
Received April 16, 2021, accepted April 30, 2021, date of publication May 4, 2021, date of current version May 13, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3077498

Recurrent Neural Networks Based Online
Behavioural Malware Detection Techniques
for Cloud Infrastructure

JEFFREY C. KIMMELL 1, ANDREW D. MCDOLE1, MAHMOUD ABDELSALAM 2,
MAANAK GUPTA 1, (Member, IEEE), AND RAVI SANDHU3, (Fellow, IEEE)
1Department of Computer Science, Tennessee Technological University, Cookeville, TN 38505, USA
2Department of Computer Science, Manhattan College, New York, NY 10471, USA
3Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX 78249, USA

Corresponding author: Maanak Gupta (mgupta@tntech.edu)

This work was supported in part by the National Science Foundation under Grant 1565562, Grant 2025682, and Grant 2025686; in part by

the Faculty Research Grant Program at Tennessee Technological University; and in part by the NSF CREST Center at University of Texas

at San Antonio (UTSA) under Grant HRD-1736209.

ABSTRACT Several organizations are utilizing cloud technologies and resources to run a range of

applications. These services help businesses save on hardware management, scalability and maintainability

concerns of underlying infrastructure. Key cloud service providers (CSPs) like Amazon, Microsoft and

Google offer Infrastructure as a Service (IaaS) to meet the growing demand of such enterprises. This

increased utilization of cloud platforms has made it an attractive target to the attackers, thereby, making the

security of cloud services a top priority for CSPs. In this respect, malware has been recognized as one of the

most dangerous and destructive threats to cloud infrastructure (IaaS). In this paper, we study the effectiveness

of Recurrent Neural Networks (RNNs) based deep learning techniques for detectingmalware in cloudVirtual

Machines (VMs). We focus on two major RNN architectures: Long Short Term Memory RNNs (LSTMs)

and Bidirectional RNNs (BIDIs). These models learn the behavior of malware over time based on run-time

fine-grained processes system features such as CPU, memory, and disk utilization. We evaluate our approach

on a dataset of 40,680 malicious and benign samples. The process level features were collected using real

malware running in an open online cloud environment with no restrictions, which is important to emulate

practical cloud provider settings and also capture the true behaviour of stealth and sophisticated malware.

Both our LSTM and BIDI models achieve high detection rates over 99% for different evaluation metrics.

In addition, an analysis study is conducted to understand the significance of input data representations. Our

results suggest that in particular cases, input ordering does have some affect on the performance of the trained

RNN models.

INDEX TERMS Security, deep learning, recurrent neural network, cloud IaaS, online malware detection,

long short term memory RNNs, bidirectional RNNs.

I. INTRODUCTION AND MOTIVATION

A heterogeneous cloud is a complex platform requiring sub-

stantial security infrastructure. According to the NIST [1],

a cloud platform should have essential characteristics not

limited to on-demand self service, broad network access,

and resource pooling. These features have helped forging

cloud computing into a standard for both private and public

sectors. As such, many organizations are utilizing the cloud

The associate editor coordinating the review of this manuscript and

approving it for publication was Pedro R. M. Inácio .

computational power for different tasks tomeet growing busi-

ness needs. Typically, a cloud service provider (CSP) offers

Infrastructure as a Service (IaaS) where clients are allowed

to ‘rent’ space in the form of virtual machines (VMs) within

a data center to facilitate different operational jobs. Clients

have the ability to spawn many of these virtual machines on-

demand. Such a convenient way of utilizing computational

resources is derived from the defined cloud essential charac-

teristics. Recently, the amount of cloud services, in particular

VMs, being offered as well as the number of clients demand-

ing the use of these services has increased dramatically.

68066 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 9, 2021



J. C. Kimmell et al.: RNNs Based Online Behavioural Malware Detection Techniques for Cloud Infrastructure

This increase has made the cloud a very desirable target for

attackers since these resources, if exploited, can be recruited

to launch large scale cybersecurity attacks [2]–[5].

Cloud malware is one of the most common and growing

threats where a malicious software is purposely designed to

attack VMs running on a cloud IaaS. Although malware is

a well researched challenge [6], [7], it’s impact magnifies in

cloud settings due to several underlying reasons: (i) the high

demand of cloud resources usage as well as the increase in

the number of clients significantly broaden the attack vector,

(ii) several clients lack the ability to properly secure their

acquired resources, and (iii) the rise of automated configu-

ration tools (e.g., Puppet,1 Chef,2 etc.) further adds to the list

of security vulnerabilities. If a VM is spawned using a script

that contains a configuration vulnerability (a flaw in security

settings, like failing to auto-encrypt files or change a default

image root password) it could be left prone to attacks. Further,

any VM spawned using the same script will most likely have

the same weakness. This is particularly true in cases where

a client is deploying a large-scale system on the cloud. For

example, deploying a Web Service used by millions of users

will typically include multiple web, application, and database

servers, which in most cases will all be deployed using the

same configuration script. The redundant use of configura-

tion scripts across the servers that make up a web service

could allow malware to easily propagate to each server in

the web service. Consequentially, detecting cloud malware in

a real time, online, and effective manner is an essential task

for CSPs.

To address these challenges, numerous malware detection

approaches have been proposed [8], [9] and are mostly cat-

egorized into static analysis [10], dynamic analysis [7], [8]

and online malware detection [9], [11]. Static analysis works

via analysing executables by code examination and creating

a signature for the executable if it is flagged as a malware,

whereas, dynamic analysis works by running an executable

in a closed environment (e.g., sandbox) and monitoring its

behavior. Online malware detection methods focus on con-

stantly monitoring hosts by analyzing normal and malicious

behaviors at all times. Static and dynamic analysis methods

are well understood in literature and both have their short-

comings [10], [12]. Static approach falls short against poly-

morphic malware, which constantly changes its identifiable

features, and zero-day malware. Such sophisticated malware

can evade detection by applying packing and crypting meth-

ods to change the way it looks. Dynamic analysis canmitigate

the limitations of static analysis since it is based on the behav-

ior of the malware during execution; however, smartmalware

can detect the presence of sandboxes and cease malicious

activities to avoid detection. Additionally, static and dynamic

analysis share a fundamental drawback due to the fact that

they aim to detect malware executables before they run on a

host. This is not usually the case since malware can get into

1Puppet. https://puppet.com/
2Chef. https://www.chef.io/

a host without passing through the static/dynamic detection

system. To mitigate the aforementioned drawbacks, online

malware detection is used by defining a set of host-wide

features to capture benign and malicious behaviors.

Detecting malware in a rapid and effective manner has

become a necessity. As such, researchers have utilized

machine learning (ML) as a mature and reliable way for

static, dynamic and online malware detection. In this paper,

we introduce an approach of online cloud malware detection

using deep learning (DL). In particular, we demonstrate the

effectiveness of using Recurrent Neural Networks (RNNs)

for online malware detection by utilizing processes system

features of VMs in cloud IaaS environments. Our work is

driven by the assumption that many VMs running on the

cloud are automatically provisioned to do a specific task.

In turn, such VMs will contain a fixed set of processes to

achieve this task. Note that processes are dynamic in nature,

so other unexpected processes will always be created and

deleted. However, a large number of the running processes

belong to the fixed set. For example, a single VM configured

to host a web service will typically have web server processes

(e.g, Apache), database processes (e.g. MySQL), etc. that can

be represented as a sequence. Each process in this sequence

is represented as a vector of the utilized system features.

Towards this end, we use RNN to learn the sequence of

processes running in a VM and how the presence of malware

can disrupt this sequence.

We conducted an analysis for the malware samples which

showed that the majority of the malware was able to change

their process names to a legitimate system process. Malware

was also capable of attaching itself to a legitimate process

and, because of these two reasons, typical whitelisting meth-

ods are not effective, hence more sophisticated methods are

needed. In our previous work [13], we used simple shal-

low CNN model which proved effective but with a limited

detection accuracy. This was used as a baseline for our more

sophisticated RNN approach.

The main contributions in this paper are as follows:

• We introduce a novel approach of detecting cloud mal-

ware using RNNs by utilizing processes system features.

We demonstrate that the set of processes running in a

VM can be represented as a sequence of system features.

Further, we highlight that RNNs can effectively detect

the presence of malware processes within the benign

processes sequence.

• We provide a comparative analysis of Long Short Term

Memory (LSTM) and Bidirectional (BIDI) models in

terms of evaluation metrics, along with training and

detection time.

• We provide an analysis on the effect of using dif-

ferent input representations. Our experiments suggest

that both LSTM and BIDI models achieved high

performance regardless of the order of system fea-

tures, whereas, the order of processes within the

input sequences impacted the performance by a range

of 1-2%.

VOLUME 9, 2021 68067



J. C. Kimmell et al.: RNNs Based Online Behavioural Malware Detection Techniques for Cloud Infrastructure

TABLE 1. Classification of Malware detection approaches.

The remainder of this paper is as follows. Section II, dis-

cusses other related works regarding RNNs, malware detec-

tion, and cloud computing. Section III describes the approach

and methodology to our experiments. Section IV discusses

the experimental cloud set up and the results from the RNN

models. SectionV elaborates on the RNN sensitivity to differ-

ent input representations whereas cost analysis is described in

Section VI. Section VII focuses on discussion and highlights

some limitations, Section VIII summarizes the findings and

concludes with possible future directions.

II. RELATED WORK

Behavioral machine learning based malware detection

approaches can be divided into dynamic malware detec-

tion and online malware detection. An important distinction

between the two approaches is that, in dynamic malware

detection, executable (malware or benign) is run in a sandbox

and its behavior is captured, whereas in onlinemalware detec-

tion, the behavior of the entire system is captured with partic-

ular times being labeled as malicious if a malware is running.

In this section, we discuss some of the related dynamic and

online malware detection works. Further, we sub-categorize

these works based on several aspects including traditional

versus deep learning based approaches and whether the work

is cloud-specific, as shown in Table 1.

A. DYNAMIC MALWARE DETECTION

There have been several works on dynamicmalware detection

using traditional machine learning approaches. The works

in [14], [16] focused on using system calls as features.

Firdausi et al. [14] employed traditional machine learning

algorithms such as KNN, Naive Bayes, decision trees and

SVM, where as Lucket et al. [16] used neural networks. The

works in [15], [18] rely on system performance metrics and

traditional ML algorithms for malware detection. In addition,

Fan et al. [17] built a framework using sequence mining

techniques that effectively discover malicious patterns in

malware. This work utilizes a Nearest Neighbor classifier to

identify previously unknown malware.

68068 VOLUME 9, 2021



J. C. Kimmell et al.: RNNs Based Online Behavioural Malware Detection Techniques for Cloud Infrastructure

Recently, it has become clear that more sophisticated

approaches for malware detection are needed. This is mainly

because of the fact that traditional ML approaches require

extensive pre-processing and rigorous feature engineering

and representation. As such, recent research efforts have

moved towards employing end-to-end deep learning tech-

niques to bypass the feature engineering step. Many research

works [8], [19]–[24] aimed to overcome the limitations of

traditionalML approaches and employed DL algorithms. The

works in [21]–[24] provide malware detection methods based

on system calls and RNN. Others [8], [19], [20] have also

used Recurrent Neural Networks (RNN) and Convolutional

Neural Network (CNN) but, instead focused on API calls.

However, dynamic analysis has some limitations due to

controlled environment where the malware run. In many

cases, it cannot be analyzed completely due to limited access

of Internet. Sophisticated malware can detect the presence of

a sandbox and immediately terminate anymalicious behavior.

In addition, most of the dynamic detection target traditional

host-based systems and not specific to cloud infrastructures

(e.g., VMs). Consequentially, the need for online malware

detection approaches is necessary.

B. ONLINE MALWARE DETECTION

The advantages of online malware detection approaches are:

(1) they don’t rely on a closed environment, (2) they con-

tinuously monitor the VMs, as opposed to dynamic analysis

approaches where once an executable is deemed benign it

freely runs on the system, and (3) they consider the entire

VM behavior as opposed to just an executable behavior.

The authors in [25], [26] utilize performance counters

for online malware detection, whereas [27] proposed the

use of memory features; however, these works used tra-

ditional ML algorithms and targeted traditional host-based

systems. In order to enhance the accuracy of malware detec-

tion in cloud, more cloud-specific techniques are proposed.

Guan et al. [29] proposed an anomaly detection for VMs in

cloud environment using system calls. They used an ensemble

of Bayesian predictors and decision trees. Similarly, Azman-

dian et al. [28] proposed an intrusion detection system using

system calls and used traditional ML algorithms including

KNN and clustering. Further, Dawson et al. [31] used API

calls captured through the hypervisor and used a non linear

phase-space algorithm to detect anomalous behavior.

Other works have focused on using features that can only

be fetched through the hypervisor. Given that many exper-

imental setups are run within the context of a hypervisor,

it is common to see features collected from the hypervisor.

Also, such techniques are suitable to be implemented by

the CSP since they do not require inside visibility to the

VMs. Watson et al. [2] utilized performance metrics that can

be fetched from the hypervisor in order to detect malware.

This paper utilized a one class SVM for malware detec-

tion; however, they focused on malware that is known-to-be

as highly-active malware. Similarly, Abdelsalam et al. [30]

demonstrated a black box based approach to detect malware.

This work uses VM-level system and resource utilization

features. This worked well in detecting highly active malware

with high resource utilization features but was not as effective

in detecting malware that hide itself with low utilization.

Beside the works that used traditional ML algorithms,

others [9], [13], [32], [33] focused on using deep learn-

ing algorithms for online malware detection. The authors

in [13] extended their work in [30] and introduced a detection

method which uses a CNNmodel with the goal of identifying

low profile malware. This method achieved ≈90% accuracy

using resource utilization features and was able to identify

multiple low-profile malware since it focused on per-process

level performance metrics. One limitation of this work is that

the authors used a shallow CNN model and didn’t provide

an analysis on using various CNN models. In this regards,

McDole et al. [32] provided a baseline analysis of using state-

of-the-art CNN models including multiple ResNet [34] and

DenseNet [35] models. We extend this work by providing an

analysis on employing RNN.

In this paper, we primarily focus on online malware detec-

tion using RNN in cloud infrastructures. To the best of our

knowledge, this is the first work that uses RNN based mal-

ware detection approach using performance metrics in online

cloud environment. We provide a novel way of representing

a VM’s behavior as a sequence of processes performance

metrics as discussed in the next section. Additionally, our

work provides an insightful analysis on the RNN sensitivity

to different input representations for malware detection.

III. METHODOLOGY

In this section, we explain the methodology used for malware

detection in VMs in cloud infrastructure.

A. LSTM MODELS

RNN is a category of deep learning that can process sequen-

tial information such as language translation [36], speech

recognition [37], and time series prediction [38]. However,

it suffers from two problems. First, RNN struggles with short

term memory; this means that long inputs can cause the RNN

model to forget earlier information. Second, RNN models

are subject to vanishing gradients. This is where the gradi-

ent value becomes diminished as the model backpropagates,

which leads to the model not learning properly. LSTM was

created to resolve these problems [39]. LSTM units contain

input, forget, and output gates which control how the infor-

mation flows into and out of the cell. This allows them to

preserve important information and discard any unnecessary

data. As shown in Figure 1, LSTM contains sigmoid and

tanh activations. Sigmoid activations force inputs to a

value between 0 and 1. This is where information is either

retained or discarded. The closer the value is to 0, the less

important it is. The tanh activations keep values between

-1 and 1 to ensure that the output is regulated.

All of these gates help LSTM layers create a reliable

model that can leverage all of our sequential data without

the worry of losing data or having inaccurate gradients. The

VOLUME 9, 2021 68069



J. C. Kimmell et al.: RNNs Based Online Behavioural Malware Detection Techniques for Cloud Infrastructure

FIGURE 1. Architecture of a LSTM.

first step in the LSTM unit is the forget gate. Data from the

previous hidden state (ht-1) and data from the current input

is pushed through the sigmoid function, which as stated

earlier, forces these inputs to be changed to a value between

0 and 1. This is where the LSTM decides what information

to keep or discard. The next gate is the input gate; here, data

from the previous hidden state and the current input are once

again passed through the sigmoid function, but this time

they are also passed through a tanh function which regulates

the output by forcing the values between −1 and 1. The

outputs from the tanh function and the sigmoid function

are combined by using pointwise multiplication. Now we

have output from the forget gate and the input gate, so we

can now calculate the cell state to be passed on. This is done

by using pointwise multiplication on the previous cell state

and the forget gate. Pointwise addition is then used to add

the output from the input gate to the value obtained from the

previous step. Finally we have the output gate. This is where

data from the previous hidden state and the current input are

once again pushed through a sigmoid function, then the

current cell state is pushed through a tanh function. Point-

wise multiplication is then used to multiply these numbers to

produce the new hidden state. The new hidden state (ht) and

the new cell state (ct) is what is passed to the next LSTM unit.

B. BIDIRECTIONAL MODELS

Bidirectional LSTM models are able to process input in a

forward and backwards manner [40]. Instead of the layer

only processing the input normally by using one LSTM layer,

past to future, another LSTM layer is added that processes

the input starting at the last object of the input and working

its way backwards, i.e. future to past. Just like in a normal

LSTM layer, each bidirectional LSTM layer is assigned a

number of units. This bidirectional methodology allows the

model to learn more by analyzing the data from both direc-

tions and applying information from future inputs towards

its predictions. Once these two layers process their respec-

tive data, the output from these layers is then concatenated

together after each timestep. This type of model is useful

when extra context might be needed in order to make accurate

FIGURE 2. Architecture of a bidirectional (BIDI) layer.

predictions. In our case, the bidirectional model can analyze

future processes and use that information to determine what

might be happening at a current process. This creates a model

that is well suited to determine if a machine is infected with

malware or not by analyzing how the machine will behave in

the future. Figure 2, depicts the architecture of a bidirectional

LSTM layer within an RNN model.

C. SYSTEM FEATURES

The system features in Table 2 are the features used to define

processes behavior. The values are an example of the raw

data collected about a single process taken at a certain time.

Further processing of the data is required such as encoding

the strings using one-hot-encoding, and the data must be

flattened to a 1-dimensional vector before it can be used in

an RNN. Most of these features can be obtained by using

Virtual Machine Introspection (VMI) tools such as LibVMI3

to capture snapshots of VMs memory and, in turn, extract the

required information by using memory forensics tools such

as Volatility.4 This set of system features are intended for the

sole purpose of demonstrating the validity of our approach,

but more features can further enhance the accuracy.

D. UNIQUE PROCESSES AND RNN INPUT

System features are collected from all processes running

in a VM at certain time. With many short lived processes

(i.e. being created and destroyed quickly within each VM)

as well as having their IDs reassigned by the operating sys-

tem, it can be misleading and difficult to learn their behav-

ior. As such, we define ‘‘unique processes’’ (as introduced

in [13]) to reduce such dynamism. Unlike traditional operat-

ing system process which is identified by a ‘‘pid’’, a unique

process is more concerned about the behavior of a process and

is identified by a tuple of two elements process name and the

3LibVMI. http://libvmi.com/
4Volatility. https://www.volatilityfoundation.org/

68070 VOLUME 9, 2021



J. C. Kimmell et al.: RNNs Based Online Behavioural Malware Detection Techniques for Cloud Infrastructure

TABLE 2. System features sample.

FIGURE 3. Operating system processes and unique processes.

command used to run the process. Figure 3, shows an example

of operating system processes converted to unique processes.

Processes sharing the same 2-tuple (e.g., forked processes)

are aggregated by taking the average of their measures. This

approach also helps in reducing the number of processes in a

single sample.

The collected unique processes’ features will be repre-

sented as data samples to be used as input to the RNNmodels,

where each data sample is a sequence of unique processes.

We represent a sample X recorded at time t collecting n

features f for m unique processes up as follows:

Xt = up1











f1
f2
...

fn











→ up2











f1
f2
...

fn











· · · → upm











f1
f2
...

fn











Typically, a malware infects a VM and creates one or

more processes which will disrupt the benign sequence of

processes. Depending on the malware, it can attach itself

to another process and cease its own main process to avoid

detection which may turn some existing unique processes

behavior to malicious. As such, a malicious sample includes

some malicious processes interspersed between the benign

sequence and can be represented as follows (mpk denotes

malicious processes):

Xt = up1











f1
f2
...

fn











→ mp1











f1
f2
...

fn











· · · → upm











f1
f2
...

fn











→ mpk











f1
f2
...

fn











A malware process can hide within the large number of

running processes by renaming its process to some commonly

used names. However, using the concept of unique process

makes it harder for the malware process to hide because

the number of unique processes is substantially smaller. Fur-

ther, a malware process will be more visible since it will

be considered a unique process. Our aim is to learn from

the sequence of processes (including benign processes that

a malware attached to) in a given sample and to identify it as

malicious or benign.

IV. EXPERIMENTAL SETUP AND RESULTS

A. LSTM AND BIDI MODELS ARCHITECTURE

Our first model is based on LSTM and consists of eight

layers. The first three LSTM layers consist of 256, 128, and

64 units, respectively. Each of our LSTM layers is followed

by a dropout layer of 10% in order to prevent over fitting.

The final layer is an output layer with softmax activation.

Since we are using binary classification (i.e. malicious or

benign) we only need two output units. Our second RNN

model is bidirectional LSTM. This model consists of four

bidirectional LSTM layers. The four layers are comprised

of 512, 256, 128 neurons, and 64 neurons, respectively. Each

of these layers is followed by a dropout layer of 10%. The

output layer for this model consists of two output units and

uses a softmax activation. Both of these architectures were

chosen due to their simplicity which allows for faster training

times. Despite the models’ simplicity, they are still able to

perform at a high level.

These models are trained, validated and tested with a data

set that consists of 113 experiments, split by 60% for training,

20% for validation, and 20% for testing. To obtain optimal

models, a grid search method was used for hyperparameters

optimization, mostly, with respect to batch sizes (16, 32, and

64) and learning rates (.0001, .00001, .000001).

VOLUME 9, 2021 68071



J. C. Kimmell et al.: RNNs Based Online Behavioural Malware Detection Techniques for Cloud Infrastructure

FIGURE 4. Experimental openstack cloud testbed.

B. EXPERIMENTAL SETUP

1) CLOUD TESTBED

Getting accurate system features from the malware experi-

ments is imperative for showcasing near real world perfor-

mance. To accomplish this, a cloud testbed running an actual

application was used and multiple measures were taken to

ensure that the malware shows its true behavior. As shown

in Figure 4, the cloud testbed utilized OpenStack,5 a popular

open source cloud platform and consists of one control node

and four compute nodes. The control node handles tasks such

as the dashboard, storage, network, identity, and computing.

The compute nodes only handle computing services. Each

compute node is also supplied with agents for networking,

polling, and collecting.

To avoid hindering the malware and allow it to exhibit its

true malicious behavior, all of our experiments were con-

ducted in the wild where all the VMs were connected to the

Internet. This is because (i) sophisticated malware typically

has the ability to detect the presence of a closed restricted

environment (e.g., sandbox) and (ii) many malware, which

are controlled by a command and control server (C&C), cease

malicious activities upon failing to communicate with its

C&C. Also, all antivirus tools and firewalls were disabled.

2) MALWARE SAMPLES

In total, 113 linux malware executable were obtained from

VirusTotal.6 To avoid biased results towards certain malware

families, the malware was chosen randomly from various

categories (according to VirusTotal) including DoS, DDoS,

Backdoor, Trojan, Virus, Worm, among others.

5OpenStack. https://www.openstack.org/
6https://www.virustotal.com/

3) EXPERIMENTS DEPLOYMENT

Figure 5 shows an overview of the experiments deploy-

ment. The upper dotted box depicts the deployment of a

single experiment stack. To simulate a real world scenario,

a commonly used 3-tier web architecture, consisting of web-

servers, application servers, and a database, was deployed.

A front load balancer is deployed to handle and distribute

clients requests to appropriate web servers. Web servers are

connected to application servers via an internal load balancer

to distributed the requests among the application servers.

For simplicity, application servers are all connected to a sin-

gle powerful database server. Further, an auto-scaling policy

was implemented based on CPU usage. The same scalabil-

ity policy is applied to both web and application servers

independently. If the average CPU utilization of all VMs

belonging to the web or application tier exceeded 70%, new

VMs are spawned and attached to the corresponding load

balancer to meet demand. If the CPU utilization fell below

40%, VMs are deleted to reduce resource usage. In our exper-

iments, based on the traffic load, between 2 to 10 servers

were spawned in each tier. Random GET/POST requests,

denoting clients, were sent to the front load balancer using a

multi process python script running on a dedicated VM. For

integrity of experiments, the traffic/requests were generated

based on an ON/OFF Pareto distribution. This deployment

is intended to reflect the real world dynamic behavior of

cloud infrastructures to satisfy changing tenants resource

requirements.

The lower part of Figure 5 consists of a main control

VM and a data collection VM. The main control VM is

responsible for (i) keeping the malware executables in a

database, (ii) injecting a single malware in one of the applica-

tion servers at a certain point of time, and (iii) deploy/destroy

an experiment stack. We utilized OpenStack Heat orches-

tration service to easily deploy/destroy an experiment stack

using yaml scripts. The data collection VM is responsible

for collecting data from the infected VM. The process for

collecting data is shown in Figure 6. Each experiment lasted

a total of 1 hour. The first 30 minutes is referred to as the

benign phase, where there is no malware running. A single

malware is injected at a random time between minute 30 and

40 in one of the application servers. Varying the malware

injection/execution time introduces more dynamism into the

experiments and ensuring that consistency of injecting mal-

ware at the same point in time would not affect the results.

Starting minute 40 is referred to as malicious phase, where a

malware is running. Data samples are collected every 10 sec-

onds (resulting in 360 samples in total for each experiment)

using a host based built in python script, and are stored into

a database. 113 experiments were conducted, each using a

different malware executable. Each of these 113 experiments

generated 360 samples for each individual experiment. This

results in a total of 40,680 total samples. The main control

VM destroys the entire experiment stack (upper box) after

each experiment to prevent data contamination of subsequent

experiments/runs.

68072 VOLUME 9, 2021



J. C. Kimmell et al.: RNNs Based Online Behavioural Malware Detection Techniques for Cloud Infrastructure

FIGURE 5. Overview of experiments deployment.

FIGURE 6. Data collection phases.

4) RNN MODELS TRAINING

All experiments resulted in 40,680 data samples collected.

This is because the data we are collecting represent the

behavior of all processes in the virtual machine, not just the

actual malware executables. Models training was performed

on a high performance computing center (HPC) with four

Dell PowerEdge R730 servers, each with one NVIDIA Tesla

K80 GPU. The RNN models were built and tested by Python

scripts using Keras7 API which is built on top of Tensorflow.8

5) RNN INPUT

As stated in Section III-D, the input to the RNN models

is a sequence of vectors, each denoting the features for a

particular unique process. In our experiments, the maximum

number of unique processes in any experiment is 120, hence,

all sequences are padded to be of the same length. The

system features (Table 2) collected for each unique process

are preprocessed by converting categorical string features to

one-hot vectors and standardizing the data values.

7https://keras.io/
8https://www.tensorflow.org/

C. EVALUATION

The performance of our models is measured by five evalua-

tion metrics, accuracy, precision, recall, and F1 score.

Accuracy =
TP+ TN

TP+ TN + FP+ FN

Precision =
TP

TP+ FP

Recall =
TP

TP+ FN

F1 Score = 2 ×
Precision× Recall

Precision+ Recall

True positives (TP) is the number of correctly classified

malicious samples. True negative (TN) is the number of

correctly classified benign samples. False positive (FP) is

the number of benign samples that were incorrectly clas-

sified as malicious. False negative (FN) is the number of

malicious samples that were incorrectly classified as benign.

The accuracy metric is the measure of correct classification.

Precision is the measure of correct positive classifications

over the total number of positive classifications. Recall is a

measure of correctly classified malicious samples over the

actual number of malicious samples. F1 score is the balance

between precision and recall.

D. RESULTS

As stated in Section IV-A, a different malware is used in each

of the 113 experiments and the dataset collected were divided

into 60% training, 20% validation and 20% testing. In order

to emphasize the ability of our models to detect zero-day

malware, the dataset were split on the number of experiments

VOLUME 9, 2021 68073



J. C. Kimmell et al.: RNNs Based Online Behavioural Malware Detection Techniques for Cloud Infrastructure

FIGURE 7. Results of LSTM and BIDI (α and β) models.

TABLE 3. Detailed results for LSTM and BIDI (α and β) models.

(i.e. 67 training, 23 validation and 23 testing). This ensures

that the data samples collected from the 23 experiments

(based on 23 unseen malware) for testing were completely

unseen to the RNN models. The training dataset is used to

train the RNN models, the validation dataset is used as a way

to tune the hyperparameters (e.g., learning rate, batch-size,

etc.) to get optimal models, and the testing dataset is used

to measure the detection ability of the optimized LSTM and

BIDI models.

To ensure the validity of our results, both LSTM and BIDI

models were trained twice (i.e. LSTMα , LSTMβ , BIDIα and

BIDIβ ). The order of input sequences to the α and β models

is slightly different to introduce dynamism. All RNN models

were trained for 40 epochs since there was no decrease in the

loss afterwards.

Figure 7 depicts the results of our experiment where the

bars shown were produced by calculating different evaluation

metrics for each the LSTM and BIDI optimal models. In our

case, the optimal models are identified by hyperparameters

of batchsize = 32 and learningrate = 1e−5. Both of the α

and β models were able to detect newly seen malware with

high accuracy in all metrics exceeding 99% (exact numbers

are given in Table 3). The α models achieved higher precision

scores than the β models, whereas the β models achieved

higher recall scores than the α models. Even though the

difference in recall and precision scores between the α and β

models is veryminuscule, these results suggests that the order

of processes within input sequences might affect the models

learning ability (more details are discussed in Section V).

Figure 8 shows the training and validation mean cross

entropy loss during the models’ learning progression. Train-

ing loss is recorded after each iteration, whereas validation

loss is recorded after each epoch. The figure shows that the

models were able to properly generalize and learn from the

given datasets. The red line indicates the epoch where a par-

ticular model scored the highest validation accuracy during

the 40 epochs training phase.

V. RNN SENSITIVITY TO DIFFERENT INPUT

REPRESENTATIONS

In Section III-D, we described how we construct the samples

that are used in our experiments. Each sample consists of

a sequence of unique processes. However, it is not clear

whether the order of unique processes and features in a single

sample would affect the RNN models’ ability to learn and

generalize effectively. Altering the ordering of the input data

can often reveal insights as to how to best train certainmodels.

For instance, the authors in [41] provided an analysis on the

effects of input ordering when using CNNmodels. They used

similar process system features for malware detection using

CNNmodels and studied the effects of processes and features

ordering in the input, represented as an image (denoting pro-

cesses × features). The authors performed experiments with

CNN models by generating different sets of the same input

data with different orderings. In this study, the authors were

able to enhance the accuracy of detecting malware from 90%

to 98%. As such, it was concluded that certain orderings of

input data can in fact improve the performance of the models

and must be constructed properly.

In this section, we provide an analysis on whether the order

of sequence in a single sample (denoted by row models) as

well as the order of features (denoted by col models) would

affect the results of the RNN models. The key intuition of

this analysis lies in the fact that some unique processes might

be closely related, and including them in close proximity in

the input sequences might help the models to easily draw and

learn such correlations. For example, consider two unique

processes of the FastCGI Process Manager (FPM) php-fpm:

master and the its forked pool of processes php-fpm: pool (see

Figure 3). Similarly, some system features might be related.

For example, features of cpu usage such as cpu_user, cpu_sys,

cpu_num, and cpu_percent are closely related. As shown

in Figure 9, different row orderings are created by randomly

changing the sequence of unique processes for all samples.

Similarly, different column orderings are created by randomly

changing the order of the features that belong to each unique

process. This increases the odds of preventing related pro-

cesses or features from appearing in close positions in a given

sample.

A. RANDOM ORDERING RESULTS

In our experiments, we trained four LSTM (i.e. LSTM colα,

colβ, colγ , and colδ) and BIDI models (i.e. BIDI colα,

68074 VOLUME 9, 2021



J. C. Kimmell et al.: RNNs Based Online Behavioural Malware Detection Techniques for Cloud Infrastructure

FIGURE 8. Mean cross entropy loss for LSTM and BIDI (α and β) models.

FIGURE 9. Input samples random ordering.

colβ, colγ , and colδ) based on features random orderings.

Additionally, we trained three LSTM (i.e. rowα, rowβ, rowγ )

and BIDI models (i.e. rowα, rowβ, rowγ ) based on unique

processes random orderings.

Figure 10 shows the results of colα and rowα LSTM

and BIDI models only (exact results numbers are shown

in Table 4). LSTMcolα and BIDIcolα models achieved high

results with close to 100% in all metrics. On the other hand,

LSTMrowα and BIDIrowα have shown a decrease of ≈ 2%

in terms of precision and ≈ 1% for f1 score. The evalua-

tion metrics of the remaining trained models have reflected

similar results as discussed in Table 6 and Table 8 in the

Appendix. Figure 11 shows training and validation mean

cross entropy loss during colα and rowα LSTM and BIDI

FIGURE 10. Results of LSTM and BIDI (colα and rowα) models.

models training phase. By examining the loss, it is clear

that, unlike colα LSTM and BIDI models, rowα LSTM

and BIDI models shows more fluctuation and difficulties in

learning smoothly. We discuss and analyze these results in

Section VII.

VOLUME 9, 2021 68075



J. C. Kimmell et al.: RNNs Based Online Behavioural Malware Detection Techniques for Cloud Infrastructure

FIGURE 11. Mean cross entropy loss for LSTM and BIDI (colα and rowα) models.

TABLE 4. Results of LSTM and BIDI (colα and rowα) models.

VI. COST ANALYSIS

In this section, we provide cost analysis with respect to the

LSTM and BIDI models’ training time. A problemwith train-

ing RNN models is in the choice of the number of training

epochs to use. Training the model for too many epochs can

lead to overfitting (even with dropout layers), where as, train-

ing for too few epochs may lead the model to underfitting.

In our case, we determined that 40 epochs are sufficient for

our models to properly converge. During these 40 epochs,

the set of weights that achieved the highest accuracy on the

validation data set is recorded and chosen to be the most

optimal model in each of the case. Although, some models

can converge and learn faster than others.

Table 5 shows the epochs where the RNNmodels achieved

the highest validation accuracy along with the time taken

in seconds and the corresponding loss. In general, the LSTM

models converged relatively faster than the BIDI models.

TABLE 5. Training time for Optimal LSTM and BIDI models.

The LSTMα , LSTMβ , LSTMrowα , and LSTMcolα models

were the fastest to converge respectively in 847, 2888, 3035,

and 2993 seconds, while the BIDIα , BIDIβ , BIDIrowα , and

BIDIcolα models took more time to converge respectively

in 4160, 5247, 6219, and 3126 seconds. This is due to the

fact that BIDI models add another backwards layer to the

model, and therefore increasing the total time to train. Input

representation is another factor that affects the training time.

The results in Table 5 indicate that some random col and row

orderings9 prolong the time taken for the model to converge.

9Detailed results for training time for different input representations are
shown in Table 7 and Table 9 under Appendix.

68076 VOLUME 9, 2021



J. C. Kimmell et al.: RNNs Based Online Behavioural Malware Detection Techniques for Cloud Infrastructure

Particularly, this is more evident for the row orderings where

both LSTMrowα and BIDIrowα models achieved the highest

validation accuracy in epoch 40. This can also be seen clearly

in Figure 11, where LSTMrowα and BIDIrowα models train-

ing and validation curve is more fluctuant due to separating

related unique processes.

As reflected by the results, all our models were able

to detect the presence of malware within one input

sample.

VII. DISCUSSION AND LIMITATIONS

In this section, we discuss some rationale about our results as

well as limitations and potential future work improvements.

The results in Section IV-D illustrated that both LSTM

and BIDI models achieve almost equally high performance.

However, it was clear from the results in Section VI that

the LSTM models achieved such performance in a shorter

amount of training time. Even though the BIDIβ model

achieved its highest validation accuracy after 33 epochs and

the LSTMβ model achieved its highest validation accuracy

after 38, the time taken for the BIDI model is almost double

the time taken for the LSTM model. As such, there is no

added value in using a BIDI models over LSTMmodels since

both were able to achieve similar scores with respect to the

evaluation metrics.

The results derived from the experiments in Section V-A

showed that input representation in terms of the order of

unique processes and features is a major concern in terms of

detection performance and training cost. The col orderings

results indicated that the order of features doesn’t impact

the performance of our models, where as, the row orderings

results indicated that the order of unique processes in a

given input sample impacts the results within a range of 1%

to 2% in f1 score and recall. These results align with [41]

where the authors concluded that the order of features is not

as important as the order of processes in the samples for

their CNN models. The order of processes highly impacted

their obtained results with 8% enhancement after using an

approach to provide a proper order. This advocates that RNN

models are more robust to input sensitivity than CNNmodels.

The aim of the random orderings experiments is to high-

light the issue of input representation. A further analysis on

how to systematically devise a proper input representation to

enhance the results is left to future work.

One limitation in our work lies in the size of our experi-

ments. We conducted 113 experiments each using a different

malware executable, but more samples would allow us to

obtain a deeper understanding of how our detection models

perform against differing malware types. Another limitation

in this work is the assumption that a VM is infected by a

single malware. In practice, a VM can be infected by mul-

tiple malware simultaneously. An analysis of whether our

detection system will work as expected during the presence

of multiple malware working at once is needed. Further, our

work focuses on detecting malware in a single VM. However,

in cloud auto scaling architectures, a malware that infects a

TABLE 6. Random column ordering results.

single VM can propagate to similarly configured VMs fairly

quickly. As such, malware propagation as well as multiple

malware infections are left to future work. Another limitation

to our work is that it is possible for malware to slip in between

the averages within a group of processes with the same name.

This is a common drawback associatedwith anymethodology

that generates meta-stats (e.g., average, standard deviation,

etc.). This drawback is confined to the unique process aspect

of our approach since this is where we are averaging the

measurements of processes in order to reduce the number of

features.

VIII. CONCLUSION

In this paper, we introduce an approach of using LSTM and

BIDImodels for onlinemalware detection based on processes

system features. Results showed that both LSTM and BIDI

models achieved outstanding performance (over 99%) on the

testing dataset; however, the LSTM models required less

time than the BIDI models to achieve such performance.

Additionally, we analyzed the impact of input representations

on our models by conducting random ordering experiments

with respect to unique processes and features (i.e., col and

row experiments). On one hand, the results showed that the

order of the features doesn’t impact the models performance,

whereas, it impacts the training time of the models. On the

other hand, the order of unique processes impacts the perfor-

mance as well as the training time of the models.

In the future, we plan to increase the scale of our experi-

ments by using thousands ofmalware samples includingmore

malware families. Additionally, we plan to study the impacts

of malware propagation to similarly configured VMs in a

cloud environment on the robustness of our detection mod-

els. We also plan to study the impacts of multiple malware

infections to the same VM.

APPENDIX A

RANDOM COLUMN ORDERINGS

Table 6, Figure 12, and Figure 13 show the remaining results

generated by the LSTM and BIDI (colα, colβ, colγ , and colδ)

models that were trained eachwith a random feature ordering.

In addition, Table 7 shows the training time and the number

of epochs needed in order for these models to achieve their

highest validation accuracy.

VOLUME 9, 2021 68077



J. C. Kimmell et al.: RNNs Based Online Behavioural Malware Detection Techniques for Cloud Infrastructure

FIGURE 12. Results from LSTM models with random column ordering.

FIGURE 13. Results from BIDI models with random column ordering.

TABLE 7. Training time for random column ordering.

APPENDIX B

RANDOM ROW ORDERINGS

Table 8, Figure 14, and Figure 15 show the remaining results

generated by the LSTM and BIDI (rowα, rowβ, and rowγ )

models that were trained eachwith a random feature ordering.

TABLE 8. Random row ordering results.

FIGURE 14. Results from LSTM models with random row ordering.

FIGURE 15. Results from BIDI models with random row ordering.

TABLE 9. Training time for random row ordering.

In addition, Table 9 shows the training time and the number

of epochs needed in order for these models to achieve their

highest validation accuracy.

68078 VOLUME 9, 2021



J. C. Kimmell et al.: RNNs Based Online Behavioural Malware Detection Techniques for Cloud Infrastructure

REFERENCES

[1] P. Mell and T. Grance, ‘‘The NIST definition of cloud computing,’’ Nat.

Inst. Standards Technol., Gaithersburg, MD, USA, Tech. Rep. Special

Publication 800-145, 2011.

[2] M. R. Watson, N.-U.-H. Shirazi, A. K. Marnerides, A. Mauthe, and

D. Hutchison, ‘‘Malware detection in cloud computing infrastructures,’’

IEEE Trans. Dependable Secure Comput., vol. 13, no. 2, pp. 192–205,

Mar. 2016.

[3] K. Dahbur, B. Mohammad, and A. B. Tarakji, ‘‘A survey of risks, threats

and vulnerabilities in cloud computing,’’ inProc. Int. Conf. Intell. Semantic

Web-Services Appl., 2011, pp. 1–6.

[4] A. Gholami and E. Laure, ‘‘Security and privacy of sensitive data in cloud

computing: A survey of recent developments,’’ 2016, arXiv:1601.01498.

[Online]. Available: http://arxiv.org/abs/1601.01498

[5] Z. Xiao and Y. Xiao, ‘‘Security and privacy in cloud computing,’’ IEEE

Commun. Surveys Tuts., vol. 15, no. 2, pp. 843–859, May 2013.

[6] M. Rhode, P. Burnap, and K. Jones, ‘‘Early-stage malware prediction

using recurrent neural networks,’’ Comput. Secur., vol. 77, pp. 578–594,

Aug. 2018.

[7] A. Alotaibi, ‘‘Identifying malicious software using deep residual long-

short term memory,’’ IEEE Access, vol. 7, pp. 163128–163137, 2019.

[8] S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi, ‘‘Malware

detection with deep neural network using process behavior,’’ in Proc.

IEEE 40th Annu. Comput. Softw. Appl. Conf. (COMPSAC), Jun. 2016,

pp. 577–582.

[9] M. Abdelsalam, R. Krishnan, and R. Sandhu, ‘‘Online malware detec-

tion in cloud auto-scaling systems using shallow convolutional neural

networks,’’ in Proc. IFIP Annu. Conf. Data Appl. Secur. Privacy. Cham,

Switzerland: Springer, 2019, pp. 381–397.

[10] A. Shalaginov, S. Banin, A. Dehghantanha, and K. Franke, ‘‘Machine

learning aided static malware analysis: A survey and tutorial,’’ in Cyber

Threat Intelligence. Cham, Switzerland: Springer, 2018, pp. 7–45.

[11] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman,

S. Sethumadhavan, and S. Stolfo, ‘‘On the feasibility of online malware

detection with performance counters,’’ ACM SIGARCH Comput. Archit.

News, vol. 41, no. 3, pp. 559–570, Jun. 2013.

[12] A. McDole, M. Gupta, M. Abdelsalam, S. Mittal, and M. Alazab, ‘‘Deep

learning techniques for behavioral malware analysis in cloud IaaS,’’ in

Malware Analysis Using Artificial Intelligence and Deep Learning. Cham,

Switzerland: Springer, 2021, pp. 269–285.

[13] M. Abdelsalam, R. Krishnan, Y. Huang, and R. Sandhu, ‘‘Malware detec-

tion in cloud infrastructures using convolutional neural networks,’’ in Proc.

IEEE 11th Int. Conf. Cloud Comput. (CLOUD), Jul. 2018, pp. 162–169.

[14] I. Firdausi, C. Lim, A. Erwin, and A. S. Nugroho, ‘‘Analysis of machine

learning techniques used in behavior-based malware detection,’’ in Proc.

2nd Int. Conf. Adv. Comput., Control, Telecommun. Technol., Dec. 2010,

pp. 201–203.

[15] R. S. Pirscoveanu, S. S. Hansen, T. M. T. Larsen, M. Stevanovic,

J. M. Pedersen, and A. Czech, ‘‘Analysis of malware behavior: Type clas-

sification using machine learning,’’ in Proc. Int. Conf. Cyber Situational

Awareness, Data Anal. Assessment (CyberSA), Jun. 2015, pp. 1–7.

[16] P. Luckett, J. T. McDonald, and J. Dawson, ‘‘Neural network analysis

of system call timing for rootkit detection,’’ in Proc. Cybersecur. Symp.

(CYBERSEC), Apr. 2016, pp. 1–6.

[17] Y. Fan, Y. Ye, and L. Chen, ‘‘Malicious sequential pattern mining for

automatic malware detection,’’ Expert Syst. Appl., vol. 52, pp. 16–25,

Jun. 2016.

[18] S. Joshi, H. Upadhyay, L. Lagos, N. S. Akkipeddi, and V. Guerra,

‘‘Machine learning approach for malware detection using random forest

classifier on process list data structure,’’ in Proc. 2nd Int. Conf. Inf. Syst.

Data Mining (ICISDM), 2018, pp. 98–102.

[19] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A. Thomas,

‘‘Malware classification with recurrent networks,’’ inProc. IEEE Int. Conf.

Acoust., Speech Signal Process. (ICASSP), Apr. 2015, pp. 1916–1920.

[20] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, ‘‘Deep learning for

classification of malware system call sequences,’’ in Proc. Australas. Joint

Conf. Artif. Intell. Cham, Switzerland: Springer, 2016, pp. 137–149.

[21] M. A. Halim, A. Abdullah, andK. A. Z. Ariffin, ‘‘Recurrent neural network

for malware detection,’’ Int. J. Advance Soft Compu. Appl, vol. 11, no. 1,

pp. 43–63, 2019.

[22] X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah, ‘‘Android

malware detection based on system call sequences and LSTM,’’ Multime-

dia Tools Appl., vol. 78, no. 4, pp. 3979–3999, Feb. 2019.

[23] W. Xie, S. Xu, S. Zou, and J. Xi, ‘‘A system-call behavior language system

for malware detection using a sensitivity-based LSTM model,’’ in Proc.

3rd Int. Conf. Comput. Sci. Softw. Eng., May 2020, pp. 112–118.
[24] P. Mishra, K. Khurana, S. Gupta, and M. K. Sharma, ‘‘VMAnalyzer:

Malware semantic analysis using integrated CNN and bi-directional LSTM

for detecting VM-level attacks in cloud,’’ in Proc. 12th Int. Conf. Contemp.

Comput. (IC), Aug. 2019, pp. 1–6.
[25] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman,

S. Sethumadhavan, and S. Stolfo, ‘‘On the feasibility of online malware

detection with performance counters,’’ ACM SIGARCH Comput. Archit.

News, vol. 41, no. 3, pp. 559–570, Jun. 2013.
[26] M. Ozsoy, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and D. Ponomarev,

‘‘Malware-aware processors: A framework for efficient online malware

detection,’’ in Proc. IEEE 21st Int. Symp. High Perform. Comput. Archit.

(HPCA), Feb. 2015, pp. 651–661.
[27] Z. Xu, S. Ray, P. Subramanyan, and S. Malik, ‘‘Malware detection using

machine learning based analysis of virtual memory access patterns,’’

in Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE), Mar. 2017,

pp. 169–174.
[28] F. Azmandian, M. Moffie, M. Alshawabkeh, J. Dy, J. Aslam, and D. Kaeli,

‘‘Virtual machine monitor-based lightweight intrusion detection,’’ ACM

SIGOPS Oper. Syst. Rev., vol. 45, no. 2, pp. 38–53, Jul. 2011.
[29] Q. Guan, Z. Zhang, and S. Fu, ‘‘Ensemble of Bayesian predictors and deci-

sion trees for proactive failure management in cloud computing systems,’’

J. Commun., vol. 7, no. 1, pp. 52–61, Jan. 2012.
[30] M.Abdelsalam, R. Krishnan, andR. Sandhu, ‘‘Clustering-based IaaS cloud

monitoring,’’ in Proc. IEEE 10th Int. Conf. Cloud Comput. (CLOUD),

Jun. 2017, pp. 672–679.
[31] J. A. Dawson, J. T. McDonald, L. Hively, T. R. Andel, M. Yampolskiy,

and C. Hubbard, ‘‘Phase space detection of virtual machine cyber events

through hypervisor-level system call analysis,’’ in Proc. 1st Int. Conf. Data

Intell. Secur. (ICDIS), Apr. 2018, pp. 159–167.
[32] A. McDole, M. Abdelsalam, M. Gupta, and S. Mittal, ‘‘Analyzing CNN

based behavioural malware detection techniques on cloud IaaS,’’ in Proc.

CLOUD, 2020, pp. 64–79.
[33] F. Xiao, Z. Lin, Y. Sun, and Y. Ma, ‘‘Malware detection based on deep

learning of behavior graphs,’’ Math. Problems Eng., vol. 2019, pp. 1–10,

Feb. 2019.
[34] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image

recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),

Jun. 2016, pp. 770–778.
[35] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely

connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit. (CVPR), Jul. 2017, pp. 4700–4708.
[36] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using

RNN encoder-decoder for statistical machine translation,’’ 2014,

arXiv:1406.1078. [Online]. Available: http://arxiv.org/abs/1406.1078
[37] A. Graves, A.-R.Mohamed, andG. Hinton, ‘‘Speech recognition with deep

recurrent neural networks,’’ inProc. IEEE Int. Conf. Acoust., Speech Signal

Process., May 2013, pp. 6645–6649.
[38] F. Ilhan, O. Karaahmetoglu, I. Balaban, and S. S. Kozat, ‘‘Markovian RNN:

An adaptive time series prediction network with HMM-based switching for

nonstationary environments,’’ 2020, arXiv:2006.10119. [Online]. Avail-

able: http://arxiv.org/abs/2006.10119
[39] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural

Comput., vol. 9, no. 8, pp. 1735–1780, 1997.
[40] M. Schuster and K. K. Paliwal, ‘‘Bidirectional recurrent neural networks,’’

IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673–2681, Nov. 1997.
[41] R. Klepetko and R. Krishnan, ‘‘Analyzing CNNmodel performance sensi-

tivity to the ordering of non-natural data,’’ in Proc. 4th Int. Conf. Comput.,

Commun. Secur. (ICCCS), Oct. 2019, pp. 1–8.

JEFFREY C. KIMMELL is currently pursuing the

B.S. degree in computer science. He will continue

to pursue the master’s degree in computer science.

He is also a senior with Tennessee Technologi-

cal University. His research interests include deep

learning and AI based malware analysis in cloud.

VOLUME 9, 2021 68079



J. C. Kimmell et al.: RNNs Based Online Behavioural Malware Detection Techniques for Cloud Infrastructure

ANDREW D. MCDOLE received the B.S. degree

from Tennessee Tech University. He is currently a

Graduate Student of Computer Science with Ten-

nessee Tech University. He is also a member of

CyberCorps and has worked extensively in deep

learning based and AI malware analysis in cloud.

MAHMOUD ABDELSALAM received the B.Sc.

degree from the Arab Academy for Science

and Technology and Maritime Transportation

(AASTMT), in 2013, and the M.Sc. and Ph.D.

degrees from The University of Texas at San Anto-

nio (UTSA), in 2017 and 2018, respectively. He is

currently an Assistant Professor with the Depart-

ment of Computer Science, Manhattan College.

Prior to joining the Manhattan College, he worked

as a Postdoctoral Research Fellow with the Insti-

tute for Cyber Security (ICS), UTSA.His research interests include computer

systems security, anomaly and malware detection, cloud computing secu-

rity and monitoring, cyber physical systems security, and applied machine

learning.

MAANAK GUPTA (Member, IEEE) received the

B.Tech. degree in computer science and engineer-

ing, India, the M.S. degree in information systems

from Northeastern University, Boston, MA, USA,

and the M.S. and Ph.D. degrees in computer sci-

ence from The University of Texas at San Anto-

nio (UTSA). He worked as a Postdoctoral Fellow

with the Institute for Cyber Security (ICS), UTSA.

He is currently an Assistant Professor of Computer

Science with Tennessee Technological University,

Cookeville, TN, USA. His research interests include security and privacy

in cyber space focused in studying foundational aspects of access control

and their application in technologies, including cyber physical systems,

cloud computing, the IoT, and big data. He has worked in developing novel

security mechanisms, models and architectures for next generation smart

cars, smart cities, intelligent transportation systems, and smart farming. He is

also interested in machine learning based malware analysis and AI assisted

cyber security solutions. His research has been funded by the U.S. National

Science Foundation (NSF), NASA, the U.S. Department of Defense (DoD),

and private industry.

RAVI SANDHU (Fellow, IEEE) received the

B.Tech. degree from IIT Bombay, the M.Tech.

degree from IIT Delhi, and the M.S. and Ph.D.

degrees from Rutgers University. He is currently

a Professor of Computer Science, the Executive

Director of the Institute for Cyber Security, and

a Lead PI of the NSF Center for Security and

Privacy Enhanced Cloud Computing, The Univer-

sity of Texas at San Antonio, where he holds the

Lutcher Brown Endowed Chair of Cyber Security.

Previously, he has served on the faculty for George Mason University, from

1989 to 2007, and Ohio State University, from 1982 to 1989. A prolific

and highly cited author, his research has been funded by NSF, NSA, NIST,

DARPA, AFOSR, ONR, AFRL, ARO, and private industry. He is also a

Fellow ofACMandAAAS.He received numerous awards from IEEE, ACM,

NSA, NIST, and IFIP. He was the Chairman of ACM SIGSAC, and founded

the ACM Conference on Computer and Communications Security, the ACM

Symposium on Access Control Models and Technologies, and the ACM

Conference on Data and Application Security and Privacy.

68080 VOLUME 9, 2021


