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Abstract –The specification and prediction of density fluctuations in the thermosphere, especially during
geomagnetic storms, is a key challenge for space weather observations and modeling. It is of great
operational importance for tracking objects orbiting in near-Earth space. For low-Earth orbit, variations
in neutral density represent the most important uncertainty for propagation and prediction of satellite orbits.
An international conference in 2018 conducted under the auspices of the NASA Community Coordinated
Modeling Center (CCMC) included a workshop on neutral density modeling, using both empirical and
numerical methods, and resulted in the organization of an initial effort of model comparison and evaluation.
Here, we present an updated metric for model assessment under geomagnetic storm conditions by dividing
a storm in four phases with respect to the time of minimum Dst and then calculating the mean density ratios
and standard deviations and correlations. Comparisons between three empirical (NRLMSISE-00, JB2008
and DTM2013) and two first-principles models (TIE-GCM and CTIPe) and neutral density data sets that
include measurements by the CHAMP, GRACE, and GOCE satellites for 13 storms are presented. The
models all show reduced performance during storms, notably much increased standard deviations, but
DTM2013, JB2008 and CTIPe did not on average reveal a significant bias in the four phases of our metric.
DTM2013 and TIE-GCM driven with the Weimer model achieved the best results taking the entire storm
event into account, while NRLMSISE-00 systematically and significantly underestimates the storm
densities. Numerical models are still catching up to empirical methods on a statistical basis, but as their
drivers become more accurate and they become available at higher resolutions, they will surpass them
in the foreseeable future.

Keywords: data and metrics for standardized thermosphere model assessment / assessments for TIE-GCM, CTIPe,
NRLMSISE-00, JB2008 and DTM2013 / short descriptions are given for each of the models

1 Introduction

Thermosphere models are used operationally mainly in the
determination and prediction of orbits of active satellites and
orbital debris, and conjunction analysis is becoming a major
issue with the fast-growing number of objects in space. The
accuracy of the determination and prediction of ephemerides
of objects in Low Earth Orbit (LEO; altitudes lower than
1000 km) hinges on the quality of the force model for atmo-
spheric drag (Hejduk & Snow, 2018). This force depends,
besides on satellite characteristics (Doornbos, 2011; Mehta
et al., 2017), heavily on the highly variable, both spatially as

well as temporally, total neutral density, and to a lesser degree
also on composition and temperature. Thermosphere variability
is driven, on different time scales, by the changing solar extreme
UV (EUV) emissions, Joule heating and particle precipitation
due to interaction of the magnetosphere with the solar wind
(referred to as “geomagnetic activity” as opposed to “solar
activity”), and due to upward propagating perturbations that
originate in Earth’s lower atmosphere, which are currently not
accurately quantified (Pedatella et al., 2014). As a result, the
selected solar and geomagnetic activity drivers, and in case of
density prediction, the accuracies of their forecasts, are crucial
to thermosphere model accuracy. The impact due to errors in
the driver forecasts is out of the scope of this paper but has
recently been addressed by Bussy-Virat et al. (2018) and
Hejduk & Snow (2018).*Corresponding author: sean.bruinsma@cnes.fr
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In order to track the progress over time of thermosphere first
principle (FP) and semi-empirical (SE) models, appropriate
metrics are required. Secondly, high quality neutral density data
sets, preferably with high-spatial resolution covering long inter-
vals of time (i.e. years, and ideally a complete solar cycle), are
needed. The neutral density observations can then be used to
verify model accuracy in space and time, i.e. with respect to lat-
itude–longitude-local time variations, and solar and geomag-
netic activity levels and seasonal variations. Data and metrics
allow benchmarking of the models, quantifying errors and
performance, and giving detailed descriptions of the improved
(or degraded) performance.

Metrics and results for thermosphere model assessment on
timescales from years to days have already been discussed and
published (Bruinsma et al., 2018), but the metrics are not well-
suited to describe model performance during geomagnetic
storms. This is due to the relative rareness of strong storms
(average frequency of 60–200 days per 11-year cycle; https://
www.swpc.noaa.gov/noaa-scales-explanation), but also due to
their sudden occurrences and relatively short durations (1–3 days
typically). We propose specific additional metrics for storm-
time, using high-quality and high-resolution density data that
is required for model comparisons under storm conditions, using
most of the events defined in Bruinsma et al. (2018). The assess-
ment procedure and metrics are tailored to geomagnetic storms
by unambiguously defining the time interval of evaluation,
applying the same metrics as in the Bruinsma et al. (2018) study
but on 4 specific phases of the storm as well as on the total
interval. Secondly, additional metrics concern the maximum
and timing of the storm peak density.

Presently, evaluations of both SE and FP models are
available for single storms (Forbes et al., 1987, 2005; Bruinsma
et al., 2006) or several storms (Liu & Luehr, 2005; Knipp et al.,
2017), or data of a specific satellite mission (Kalafatoglu
Eyiguler et al., 2019). Because different metrics, data, or event
durations were used, results are not directly comparable even in
the case that the same storm was analyzed. The ultimate goal of
this exercise is to evaluate all thermosphere models available on
the CCMC (Community Coordinated Modeling Center: https://
ccmc.gsfc.nasa.gov) by comparing to the same data and for the
same events, applying consistent and always identical metrics,
in order to establish score cards that can help users select the
best model for their objective.

The same three SE models, NRLMSISE-00 (Picone et al.,
2002), JB2008 (Bowman et al., 2008) and DTM2013
(Bruinsma, 2015), and FP models, TIE-GCM (Roble et al.,
1988; Richmond et al., 1992) and CTIPe (Fuller-Rowell
et al., 1996), which were used in the Bruinsma et al. (2018)
assessment, are considered in this paper. These five models
are implemented at CCMC. The model resolution and drivers
used in this assessment are listed in Table 1. One has to take
into account that JB2008 regularly changes the files with the
solar drivers, which are computed and modified by the model-
ers. The driver files (SOLFSMY and DTCFILE) that were
online in the month March 2019 were used for the assessment
given in this paper.

Section 2 provides short descriptions of the five models
tested in this first part of the assessment. Section 3 presents the
storm-time metrics designed to assess the models, which is
applied to the five models in Section 4. After a short summary,
the conclusions are given in Section 5.

2 Model descriptions

The following three sections are rather similar to the
descriptions in (Bruinsma et al., 2018), but are repeated in this
paper to be self-contained and for ease of reading.

2.1 Semi-empirical thermosphere models:
NRLMSISE-00, JB2008 and DTM2013

SE models are mainly used in orbit computation and mission
design and planning, and sometimes to provide initial conditions
for FP models. They are easy to use and computationally fast,
providing density and temperature estimates for a single location
at a time (e.g., for each orbit position). They are climatology (or
“specification”) models that have a low spatial resolution of the
order of thousands of kilometers, which is due to the low max-
imum degree (typically < 6) of the spherical harmonic expansion
used in the algorithm, and low temporal resolution of hours,
imposed by the cadence of the geomagnetic indices. Conse-
quently, SE models cannot reproduce the realistic wave-like
activity during geomagnetic storms such as large-scale traveling
atmospheric disturbances (TAD; Bruinsma & Forbes, 2007), the
complex dynamics in the polar caps, or the time-variable effects
of tidal perturbations propagating from the lower atmosphere.
They also do not take into account any storm pre-conditioning;
the estimate is entirely based on a combination of statistical fits
to the driver inputs. The minimum altitude of JB2008 and
DTM2013 is 120 km, whereas for NRLMSISE-00 it is 0 km,
and each can be used to approximately 1500 km.

SE models are constructed by optimally estimating the
model coefficients to data in a least-squares sense. Each model
is based on a different combination of density, temperature, and
composition measurements. The main sources of density data
are satellite-drag inferred total densities by means of orbit per-
turbation analysis (Jacchia & Slowey, 1963) or accelerometers
(e.g. Champion & Marcos, 1973), and neutral mass spectrome-
ters (e.g. Nier et al., 1973), with the latter providing composition
measurements. Drag-inferred and spectrometer data have in
common that they do not provide an absolute measurement of
density. This is due to calibration issues and, e.g., unknown
oxygen recombination rates in case of mass spectrometers.
The most recent and precise accelerometer-inferred density
datasets are also not absolute. Their magnitude depends on
the satellite model, and in particular the aerodynamic coeffi-
cient, which effectively is a scaling factor, that was assumed
in the computation. As a consequence, the SE thermosphere
models fit to the scales of the satellite models used in the
respective databases – and these are rarely consistent between
modelers. Intercalibration is a necessary and complicated activ-
ity for all modelers, but it is not always entirely successful due
to e.g., no overlap in time or a drifting offset between datasets.
JB2008 (up to 2008 at least) and DTM2013 predict densities
that are close (often within 5%) to the US Air Force operational
thermosphere model HASDM (Storz et al., 2005), and therefore
they are considered having the same scale.

2.2 TIE-GCM

The NCAR Thermosphere–Ionosphere–Electrodynamics
General Circulation model (TIE-GCM) is a first-principles
upper atmospheric general circulation model that solves the

S. Bruinsma et al.: J. Space Weather Space Clim. 2021, 11, 12

Page 2 of 10

https://www.swpc.noaa.gov/noaa-scales-explanation
https://www.swpc.noaa.gov/noaa-scales-explanation
https://ccmc.gsfc.nasa.gov
https://ccmc.gsfc.nasa.gov


Eulerian continuity, momentum, and energy equations for the
coupled thermosphere-ionosphere system (Roble et al., 1988;
Richmond et al., 1992). It uses pressure surfaces as the vertical
coordinate and extends in altitude from approximately 97 km to
600 km. The model resolution on the geographic grid employed
throughout this study are 5� horizontal and 1/2 scale height H in
the vertical, while a 2.5� horizontal and H/4 vertical resolution
is also available. Tidal forcing at the lower boundary is specified
by the Global Scale Wave Model (Hagan et al., 2001), and
semi-annual and annual density periodicities are enhanced by
applying seasonal variation of the eddy diffusivity coefficient
at the lower boundary (Qian et al., 2014). Solar inputs are driven
using F10.7 radio solar flux measurements as a proxy for
XUV/EUV/FUV solar flux as described by Solomon & Qian
(2005), which were derived using the same model resolution
and tidal lower boundary specification. The electrodynamo
potential field is internally generated at middle and low latitudes
using the model densities and neutral winds. This is merged
with a magnetospheric potential at high latitudes, using one of
two available empirically driven models. First, the Heelis
et al. (1982) empirical formulation, driven by the Kp index,
follows the method described in Solomon et al. (2012). Second,
the Weimer empirical model, which uses upstream solar wind
and IMF as input as described in the following subsections, is
described by Weimer (2005). Separate simulations were carried
out using each of these high-latitude potential models for this
work. Recent developments include the addition of helium for
high-altitude extension and lower boundary options as described
in Qian et al. (2014), Sutton et al. (2015), and Maute (2017).
The version 2.0 of TIE-GCM used in this work is a community
release that was issued in March 2016.

2.3 CTIPe

The coupled thermosphere–ionosphere–plasmasphere
electrodynamics (CTIPe) is a global, three-dimensional, time-
dependent, nonlinear, self-consistent model that solves the
momentum, energy, and composition equations for the neutral
and ionized atmosphere (Fuller-Rowell et al., 1996; Millward
et al. 2001; Codrescu et al., 2012). The global atmosphere in
CTIPe is divided into a series of elements in geographic latitude,
longitude, and pressure. The latitude resolution is 2�, the longi-
tude resolution is 18�, and model parameters are calculated with
a 1 min time step. In the vertical direction, the atmosphere is
divided into 15 levels in logarithm of pressure from a lower
boundary of 1 Pa at 80 km to more than 500 km altitude.
The magnetospheric input is based on the statistical models of

auroral precipitation and electric fields described by Fuller-
Rowell & Evans (1987) and Weimer (2005), respectively.
Auroral precipitation is keyed to the hemispheric power index
(PI), based on the TIROS/NOAA auroral particle measure-
ments. The Weimer electric field model is keyed to the solar
wind parameters impinging the Earth’s magnetosphere, and its
input drivers include the magnitude of the interplanetary
magnetic field (IMF) in the y–z plane, together with the velocity
and density of the solar wind. A combination of measurements
from Advanced Composition Explorer and Wind spacecraft
instruments, obtained at NOAA Space Weather Prediction
Center, NASA’s Space Physics Data Facility and Los Alamos
National Laboratory, have been used to address data gaps and
quality issues (e.g., Skoug et al., 2004). The (2,2), (2,3), (2,4),
(2,5), and (1,1) propagating tidal modes are imposed at
80 km altitude (Fuller-Rowell et al., 1991; Müller-Wodarg
et al., 2001). The amplitudes and phases for the Hough modes
are based on results from the Global Scale Wave Model-09
(GSWM-09; https://www2.hao.ucar.edu/gswm-global-scale-
wave-model). In this paper, the lower boundary conditions in
CTIPe simulations are specified using monthly averaged wind
and temperature fields from the Whole Atmosphere Model
(WAM; Akmaev et al., 2008; Fuller-Rowell et al., 2008). CTIPe
uses time-dependent estimates of nitric oxide (NO) obtained
from Marsh et al. (2004) empirical model based on student
nitric oxide explorer (SNOE) satellite data rather than solving
for minor species photochemistry self-consistently. For higher
altitude applications, helium needs to be included in the model.
Solar heating, ionization and dissociation rates, and their varia-
tion with solar activity are specified by Solomon & Qian (2005)
solar EUV energy deposition scheme for upper atmospheric
general circulation models.

3 Model assessment procedure

The next two subsections describe the density data and the
necessary preprocessing, the phases and storms selected for
comprehensive model evaluation by applying the new storm
performance metrics. All models will be tested according to
the same standards allowing unambiguous comparisons, and
quantification of improvement of future model upgrades.

3.1 Selected density data

The density variability in the thermosphere is very large,
typically hundreds of percent, on long time scales (the solar

Table 1. Thermosphere and upper atmosphere models used in the assessment.

Type Drivers (solar | geomagnetic) Hor. & time resolution

NRLMSISE-00 SE F10.7 | ap (array of 7 values) 30�, 3 h
JB2008 SE S10, F10.7, M10, Y10 | Dst, ap 30�, 1 h
DTM2013 SE F30 | Kp 30 � 15�, 3 h
TIE-GCM FP Solomon & Qian bands | Heelis-Kp 5.0 � 5.0�, 1 min

Solomon & Qian bands | Weimer
CTIPe FP F10.7, F81, Solomon & Qian bands Weimer-2005,

solar wind density and velocity, interplanetary magnetic field,
Hemispheric Power, Kp

2.0 � 18�, 1 min
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cycle) but also on short time scales of hours to days in the event
of strong geomagnetic storms. The variability depends on
location, season, and the level of solar and geomagnetic activity,
and it increases with altitude. However, most density measure-
ments are in-situ along the satellite orbits, and the spatial and
temporal data distribution of a single satellite is in fact rather
poor. The latitudinal extent depends on the orbital inclination,
and the local time coverage is essentially limited to the time
of its ascending and descending pass, which changes slowly
due to the precession of the orbital plane. The temporal resolu-
tion achieved with a single satellite is one orbital period of
roughly 1.5 h (and then the satellite passes the same latitude
and local time, but at a different longitude), even if the measure-
ment cadence is 5 or 10 s. Precise density datasets inferred from
accelerometer data of recent satellite missions are selected
because only these are compatible with storm-time evaluation,
notably precise measurements from pole to pole. However,
the assessments are based on densities from one, or two satel-
lites at best, and one cannot reconstruct the complete picture
of the thermosphere at any given time; we only see the densities
in a latitude-local time frame at a relatively constant altitude,
with a temporal resolution of about 95 min.

Table 2 lists the essential information of the three selected
datasets, CHAMP (Doornbos, 2011), GRACE (Bruinsma;
unpublished) and GOCE (Bruinsma et al., 2014). The densities
used in this study were smoothed to suppress variations with
scales smaller than 600 km, and then down-sampled to 80 s
cadence. The original GOCE densities can be obtained, after
registration, on the ESA server (https://earth.esa.int).

Table 3 lists the dates, minimum Dst and maximum ap/Kp
of the storms, and the satellite data available for model assess-
ment. The intervals are selected to cover a strong storm

sequence that returns to low geomagnetic activity (low Kp),
and secondly, observations from two satellites are preferred.
This led to a slightly different selection of storms than proposed
in (Bruinsma et al., 2018). Thirteen storms, eleven of which
were CME-driven and two by High Speed Streams, were
selected for this assessment using the available data provided
by the three satellites. The eight storms in 2005 are the so-called
problem storms for the US Air Force (Knipp et al., 2013).
Strong storms cause the largest satellite orbit perturbations,
together with degraded tracking performance, and model assess-
ment is most pertinent and needed for those events. The impact
of weak storms is not dramatic, and only one is selected because

Table 3. Selected storm intervals and type (* = coronal mass ejection; ** = high speed stream), minimum Dst and maximum ap/Kp, satellite
density data (CH = CHAMP, GR = GRACE, GO = GOCE) and rounded local time at equator (hr).

Start & end date Min Dst (nT) Max ap/Kp Density data (local time, hr)

19/Nov–22/Nov/2003* �422 300/9� CH (11/23), GR (3/15)
17/Jan–20/Jan/2005* �103 179/8� CH (8/20), GR (6/18)
21/Jan–24/Jan/2005* �105 207/8 CH (8/20), GR (6/18)
07/May–10/May/2005** �127 236/8+ CH (10/22), GR (11/23)
14/May–17/May/2005* �263 236/8+ CH (10/22), GR (10/22)
29/May–02/Jun/2005* �138 179/8� CH (8/20), GR (9/21)
09/Jul–12/Jul/2005* �92 94/6+ CH (4/16), GR (6/18)
23/Aug–26/Aug/2005* �216 300/9� CH (12/24), GR (2/14)
09/Sep–12/Sep/2005* �147 179/8� CH (10/22), GR (1/13)
14/Dec–17/Dec/2006* �162 236/8+ CH (2/14), GR (6/18)
08/Mar–11/Mar/2012* �131 207/8 GO (7/19)
16/Mar–19/Mar/2013* �132 111/7� GO (7/19)
31/May–03/Jun/2013** �119 132/7 GR (7/19), GO (7/19)

Table 2. Datasets selected for the model assessment under storm conditions (i is inclination, and LST is the local solar time coverage and the
approximate period, in days, to cover 24 h).

Period Altitude (km) i LST 24 h LST Cadence Precision (%)

CHAMP 05/2001–08/2010 450–250 87� 0–24 & 120–130 80 s 1–4%
GRACE 08/2002–07/2016 490–300 89� 0–24 & 120–160 80 s 2–6%
GOCE 11/2009–10/2013 270–180 96� 6–8 & 18–20 80 s 1–3%

Fig. 1. The four phases of the assessment interval, centered on the
time of minimum of (hourly) Dst. The 3-hourly Kp index is also
shown because it used in DTM2013, and NRLMSISE-00 after
conversion to ap.
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it was a problem storm. While not strong but of moderate
strength, the three storms in 2012 and 2013 were selected
because they are the only ones for which high resolution density
data is available in solar cycle 24, from GRACE and GOCE.
The local time at the equator is also given in Table 3, and it
is clear that the distribution is sparse for any single storm.

3.2 Metrics for model-data comparison

The updated metrics for storms differ from (Bruinsma et al.,
2018) mainly in how the time interval for assessment is defined.
Storms are divided in four phases, two before and two after the
minimum Dst value. After verifying that differences with a
physics-based definition of the phases are small, and to facilitate
automation, it was decided to use intervals of fixed lengths for
the phases. The phases correspond to pre-storm (1), onset (2),
recovery (3), and post-storm (4). Figure 1 illustrates these four
phases with respect to the minimum in Dst. The pre-storm inter-
val is used to de-bias the model with respect to the observations
by computing a scaling factor, which is then applied to the
model densities in phases 1–4. The scaling factor is determined
by computing the ratio of the sum of all observations to the sum
of all model densities in phase 1. This de-biasing procedure is
used to minimize the effect of non-storm related model errors
on the assessment. All data for each storm are selected 30-h
before to 48-h after the minimum in Dst, which is defined as
t0. The Dst and densities centered on t0 for all storms listed in
Table 3 are displayed per satellite in Figure 2. The choice of
fixed lengths of the intervals is supported by the density profiles
shown in Figure 2. Note that GOCE is missing data in phase 1
for the storm in 2012; there is no data for GRACE. This exam-
ple of a data gap in one of the phases, maintained in this
analysis because of the few observed storms in solar cycle 24,
is another reason for the sparseness of the storm density data-
base. Data is regularly missing during storms. In this case for
GOCE in 2012, the scaling factor for de-biasing was not deter-
mined according to the metrics, but with part of the data in
phase 2.

The models and data can be compared by computing
density residuals, which is an absolute difference (observed
minus computed). A better quantity to express a model’s skill
to reproduce the observations, i.e. reality, is the observed-to-
computed (O/C) density ratio. Density ratios of one indicate
perfect duplication of the observations, i.e. an unbiased model
that reproduces all features; deviation from unity points to under
(larger than one) or overestimation (smaller than one). Because
of the very large and dynamic range in density, mainly due to
differences in altitude and solar activity (i.e. phase of the solar
cycle), it is rather difficult to analyze and interpret model perfor-
mance in absolute values. The relative precision given in the
form of density ratios is always simple to comprehend. A model
bias, i.e. the mean of the density ratios differs from unity, is
most damaging to orbit extrapolation because it causes position
errors that increase with time. The standard deviation (SD) of
the density ratios, computed as percentage of the observation,
represents a combination of the ability of the model to
reproduce observed density variations, and the geophysical
noise (e.g. waves, the short duration effect of large flares) and

Fig. 2. Dst (top) and densities, smoothed over one orbit in a moving window, for the selected storms, centered on t0, for CHAMP, GRACE and
GOCE.

Fig. 3. Metrics of the storm peak amplitude and timing assessment.
The model density is de-biased.
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instrumental noise in the observations. The mean and SD of the
density ratios, due to their distribution, are computed in Log
space (Sutton, 2018):
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where N is the total number of observations. The correlation
coefficients R are also computed. The correlation coefficient
is independent of model bias and R2 represents the fraction
of observed variance captured by the model. Mean, SD and

correlation are computed for each storm, for each separate
phase as well as for the entire interval. These metrics are
the same as in (Bruinsma et al., 2018) but applied to the de-
fined storm intervals only in order to isolate the performance
of the geomagnetic storm algorithm of the models.

A second assessment, and updated metrics compared with
(Bruinsma et al., 2018), concerns the amplitude and timing of
the maximum density peak considering the entire time interval.
The absolute relative amplitude error is expressed as a percent-
age of the measured maximum, and the timing of the peak with
respect to the observed peak is expressed in hours, an example
of which is shown in Figure 3. However, these two quantities
cannot always be determined unambiguously, for example
when two peaks are present, or a broad peak is present. For that

Fig. 4. The mean l and the standard deviation r of the 24 mean density ratios, per phase (black) and overall (red), using data from three
satellites.

Fig. 5. The mean l and the standard deviation r of the 24 standard deviations of the density ratios (SD; %), per phase (black) and overall (red),
using data from three satellites.
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reason, we have in the next section rejected results that could
not be well determined.

4 Storm-time assessment results

The means of the density ratios per phase are displayed in
Figure 4 for the five models, using different colors per satellite.
The printed numbers are the means (l) and standard deviations
(r) of the 24 colored symbols plotted vertically for each phase
(in black) and for the entire storm event (phases 1–4; in red).
The de-biasing (i.e. applying the scaling factor determined in
phase 1 to all model densities in phases 1–4) results in density
ratios close to unity in phase 1, and less scatter (smaller r) in all
phases. The TIE-GCM runs with the Heelis and Weimer models
as drivers are named TIEGCM-H and TIEGCM-W, respec-
tively. From the satellite operational point of view, the overall

mean is the most important number to consider as it directly
relates to the satellite position at the end of the storm. It informs
on the performance of the model over a complete storm, and a
mean density ratio of one means that thermospheric density
(proportional to satellite aerodynamic drag) was correct on
average. Densities that were predicted too large compensated
those too low and vice versa during the storm interval, leading
to a correct mean density and consequently a correct satellite
position at the end of the storm (but not necessarily during
the storm). The most accomplished SE (FP) model according
to this criterion is DTM2013 (TIEGCM-W), which obtains a
mean of 0.99, i.e. only 1% mean bias, and a small standard
deviation of 0.07. DTM2013, JB2008 and CTIPe have stable
means per phase, i.e. the bias does not evolve significantly as
a function of storm activity. NRLMSISE-00 has a clear storm
signature, underestimating the density during the storm phases 2
and even more during phase 3. TIEGCM underestimates density

Fig. 6. The mean l and standard deviation r of the 24 correlation coefficients per phase (black) and overall (red), using data from three
satellites.

Fig. 7. The absolute relative amplitude difference (top) and the modeled minus observed delay in time with respect to the maximum density
peak, i.e. negative values mean that the model peaks too early (bottom) for 11 storms, using data from three satellites.
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in Phase 2, but the Weimer model radically improves perfor-
mance in the decaying storm phase (Phase 3), enhancing the
mean from 0.90 to 0.97 and reducing the standard deviation
from 0.16 to 0.09.

The mean standard deviations of the density ratios (SD; %)
per phase are displayed in Figure 5. The mean standard devia-
tions for GOCE (green symbols) is smallest, followed by
CHAMP (red symbols), and GRACE (blue symbols) has the
largest mean standard deviation; this nicely demonstrates that
relative variability increases with altitude, although it is partly
due to data becoming noisier too. All models display significant
degradation during the main storm phases 2 and 3, and all have
the worst performance (largest standard deviation) for phase 2.
The standard deviation of the SE models nearly doubles from
phase 1 to 2, and the largest standard deviations are seen for
NRLMSISE-00 and JB2008 (33.0%). JB2008 then achieves
the best performance for phase 3, while NRLMSISE-00 and
CTIPe have the largest mean standard deviations (29.5%) for
that phase. The most accomplished SE and FP models over
the entire storm are DTM2013 and TIEGCM-W, which have
means of 25.5% and 28.3%, respectively. However, the positive
impact on the standard deviation thanks to using the Weimer
model instead of the Heelis model in TIE-GCM is very modest.

The mean correlation coefficients per phase are displayed in
Figure 6. As expected, all models have reduced correlations in
phases 2 and 3, and the lowest correlations are reached in phase
2. In line with results shown in Figures 4 and 5, the highest
mean correlations over the entire storm are attained with
DTM2013 and TIEGCM-W, which have a mean of 0.85.

The amplitudes and phases of the peaks in density are
compared for 11 storms (18/01/2005 and 11/09/2005 do not
allow unambiguous testing) and the results are displayed in
Figure 7. The amplitudes are on average underestimated with
NRLMSISE-00, JB2008, and TIE-GCM, whereas DTM2013
and CTIPe overestimated. CTIPe and JB2008 estimate the
amplitudes with the smallest mean difference of slightly over
20%, while NRLMSISE-00 underestimates on average by
60%. DTM2013 and NRLMSISE-00 on average predict the
storm peaks too early, while TIE-GCM and CTIPe by a small
amount (0.37 h) predict them too late. The phasing of the storm
peak is best on average with JB2008, which has a 4-min mean
delay; however, the standard deviation is largest of all models,
4 h. The largest mean timing error of 2.89 h is reached with
TIEGCM-H; using Weimer instead of the Heelis model
improves the results considerably to an average delay of
0.51 h (amplitude is more correct too).

5 Summary and conclusions

The density data and indices for the 13 selected storms as
well as updated metrics for thermosphere model assessment
have been described in this paper. All storms are divided in four
phases, which are relative to the time of minimum Dst. The
mean and standard deviation of the density ratios, the correla-
tions and the amplitude and timing of the peak density, are
computed using available CHAMP, GRACE and GOCE
density data and the CIRA models NRLMSISE-00, JB2008
and DTM2013, and the first principles models CTIPe and
TIE-GCM using Heelis or Weimer drivers. The best results over

the entire 4-phase storm period are obtained with DTM2013 and
TIEGCM-W, while the oldest model, NRLMSISE-00, is the
least precise. Compared to the assessments presented in
(Bruinsma et al., 2018), in which the same models except
TIEGCM-W were evaluated using entire years of data, this
study confirms that best results are obtained with DTM2013
and that NRLMSISE-00 is trailing. During storms, TIEGCM-W
is more precise than JB2008, NRLMSISE-00 and CTIPe, and
using the Weimer instead of the Heelis model has a large impact
during storms. The standard deviation of the density ratios
increases with altitude, as in (Bruinsma et al., 2018), but around
450 km (GRACE) they are 40–60% during storms, which is
2–3 times larger than when comparing over entire years.

An important result is that the means of the density ratios of
DTM2013, JB2008 and CTIPe do not significantly depend on
the phase 1–4 of the storm, even if the standard deviations very
much do for all models. NRLMSISE-00 underestimates during
the onset and decaying phases (2 and 3) of storms, TIEGCM-H
underestimates phase 2 and overestimates in phase 3, and
TIEGCM-W underestimates phase 2. The results per phase,
and the fidelity of the storm peak amplitude and time of
maximum, showed strengths and weaknesses that the model
developers can presently focus on.

The current model assessment is far from comprehensive.
A more thorough model assessment, e.g. solar cycle, local time
and altitude effects, under storm conditions requires more and
better-distributed observations of density. In this study, with
data from two (or one) satellites, density variations are
monitored in four local time planes at best, and that only at
two altitudes. Only four Kp = 9 storms were observed since
2000, thanks to CHAMP, GRACE and GOCE; bear in mind
that the assessment is possible only thanks to data of opportu-
nity, the objective of those missions was geodesy.
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