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Charting Satellite Courses in a Crowded Thermosphere

As the number of satellites in low Earth orbit grows by leaps and bounds,
accurate calculations of the effects of atmospheric drag on their trajectories

are becoming critically important.

An array of debris orbits Earth in this illustration. In low Earth orbit, atmospheric drag is by far the

dominant source of error associated with models that predict a satellite's future position and velocity.
Improving atmospheric drag calculations is essential in satellite mission planning, orbit and reentry

prediction, and collision avoidance. Credit: iStock.com/dottedhippo
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Satellites play important roles in our daily lives,
providing navigation, data, and communications
solutions, as well as Earth observations to monitor
weather, climate, and natural resources. All of this
information is vital for policymakers, businesses, and
consumers. However, increasing demand for the
services that satellites provide has also created an
increasingly crowded environment

(https://eos.org/features/the-coming-surge-of-rocket-emissions) in
the low—Earth orbit (LEO) region where many of these

satellites operate. Unlike automobiles on crowded city
streets, satellites lack onboard drivers who can steer
around obstacles at a moment’s notice. To avoid
collisions and plan evasive maneuvers, satellite
operators predict orbits and account for accurately
known gravitational forces; they must also account for
trajectory changes brought about by atmospheric drag

on the craft, a far more difficult task.

Approximately 1,800 active satellites currently operate

below 1,000 kilometers in altitude [Union of Concerned

Scientists (https://www.ucsusa.org/resources/satellite-database),
2005], where air resistance, or drag, is large enough to
significantly affect satellite orbital trajectories. These
active spacecraft share this region

(https://sdup.esoc.esa.int/discosweb/statistics/) with more than

10,000 inert satellites and pieces of debris.

The construction of very large constellations of
commercial LEO satellites began in about 2018 when
the private company SpaceX launched its first Starlink
satellite prototypes; other companies (e.g., OneWeb,
Amazon, Telesat) have followed suit or are preparing
their own constellations. Adding to the congestion is a
rapidly increasing number of low-cost small satellites,

which can now be built using largely off-the-shelf
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components. The potential addition of tens of thousands * Paying Attention to the “Ignorosphere”
of objects to LEO will escalate the risk (https://eos.org/agu-news/paying-attention-to-the-
ignorosphere)

(https://www.sciencedirect.com/science/article/abs/pii/S009457651

6300820?via%3Dihub) of catastrophic, and cascading,

collisions. The resulting exponential increase in orbital

debris (https://eos.org/articles/space-is-polluted-by-junk-and-its-getting-worse) could make LEO unviable [Kessler et

al., 2010], and crossing to higher orbits could become perilous.

In LEO, atmospheric drag is by far the dominant source of error associated with orbit propagation
(numerical modeling to predict a satellite’s future position and velocity), and it plays a defining role in
satellite mission planning, orbit and reentry prediction, and collision avoidance. Accurately tracking and
predicting the locations of objects in space is of paramount importance to assessing collision risk, which
determines whether executing avoidance maneuvers is necessary. Thus, the projected massive increase
in the number of orbiting spacecraft in the near future is driving an increasingly critical need for more

accurate satellite drag modeling and forecasting.

Quality Models Require Quality Input

The greatest limitation to improving thermosphere models is the inconsistent quality and sparse
distribution of upper atmosphere observations.

The accuracy of orbit prediction relies on the quality of the atmospheric drag force models and the
forecasts they produce. Satellite characteristics (e.g., size and geometry) influence atmospheric drag, but

drag mostly depends on the very low density of the highly variable upper atmosphere

(https://eos.org/research-spotlights/atmospheric-drag-alters-satellite-orbits), called the thermosphere. Realizing

significant advances in orbit prediction will require more accurate specification and forecasting of this
space environment. The greatest limitation to improving thermosphere models is the inconsistent

quality and sparse distribution of upper atmosphere observations.

Uncertainties in atmospheric drag modeling are largely associated with variability of the density of the
neutral (as opposed to charged) atoms and molecules in the thermosphere. This variability is driven by
changing solar extreme ultraviolet emissions (referred to as solar activity), by interactions of the
magnetosphere with the solar wind (referred to as geomagnetic activity), and by upwardly propagating
meteorological perturbations like gravity waves and tides that originate at lower altitudes in Earth’s

atmosphere.

Information about these driving sources is required to feed both empirical and physics-based models of
the upper atmosphere, which in turn are used (separately) to calculate satellite drag. Despite progress
made over the past couple of decades, large uncertainties still exist in estimates of the solar,
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magnetospheric, and gravity wave energy input to—and thus in how this energy affects—the

thermosphere [e.g., Siscoe et al. (https://doi.org/10.1029/2003JA010318), 2004; Palmroth et al.

(https://doi.org/10.5194/angeo-23-2051-2005), 2005; Peterson et al. (https://doi.org/10.1029/2011JA017382), 2012;

Oberheide et al. (https://doi.org/10.1186/s40645-014-0031-4), 2015; Becker and Vadas

(//doi.org/10.1029/2020JA028034), 2020].

As the scientific community focuses on improving measurements of the magnitude, spatial distribution,
and temporal evolution of these drivers, efforts are under way to advance modeling of thermospheric
variability with the development and testing of data assimilation schemes that combine models and

near-real-time observations [e.g., Codrescu et al. (https://doi.org/10.1002/2017SW001752), 2018; Sutton

(https://doi.org/10.1002/2017SWo001785), 2018; Pilinski et al.

(https://amostech.com/TechnicalPapers/2016/Poster/Pilinski.pdf), 2016]. Data assimilation methods

(https://www.ecmwf.int/en/research/data-assimilation) have been used in terrestrial weather analyses and

forecasts for decades to better specify meteorological initial conditions in models.

Sparse Data from the Thermosphere

Data assimilation methods require a steady stream of observations with which to update and refine
model forecasts. The main obstacle in data assimilation efforts for thermosphere specification is the
scarcity of high-quality measurements of density, temperature, and composition. After a hiatus of more
than 15 years when practically no data were collected, the distribution of density data since observations
started again in 2000 has still been rather sparse (Figure 1). Although these data have facilitated new
research investigating the upper atmosphere, that contribution will stagnate without adequate follow-up

data collection missions.
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Fig. 1. This stacked histogram shows the distribution of accelerometer density observations of
geomagnetic and solar activity by altitude and total observation duration from 2000 to 2018.
Observations are from the Challenging Minisatellite Payload (CHAMP), Gravity Recovery and Climate
Experiment (GRACE), Gravity Field and Steady-State Ocean Circulation Explorer (GOCE), and Swarm
satellites. CHAMP and GRACE data were obtained from a repository (http://thermosphere.tudelft.nl) at Delft

University of Technology; GOCE and Swarm data were obtained from the European Space Agency’s

Earth Online (https://earth.esa.int/eogateway/) platform.

This information is even more important for the development of operational models constrained by data
assimilation. Data assimilation and subsequent model verification with independent observations are, by
definition, not possible without current data. Sustained, long-term global observations of such key
variables as temperature, wind, and the chemical composition in the thermosphere are essential for
achieving a better understanding of its complex dynamics and chemistry, for evaluating and improving

models, and for developing robust forecasting capabilities.

Filling the Data Gaps

High-resolution measurements of air density have been inferred from accelerometer data
(https://eos.org/research-spotlights/scientists-map-temperature-and-density-in-earths-exosphere) since 2000. These data

were collected by the German CHAMP (https://www.gfz-potsdam.de/champ/) (Challenging Minisatellite
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Payload) satellite and then by NASA (https://www.nasa.gov/mission pages/Grace/) and Deutsches Zentrum fiir

Luft- und Raumfahrt’s (https://www.gfz-potsdam.de/en/grace/) GRACE (Gravity Recovery and Climate
Experiment) satellite and the European Space Agency’s GOCE

(http://www.esa.int/Applications/Observing_the Earth/GOCE) (Gravity Field and Steady-State Ocean Circulation

Explorer) and Swarm (https://www.esa.int/Applications/Observing_the Earth/Swarm) satellites. Except for Swarm,
atmospheric density monitoring was not a mission objective, so these valuable density data sets we
currently have are data of opportunity. The data sets made relatively detailed verification of
thermosphere models possible for the first time, which in turn contributed significantly to the models’

improvement.

Figure 1 shows that we have few measurements of density under high and very high solar activity
conditions. We also have very few measurements from days when geomagnetic storm conditions were
moderate to extreme because of the relative rareness of these short-duration (1—3 days, typically) storm
events. Fewer than 10 extreme geomagnetic storms have been measured with accelerometers since
2000, and it is vital that we maintain and enhance monitoring capability now and in the future to

augment our sparse database.

The temperature and composition of the lower thermosphere directly and profoundly affect the entire
low—Earth orbit environment, yet the processes by which they do so are poorly constrained.

Figure 2 displays how sparse the density data distribution is for even the best-observed storm in the
database. At the lowest altitudes, below about 250 kilometers, there are no records in GOCE data of air
densities under conditions of very high solar activity and only a few under high solar activity, and these

data provide very limited local solar time (https://susdesign.com/popups/sunangle/time-basis.php) coverage

because they were collected in only the 6:00—8:00 a.m. and 6:00—8:00 p.m. sectors (dawn—dusk).

Another major obstacle to predicting drag on satellites in LEO is the scarcity of temperature, density,
and chemical composition measurements in the lower thermosphere, between 100 and 200 kilometers
in altitude. In this region, which could be called the “ignorosphere” given the lack of observations, the
atmosphere transitions from being a homogeneous mixture consisting primarily of molecular nitrogen to
a diffusively separated gas mixture dominated by atomic oxygen. The temperature and composition of
the lower thermosphere directly and profoundly affect the entire LEO environment, yet the processes by

which they do so are poorly constrained in models or by observations, even as seasonal averages

[Emmert et al. (https://doi.org/10.1029/2020EA001321), 2020]. This is also the region where geomagnetic
activity injects massive amounts of energy, another poorly constrained variable in models, into the

atmosphere and drives global thermospheric variations during storm times.
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Fig. 2. The distribution of density data with respect to altitude, local time, and measurement duration
(variable shading of colors) collected by three satellites during a well-observed geomagnetic storm on 5

April 2010 is shown here. (1 kilometer x 1 minute bins). Data sources are the same as in Figure 1.

To achieve necessary progress in upper atmosphere modeling that enables accurate drag predictions and
space traffic management in an increasingly crowded space environment, sustained observations of the
thermosphere are much needed. Ideally, an international observation system, along the lines of the
World Meteorological Organization (WMO) for weather forecasts, should be mounted to coordinate
efforts globally. WMO serves as a good example because the organization has promoted free and

unrestricted exchange of data (https://public.wmo.int/en/media/press-release/wmo-reviews-data-policy) since 1873,

and this organization has created a global standardized network to support weather services.

This effort should be complemented by science missions focusing on specific regions like the lower

thermosphere-ionosphere (e.g., the Daedalus mission (https://daedalus.earth/)) or on topics like the

changing flow of solar energy into the magnetosphere (e.g., the Dione mission

(https://www.nasa.gov/feature/goddard/2020/nasa-cubesat-mission-to-gather-vital-space-weather-data)).
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