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ABSTRACT Several organizations are utilizing cloud technologies and resources to run a range of
applications. These services help businesses save on hardware management, scalability and maintainability
concerns of underlying infrastructure. Key cloud service providers (CSPs) like Amazon, Microsoft and
Google offer Infrastructure as a Service (IaaS) to meet the growing demand of such enterprises. This
increased utilization of cloud platforms has made it an attractive target to the attackers, thereby, making the
security of cloud services a top priority for CSPs. In this respect, malware has been recognized as one of the
most dangerous and destructive threats to cloud infrastructure (IaaS). In this paper, we study the effectiveness
of Recurrent Neural Networks (RNNs) based deep learning techniques for detecting malware in cloud Virtual
Machines (VMs). We focus on two major RNN architectures: Long Short Term Memory RNNs (LSTMs)
and Bidirectional RNNs (BIDIs). These models learn the behavior of malware over time based on run-time
fine-grained processes system features such as CPU, memory, and disk utilization. We evaluate our approach
on a dataset of 40,680 malicious and benign samples. The process level features were collected using real
malware running in an open online cloud environment with no restrictions, which is important to emulate
practical cloud provider settings and also capture the true behaviour of stealth and sophisticated malware.
Both our LSTM and BIDI models achieve high detection rates over 99% for different evaluation metrics.
In addition, an analysis study is conducted to understand the significance of input data representations. Our
results suggest that in particular cases, input ordering does have some affect on the performance of the trained
RNN models.

INDEX TERMS Security, deep learning, recurrent neural network, cloud IaaS, online malware detection,
long short term memory RNNs, bidirectional RNNs.

I. INTRODUCTION AND MOTIVATION

A heterogeneous cloud is a complex platform requiring sub-
stantial security infrastructure. According to the NIST [1],
a cloud platform should have essential characteristics not
limited to on-demand self service, broad network access,
and resource pooling. These features have helped forging
cloud computing into a standard for both private and public
sectors. As such, many organizations are utilizing the cloud
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computational power for different tasks to meet growing busi-
ness needs. Typically, a cloud service provider (CSP) offers
Infrastructure as a Service (IaaS) where clients are allowed
to ‘rent’ space in the form of virtual machines (VMs) within
a data center to facilitate different operational jobs. Clients
have the ability to spawn many of these virtual machines on-
demand. Such a convenient way of utilizing computational
resources is derived from the defined cloud essential charac-
teristics. Recently, the amount of cloud services, in particular
VMs, being offered as well as the number of clients demand-
ing the use of these services has increased dramatically.
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This increase has made the cloud a very desirable target for
attackers since these resources, if exploited, can be recruited
to launch large scale cybersecurity attacks [2]—[5].

Cloud malware is one of the most common and growing
threats where a malicious software is purposely designed to
attack VMs running on a cloud IaaS. Although malware is
a well researched challenge [6], [7], it’s impact magnifies in
cloud settings due to several underlying reasons: (i) the high
demand of cloud resources usage as well as the increase in
the number of clients significantly broaden the attack vector,
(i1) several clients lack the ability to properly secure their
acquired resources, and (iii) the rise of automated configu-
ration tools (e.g., Puppet,! Chef,? etc.) further adds to the list
of security vulnerabilities. If a VM is spawned using a script
that contains a configuration vulnerability (a flaw in security
settings, like failing to auto-encrypt files or change a default
image root password) it could be left prone to attacks. Further,
any VM spawned using the same script will most likely have
the same weakness. This is particularly true in cases where
a client is deploying a large-scale system on the cloud. For
example, deploying a Web Service used by millions of users
will typically include multiple web, application, and database
servers, which in most cases will all be deployed using the
same configuration script. The redundant use of configura-
tion scripts across the servers that make up a web service
could allow malware to easily propagate to each server in
the web service. Consequentially, detecting cloud malware in
a real time, online, and effective manner is an essential task
for CSPs.

To address these challenges, numerous malware detection
approaches have been proposed [8], [9] and are mostly cat-
egorized into static analysis [10], dynamic analysis [7], [8]
and online malware detection [9], [11]. Static analysis works
via analysing executables by code examination and creating
a signature for the executable if it is flagged as a malware,
whereas, dynamic analysis works by running an executable
in a closed environment (e.g., sandbox) and monitoring its
behavior. Online malware detection methods focus on con-
stantly monitoring hosts by analyzing normal and malicious
behaviors at all times. Static and dynamic analysis methods
are well understood in literature and both have their short-
comings [10], [12]. Static approach falls short against poly-
morphic malware, which constantly changes its identifiable
features, and zero-day malware. Such sophisticated malware
can evade detection by applying packing and crypting meth-
ods to change the way it looks. Dynamic analysis can mitigate
the limitations of static analysis since it is based on the behav-
ior of the malware during execution; however, smart malware
can detect the presence of sandboxes and cease malicious
activities to avoid detection. Additionally, static and dynamic
analysis share a fundamental drawback due to the fact that
they aim to detect malware executables before they run on a
host. This is not usually the case since malware can get into

1Puppet. https://puppet.com/
2Chef. https://www.chef.io/
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a host without passing through the static/dynamic detection
system. To mitigate the aforementioned drawbacks, online
malware detection is used by defining a set of host-wide
features to capture benign and malicious behaviors.

Detecting malware in a rapid and effective manner has
become a necessity. As such, researchers have utilized
machine learning (ML) as a mature and reliable way for
static, dynamic and online malware detection. In this paper,
we introduce an approach of online cloud malware detection
using deep learning (DL). In particular, we demonstrate the
effectiveness of using Recurrent Neural Networks (RNNs)
for online malware detection by utilizing processes system
features of VMs in cloud IaaS environments. Our work is
driven by the assumption that many VMs running on the
cloud are automatically provisioned to do a specific task.
In turn, such VMs will contain a fixed set of processes to
achieve this task. Note that processes are dynamic in nature,
so other unexpected processes will always be created and
deleted. However, a large number of the running processes
belong to the fixed set. For example, a single VM configured
to host a web service will typically have web server processes
(e.g, Apache), database processes (e.g. MySQL), etc. that can
be represented as a sequence. Each process in this sequence
is represented as a vector of the utilized system features.
Towards this end, we use RNN to learn the sequence of
processes running in a VM and how the presence of malware
can disrupt this sequence.

We conducted an analysis for the malware samples which
showed that the majority of the malware was able to change
their process names to a legitimate system process. Malware
was also capable of attaching itself to a legitimate process
and, because of these two reasons, typical whitelisting meth-
ods are not effective, hence more sophisticated methods are
needed. In our previous work [13], we used simple shal-
low CNN model which proved effective but with a limited
detection accuracy. This was used as a baseline for our more
sophisticated RNN approach.

The main contributions in this paper are as follows:

« We introduce a novel approach of detecting cloud mal-

ware using RNNs by utilizing processes system features.
We demonstrate that the set of processes running in a
VM can be represented as a sequence of system features.
Further, we highlight that RNNs can effectively detect
the presence of malware processes within the benign
processes sequence.

o We provide a comparative analysis of Long Short Term
Memory (LSTM) and Bidirectional (BIDI) models in
terms of evaluation metrics, along with training and
detection time.

« We provide an analysis on the effect of using dif-
ferent input representations. Our experiments suggest
that both LSTM and BIDI models achieved high
performance regardless of the order of system fea-
tures, whereas, the order of processes within the
input sequences impacted the performance by a range
of 1-2%.
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TABLE 1. Classification of Malware detection approaches.

Focus Machine Learning Techniques Domain
- Features
Research Paper Deep Learning Based
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Firdausi et al. 2010 [14] v v v
Pirscoveanu et al. 2015 [15] | v v v
Luckett et al. 2016 [16] v v v
Fan et al. 2016 [17] v v v
Joshi et al. 2018 [18] v v v
Tobiyama et al. 2016 [8] v v |/ v
Pascanu et al. 2015 [19] v v v
Kolosnjaji et al. 2016 [20] v v 4
Halim et al. 2019 [21] v v v
Xiao et al. 2019 [22] v v v
Xie et al. 2020 [23] v v v
Mishra et al. 2019 [24] v v v v
Demme et al. 2013 [25] v v v
Ozsoy et al. 2015 [26] v v v
Xu et al. 2017 [27] v v v
Azmandian et al. 2011 [28] v v v v
Guan et al. 2012 [29] v v v v
Watson et al. 2015 [2] v v v v
Abdelsalam et al. 2017[30] v v v v
Dawson et al. 2018 [31] v v v v v
Abdelsalam et al. 2018 [13] v v v v
McDole et al. 2020 [32] v v v v
Fei Xiao et al. 2019 [33] v v v v
Our Approach v v v v

The remainder of this paper is as follows. Section II, dis-
cusses other related works regarding RNNs, malware detec-
tion, and cloud computing. Section III describes the approach
and methodology to our experiments. Section IV discusses
the experimental cloud set up and the results from the RNN
models. Section V elaborates on the RNN sensitivity to differ-
ent input representations whereas cost analysis is described in
Section VI. Section VII focuses on discussion and highlights
some limitations, Section VIII summarizes the findings and
concludes with possible future directions.

Il. RELATED WORK

Behavioral machine learning based malware detection
approaches can be divided into dynamic malware detec-
tion and online malware detection. An important distinction
between the two approaches is that, in dynamic malware
detection, executable (malware or benign) is run in a sandbox
and its behavior is captured, whereas in online malware detec-
tion, the behavior of the entire system is captured with partic-
ular times being labeled as malicious if a malware is running.
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In this section, we discuss some of the related dynamic and
online malware detection works. Further, we sub-categorize
these works based on several aspects including traditional
versus deep learning based approaches and whether the work
is cloud-specific, as shown in Table 1.

A. DYNAMIC MALWARE DETECTION

There have been several works on dynamic malware detection
using traditional machine learning approaches. The works
in [14], [16] focused on using system calls as features.
Firdausi et al. [14] employed traditional machine learning
algorithms such as KNN, Naive Bayes, decision trees and
SVM, where as Lucket et al. [16] used neural networks. The
works in [15], [18] rely on system performance metrics and
traditional ML algorithms for malware detection. In addition,
Fan et al. [17] built a framework using sequence mining
techniques that effectively discover malicious patterns in
malware. This work utilizes a Nearest Neighbor classifier to
identify previously unknown malware.
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Recently, it has become clear that more sophisticated
approaches for malware detection are needed. This is mainly
because of the fact that traditional ML approaches require
extensive pre-processing and rigorous feature engineering
and representation. As such, recent research efforts have
moved towards employing end-to-end deep learning tech-
niques to bypass the feature engineering step. Many research
works [8], [19]-[24] aimed to overcome the limitations of
traditional ML approaches and employed DL algorithms. The
works in [21]-[24] provide malware detection methods based
on system calls and RNN. Others [8], [19], [20] have also
used Recurrent Neural Networks (RNN) and Convolutional
Neural Network (CNN) but, instead focused on API calls.

However, dynamic analysis has some limitations due to
controlled environment where the malware run. In many
cases, it cannot be analyzed completely due to limited access
of Internet. Sophisticated malware can detect the presence of
a sandbox and immediately terminate any malicious behavior.
In addition, most of the dynamic detection target traditional
host-based systems and not specific to cloud infrastructures
(e.g., VMs). Consequentially, the need for online malware
detection approaches is necessary.

B. ONLINE MALWARE DETECTION

The advantages of online malware detection approaches are:
(1) they don’t rely on a closed environment, (2) they con-
tinuously monitor the VMs, as opposed to dynamic analysis
approaches where once an executable is deemed benign it
freely runs on the system, and (3) they consider the entire
VM behavior as opposed to just an executable behavior.

The authors in [25], [26] utilize performance counters
for online malware detection, whereas [27] proposed the
use of memory features; however, these works used tra-
ditional ML algorithms and targeted traditional host-based
systems. In order to enhance the accuracy of malware detec-
tion in cloud, more cloud-specific techniques are proposed.
Guan et al. [29] proposed an anomaly detection for VMs in
cloud environment using system calls. They used an ensemble
of Bayesian predictors and decision trees. Similarly, Azman-
dian et al. [28] proposed an intrusion detection system using
system calls and used traditional ML algorithms including
KNN and clustering. Further, Dawson et al. [31] used API
calls captured through the hypervisor and used a non linear
phase-space algorithm to detect anomalous behavior.

Other works have focused on using features that can only
be fetched through the hypervisor. Given that many exper-
imental setups are run within the context of a hypervisor,
it is common to see features collected from the hypervisor.
Also, such techniques are suitable to be implemented by
the CSP since they do not require inside visibility to the
VMs. Watson et al. [2] utilized performance metrics that can
be fetched from the hypervisor in order to detect malware.
This paper utilized a one class SVM for malware detec-
tion; however, they focused on malware that is known-to-be
as highly-active malware. Similarly, Abdelsalam et al. [30]
demonstrated a black box based approach to detect malware.
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This work uses VM-level system and resource utilization
features. This worked well in detecting highly active malware
with high resource utilization features but was not as effective
in detecting malware that hide itself with low utilization.

Beside the works that used traditional ML algorithms,
others [9], [13], [32], [33] focused on using deep learn-
ing algorithms for online malware detection. The authors
in [13] extended their work in [30] and introduced a detection
method which uses a CNN model with the goal of identifying
low profile malware. This method achieved ~90% accuracy
using resource utilization features and was able to identify
multiple low-profile malware since it focused on per-process
level performance metrics. One limitation of this work is that
the authors used a shallow CNN model and didn’t provide
an analysis on using various CNN models. In this regards,
McDole et al. [32] provided a baseline analysis of using state-
of-the-art CNN models including multiple ResNet [34] and
DenseNet [35] models. We extend this work by providing an
analysis on employing RNN.

In this paper, we primarily focus on online malware detec-
tion using RNN in cloud infrastructures. To the best of our
knowledge, this is the first work that uses RNN based mal-
ware detection approach using performance metrics in online
cloud environment. We provide a novel way of representing
a VM’s behavior as a sequence of processes performance
metrics as discussed in the next section. Additionally, our
work provides an insightful analysis on the RNN sensitivity
to different input representations for malware detection.

Ill. METHODOLOGY
In this section, we explain the methodology used for malware
detection in VMs in cloud infrastructure.

A. LSTM MODELS
RNN is a category of deep learning that can process sequen-
tial information such as language translation [36], speech
recognition [37], and time series prediction [38]. However,
it suffers from two problems. First, RNN struggles with short
term memory; this means that long inputs can cause the RNN
model to forget earlier information. Second, RNN models
are subject to vanishing gradients. This is where the gradi-
ent value becomes diminished as the model backpropagates,
which leads to the model not learning properly. LSTM was
created to resolve these problems [39]. LSTM units contain
input, forget, and output gates which control how the infor-
mation flows into and out of the cell. This allows them to
preserve important information and discard any unnecessary
data. As shown in Figure 1, LSTM contains sigmoid and
tanh activations. Sigmoid activations force inputs to a
value between 0 and 1. This is where information is either
retained or discarded. The closer the value is to O, the less
important it is. The tanh activations keep values between
-1 and 1 to ensure that the output is regulated.

All of these gates help LSTM layers create a reliable
model that can leverage all of our sequential data without
the worry of losing data or having inaccurate gradients. The

68069



IEEE Access

J. C. Kimmell et al.: RNNs Based Online Behavioural Malware Detection Techniques for Cloud Infrastructure

Pointwise Pointwise
Sigmoid tanh  Bod Addition .S Multiplication

FIGURE 1. Architecture of a LSTM.

first step in the LSTM unit is the forger gate. Data from the
previous hidden state (hy.1) and data from the current input
is pushed through the sigmoid function, which as stated
earlier, forces these inputs to be changed to a value between
0 and 1. This is where the LSTM decides what information
to keep or discard. The next gate is the input gate; here, data
from the previous hidden state and the current input are once
again passed through the sigmoid function, but this time
they are also passed through a tanh function which regulates
the output by forcing the values between —1 and 1. The
outputs from the tanh function and the sigmoid function
are combined by using pointwise multiplication. Now we
have output from the forget gate and the input gate, so we
can now calculate the cell state to be passed on. This is done
by using pointwise multiplication on the previous cell state
and the forget gate. Pointwise addition is then used to add
the output from the input gate to the value obtained from the
previous step. Finally we have the output gate. This is where
data from the previous hidden state and the current input are
once again pushed through a sigmoid function, then the
current cell state is pushed through a tanh function. Point-
wise multiplication is then used to multiply these numbers to
produce the new hidden state. The new hidden state (h;) and
the new cell state (c;) is what is passed to the next LSTM unit.

B. BIDIRECTIONAL MODELS

Bidirectional LSTM models are able to process input in a
forward and backwards manner [40]. Instead of the layer
only processing the input normally by using one LSTM layer,
past to future, another LSTM layer is added that processes
the input starting at the last object of the input and working
its way backwards, i.e. future to past. Just like in a normal
LSTM layer, each bidirectional LSTM layer is assigned a
number of units. This bidirectional methodology allows the
model to learn more by analyzing the data from both direc-
tions and applying information from future inputs towards
its predictions. Once these two layers process their respec-
tive data, the output from these layers is then concatenated
together after each timestep. This type of model is useful
when extra context might be needed in order to make accurate
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FIGURE 2. Architecture of a bidirectional (BIDI) layer.

predictions. In our case, the bidirectional model can analyze
future processes and use that information to determine what
might be happening at a current process. This creates a model
that is well suited to determine if a machine is infected with
malware or not by analyzing how the machine will behave in
the future. Figure 2, depicts the architecture of a bidirectional
LSTM layer within an RNN model.

C. SYSTEM FEATURES

The system features in Table 2 are the features used to define
processes behavior. The values are an example of the raw
data collected about a single process taken at a certain time.
Further processing of the data is required such as encoding
the strings using one-hot-encoding, and the data must be
flattened to a 1-dimensional vector before it can be used in
an RNN. Most of these features can be obtained by using
Virtual Machine Introspection (VMI) tools such as LibvMI?
to capture snapshots of VMs memory and, in turn, extract the
required information by using memory forensics tools such
as Volatility.* This set of system features are intended for the
sole purpose of demonstrating the validity of our approach,
but more features can further enhance the accuracy.

D. UNIQUE PROCESSES AND RNN INPUT

System features are collected from all processes running
in a VM at certain time. With many short lived processes
(i.e. being created and destroyed quickly within each VM)
as well as having their IDs reassigned by the operating sys-
tem, it can be misleading and difficult to learn their behav-
ior. As such, we define “unique processes” (as introduced
in [13]) to reduce such dynamism. Unlike traditional operat-
ing system process which is identified by a “pid”, a unique
process is more concerned about the behavior of a process and
is identified by a tuple of two elements process name and the

3LibVML. http://libvmi.com/
4Volatility. https://www.volatilityfoundation.org/
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TABLE 2. System features sample.

Metric Value Metric Value Metric Value
mem_swap 0 kb_received 0 mem_lib 0
kb_sent 0 mem_text 217088 | num_threads 1
mem_uss 1105920 ionice_ioclass 0 jonice_value 0
io_write_bytes 0 gid_effective 111 mem_shared 3334144
io_write_chars 76 num_fds 14 mem_data 585728
i0_write_count 9 cpu_children_sys 0 mem_vms 43921408
io_read_bytes 958464 cpu_children_user 0 mem_rss 3751936
io_read_chars 61088 cpu_user 0.01 mem_dirty 0
io_read_count 77 cpu_sys 0 status sleeping
ctx_switches_voluntary 0 cpu_num 0 name dbus-daemon
ctx_switches_involuntary 43 cpu_percent 182 nice 0
T . S — malicious processes):
\‘E;Tphp—fpm?.(];phpflpm pool www 17&!38522425. |33.61710 '\ 0030007 fl fl f] _f]
| 1240 | php-for7.0 | php-fom: pool www | 7€b8522425... | 38.79308 | 0.00000 |
| 1221 | php-fpm7.0 | php-fpm: master process (felc/php/7.01... | 7eb8522425... | 0.00000 | 0.02000 | f2 fZ f2 f2
‘.EBLI python \‘python lzaeeemaa?,,,J DDDUGDJ 015000l Xt = upy — mp| ces = UDy —> mpy
‘ \ + fi fi fo fi
L . tniaue Process N ! . A malware process can hide within the large number of

| name | emd | hash | AVG(kb_sent) | AVG(cpu_user)
+ + + + +

| php-fpm7.0 | php-fpm: pool www | 7eb8522425... | 36.2051
| php-fpm7.0 | php-fpm: master process (fetc/php/7.0/... | 7eb8522425... | 0.00000
| python | python | 23eeeb4347... | 0.00000
+ +

| 0.0150
| 0.0200
| 0.1500

+

——— %

FIGURE 3. Operating system processes and unique processes.

command used to run the process. Figure 3, shows an example
of operating system processes converted to unique processes.
Processes sharing the same 2-tuple (e.g., forked processes)
are aggregated by taking the average of their measures. This
approach also helps in reducing the number of processes in a
single sample.

The collected unique processes’ features will be repre-
sented as data samples to be used as input to the RNN models,
where each data sample is a sequence of unique processes.
We represent a sample X recorded at time ¢ collecting n
features f for m unique processes up as follows:

h Bil fi
@) g f
Xi = up1 w2 || upm |
JSn JSn fn

Typically, a malware infects a VM and creates one or
more processes which will disrupt the benign sequence of
processes. Depending on the malware, it can attach itself
to another process and cease its own main process to avoid
detection which may turn some existing unique processes
behavior to malicious. As such, a malicious sample includes
some malicious processes interspersed between the benign
sequence and can be represented as follows (mp; denotes
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running processes by renaming its process to some commonly
used names. However, using the concept of unique process
makes it harder for the malware process to hide because
the number of unique processes is substantially smaller. Fur-
ther, a malware process will be more visible since it will
be considered a unique process. Our aim is to learn from
the sequence of processes (including benign processes that
a malware attached to) in a given sample and to identify it as
malicious or benign.

IV. EXPERIMENTAL SETUP AND RESULTS

A. LSTM AND BIDI MODELS ARCHITECTURE

Our first model is based on LSTM and consists of eight
layers. The first three LSTM layers consist of 256, 128, and
64 units, respectively. Each of our LSTM layers is followed
by a dropout layer of 10% in order to prevent over fitting.
The final layer is an output layer with softmax activation.
Since we are using binary classification (i.e. malicious or
benign) we only need two output units. Our second RNN
model is bidirectional LSTM. This model consists of four
bidirectional LSTM layers. The four layers are comprised
of 512, 256, 128 neurons, and 64 neurons, respectively. Each
of these layers is followed by a dropout layer of 10%. The
output layer for this model consists of two output units and
uses a softmax activation. Both of these architectures were
chosen due to their simplicity which allows for faster training
times. Despite the models’ simplicity, they are still able to
perform at a high level.

These models are trained, validated and tested with a data
set that consists of 113 experiments, split by 60% for training,
20% for validation, and 20% for testing. To obtain optimal
models, a grid search method was used for hyperparameters
optimization, mostly, with respect to batch sizes (16, 32, and
64) and learning rates (.0001, .00001, .000001).
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FIGURE 4. Experimental openstack cloud testbed.

B. EXPERIMENTAL SETUP

1) CLOUD TESTBED

Getting accurate system features from the malware experi-
ments is imperative for showcasing near real world perfor-
mance. To accomplish this, a cloud testbed running an actual
application was used and multiple measures were taken to
ensure that the malware shows its true behavior. As shown
in Figure 4, the cloud testbed utilized OpenStack,’ a popular
open source cloud platform and consists of one control node
and four compute nodes. The control node handles tasks such
as the dashboard, storage, network, identity, and computing.
The compute nodes only handle computing services. Each
compute node is also supplied with agents for networking,
polling, and collecting.

To avoid hindering the malware and allow it to exhibit its
true malicious behavior, all of our experiments were con-
ducted in the wild where all the VMs were connected to the
Internet. This is because (i) sophisticated malware typically
has the ability to detect the presence of a closed restricted
environment (e.g., sandbox) and (ii) many malware, which
are controlled by a command and control server (C&C), cease
malicious activities upon failing to communicate with its
C&C. Also, all antivirus tools and firewalls were disabled.

2) MALWARE SAMPLES

In total, 113 linux malware executable were obtained from
VirusTotal.® To avoid biased results towards certain malware
families, the malware was chosen randomly from various
categories (according to VirusTotal) including DoS, DDoS,
Backdoor, Trojan, Virus, Worm, among others.

5OpenStack. https://www.openstack.org/
6https://Www.virustotal.com/
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3) EXPERIMENTS DEPLOYMENT

Figure 5 shows an overview of the experiments deploy-
ment. The upper dotted box depicts the deployment of a
single experiment stack. To simulate a real world scenario,
a commonly used 3-tier web architecture, consisting of web-
servers, application servers, and a database, was deployed.
A front load balancer is deployed to handle and distribute
clients requests to appropriate web servers. Web servers are
connected to application servers via an internal load balancer
to distributed the requests among the application servers.
For simplicity, application servers are all connected to a sin-
gle powerful database server. Further, an auto-scaling policy
was implemented based on CPU usage. The same scalabil-
ity policy is applied to both web and application servers
independently. If the average CPU utilization of all VMs
belonging to the web or application tier exceeded 70%, new
VMs are spawned and attached to the corresponding load
balancer to meet demand. If the CPU utilization fell below
40%, VMs are deleted to reduce resource usage. In our exper-
iments, based on the traffic load, between 2 to 10 servers
were spawned in each tier. Random GET/POST requests,
denoting clients, were sent to the front load balancer using a
multi process python script running on a dedicated VM. For
integrity of experiments, the traffic/requests were generated
based on an ON/OFF Pareto distribution. This deployment
is intended to reflect the real world dynamic behavior of
cloud infrastructures to satisfy changing tenants resource
requirements.

The lower part of Figure 5 consists of a main control
VM and a data collection VM. The main control VM is
responsible for (i) keeping the malware executables in a
database, (ii) injecting a single malware in one of the applica-
tion servers at a certain point of time, and (iii) deploy/destroy
an experiment stack. We utilized OpenStack Heat orches-
tration service to easily deploy/destroy an experiment stack
using yaml scripts. The data collection VM is responsible
for collecting data from the infected VM. The process for
collecting data is shown in Figure 6. Each experiment lasted
a total of 1 hour. The first 30 minutes is referred to as the
benign phase, where there is no malware running. A single
malware is injected at a random time between minute 30 and
40 in one of the application servers. Varying the malware
injection/execution time introduces more dynamism into the
experiments and ensuring that consistency of injecting mal-
ware at the same point in time would not affect the results.
Starting minute 40 is referred to as malicious phase, where a
malware is running. Data samples are collected every 10 sec-
onds (resulting in 360 samples in total for each experiment)
using a host based built in python script, and are stored into
a database. 113 experiments were conducted, each using a
different malware executable. Each of these 113 experiments
generated 360 samples for each individual experiment. This
results in a total of 40,680 total samples. The main control
VM destroys the entire experiment stack (upper box) after
each experiment to prevent data contamination of subsequent
experiments/runs.
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FIGURE 6. Data collection phases.

4) RNN MODELS TRAINING

All experiments resulted in 40,680 data samples collected.
This is because the data we are collecting represent the
behavior of all processes in the virtual machine, not just the
actual malware executables. Models training was performed
on a high performance computing center (HPC) with four
Dell PowerEdge R730 servers, each with one NVIDIA Tesla
K80 GPU. The RNN models were built and tested by Python
scripts using Keras’ API which is built on top of Tensorflow.®

5) RNN INPUT

As stated in Section III-D, the input to the RNN models
is a sequence of vectors, each denoting the features for a
particular unique process. In our experiments, the maximum
number of unique processes in any experiment is 120, hence,
all sequences are padded to be of the same length. The
system features (Table 2) collected for each unique process
are preprocessed by converting categorical string features to
one-hot vectors and standardizing the data values.

7https://keras.io/
8https://Www.te:nsorflow.org/
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C. EVALUATION
The performance of our models is measured by five evalua-
tion metrics, accuracy, precision, recall, and F1 score.

TP + TN
Accuracy =
TP+ TN + FP+ FN
. TP
Precision = ——
TP + FP
TP
Recall = ——
TP + FN
Precision x Recall
F1 Score =2 x

Precision + Recall

True positives (TP) is the number of correctly classified
malicious samples. True negative (TN) is the number of
correctly classified benign samples. False positive (FP) is
the number of benign samples that were incorrectly clas-
sified as malicious. False negative (FN) is the number of
malicious samples that were incorrectly classified as benign.
The accuracy metric is the measure of correct classification.
Precision is the measure of correct positive classifications
over the total number of positive classifications. Recall is a
measure of correctly classified malicious samples over the
actual number of malicious samples. F1 score is the balance
between precision and recall.

D. RESULTS

As stated in Section IV-A, a different malware is used in each
of the 113 experiments and the dataset collected were divided
into 60% training, 20% validation and 20% testing. In order
to emphasize the ability of our models to detect zero-day
malware, the dataset were split on the number of experiments
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TABLE 3. Detailed results for LSTM and BIDI (¢ and ) models.

Model Accuracy | Precision Recall F1
LSTM,, 99.61% 99.64% 99.33% | 99.48%
BIDI, 99.48% 99.24% 99.37% | 99.31%
LSTMg 99.65% 99.26% 99.7% 99.48%
BIDIg 99.51% 99.2% 99.51% | 99.35%

(i.e. 67 training, 23 validation and 23 testing). This ensures
that the data samples collected from the 23 experiments
(based on 23 unseen malware) for testing were completely
unseen to the RNN models. The training dataset is used to
train the RNN models, the validation dataset is used as a way
to tune the hyperparameters (e.g., learning rate, batch-size,
etc.) to get optimal models, and the testing dataset is used
to measure the detection ability of the optimized LSTM and
BIDI models.

To ensure the validity of our results, both LSTM and BIDI
models were trained twice (i.e. LSTM,, LSTMg, BIDI, and
BIDIg). The order of input sequences to the o and 8 models
is slightly different to introduce dynamism. All RNN models
were trained for 40 epochs since there was no decrease in the
loss afterwards.

Figure 7 depicts the results of our experiment where the
bars shown were produced by calculating different evaluation
metrics for each the LSTM and BIDI optimal models. In our
case, the optimal models are identified by hyperparameters
of batchsize = 32 and learningrate = 1e—5. Both of the «
and B models were able to detect newly seen malware with
high accuracy in all metrics exceeding 99% (exact numbers
are given in Table 3). The o« models achieved higher precision
scores than the 8 models, whereas the § models achieved
higher recall scores than the o models. Even though the
difference in recall and precision scores between the « and
models is very minuscule, these results suggests that the order
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of processes within input sequences might affect the models
learning ability (more details are discussed in Section V).

Figure 8 shows the training and validation mean cross
entropy loss during the models’ learning progression. Train-
ing loss is recorded after each iteration, whereas validation
loss is recorded after each epoch. The figure shows that the
models were able to properly generalize and learn from the
given datasets. The red line indicates the epoch where a par-
ticular model scored the highest validation accuracy during
the 40 epochs training phase.

V. RNN SENSITIVITY TO DIFFERENT INPUT
REPRESENTATIONS

In Section III-D, we described how we construct the samples
that are used in our experiments. Each sample consists of
a sequence of unique processes. However, it is not clear
whether the order of unique processes and features in a single
sample would affect the RNN models’ ability to learn and
generalize effectively. Altering the ordering of the input data
can often reveal insights as to how to best train certain models.
For instance, the authors in [41] provided an analysis on the
effects of input ordering when using CNN models. They used
similar process system features for malware detection using
CNN models and studied the effects of processes and features
ordering in the input, represented as an image (denoting pro-
cesses x features). The authors performed experiments with
CNN models by generating different sets of the same input
data with different orderings. In this study, the authors were
able to enhance the accuracy of detecting malware from 90%
to 98%. As such, it was concluded that certain orderings of
input data can in fact improve the performance of the models
and must be constructed properly.

In this section, we provide an analysis on whether the order
of sequence in a single sample (denoted by row models) as
well as the order of features (denoted by col models) would
affect the results of the RNN models. The key intuition of
this analysis lies in the fact that some unique processes might
be closely related, and including them in close proximity in
the input sequences might help the models to easily draw and
learn such correlations. For example, consider two unique
processes of the FastCGI Process Manager (FPM) php-fpm:
master and the its forked pool of processes php-fpm: pool (see
Figure 3). Similarly, some system features might be related.
For example, features of cpu usage such as cpu_user, cpu_sys,
cpu_num, and cpu_percent are closely related. As shown
in Figure 9, different row orderings are created by randomly
changing the sequence of unique processes for all samples.
Similarly, different column orderings are created by randomly
changing the order of the features that belong to each unique
process. This increases the odds of preventing related pro-
cesses or features from appearing in close positions in a given
sample.

A. RANDOM ORDERING RESULTS
In our experiments, we trained four LSTM (i.e. LSTM cole,
colB, coly, and cold) and BIDI models (i.e. BIDI cole,
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colB, coly, and cold) based on features random orderings.
Additionally, we trained three LSTM (i.e. rowa, row 3, rowy )
and BIDI models (i.e. rowa, rowf, rowy) based on unique
processes random orderings.

Figure 10 shows the results of cole and rowe LSTM
and BIDI models only (exact results numbers are shown
in Table 4). LSTMo1,, and BIDI.o, models achieved high
results with close to 100% in all metrics. On the other hand,
LSTM;owe and BIDI;ow, have shown a decrease of ~ 2%
in terms of precision and &~ 1% for f1 score. The evalua-
tion metrics of the remaining trained models have reflected
similar results as discussed in Table 6 and Table 8 in the
Appendix. Figure 11 shows training and validation mean
cross entropy loss during cole and rowe LSTM and BIDI
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FIGURE 10. Results of LSTM and BIDI (cola and rowx) models.

models training phase. By examining the loss, it is clear
that, unlike cola LSTM and BIDI models, rowae LSTM
and BIDI models shows more fluctuation and difficulties in
learning smoothly. We discuss and analyze these results in
Section VII.
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TABLE 4. Results of LSTM and BIDI (cola and rowa) models.

Model Accuracy | Precision Recall F1
LSTMiowa 99.41% 99.81% 98.61% | 99.21%
BIDILowa 99.19% 99.81% 98.04% | 98.92%
LSTMcola 99.71% 99.82% 99.42% | 99.62%
BIDI o1 99.58% 99.42% 99.46% | 99.44%

VI. COST ANALYSIS

In this section, we provide cost analysis with respect to the
LSTM and BIDI models’ training time. A problem with train-
ing RNN models is in the choice of the number of training
epochs to use. Training the model for too many epochs can
lead to overfitting (even with dropout layers), where as, train-
ing for too few epochs may lead the model to underfitting.
In our case, we determined that 40 epochs are sufficient for
our models to properly converge. During these 40 epochs,
the set of weights that achieved the highest accuracy on the
validation data set is recorded and chosen to be the most
optimal model in each of the case. Although, some models
can converge and learn faster than others.

Table 5 shows the epochs where the RNN models achieved
the highest validation accuracy along with the time taken
in seconds and the corresponding loss. In general, the LSTM
models converged relatively faster than the BIDI models.
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TABLE 5. Training time for Optimal LSTM and BIDI models.

Validation Epoch Time
Model Accuracy Rezched Elapsed(s) Loss
LSTMa 99.62% 11 847 3.6%
BIDI, 99.85% 26 4160 3.8%
LSTMg 99.65% 38 2888 0.9%
BIDIg 99.94% 33 5247 1.4%
LSTMiowa 97.77% 40 3045 2.9%
BIDIrowa 99.24% 40 6219 3%
LSTMcola 99.78% 39 2993 1.8%
BIDIco10 99.94% 20 3126 2.2%

The LSTM,, LSTMg, LSTM;owy, and LSTM¢ol, models
were the fastest to converge respectively in 847, 2888, 3035,
and 2993 seconds, while the BIDI,, BIDIg, BIDI;owq, and
BIDI, models took more time to converge respectively
in 4160, 5247, 6219, and 3126 seconds. This is due to the
fact that BIDI models add another backwards layer to the
model, and therefore increasing the total time to train. Input
representation is another factor that affects the training time.
The results in Table 5 indicate that some random col and row
orderings® prolong the time taken for the model to converge.

9Detailed results for training time for different input representations are
shown in Table 7 and Table 9 under Appendix.
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Particularly, this is more evident for the row orderings where
both LSTM;owe and BIDI;we models achieved the highest
validation accuracy in epoch 40. This can also be seen clearly
in Figure 11, where LSTM;owq and BIDI,qyw, models train-
ing and validation curve is more fluctuant due to separating
related unique processes.

As reflected by the results, all our models were able
to detect the presence of malware within one input
sample.

VII. DISCUSSION AND LIMITATIONS
In this section, we discuss some rationale about our results as
well as limitations and potential future work improvements.

The results in Section IV-D illustrated that both LSTM
and BIDI models achieve almost equally high performance.
However, it was clear from the results in Section VI that
the LSTM models achieved such performance in a shorter
amount of training time. Even though the BIDIg model
achieved its highest validation accuracy after 33 epochs and
the LSTMg model achieved its highest validation accuracy
after 38, the time taken for the BIDI model is almost double
the time taken for the LSTM model. As such, there is no
added value in using a BIDI models over LSTM models since
both were able to achieve similar scores with respect to the
evaluation metrics.

The results derived from the experiments in Section V-A
showed that input representation in terms of the order of
unique processes and features is a major concern in terms of
detection performance and training cost. The col orderings
results indicated that the order of features doesn’t impact
the performance of our models, where as, the row orderings
results indicated that the order of unique processes in a
given input sample impacts the results within a range of 1%
to 2% in f1 score and recall. These results align with [41]
where the authors concluded that the order of features is not
as important as the order of processes in the samples for
their CNN models. The order of processes highly impacted
their obtained results with 8% enhancement after using an
approach to provide a proper order. This advocates that RNN
models are more robust to input sensitivity than CNN models.
The aim of the random orderings experiments is to high-
light the issue of input representation. A further analysis on
how to systematically devise a proper input representation to
enhance the results is left to future work.

One limitation in our work lies in the size of our experi-
ments. We conducted 113 experiments each using a different
malware executable, but more samples would allow us to
obtain a deeper understanding of how our detection models
perform against differing malware types. Another limitation
in this work is the assumption that a VM is infected by a
single malware. In practice, a VM can be infected by mul-
tiple malware simultaneously. An analysis of whether our
detection system will work as expected during the presence
of multiple malware working at once is needed. Further, our
work focuses on detecting malware in a single VM. However,
in cloud auto scaling architectures, a malware that infects a
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TABLE 6. Random column ordering results.

Model Accuracy | Precision Recall F1
LSTM 1o 99.71% 99.82% 99.42% | 99.62%
BIDIo1 99.58% 99.42% 99.46% | 99.44%
LSTM,o18 99.73% 99.95% 99.33% | 99.64%
BIDI.18 99.59% 99.50% 99.42% | 99.46%
LSTMco1 99.44% 99.19% 99.33% | 99.26%
BIDI 1, 99.51% 99.28% 99.42% | 99.35%
LSTMo15 99.28% 98.46% 99.64% | 99.04%
BIDI5 99.04% 99.32% 98.13% | 98.72%

single VM can propagate to similarly configured VMs fairly
quickly. As such, malware propagation as well as multiple
malware infections are left to future work. Another limitation
to our work is that it is possible for malware to slip in between
the averages within a group of processes with the same name.
This is acommon drawback associated with any methodology
that generates meta-stats (e.g., average, standard deviation,
etc.). This drawback is confined to the unique process aspect
of our approach since this is where we are averaging the
measurements of processes in order to reduce the number of
features.

VIIl. CONCLUSION

In this paper, we introduce an approach of using LSTM and
BIDI models for online malware detection based on processes
system features. Results showed that both LSTM and BIDI
models achieved outstanding performance (over 99%) on the
testing dataset; however, the LSTM models required less
time than the BIDI models to achieve such performance.
Additionally, we analyzed the impact of input representations
on our models by conducting random ordering experiments
with respect to unique processes and features (i.e., col and
row experiments). On one hand, the results showed that the
order of the features doesn’t impact the models performance,
whereas, it impacts the training time of the models. On the
other hand, the order of unique processes impacts the perfor-
mance as well as the training time of the models.

In the future, we plan to increase the scale of our experi-
ments by using thousands of malware samples including more
malware families. Additionally, we plan to study the impacts
of malware propagation to similarly configured VMs in a
cloud environment on the robustness of our detection mod-
els. We also plan to study the impacts of multiple malware
infections to the same VM.

APPENDIX A

RANDOM COLUMN ORDERINGS

Table 6, Figure 12, and Figure 13 show the remaining results
generated by the LSTM and BIDI (cole, colB, coly, and col§)
models that were trained each with a random feature ordering.
In addition, Table 7 shows the training time and the number
of epochs needed in order for these models to achieve their
highest validation accuracy.
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TABLE 7. Training time for random column ordering.

Validation Epoch Time
Model Accuracy Regched Elapsed(s) Loss
LSTMcola 99.78% 39 2993 1.8%
BIDIL oo 99.94% 20 3126 2.2%
LSTM 018 99.77% 12 922 2%
BIDIo18 99.94% 20 3121 2%
LSTMcoly 99.66% 19 1456 2%
BIDI;o1 99.91% 19 2954 2.4%
LSTMo1s 99.92% 26 1986 3%
BIDIL s 99.89% 23 3595 3.1%
APPENDIX B

RANDOM ROW ORDERINGS

Table 8, Figure 14, and Figure 15 show the remaining results
generated by the LSTM and BIDI (rowc, rowf, and rowy)
models that were trained each with a random feature ordering.
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TABLE 8. Random row ordering results.

Model Accuracy | Precision Recall F1
LSTMrowa 99.41% 99.81% 98.61% | 99.21%
BIDIowa 99.19% 99.81% 98.04% | 98.92%
LSTM;ows 99.56% 99.73% 99.10% | 99.41%
BIDI, 3 99.24% 99.15% 98.84% | 98.99%
LSTMow~ 99.13% 99.45% 98.21% | 98.83%
BIDIiow~y 99.24% 99.63% 98.35% | 98.99%
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FIGURE 15. Results from BIDI models with random row ordering.

TABLE 9. Training time for random row ordering.

Validation Epoch Time
Model Accuracy | Reached | Elapsed(s) Loss
LSTMiowa 97.77% 40 3045 2.9%
BIDILowa 99.24% 40 6219 3%
LSTM;ows 99.48% 39 2986 2.4%
BIDI,w3 99.04% 34 5296 3.3%
LSTMrow~ 99.06% 36 2778 3.6%
BIDI;ow~ 99.02% 40 6219 3%

In addition, Table 9 shows the training time and the number
of epochs needed in order for these models to achieve their

highest validation accuracy.
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