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Abstract The pervasiveness of public displays is
prompting an increased need for “fresh” content to be

shown, that is highly engaging and useful to passer-
bys. As such, live or time-sensitive content is often
shown in conjunction with “traditional” static content,

which creates scheduling challenges. In this work, we
propose a utility-based framework that can be used to
represent the usefulness of a content item over time.
We develop a novel scheduling algorithm for handling

live and non-live content on public displays using our
utility-based framework. We experimentally evaluate
our proposed algorithm against a number of alterna-

tives under a variety of workloads; the results show
that our algorithm performs well on the proposed met-
rics. Additional experimental evaluation shows that our

utility-based framework can handle changes in priori-
ties and deadlines of content items, without requiring
any involvement by the display owner beyond the initial
setup.
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1 Introduction

Pervasive displays are becoming a regular fixture of ev-

eryday city life [2]. Although the majority of such dis-
plays are still showing mostly static content, e.g., ad-
vertisements, the push and the demand for data-rich
content is very high. Data-rich content is often live

(e.g., real-time transit information1) or time-sensitive
(e.g., weather forecasts). One way to address the id-
iosyncrasies of live content is to assign deadlines to it,

i.e., a specific time point by which the content item
should be displayed in order to have positive “value” to
passerbys. Of course, such deadline-driven content may

coexist with content that does not have such specific
timing requirements.

1.1 Motivating example

Our motivating example is a public display at a bus
stop that shows various content items including real-

time bus arrival information, real-time traffic informa-
tion, up to the minute weather information, the Twitter
feed of the bus company, and advertisements. The mo-
tivation behind these content choices is to make the
display “interesting,” so that it does not get ignored
like banner ads on web sites. Along those lines, we en-
vision different content items being shown at separate
times on the display, instead of trying to squeeze too
many things in a single screen at the same time.

Given this setup, we want to determine the best
schedule to show the various content items. Clearly,

the different types of content have different “value” to
the people at the bus stop and that value changes over
time. For example, it is absolutely crucial that an alert

1 https://transitscreen.com
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about a bus arrival be shown shortly before the bus ar-
rives (30 seconds - 1 minute) and definitely not after
the bus leaves the bus stop. The exact arrival time of
the bus (i.e., the “deadline”) is often not the originally
scheduled time, since it is affected by current traffic
conditions, and therefore not known well in advance.
Additionally, other content types (e.g., Twitter feeds)
do not have such strict timing constraints, but must
also be shown.

Although bus alerts are high priority, we would like
to integrate them into the schedule in a way that feels
natural. Traditional scheduling methods have handled
high priority content items by allowing them to preempt
less important items. However, given that we would be
showing these alerts hundreds of times a day, we would
prefer to integrate the alerts into the schedule in a less
intrusive manner.

1.2 Requirements of an ideal scheduling algorithm

Given the motivating example, we would like to have a
scheduling algorithm with the following characteristics:

– Can handle scheduling constraints (e.g., what time
or how often to show particular items).

– Can deal with content items being added to or
deleted from the list of available content (even with-

out significant advance notice).
– Can handle content that is deadline-driven, but also

content that is not.

– Can consider the different “value” content has to
viewers and use it to prioritize scheduling decisions.

– Can adapt the schedule in response to new priorities

or information.
– Can integrate time-sensitive content in a non-

preemptive manner.

To the best of our knowledge, there is no scheduling al-
gorithm that addresses all of the above characteristics.

1.3 Contributions of this work

We make the following contributions:

1. We propose a static utility function framework to
capture the inherent “value” of both deadline-driven
and traditional content items.

2. We extend the static utility function framework to
a self-adjusting utility function framework that is
more user-friendly and can adapt to changing pri-
orities and deadlines.

3. We develop a novel scheduling algorithm (Looka-
head algorithm) that uses the utility function frame-

work to minimize missed deadlines while maximiz-
ing the overall utility of content items shown.

2 Related work

Most commercial digital signage players2 allow the dis-
play owner to create playlists (an ordering of content
items that play in a loop) or to specify the exact timings
to show each item. With these scheduling methods, all
schedule changes must be made manually by the dis-
play owner ahead of time. They cannot happen auto-
matically in response to certain information or events.

The scope of this work is in the area of context-
aware scheduling [16]. With context-aware scheduling,
the scheduler decides which item to show based on the
greater context that surrounds the display. Context in-
formation may be provided to the scheduler via cam-
eras, sensors, or external information sources.

Elhart et al. [3] describe some of the key challenges
that arise in context-aware scheduling. The challenges
most relevant to this work include:

– introduction of new content items or scheduling con-
straints in real-time,

– handling constraints involving both absolute and

relative timings,
– defining appropriate preemptive or priority-based

behavior,
– optimizing multiple scheduling objectives, and

– providing a trade-off for competing objectives.

Some approaches in the area of context-aware
scheduling are tailored for a specific display with spe-

cific scheduling criteria [9,15,11,10,12]. Others try to
provide a more general framework that can be used to
implement more specialized schedulers [2,14].

The Yarely player, designed by Clinch et al. [1],
creates a playlist from the items and constraints de-
scribed in a Content Descriptor Set. The playlist is
cycled through on the player in a round-robin fash-
ion. High-priority content, such as emergency alerts or
personalized content items, are able to interrupt the

playlist.

Ribeiro and José [13] created a model to describe the
timeliness for two different categories of time-sensitive
content: information items and event-related items. The
timeliness of an information item decreases as time
elapses since the publication date. An event-related
item becomes more timely as the event gets closer, then
loses timeliness when the event is over. The scheduler
chooses from among the most timely items to decide
what to display on the screen.

Elhart et al. [4] designed a framework and API for
scheduling both interactive and non-interactive appli-
cations. The API allows applications to request display
resources in response to certain information or events.

2 For example, https://screen.cloud



Set It and Forget It: Utility-based Scheduling for Public Displays 3

Interactive content is scheduled by preempting non-
interactive content.

Mikusz et al. [8] show how a lottery-based approach
can be used to meet the requirements of several dif-
ferent scheduling policies. The lottery scheduling algo-
rithm allocates tickets to content items based on some
scheduling policy, then randomly draws a ticket to de-
cide which item to show. A change in scheduling pri-
orities can be reflected by changing the allocation of
lottery tickets.

3 Scheduler architecture

We envision a public display scheduler that consists of
three core components: (a) a content library, (b) a fil-
terer, and (c) a content scheduler. A diagram is shown
in Figure 1.

The content library stores information about the ap-
plications, as well as the metadata needed for schedul-

ing purposes. Content items can be added to or removed
from the library at any time. A content item must in-
clude: application info (image, video, web URL, etc.),

duration, valid days and times, and a utility function
which describes the item’s value over time. The content
library has a sub-component called the utility function
adjuster which can be used to alter the utility function

of an item. Utility functions are discussed in detail in
Section 4.

The filterer pulls content items from the library and
removes any invalid items before passing them to the
scheduler. A content item is invalid if the current time
is not within valid times specified for the item.

From the items that make it through the filterer, the
content scheduler decides which item to show next. The

scheduler uses the Lookahead algorithm, which makes
scheduling decisions based on the utility function of
each item. This algorithm is discussed in detail in Sec-
tion 5.

All interactions between the display owner and the
system occur through an API to the content library.
The display owner does not interact with the scheduler
directly, but can instead make scheduling changes by
changing the metadata of the content items. The API
allows content items to be added, deleted, or updated.

4 Utility functions for content items

Utility functions (UF’s) are used in many disciplines
in order to express value over time. UF’s that express
the value of job completion over time have been used
for scheduling tasks in real-time operating systems [5],
database systems [6], and HPC systems [7].

We propose using a utility function to represent the
viewer-perceived value of showing a content item over
time. These utility functions can then be used to inform
scheduling decisions.

4.1 Static utility function framework

Our framework supports two types of content: (a) any-
time content (AC) and (b) deadline-driven con-
tent (DC). We believe these two categories encap-
sulate many different content items, however, certain
items such as interactive items may not fit well into the
framework.

Most items traditionally shown on public displays
are anytime content. This type of content has no inher-
ent value tied to a specific time of day. However, it may
increase in value to viewers if not shown for some period
of time. An example of an AC item is a weather appli-

cation. The weather is valuable to viewers at any time
of day, however, it is not valuable to show the weather
twice in one minute, as major updates to the forecast

are unlikely. Other examples of AC items include news
applications, Twitter feeds, and advertisements. Typi-
cally, these items are shown multiple times throughout
the day.

A deadline-driven content item is tied to a very spe-
cific time of day. These items can be thought of as

”pseudo-interrupt” content, because they require im-
mediate attention at a specific time. However, this type
of content differs from true interrupt-style content (e.g.

emergency alerts): in our case, we are aware of the con-
tent item in advance of when it should be shown.

Often, these DC items will be related to live events.
An example of a DC item is an alert that says “Bus
Arriving Now”. Ideally, this item would be shown 30
seconds before the bus arrives. Showing this item too

early or too late would cause confusion and provide no
value to viewers. Other examples of DC items include
event reminders and live video streams. DC items are
only shown one time throughout the day.

The utility function of an AC item is a non-
decreasing function, where the x-axis units are time off-
sets relative to the time when the content item was last
shown. The y-axis units are the viewer-perceived value
of showing the item. Immediately after an AC item is
shown, the value of its utility function goes back to the
value at time offset zero. The utility function of a DC
item must increase from zero at some time (ts) and re-
turn to zero at its deadline (td). The x-axis units for a
DC utility function are absolute times of day. The y-
axis units are viewer-perceived value. For both AC and

DC items, the utility acquired by showing the item at a
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Fig. 1: Scheduler architecture

particular time is represented by the integral of the UF
over the duration (d) that the content item is shown.

Using this framework, the display owner must de-
sign a utility function for each content item that they
wish to add to the content library. The API is used

to add and remove content items. The display owner
can write a script to make API calls at certain times
or in response to certain events so that the display can
contain time-sensitive items.

4.2 Self-adjusting utility functions

The utility adjuster component can be added to the
content library to allow a display owner to take advan-
tage of self-adjusting utility functions. A self-adjusting
utility function is an extension of the static utility func-

tion. This extension serves two main purposes. First, it
allows the utility functions to dynamically change over
time in response to new information or changing prior-

ities. Second, it allows for much of the burden of utility
function creation to be removed from the display owner.
Designing static utility functions that will result in a
high quality schedule can be difficult. It may require
much trial and error before static utility functions be-
have and interact as expected. The self-adjusting utility
function framework allows the display owner to specify
rules about how their ideal schedule behaves, then the
utility adjuster component will help to create utility
functions to satisfy the rules, and update them over
time as needed.

4.2.1 Self adjusting DC functions

When using self-adjusting utility functions, the shape
of each deadline-driven utility function must still be

specified up front by the display owner. However, in-
stead of describing the shape in terms of absolute time,

the shape is specified using time points relative to the
deadline. Now, if the deadline is changed, the utility
function can be redrawn with respect to the new esti-

mate of the deadline. For cases such as the motivating
example, where the deadlines are not known well in ad-
vance, the estimate of each deadline may change over
time. In order to use a self-adjusting DC function, the

display owner would write a script that monitors the
deadline (in the case of the bus alerts, the script would
monitor the expected bus arrival time) and make an

API call to change the deadline of the utility function
whenever appropriate.

4.2.2 Self adjusting AC functions

For anytime content items, rather than designing a util-
ity function, the display owner can specify rules that
prescribe the amount of playtime that each item should
have. For example, “Play item A for 30% of the avail-

able playtime”. The available playtime is defined as any
playtime not taken up by deadline-driven items (since
those items should have priority). The display owner
can write a script that makes API calls to tell the utility
adjuster component to change the playtime percentage
at certain times or in response to certain events. Alter-
natively, these percentages could be set through a user

interface.
When the display owner specifies playtime rules in

this manner, the utility adjuster component will cre-
ate utility functions to be used in the system, however,
these are abstracted away from the display owner. Each
AC item will begin with the exact same shape utility
function, which will dynamically change based on the
display owner’s rules. Each of these AC functions has a
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Fig. 2: Scale factors stretch or compress the AC utility function in the x direction. When the utility function is
compressed, the item acquires higher utility sooner. When the utility function is stretched, it takes longer for the
item to acquire high utility.

scale factor, which will stretch or compress the x-axis
of the utility function, causing the item to take more or
less time in order to reach high utility (Figure 2). The

faster an item reaches high utility, the more often it will
be shown. Each scale factor is initially set to 1. Accord-
ing to the rules specified by the display owner, the scale
factors for each item will increase or decrease, modify-

ing the utility functions until they result in a schedule
such that each of the playtime rules are satisfied.

To adjust the scale factors of the AC utility func-

tions, the utility function adjuster component analyzes
the content chosen to play during the previous h min-
utes of history from the schedule. If an item was played
significantly less than its target playtime during this

section of history, the scale factor is decreased by p
percent (compressing the utility function in the x direc-
tion). If the item was played significantly more than its

target playtime, the scale factor is increased by p per-
cent (stretching the utility function in the x direction).
If the historical percentage is within 2% of the target
percentage, the scale factor does not change. This pro-
cess is repeated every h minutes.

The parameters h and p affect how quickly the
schedule is able to converge to the rules and how sta-
ble the playtime percentages are over time. Sensitivity
analysis on these parameters is shown in Section 7.4.

This manner of scheduling using self-adjusting AC
functions can be generalized for use in traditional public

display applications that do not include any deadline-
driven content.

5 Lookahead scheduling algorithm

In this section, we propose an algorithm called the
Lookahead algorithm (LA) for scheduling content on
public displays using our utility function framework. In
short, the algorithm looks at when deadline-driven con-

tent items are going to require airtime, then schedules
anytime content items around the DC items so that no
preemptions are necessary. The goal is to decide which
content item to show next in order to maximize both

the total utility of content shown and the number of
DC items that are shown before their deadlines.

Note that the scheduler only sees a static represen-
tation of the utility function. If self-adjusting utility
functions are being used, the scheduler sees the current

state of the utility function as if it were static.

To decide which content item to show next, at time

tn, we construct a lookahead window of size w (sec-
onds). The lookahead window is a period of time where
we will build a hypothetical schedule of items that

would ideally be shown in the near future. This win-
dow helps inform our decision of which content item
to show at time tn. When constructing this hypothet-
ical schedule, we first only consider DC UF’s that are

valuable within the window. We will decide whether to
show an AC item after construction of the hypothetical
schedule is completed.

For each DC item, we calculate the slack of its utility
function. Our definition of slack was inspired by the

notion of slack in operating systems.3 Slack measures
how many time slots are available for scheduling the
content item while also receiving positive utility value.
Larger slack means there are more options for when to
schedule that item. The formula for slack is as follows:

slack =
td − max (tn, ts)

d
(1)

We place DC items on the hypothetical schedule in
order of increasing slack (i.e, DC items with the least
slack are placed first). Each content item is placed at
the time where its acquired utility (integral of the UF)
is maximized given that it does not conflict with any

3 https://wikipedia.org/wiki/Least_slack_time_

scheduling
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item already on the schedule. If there are multiple time
slots that tie for the highest acquired utility, the item is
placed in the earliest of those time slots. A content item
is not placed on the hypothetical schedule if it cannot
acquire positive utility.

slack =
td − max (tn, ts)

d
(2)

Once all valid DC items have been placed on the
hypothetical schedule, we look at the very beginning
of the hypothetical schedule (at time tn). If there is a
content item placed here on the hypothetical schedule,
that is the content item that will be shown next. Oth-
erwise, we calculate the gap of time from tn to the first
DC item on the hypothetical schedule. Out of the AC
items with a duration that would fit in this gap, the
item with the highest utility density (Eq. 3) [5] is the
item that will be shown next.

density =

∫ tn+d

tn
UF

d
(3)

This decision process is executed within the last sec-

ond of showing the current item so that the decision of
what to show next is based on the most current knowl-
edge of upcoming content (new content items, updated

utility functions, etc.). Each time a decision is made,
the hypothetical schedule is completely reconstructed.
Although content items are likely to be placed in the

same time slot on the hypothetical schedule for many
iterations of the decision process, recomputing the hy-
pothetical schedule with every iteration allows the algo-
rithm to be responsive to changing content, while still

using available knowledge to inform the current deci-
sion.

6 Evaluation of the Lookahead algorithm

6.1 Evaluation environment

We implemented a simulator program in Python to
evaluate different scheduling algorithms; it was exe-
cuted on a Dell machine with an Intel Core i7 3.4 GHz

processor and 32 GB of RAM.

6.2 Algorithms evaluated

We evaluated the performance of our scheduling al-
gorithm compared to seven different baselines. These
baselines are algorithms that are commonly used in dis-
play scheduling or operating systems, but have been
adapted to make sense under our utility-based frame-
work.

– Earliest Deadline First / Greedy (EDF/G):
For any DC item that would acquire positive utility
if shown next, show the content item with the ear-
liest deadline. If there are no such DC items, show
the AC item with the highest utility density.

– Earliest Deadline First / Random (EDF/R):
For any DC item that would acquire positive utility
if shown next, show the content item with the ear-
liest deadline. If there are no such DC items, show
a randomly chosen AC item.

– Greedy (G): Choose the content item with the
highest utility density (as specified in Eq. 2).

– Lookahead (LA): As described in Section 5. A
lookahead window of 5 minutes was used in our eval-
uation.

– Lottery with Current Utility (LOT-C): Allo-
cate lottery tickets based on the current height of
the item’s UF. Randomly draw a ticket to decide
what to show next.

– Lottery with Maximum Utility (LOT-M): Al-
locate lottery tickets based on the maximum height

of an item’s UF. Randomly draw a ticket to decide
what to show next.

– Random (RAND): Out of all content items that

would acquire positive utility if shown next, ran-
domly select which item to show.

– Round Robin (RR): Show all content items in a
circular order, skipping a content item if it would

not acquire positive utility.

6.3 Workload generation

We evaluate the Lookahead algorithm on different

workloads of static utility functions. We do not consider
self-adjusting utility functions in this section since the
scheduler only sees a static representation of the util-
ity function anyway. We will demonstrate the use of

self-adjusting utility functions in the next section.

We generated different workloads for our evaluation
using template utility functions. These template func-
tions were designed to be simple functions with tunable
parameters that allow for the generation of workloads
with different properties. The experiments in this sec-
tion use the template utility functions, however, the
Lookahead algorithm does not depend on these tem-
plates. In practice, the utility function for a content
item can be any shape that adheres to the constraints
listed in Section 4.

The template function for an AC item is defined by
the four parameters shown in Figure 3a. Recall that
for AC items, the x-axis tracks the time passed since

the content item was last shown. The intuition behind
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Fig. 3: Template utility functions and parameters that enable content generation for different workloads

this template function is that a content item will have
a value of startHeight immediately after being shown.
This value will be close to zero because seeing the same
content item twice within a short period of time is
not useful to viewers. When the content item has not
been shown for startWidth seconds, the value of show-

ing the content item begins to increase. After another
slopeWidth seconds, the utility function reaches its
maximum possible value: endHeight. The endHeight
value is indicative of the content item’s overall useful-

ness to viewers.

The template function for a DC item is defined by
the five parameters shown in Figure 3b. The intuition

behind this template function is that a DC item has
a deadline after which, showing the item is no longer
useful to viewers. The content item is useful to view-

ers up to width seconds before the deadline. However,
showing this content item would be most valuable to
viewers for a period of peakWidth seconds ending at
peakEnd. The value of the utility function for this pe-
riod of maximum value is peakHeight.

We generated a baseline workload that is realistic
of our motivating example. This workload consists of
15 AC items and 288 DC items with deadlines over the
course of a 24-hour period (on average 1 DC item added
to the content library every 5 min). The time when an
item is added to the content library is its awareT ime.
At this time, the item will start to be considered by
the scheduler in its decisions. In the baseline workload,
all AC items are included in the content library from
the beginning of the simulation. DC items are added to
the content library at some time before their deadlines.
The parameters used for each utility function of the

baseline workload were randomly generated within the
ranges shown in Table 1. In our experiments, we change
certain parameters of the baseline workload to evaluate
the performance of the Lookahead algorithm across a
variety of workloads.

Table 1: Range of parameter values for utility functions
of the baseline workload. For each content item, the
value of the parameters of the UF are chosen from a
uniform distribution that spans the range listed in the
table. Times and durations are shown in seconds.

UF parameter Baseline range

DC

duration (5, 60)
deadline (td) (1, 86400)
width (duration, duration ∗ 8)
awareTime (td − width− 300, td − width)
peakWidth (0, width)
peakEnd (td − width + peakWidth, td)
peakHeight (70, 100)

AC

duration (5, 60)
awareTime 0
startWidth (0, 600)
slopeWidth (0, 600)
endHeight (40, 80)
startHeight (0, endHeight)

6.4 Evaluation metrics

To evaluate the performance of the scheduling algo-

rithms, we consider two metrics: (a) total acquired util-
ity and (b) percentage of deadlines met. Total acquired
utility is the sum of the utility acquired by each content
item shown over the course of the 24-hour simulation
(recall that utility is the integral of the utility function
over the duration shown). The percentage of deadlines
met is the percent of DC items that are shown and
complete their full duration before their deadline. An
algorithm that effectively integrates live content into
the schedule would have a high total acquired utility
and meet close to 100% of the deadlines.

For each of the following experiments, we measure
the two metrics on different workloads and plot the re-
sult for each algorithm. An ideal algorithm should fall

in the upper right corner of this plot (high utility and
high deadlines met) regardless of the workload.



8 Kristi Bushman, Alexandros Labrinidis

0 20 40 60 80 100
Deadlines met (%)

0

1x106

2x106

3x106

4x106

5x106

To
ta

l A
cq

ui
re

d 
Ut

ilit
y

Long Notice

EDF/R

EDF/G

RR
RAND

LA

LOT-C
LOT-M

G

0 20 40 60 80 100
Deadlines met (%)

0

1x106

2x106

3x106

4x106

5x106

To
ta

l A
cq

ui
re

d 
Ut

ilit
y

Medium Notice
G LA

RR

RAND

LOT-C

LOT-M

EDF/G

EDF/R

0 20 40 60 80 100
Deadlines met (%)

0

1x106

2x106

3x106

4x106

5x106

To
ta

l A
cq

ui
re

d 
Ut

ilit
y

Short Notice
G

RR

RAND

LOT-C
LOT-M

EDF/R

EDF/G

LA
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6.5 Notice time (Figure 4)

Notice time refers to the amount of time before the
beginning of the utility function (ts) that a DC item
is added to the content library. When an item has a

longer notice time, the scheduler has more opportunity
to schedule other content around it in a manner that
maximizes the total utility. We evaluated the LA algo-
rithm using workloads with long, medium, and short

notice times. From the baseline workload, the range of
DC awareTime was changed to (deadline−width−300,
deadline − width − 240), (deadline − width − 180,
deadline − width − 120), and (deadline − width − 60,
deadline−width) respectively. For all three workloads,
the LA algorithm outperforms the other algorithms.
Even with short notice times, the LA algorithm is able
to meet 96% of deadlines and acquire more utility than
all of the other algorithms evaluated.

6.6 Heights of AC vs DC functions (Figure 5)

The maximum height of the UF is an indicator of the
general importance of the content item. We evaluated

the LA algorithm using workloads where the heights
of DC utility functions were taller, shorter, and the

same height as the AC utility functions. From the base-

line workload, the range of peakHeight for DC items
was changed to (80, 100), (20, 40), and (50, 70) re-
spectively. The range of endHeight for AC functions
was changed to (20, 40), (80, 100), and (50, 70) respec-

tively. When DC functions are taller than AC functions,
the LA algorithm outperforms the other algorithms in
terms of both acquired utility and deadlines met. When
AC functions are taller than DC functions, the greedy
algorithm acquires 7% more utility than the LA algo-
rithm. However, it does so by not scheduling any DC
items, thus meeting 99% fewer deadlines than the LA
algorithm. Because the LA algorithm acquires very high
utility and also integrates almost all of the live content
into the schedule, it is the better performing algorithm
for this workload too.

6.7 Number of DC items (Figures 6, 7)

The number of DC items is an indication of the schedul-
ing difficulty. The more DC items there are, the more
likely it is that there are UF’s that overlap in time.
When utility functions overlap, it is more difficult to
create a schedule such that all items meet their dead-
lines and acquire high utility. We evaluated the LA al-



Set It and Forget It: Utility-based Scheduling for Public Displays 9

0 1 2 3 4 5 6 7 8
Number of concurrent DC functions

0

10000

20000

30000

40000

50000

60000

Fr
eq

ue
nc

y

Low Number of DC

0 1 2 3 4 5 6 7 8
Number of concurrent DC functions

0

10000

20000

30000

40000

50000

60000

Fr
eq

ue
nc

y

Medium Number of DC

0 1 2 3 4 5 6 7 8
Number of concurrent DC functions

0

10000

20000

30000

40000

50000

60000

Fr
eq

ue
nc

y

High Number of DC

0 1 2 3 4 5 6 7 8
Number of concurrent DC functions

0

10000

20000

30000

40000

50000

60000

Fr
eq

ue
nc

y

Very High Number of DC
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Fig. 8: Total acquired utility and percent of DC deadlines met for running scheduling algorithms on workloads
with different numbers of AC items. Small number (left), medium number (middle), and high number (right).

gorithm using workloads with low, medium, high, and
very high numbers of DC items. From the baseline

workload, the number of DC items was changed to 288,
576, 864, and 1440 respectively. For all four workloads,
the LA algorithm is able to acquire high utility while
meeting deadlines.

6.8 Number of AC items (Figure 8)

We evaluated the LA algorithm using workloads with
low (15), medium (30), and high (45) numbers of AC

items. While the greedy, random, round robin, and lot-
tery algorithms struggle to meet deadlines as the num-
ber of AC items increase, the LA algorithm is able to
meet over 99% of the deadlines and acquire high utility
with all three workloads.

6.9 Sensitivity of Lookahead window size (Table 2)

We evaluated the LA algorithm on the baseline work-
load using different lookahead window sizes. The op-
timal window size is dependent on the workload. The
lookahead window should be at least as long as the
longest duration content item. However, a slightly
larger window allows the algorithm to consider more
information when making a decision. The execution
time of the algorithm increases linearly with the size
of the window. Although, the utility acquired by the
algorithm increases logarithmically with the size of the

window, any window size over the longest duration con-
tent item yields reasonable performance.
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Table 2: Performance of the Lookahead algorithm with
different window sizes when the longest duration con-
tent item was 60 seconds.

Window
size (sec)

Execution
time (ms)

Deadlines
met

Total utility
acquired

60 0.591 99.31% 4,434,015
90 0.817 98.61% 4,534,079
120 1.148 99.31% 4,614,187
150 1.634 98.96% 4,648,108
180 1.883 99.65% 4,651,114

6.10 Discussion

In general across all workloads, the Lookahead algo-
rithm is the only algorithm that acquires consistently
high utility and meets almost all deadlines. The ran-
dom (RAND) and round robin (RR) algorithms do
not perform well because they do not take into ac-
count the deadline or the utility of a content item

when making scheduling decisions. The greedy (G)
and lottery-based algorithms (LOT-C, LOT-M) do not
prioritize deadline-driven content so deadlines are of-

ten missed. Using an earliest deadline first protocol
(EDF/G, EDF/R) can help to meet deadlines, but it
is not optimal for acquiring utility. The EDF/Greedy
algorithm follows a very similar procedure to the

Lookahead algorithm, so it is not surprising that the
two algorithms often perform similarly. However, the
Looakead algorithm tends to slightly outperform the

EDF/Greedy algorithm since EDF can cause deadline-
driven content to be played earlier than would be opti-
mal. These experiments have reiterated why traditional

scheduling methods will not work when dealing with
items whose value is dependent on time, especially when
there are deadlines.

7 Evaluation of self-adjusting UFs

7.1 Simulation data

We use bus arrival data to simulate real-world examples
of deadline-driven content items that would be played
at a display near a bus stop. The DC items for this sim-
ulated display contain information related to the bus
trips passing through the stop, so the deadlines for the
content items are tied to the times when the buses ar-
rive at the stop.

We collected bus arrival prediction data from the
Port Authority of Allegheny County TrueTime API.4

This API reports predicted arrival times for all buses

4 https://truetime.portauthority.org/bustime/home.

jsp

arriving within the next 30 minutes for a given stop.
We polled the API once per minute to get the latest
predictions. The data used in our simulations are taken
from the Forbes and Atwood stop (#29) on July 8th,
2019. This stop is fairly busy, with 8 routes that pass
through it.

Since the true “value” that these bus-related content
items provide to viewers is based on when the items are
shown with respect to the actual arrival time (not a pre-
diction), the “ground truth” utility function would be
based on the actual arrival time of the bus. Although we
do not have data on the actual bus arrival times, we will
treat the very last prediction seen on the data stream
as the actual arrival time since it should be the most ac-
curate (as this prediction is collected less than a minute
before the bus arrives). Note, the Lookahead algorithm
has no knowledge of a ground truth utility function. We
simply use this as an retrospective evaluation metric to
measure how well the static and self-adjusting utility
functions perform in a real-world scenario.

7.2 Static vs self-adjusting DC utility functions (Table
3)

For each bus that passes through the stop, we would
like to show two different deadline-driven items on the
simulated display.

– Item A, an alert that the bus is currently arriving,
should be shown approximately 30 seconds before
the bus arrives.

– Item B, information about where the bus is head-
ing, should be shown approximately 5 minutes be-
fore the bus arrives.

Since the predicted bus arrival time will change over
time, the estimated deadlines for showing these content
items will also change over time.

Using static DC utility functions, the display owner
would write a script to watch the stream of bus arrival
data. When a bus is predicted to be less than 10 min-
utes away from the stop, the script makes an API call to

add an instance of item B to the content library. When
a bus is predicted to be less than 5 minutes away, it
adds an instance of item A to the content library. The
deadline for the utility functions of these DC items is
based on the bus arrival prediction at the time when
the item is first added to the content library. The util-
ity functions are never updated once they are in the
content library, even though there may be changes to
the predicted arrival times on the data stream.

Using self-adjusting DC utility functions, the dis-
play owner would also write a script to watch the stream

of bus arrivals data. As soon as a new bus appears on
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the stream (approximately 30 minutes before arrival),
it makes an API call to add an instance of both item
A and item B to the content library. Whenever there is
a change in the predicted arrival time for this bus, the
script makes an API call to update the deadlines of the
utility functions.

We ran two simulations of the Lookahead algorithm,
using the exact same DC items. The first simulation
uses the protocol for static DC functions described
above whereas the second simulation uses the protocol
for self-adjusting DC functions. Both simulations also
include the same four (static) AC items. After each sim-
ulation, we measured the acquired utility and percent-
age of deadlines met according to the “ground truth”
utility functions, described in Section 7.1.

The results of these simulations are shown in Ta-
ble 3. The self-adjusting utility functions were able to
acquire more utility than the static functions. This in-
crease in total utility can be attributed almost entirely
to the increase in utility acquired from the DC items.
Using self-adjusting utility functions, the Lookahead al-

gorithm also meets 11.4% more deadlines than with
static functions.

Table 3: Performance of the Lookahead algorithm in
a real-world scenario using static vs self-adjusting DC

functions

DC function
type

Total utility
acquired

DC utility
acquired

Deadlines
met

Static 2,661,960 1,062,674 87.1%
Self-adjusting 2,745,251 1,146,345 98.5%

7.3 Utility-based vs lottery-based scheduling (Table 4,
Figure 9)

In Section 6, we showed that lottery scheduling does
not work well with deadline-driven content. However,
the lottery scheduling algorithm seems like an natu-
ral choice if the main scheduling constraints are target
playtime percentages (as is the case when using the self-
adjusting UF’s for AC items). To do this, the lottery
scheduler would simply allocate tickets to each item in
proportion to its target playtime percentage (normal-
ized by the duration of the content item). In this exper-
iment, we demonstrate the benefits of our utility-based
approach over the lottery-based approach for selecting

AC items. For simplicity, we consider a schedule with-
out any DC items.

We created a content set with 5 items and rules that
describe their target playtime percentages. We simu-
lated both the lottery and utility based approaches for

selecting AC items on this content set for a 24-hour pe-
riod. For the self-adjusting utility functions, parameter
values of h = 5 min and p = 10% were used. The results
of this experiment are shown in Table 4.

Both approaches are able to converge close to
the target playtime percentages. Although the lottery-
based approach comes slightly closer to the targets, we
consider this to be a negligible, unnoticeable difference
to anyone observing the display. There is, however, one
noticeable difference in the quality of the schedules that
they create. The lottery-based approach has inconsis-
tent spacing between instances of each content item,
while the utility-based approach has much more regu-
lar spacing. This means that it is much more plausible
to see a schedule such as “A A B B B A” with lot-
tery scheduling than it would be with the utility-based
approach (“A B A B A B” would be a better sched-
ule). Since the lottery scheduling decision is based on
chance, it is plausible to show the same content item
multiple times in a row, or to not show a particular
item at all for a very long time. This would not be an

ideal schedule, because passerbys typically want to see
a variety of content. With the Lookahead algorithm and
self-adjusting utility functions, the likelihood of an item

being shown is dependent on when it was last shown,
since the utility of the item depends on the time since
it was last shown. Because of this, the spacing between
instances of a particular item is much more regular.

To illustrate this, we measured the spacing between
instances of each content item in the schedules created
by the two approaches. Spacing is defined as the num-

ber of seconds between the beginning of one instance
of an item to the beginning of the next instance of the
same item. The spacing distributions for each item (A

through E) for the two scheduling methods are shown in
Figure 9. The distributions show that lottery scheduling
creates a schedule with a wide range of spacings. Often-
times, an item is shown twice consecutively and other
times there is a long gap without showing a particu-
lar item. With utility-based scheduling, there is a much
narrower distribution of spacings concentrated around
some medium value. Because the utility-based approach
has much more regular spacing between instances of
each item, it creates a higher quality schedule.

7.4 Sensitivity of h and p (Figure 10)

In the utility-adjustment algorithm (described in Sec-

tion 4.2.2), parameter h controls how often updates to
the scale factors occur. Parameter p controls how dras-
tically the utility function is stretched or compressed
upon each update. Together, these parameters control
how quickly the schedules are able to start adhering to
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Fig. 9: Distribution of item spacings for the lottery-based approach (top) and utility-based approach (bottom) for
selecting AC items. Consistent spacing between instances of an item means passerbys see a variety of content.
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Fig. 10: Sensitivity of the utility adjustment algorithm to different values of h and p. Best viewed in color.
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Table 4: Performance of the Lookahead algorithm us-
ing self-adjusting UF’s vs a lottery-based approach for
selecting AC items

Item Duration
Target

play time
Utility

play time
Lottery

play time
A 5 5% 4.1% 4.8%
B 10 25% 24.3% 24.7%
C 15 12% 10.4% 12.1%
D 20 25% 25.1% 25.6%
E 40 33% 36.1% 32.8%

Table 5: Items used for sensitivity analysis of h and p

Content item Duration Target play time
A 5 10%
B 20 35%
C 15 55%

the rules and how stable the playtime proportions are
over time.

We ran a 24-hour simulation of the Lookahead algo-
rithm using self-adjusting AC functions with different
parameters of h and p. The content items used in this

experiment are shown in Table 5. Again, for simplicity,
we consider a schedule with no DC items. The plots
shown in Figure 10 show the proportion of playtime
that each item makes up for each 10-minute interval

throughout the simulation. In general, a larger h and
smaller p mean it will take more time for the scale fac-
tors to converge to the proportion rules. However, a

larger h and smaller p also tend to make the propor-
tions more stable over time.

These parameters are especially important to tune
correctly if the playtime percentages will be chang-

ing throughout the day (demonstrated in Section 7.5).
With schedules that do not change throughout the day,
a large h and small p can be used with an initial simula-
tion phase that is run before the live scheduling begins.
In this way, the schedule will have the stability seen in
bottom right plot of Figure 10, but without the initial

period where the scale factors are still tuning in order
to meet the playtime percentages (first 5 hours of this
plot).

7.5 Advanced scheduling using self-adjusting functions
(Figure 11)

In this experiment, we demonstrate the use of all com-
ponents of our system together in order to create an
advanced schedule. We use the same deadline-driven
content items as in Section 7.2 with self-adjusting func-

tions. The anytime content items are the same as in
Section 7.4, however, the target playtime percentages
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Fig. 11: Using the API to change playtime proportions
throughout the day. The target proportions are 10% A,
35% B, and 55% C before noon, and 10% A, 55% B,
and 35% C after noon. Best viewed in color.

change throughout the day (10% A, 35% B, and 55%
C before noon, and 10% A, 55% B, and 35% C after
noon). The utility adjustment algorithm was used with
parameters h = 5 min and p = 10%.

Using the Lookahead algorithm, the deadline-driven
content items are able to meet 98.2% of their dead-
lines. The anytime content items are able to quickly
adapt to the new proportions when the rules change at

noon (reaching the new proportions in approximately
30 minutes). This can be seen in Figure 11.

The ability to change the playtime proportions, can

allow display owners to create schedules that accom-
modate time-sensitive or live content that is not nec-
essarily deadline-driven. This feature can be used to
prioritize content items based on their freshness or rele-

vance throughout the day. For example, the proportion
of weather in the schedule could increase when there
is inclement weather approaching. The proportion of a
particular Twitter feed could decrease when a certain
hashtag is no longer trending.

8 Live deployment

We deployed a prototype of our scheduler at a pub-
lic display in the lobby of an academic building. The
display is similar to our motivating example, showing
bus arrival information, Twitter feeds, and weather in-
formation. We used the self-adjusting utility function
framework for both AC and DC items. Images of the

display are shown in Figure 12. Further work is neces-
sary in order to make the system available to general
users.

Based on our experience, we believe there is a more
significant setup process for using this system compared
to more traditional schedulers. The display owner must
determine utility functions or rules for each item and
also write a script to integrate data feeds and make API
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Fig. 12: A deployment of our prototype system. Left: a page showing bus arrival information. Center: an alert that
a bus is arriving soon. Right: a Twitter feed page.

calls at the appropriate times. However, once this setup
process is completed, the display owner does not have
to worry about making manual changes to the schedule
anymore. The schedule will contain live content that is
always fresh and relevant to the viewers, with no further

action required by the display owner. They can simply
“set it and forget it”.

9 Scope and limitations

The display at the bus stop which shows an alert for
each arriving bus has been the primary inspiration for
this work. Other displays that wish to show deadline-
driven content may also find the work useful. We reiter-

ate that deadline-driven content has two specific prop-
erties: 1. the content has a strict timing requirement 2.
the scheduler can be made aware of the item in advance

of when the item should be shown. To the best of our
knowledge, there are currently no other algorithms that
can schedule this type of content in a non-preemptive

manner. Although we have found the framework useful
for our own proposed use case, it is currently unclear
whether there is a widespread demand for content of
this type in other real-world public displays.

There are also concerns about the usability of the
proposed framework. Specifying a good utility function
for each content item may prove to be challenging for
some display owners, as this can be an abstract con-
cept. We designed self-adjusting AC utility functions in
order to remove this burden from the display owner for
AC items; however, in all varieties of our framework,
the display owner must specify utility functions for the
deadline-driven items. We feel this is less of a concern
since the notion of utility over time is much more natu-

ral for deadline-driven items given they have strict tim-
ing requirements, however, it is a concern nonetheless.
An additional concern is that the display owner must
have programming skills in order to use the API ef-
fectively. Given these concerns, we believe the system

is not well suited for general-purpose public displays,
but rather highly specialized displays that wish to show
deadline-driven content. Some technical assistance may
be required to set up the system.

Although the full-fledged system proposed may only
be suitable for a limited number of real-life applica-
tions, certain aspects of the framework may be use-

ful for general-purpose public displays. For instance, as
shown in Section 7.3, the self-adjusting AC framework
can be used regardless of the presence of DC items. Note
that without any DC items to consider, the Lookahead

scheduler reduces to a Greedy scheduler (always picking
the item with the highest utility density). This then be-
comes a tool for creating high quality ratio-based sched-

ules, which are a common requirement for real-world
public displays [1,8]. Using this aspect of the system
alone, display owners only need to specify target ratios

for each item, which could easily be done through a user
interface. More technology-savvy display owners could
make use of an API to make changes to the ratios in re-
sponse to certain information or events (demonstrated
in Section 7.5). Our proposed algorithm will automati-
cally handle the dynamicity in that case.

10 Conclusion

In this paper, we have explored supporting deadline-
driven content on public displays in addition to tra-
ditional content. Our experiments have shown that our
utility-based framework and Lookahead algorithm is ef-
fective for this purpose and outperforms baselines on
the proposed metrics. Further work is necessary to de-
termine whether there is a widespread need for schedul-
ing content of this type and whether the system is prac-

tical for a general user. This is part of our future work.



Set It and Forget It: Utility-based Scheduling for Public Displays 15

References

1. Clinch, S., Davies, N., Friday, A., Clinch, G.: Yarely: A
software player for open pervasive display networks. In:
Proceedings of the 2nd ACM International Symposium
on Pervasive Displays, PerDis ’13, pp. 25–30. ACM, New
York, NY, USA (2013). DOI 10.1145/2491568.2491575.
URL http://doi.acm.org/10.1145/2491568.2491575

2. Davies, N., Clinch, S., Alt, F.: Pervasive displays: Under-
standing the future of digital signage. Synthesis Lectures
on Mobile and Pervasive Computing 8, 1–128 (2014).
DOI 10.2200/S00558ED1V01Y201312MPC011

3. Elhart, I., Langheinrich, M., Davies, N., José, R.: Key
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