errors which tells you how
concentrated the data is around the line of best fit [4].

RMSE =

√√√ N∑
i=1

(predictedi − observedi )2

N
(3)

• The Log Loss is a measure of how good probability estimates are (also known as cross entropy) [20]. Equation 4
shows the log loss formulation for multi-classification.

loдloss = −
1
N

N∑
i=1

M∑
j=1

yi j loд(pi j ) (4)

where N is the number of rows in test set, M is the number of fault delivery classes, yi j is equal to 1 if observation
belongs to class j and pi j is the predicted probability that observation belongs to class j.

• The F1 score is defined as the harmonic mean of precision and recall and is known to be more useful than
accuracy if there is class imbalance in classification [44].

F1 = 2 ∗
precision ∗ recall

precision + recall
(5)

Since predicting the probabilities of crowding level will be as useful as predicting the crowding level itself, we used Log
Loss as one of the performance metrics. Furthermore, due to the phenomenon of class imbalance in crowding levels,
we decided to use the F1 score with micro-averaging that aggregates the contributions of all classes to compute the
average metric [31].
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Table 7. Feature Sets to be used in models. The last row is only used for models with route-direction input data.

Features FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9

TOD2 - TOD96 ✓ ✓ ✓ ✓ ✓ ✓ ✓
DOW2 - DOW5 ✓ ✓ ✓ ✓ ✓ ✓
MOY2 - MOY12 ✓ ✓ ✓ ✓ ✓ ✓

BusType ✓ ✓ ✓ ✓ ✓ ✓
Temperature, Rainfall, Snowfall ✓ ✓ ✓ ✓ ✓ ✓

PLoad1 - Pload5 ✓ ✓
PLoad1 - Pload10 ✓ ✓

PLoad5 ✓
PLoad10 ✓

PLoad5 - Pload10 ✓
Stop2 - StopN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

6.2 Algorithms

The algorithms that we employ in this framework are:

• Negative Binomial Regression, as explained in Section 4.1
• Random Forest Classification, as explained in Section 4.2

In both cases we have defined appropriate baselines (Section 4.3).

6.3 Data

As previously mentioned (Section 5), we use real-world data received from the Port Authority of Allegheny County,
which we use as the “ground truth”. We extract and process data inputs with two types including Route-Stop and
Route-Direction for each modeling algorithm.

7 EVALUATION RESULTS AND DISCUSSION

We summarize the models’ evaluation by representing the RMSE, Log Loss and F1 score values for baseline, Negative
Binomial regression and Random Forest classification models for both route-stop and route-direction inputs. As
mentioned before, first we only conducted simple experiments using selected routes but then after evaluating the results,
we ran an experiment for all the existing routes by modeling them with our best selected approach (see section 7.9). It
is worth mentioning that all the following experiments have been conducted over the first dataset besides the ones in
sections 7.4 and 7.12.

(a) RMSE histogram for 61B (b) RMSE histogram for 12

Fig. 4. RMSE histograms - Regression Models with Route-Stop (1)
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(a) RMSE histogram for Y1 (b) RMSE histogram for P1 (CL4)

(c) RMSE histogram for P1 (CL5)

Fig. 5. RMSE histograms - Regression Models with Route-Stop (2)

7.1 Regression Results with Route-Stop (Figures 4, 5, 6)

Setup: For this experiment, we used the route-stop data input for modeling the selected routes and stops.
Results: Figures 4 and 5 show the RMSE for Baseline versus Negative Binomial Regression models with all 9 different
feature sets for the 5 top routes including 61B, 12, Y1, P1 in cluster CL4 and P1 in cluster CL5 at their selected stops (see
Tables 7 and 4). As it can be seen in all five bar charts, our models with feature sets FS3, FS4, FS8 and FS9 perform better
than baseline models. As indicated in Table 7, FS3 and FS4 are feature sets that include time of the day, day of the week,
month of the year, bus type, weather, and bus loads from 5 and 10 previous stops respectively whilst FS8 and FS9 only
include bus loads from 5 and 10 previous stops and not the other variables.

Moreover, Figure 6 is a summary of all selected route-stop pairs that shows RMSE values for Baseline versus the
Negative Binomial Regression models that turned out to perform the best according to the charts in Figures 4 and 5.

It is worth point out that histograms FS4, FS6, FS7 and FS9 are blank for P1 at both stops. The reason is because this
route, which is the busiest route in Pittsburgh, has only about 15 stops in each direction which means there are less
than 10 stops before these candidate stops we are predicting for. Therefore, there is no model built for the mentioned
feature sets for route P1 at EAST BUSWAY AT NEGLEY STATION A and EAST BUSWAY AT NEGLEY STATION C.

Finally, in all mentioned Figures, models with FS3 and FS4 perform slightly better than models with FS8 and FS9
which means including variables other than previous loads in the models could make a difference. This statement is
true for all experiments that we have conducted as part of this work.
Takeaway: Regression models with route-stop data inputs work up to 7.9 times better than their corresponding
baselines.
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Fig. 6. RMSE histogram for all selected routes - best route-stop models
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Fig. 7. RMSE histogram for selected inbound routes - best route-direction models
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Fig. 8. RMSE histogram for selected outbound routes - best route-direction models

7.2 Regression Results with Route-Direction (Figures 7, 8)

Setup: For this experiment, we used the route-direction data input for modeling the selected routes.
Results: In this experiment, we carried out Negative Binomial regression for each selected route in each direction.
As one can see in Figure 7 for inbound routes and Figure 8 for outbound routes, the performance of our models with
feature sets FS3, FS4, FS8 and FS9 for the selected routes (see Table 7), is better than the performance of the baseline
models for the same routes in both directions.
Takeaway: Regression models with route-direction data inputs perform up to 4.2 times better than their corresponding
baselines.

Table 8. Random Forest vs Logistic Regression - F1 Score
Comparison for inbound Routes

Route Baseline FS3 FS4
RF LR RF LR

61B 0.91 0.97 0.97 0.97 0.97
71D 0.91 0.98 0.97 0.97 0.97
12 0.85 0.97 0.96 0.97 0.96
56 0.87 0.98 0.98 0.98 0.98
Y1 0.68 0.92 0.91 0.91 0.91
28X 0.85 0.95 0.94 0.95 0.93
P1 0.8 0.87 0.87 0.87 0.87
G31 0.83 0.96 0.95 0.96 0.95
61C 0.79 0.93 0.9 0.93 0.9

Table 9. Random Forest vs Logistic Regression - Log Loss
Comparison for inbound Routes

Route Baseline FS3 FS4
RF LR RF LR

61B 0.24 0.09 0.09 0.09 0.09
71D 0.23 0.08 0.09 0.08 0.09
12 0.31 0.08 0.11 0.1 0.11
56 0.28 0.06 0.07 0.06 0.07
Y1 0.7 0.23 0.24 0.24 0.24
28X 0.34 0.15 0.16 0.16 0.17
P1 0.47 0.33 0.33 0.32 0.32
G31 0.37 0.12 0.14 0.13 0.14
61C 0.49 0.19 0.22 0.19 0.22
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7.3 Performance Comparison of Random Forest and Logistic Regression Models (Tables 8, 9, 10)

Setup: For this experiment, we used the route-direction data input for modeling the selected routes.
Results: As mentioned earlier (section 4.2) although we applied both Random Forest and Logistic Regression models
on our data, we only report Random Forest results because Random Forest Classifiers seem to be more accurate than
Logistic Regression models. To prove this statement, we compared the accuracy (in terms of F1 Score and Log Loss) of
both types of models for all candidate routes and presented a selection of results in tables 8 and 9. Table 8 shows F1
Score values after testing models for inbound candidate routes with FS3 and FS4 as the models’ feature sets. As it can be
seen, F1 Scores for Random Forest models are equal to or slightly higher than F1 Scores for Logistic Regression models
in all cases. A Log Loss comparison was also done with the same modeling and input setup and displayed in table 9.
The numbers in this table indicate that our Random Forest models also perform equally well or better than our Logistic
Regression models in terms of Log Loss. In addition to these tables, table 10 summarizes the outcomes obtained from
the comparison of the two classification models for both inbound and outbound routes and both feature sets. According
to this table, for 67% of experiments Random Forest classifiers performed better than Logistic Regression models in
terms of F1 Score and they performed as well as each other for the remaining 33% . This table also represents Log Loss
comparison of the models where Random Forest classifiers did equally well or better than Logistic Regression models
in 94% of experiments.
Takeaway: Random Forest classifiers outperform Logistic Regression classifiers so we apply Random Forest on all
datasets with different setups as it is explained in the following sections.

Table 10. Random Forest vs Logistic Regression - F1 Score
and Log Loss Comparison for inbound and outbound Routes

F1 Score
(the higher the better)

RF >LR 67%
RF = LR 33%
RF <LR 0%

Log Loss
(the lower the better)

RF <LR 72%
RF = LR 22%
RF >LR 6%

Table 11. Random Forest vs Neural Network - F1 Score and
Log Loss Comparison for inbound and outbound Routes

F1 Score
(the higher the better)

RF >NN 61%
RF = NN 39%
RF <NN 0%

Log Loss
(the lower the better)

RF <NN 67%
RF = NN 28%
RF >NN 5%

7.4 Performance Comparison of Random Forest and Neural Network Models (Tables 11 and 12)

Setup: We used the route-direction data input for modeling the selected routes using the second dataset.
Results: In this section, we compare the performance of our Random Forest classifiers and our Neural Network
classifiers with two feature sets: FS3 and FS4, for all candidate routes. As one can see in Table 12, our Random Forest
models perform equally well (28% of cases) or better (72% of cases) than our Neural Network models in terms of F1
Score and Log Loss for inbound routes. Table 11 summarizes the comparison between the Random Forest and Neural
Network models for both inbound and outbound routes and both feature sets. According to this table, RF classifiers
work equally well or better than NN classifiers in 100% of cases in terms of F1 Score and in 95% of cases in terms of Log
Loss.
Takeaway: These results (as well as the results in the previous section) indicate that Random Forest classifiers outperform
the other classification methods that we used and work the best for our data. Furthermore, we can infer that neural
networks do not necessarily outperform the standard machine learning algorithms that can solve a large majority of
problems.
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(a) F1 Score histogram for 61B (b) Log Loss histogram for 61B

(c) F1 Score histogram for 12 (d) Log Loss histogram for 12

(e) F1 Score histogram for Y1 (f) Log Loss histogram for Y1

(g) F1 Score histogram for P1 (CL4) (h) Log Loss histogram for P1 (CL4)

(i) F1 Score histogram for P1 (CL5) (j) Log Loss histogram for P1 (CL5)

Fig. 9. F1 Score and Log Loss histograms Manuscript submitted to ACM
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Table 12. Random Forest vs Neural Network Performance Comparison for inbound Routes

F1 Score Log Loss

Route FS3 FS4 FS3 FS4
RF NN RF NN RF NN RF NN

61B 0.98 0.97 0.98 0.97 0.07 0.07 0.07 0.07
71D 0.98 0.97 0.98 0.97 0.06 0.08 0.07 0.07
12 0.98 0.97 0.98 0.98 0.06 0.08 0.07 0.07
56 0.99 0.98 0.99 0.98 0.04 0.06 0.05 0.07
Y1 0.94 0.92 0.94 0.90 0.19 0.21 0.19 0.22
28X 0.96 0.95 0.96 0.95 0.12 0.13 0.13 0.14
P1 0.88 0.88 0.88 0.88 0.28 0.28 0.30 0.30
G31 0.96 0.95 0.96 0.96 0.11 0.14 0.12 0.13
61C 0.95 0.93 0.95 0.93 0.14 0.17 0.15 0.17
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Fig. 10. F1 Score histogram for all selected routes - best route-stop models

7.5 Classification Results with Route-Stop (Figures 9, 10, 11 and Table 13)

Setup: We used the route-stop data input for modeling the selected routes and stops in this experiment.
Results: Figures 9a to 9j show the F1 score and Log Loss for the Baseline versus Random Forest models with all 9
different feature sets for 61B, 12, Y1, P1 in cluster CL4 and P1 in cluster CL5 (see Tables 7 and 4). According to the
histograms in Figure 9, models with FS3, FS4, FS8 and FS9 feature sets perform better than the baseline and the other
models, in terms of both Log Loss and F1 score. For instance, Figure 9c and Figure 9d show that F1 score has increased
by 29% and Log Loss has decreased by 8 times in models with FS3 or FS4 feature sets compared to the baselines.
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Fig. 11. Log Loss histogram for all selected routes - best route-stop models

Table 13. Standard Deviation, Mean, F1 Score and Log Loss values for Selected Routes. The table shows that models for routes with
higher average load and higher standard deviation are less accurate than the models for routes with lower average load and lower

standard deviation.

Route Cluster SD Mean F1 Score Log Loss
61B CL1 6.81 8.75 0.92 0.19
71D CL1 6.24 8.26 0.93 0.19
12 CL2 9.1 11.24 0.97 0.06
56 CL2 7.99 11.45 0.96 0.1
Y1 CL3 11.46 18.58 0.82 0.42
28X CL3 9.98 12.05 0.86 0.3
P1 CL4 & CL5 12.15 21.57 0.68 0.67
G31 CL4 11.76 12.04 0.90 0.19
61C CL5 9.42 16.28 0.79 0.42

The same pattern can also be seen in Figures 10 and 11 which show F1 score and Log Loss for baselines and the
best-performing Random Forests for all selected route-stop pairs. Our other observation from these histograms is that
route-stop pairs that are in clusters CL1 and CL2, have lower Log Loss and higher F1 score compared to the other pairs
in other clusters. One interpretation is that less crowded routes have less “messier” data which leads to more accurate
models. What we mean by “messiness” is how spread our data is. As you can see in table 13, the first four routes that
belong to clusters CL1 and CL2 have lower mean (which means less crowded) and lower standard deviation over their
“load” compared to other routes in other clusters and also as it can be seen the accuracy of their models built with one
of the feature sets such as FS3 is better than other routes. Since a high standard deviation indicates that the data points
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are spread out over a large range of values [7], we are convinced that the models we build for more crowded routes are
less accurate than the models we build for less crowded routes.
Takeaway: Classification models with route-stop data inputs perform up to 8 times better than their corresponding
baselines.

7.6 Classification Results with Route-Stop for 61C (Figure 12)

Setup: For this experiment, we used the route-stop data input for modeling 61C at all of its stops. 61C is one of the
most popular and crowded routes in Oakland neighborhood, where University of Pittsburgh campus is located, which
makes this route an important target for our project. This section is essentially an example of what we explained in the
previous section about the relation between load and model accuracy.
Results: Figures 12a and 12b represent the changes of F1 score, Log Loss and Mean load over all stops in 61C for both
directions. The model used for this experiment was Random Forest classifier with route-stop data input with FS3 feature
set. As you can see, the values of these three metrics fluctuate for each stop and our model has different accuracy at
different stops. It is noticeable that the accuracy of each model at each stop has a close relationship with the mean load
of the route at that stop. In other words, when the number of passengers on the bus route increases (specifically at
stops in the middle of the route path), there will be a decrease in F1 and an increase in Log Loss. This pattern is visible
in both 61C inbound and 61C outbound graphs.
Takeaway: The accuracy of each model for 61C at each stop has a relationship with the average load of the route at
that stop.

7.7 Classification Results with Route-Direction (Figures 13, 14, 15, 16)

Setup: For this experiment, we used the route-direction data input for modeling the selected routes.
Results: We depict the comparison between F1 score and Log Loss for the selected inbound routes for the Random
Forest classifiers with best feature sets in Figures 13 and 14. Figures 15 and 16 show the same comparison for the
selected outbound routes. Similar to other previous experiments, our proposed models with FS3 and FS4 completely
outperform baselines and are slightly better than models with FS8 and FS9. If we compare the results of the classification
models with route-stop input (section 7.5) and classification models with route-direction input, we can clearly see
that the latter surpass the former in terms of F1 and Log Loss. However, one exception can be seen for route 12 in
which route-stop model performs slightly better than its route-direction model. We believe this to be minor because we
reported the outcomes of route-stop models for the selected routes at the candidate stops not all the existing stops. In
other words, since the accuracy of the route-stop models changes from one stop to another (as it was observed in the
previous experiment for 61C), thus we should not generalize from the performance of models for just one stop. In fact,
we resolved this problem by computing the average of F1 and Log Loss scores for all stops of a route and comparing them
with F1 and Log Loss scores obtained from models built for that route in two directions. We completed our experiment
in previous section by calculating the average of the metric values for 61C at all of its stops (direction-separated) and
then we compared these average values with F1 and Log Loss scores from route-direction models for 61C. It turns out
that the latter are very close (even slightly better) to the former which gives us another reason to choose route-direction
models over route-stop models. Generally speaking, instead of having one model per each route and stop, we can have
a model for each route while considering its stops as model variables. This way, we get an acceptable average accuracy
for all stops without having trouble creating thousands of models.
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(a) F1 Score, Log Loss and Mean Load for 61C inbound

(b) F1 Score, Log Loss and Mean Load for 61C outbound

Fig. 12. Classification Results with Route-Stop for 61C
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Fig. 14. Log loss histogram for selected inbound routes - best route-direction models
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Fig. 15. F1 Score histogram for selected outbound routes - best route-direction models
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Fig. 16. Log loss histogram for selected outbound routes - best route-direction models
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Takeaway: Classification models with route-direction data inputs perform up to 3.9 times better than their matching
baselines and have better accuracy compared to classification models with route-stop data inputs.
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Fig. 17. F1 score and Log loss for selected inbound routes using load information from different previous stops
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Fig. 18. F1 score and Log loss for selected outbound routes using load information from different previous stops

Manuscript submitted to ACM



1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Data-driven Bus Crowding Prediction Models Using Context-specific Features 27

Fig. 19. The Results for All Routes Modeled with Random Forest Classifier for each Route-Direction

7.8 Stop-Load Sensitivities (Figures 17, 18)

Setup: For this experiment, we used the route-direction data input for modeling the selected routes.
Results: The models used in this experiment are Random Forest classifier models that are fitted with FS2 features plus
loads from the stops prior to the stop we are predicting for. Figures 17 and 18 display the changes of F1 scores and Log
Loss for selected routes in two directions. On the x-axis we list the number of previous stops (1-10) with their load
information known. In other words, 1 corresponds to knowing the load of just the previous stop, 2 to knowing the
load of the two previous stops, etc. According to these line charts, both F1 and Log Loss values vary slightly from one
variable set to another and F1 values fluctuate even more insignificantly than Log Loss values. From this observation,
we can infer that the accuracy of our proposed models barely depends on the number of previous stops with load
information known and it stays almost unchanged when adding more load information from previous stops that are
farther away. However, we should emphasize the importance of including a consecutive previous loads (starting from
the stop right before the stop we are predicting for) in the feature sets because they remarkably improve the accuracy
of the models. We have seen this time and time again in the presented results from all the introduced models which
perform very well while having FS3 or FS4 feature sets as their independent variables.
Takeaway: Adding more load information from previous stops that are farther away does not change the accuracy of
our models.

7.9 Classification Results with Route-Direction - All Routes (Figure 19)

Setup: For this experiment, we used the route-direction data input for modeling all the routes.
Results: A summary of the results obtained from running the experiment for all existing bus routes in Pittsburgh
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is illustrated in Figure 19. This graph shows the F1 score versus Log Loss computed for each route in each direction
modeled by Random Forest Classifiers. The size of the circles corresponds to the mean load that is calculated for each
route-direction and partitioned in 6 different categories. Each category is also defined with a color to display the
differences. As you may notice, most routes have load less than 20 people on average and models for routes whose
mean load is lower than 15 passengers seem to be more accurate since their F1 scores are very close to 1.0 and their Log
Loss scores are close to zero. However, mean load in routes like P1 and P2, that are known as two of the busiest routes
in Pittsburgh, is over 20 people which leads to less accurate models. We think this phenomenon happens because data
is typically more prone to messiness and a lot of missing values and outliers when buses become more crowded (see
Table 13).
Takeaway: The accuracy of a model for a route in a certain direction has a reverse relationship with the average
number of passengers using that route.
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Fig. 20. F1 score and Log loss for selected inbound routes - Random Forest classifier vs. load-only Baseline

7.10 Classification Results vs. Load-only Baseline (Figures 20, 21)

The goal of this experiment is to evaluate a scenario where the Port Authority makes available to the public the “live”
bus load data feed. In other words, it would be possible to find the current load of any bus. We use this experiment to
determine how useful that information would be in predicting the bus crowding levels for that route further downstream
(i.e., at the bus stop of interest), since presumably people would want to predict how full their bus will be before actually
seeing the bus.
Setup: For this experiment, we used the route-direction data input for modeling the selected routes. In terms of a
baseline, we used a variation of the Route-direction baseline where, instead of using the average load, we use the load at
the 1st or the 5th or the 10th previous stop. Therefore, three separate baselines for each route in each direction are built
and used for comparison (Baseline_1st, Baseline_5th and Baseline_10th). In addition, we also fit three different Random
Manuscript submitted to ACM
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Fig. 21. F1 score and Log loss for selected outbound routes - Random Forest classifier vs. load-only Baseline

Forest classifiers for each route in each direction with all the variables included plus only load at the 1st previous stop
(RF_1st) or at the 5th previous stop (RF_5th) or at the 10th previous stop (RF_10th).
Results: Figures 20 and 21 show the F1 score and Log Loss values obtained from an experiment conducted to compare
our proposed classification models with load-only baselines. According to the figures, all the proposed models perform
better than the baselines except for models for P1 and 28X that show some small discrepancies compared to other
routes. In addition, if we compare the three different type of models together, we can see that models that include the
first previous load in their variables are usually more accurate than models that use 5th or 10th previous loads. However,
this does not hold for baselines. As you may notice, baselines that use load from the 10th previous stop work better
than the other baselines although a few different behaviours for some routes are observed.
Takeaway: Using just live data has limited application in predicting bus crowding levels further downstream. Such
signals should instead be combined with historical data to build more accurate predictive models.

Table 14. Top 15 most Crowded Routes in CL4 / CL5

Crowding Level Description Routes (in order of crowdedness, starting from the left)

CL5 Crushed P1, 61C, 61D, 71B, 71A, P78, 61B, P2, 75, 71D, P71, 58, 71C, 67, 1
CL4 Many People Standing P1, G31, G2, G3, 28X, Y1, 75, 71B, 71A, 69, 41, P78, 61B, 6, 61C

Table 15. The most Crowded Routes and Stops in Pittsburgh Reported by Google Maps

Route Stop

22 Helen St at Catherine St, Helen St at Ella St,
71A Craig St at Centre Ave FS, Negley Ave at Jackson St, Negley Ave at Hampton St
71C Negley Ave at Centre Ave, Negley Ave at #370 (Baum Blvd), Negley Ave at Penn Ave FS
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Table 16. Comparing “Crowded” bus routes as identified by Google Maps vs our work

Route Origin CL1 CL2 CL3 CL4 CL5 % trips crowded

22 Google Maps 45.82 1.79 0.01 0.0 0.0 0%
71A Google Maps 81.19 1.43 0.39 0.09 0.1 10%
71C Google Maps 75.23 0.74 0.17 0.034 0.007 11%
P1 Our work 43.29 20.37 3.29 0.51 0.88 15%
61C Our work 71.81 8.4 1.4 0.05 0.3 17%
61D Our work 72.92 2.44 0.33 0.008 0.2 12%

7.11 The perils of crowdsourced data (Tables 14, 15, 16)

Setup: In this last data-driven evaluation study, we wanted to compare the quality of crowdsourced data with the
“ground truth,” as collected by the automated person counting devices on all buses. Towards this we used data from our
route sampling analysis (Section 3.3), data from Google Maps [22] about Pittsburgh’s most crowded bus routes, and
published data from the Port Authority [32].
Results: Table 14 show the most crowded (CL5) and second most crowded (CL4) routes in Pittsburgh according to our
analysis. Table 15 shows the three most crowded bus routes in Pittsburgh according to Google Maps. Lastly, Table 16
has a comparison of the breakdown of each route with regards to the five bus crowding levels, for the top three crowded
routes identified by Google Maps and the top three identified by our work. The last column in that table comes from
the Port Authority’s 2018 Annual Service Report [32] and shows the percentage of trips that were crowded.

We clearly see that all the routes we identified as the most crowded ones (P1, 61C, 61D) are very crowded indeed,
whereas out of the three that Google Maps identified as the most crowded routes, two (71A, 71C) are indeed somewhat
crowded (although not the top ones), whereas one (22) is not crowded at all. This is the main challenge of relying
exclusively on crowd-sourced information. There is often an inherent bias in data collection leading to skewed
conclusions if that is the only data source. A well-known example of this bias is the case of the StreetBump smartphone
app to detect potholes in Boston, which ended up missing inputs from significant parts of the population — often those
who have the fewest resources [15].
Takeaway: Systems that rely purely on crowdsourcing to collect bus crowding levels are not always accurate.

7.12 Results for the Second Dataset (Figures 22, 23, 24, 25)

In order to confirm that our experimental results and conclusions are generalizable and transferable we evaluated our
proposed models with a second dataset. The second dataset was from the Port Authority and was for a completely
different one-year period. It is worth noting that Port Authority’s schedules change quarterly, so there are many
differences among these datasets (see Table 6). We applied our Random Forest classifiers with the route-direction data
input (as our desired setup) on the second Port Authority dataset and compared their accuracy with the results from
the first dataset.
Setup: For this experiment, we used the route-direction data input for modeling the selected routes.
Results: According to Figures 22, 23, 24 and 25 our proposed classification models with FS3 and FS4 feature sets
outperform baselines models with FS8 and FS9 in terms of both F1 Score and Log Loss, similar to what we saw in the
previous experiments with the first dataset.
Takeaway: Our classification models with route-direction data inputs applied on the second dataset, perform up to 4.5
times better than their matching baselines.
Manuscript submitted to ACM
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Fig. 22. F1 Score histogram for selected inbound routes - second dataset

Discussion: Considering the results we obtained from conducting experiments with the two datasets and according to
table 6, we can infer that we have slightly more data instances in the second datasets (about 2 million) than the first one
and the models’ accuracy is also slightly higher when we apply our models on the second dataset.

7.13 Discussion

In our evaluation, we identified feature sets FS3/FS4 to be the best choice among all other feature sets. However, these
sets have more than 100 features. In real-life, it may be preferable to consider the trade-off between model quality and
model complexity. As such, another good option may be FS8 which only contains that last 5 prior loads and performs
almost as good as the more complicated FS3/FS4 sets.

Taking a step back, one may wonder: if live bus loads are available, does it still make sense to do modeling? The answer
is yes, as we showed in the previous section. Ideally, one would combine live data with predictive models so that they
are able to more accurately predict bus crowding levels a few stops away or well ahead of time, as part of pre-trip
planning.

8 CONCLUSION AND FUTUREWORK

In this work, we framed the ”how full will my next bus be?” question as a regression and as a classification problem
and developed a modeling framework to predict bus load and bus crowding levels using data from Pittsburgh. Our
evaluation results showed that the proposed framework (using Random Forest Classifiers with route-direction data
inputs) performs very well when using time of day, day of the week, month of the year, bus type, weather, and the bus
loads from the 5 or 10 prior stops as the selected features. In fact, our models’ performance was up to 8 times better
than the baselines. Although we developed our modeling framework using only data from Pittsburgh, we are confident
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Fig. 23. F1 Score histogram for selected outbound routes - second dataset
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Fig. 24. Log loss histogram for selected inbound routes - second dataset
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Fig. 25. Log loss histogram for selected outbound routes - second dataset

that the same process and the proposed models can be applied to data from other cities, especially since we evaluated
our models with two different, completely disjoint datasets. .

As part of our future work we intend to deploy these models in our PittSmartLiving mobile application, using live
real-time data from the Port Authorities, with the ultimate goal of improving the commuters’ quality of life through
high-quality, actionable information.
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