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ABSTRACT: When combined, molecular simulations and small-
angle scattering experiments are able to provide molecular-scale
resolution of structure. Separately, scattering experiments provide
only intermingled pair correlations between atoms, while molecular
simulations are limited by model quality and the relatively short time
scales that they can access. Their combined strength relies on
agreement between the experimental spectra and those computed by
simulation. To date, computing the neutron spectra from a
molecular simulation of a lipid bilayer is straightforward only if
the structure is approximated by laterally averaging the in-plane
bilayer structure. However, this neglects all information about lateral
heterogeneity, e.g., clustering of components in a lipid mixture. This
paper presents two methods for computing the scattering intensity

of simulated bilayers with in-plane heterogeneity, enabling a full treatment of both the transverse and lateral bilayer structure for the

first time. The first method, termed the Dirac Brush, computes the

exact spectra including spurious artifacts resulting from using

information from neighboring periodic cells to account for the long-range structure of the bilayer. The second method, termed
PFFT, applies a mean-field treatment in the field far from a scattering element, resulting in a correlation range that can be tuned
(eliminating correlations with neighboring periodic images), but with computational cost that prohibits obtaining the exact (Dirac
Brush) spectra. Following their derivation, the two methods are applied to a coarse-grained molecular simulation of a bilayer
inhomogeneity, demonstrating the contributions of lateral correlations to the resulting spectra.

1. INTRODUCTION

The molecular structure of cellular membranes remains a
central problem in biophysics. The lateral distribution of
membrane constituents has spawned an enormous literature,
motivated by the raft idea of Simons and co-workers,"” which
posits that lipids and proteins conspire to colocalize signaling
partners for functional ends. Thus, the thermodynamic
behavior of well-defined mixtures of phospholipids and
cholesterol has been extensively studied®™'* as a model for
the plasma membrane to discern whether such mixtures might
mimic a raftlike organization. Phase diagrams of ternary
mixtures that include cholesterol as a component reveal a
region of composition space in which two distinct fluids
coexist.” Coexistence of liquid-ordered (L,) and liquid-
disordered (Ly) phases has been observed by fluorescence
microscopy,”’” NMR'® and EPR spectroscopies,' """ distri-
butions of FRET donor—acceptor pairs,'® and X-ray'® and
neutron scattering.19

While significant progress has been made in classifying the
phase regions of multicomponent lipid mixtures, far less is
known about the lipid distributions within individual phases.
The L, phase is enriched in sterol and lipids with higher chain-
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melting temperatures (e.g., sphingomyelins), resulting in more
ordered hydrocarbon chains,'® a smaller area per lipid,” and a
thicker bilayer than the L, phase.”’ Atomistic simulations
indicate that the distribution of phospholipids and cholesterol
within the L, phase is also heterogeneous, comprising regions
of hexagonally packed substructures of a few nanometers in
size, interspersed with more disordered regions.”"”* Much
more complex mixtures of lipids and proteins obtained by
swelling large vesicles directly from living cells also phase
separate into coexisting fluid phases,”>™>> suggesting that
simpler lipid mixtures remain a useful model for the plasma
membrane.

Given that signaling events at the membrane often entail the
encounter of two or more partners, the lateral organization of
lipids on the 5—10 nm length scale is of particular interest.
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Experimental measurements capable of revealing features on
this length scale therefore warrant special consideration. While
some fluorescence-based methods are useful for this
purpose,”®™*® scattering methods offer a complementary
approach that does not require the introduction of bulky
spin or fluorescent labels that may perturb lipid phase
behavior.'”***° Neutron scattering is especially powerful, by
virtue of the neutron’s short wavelengths, compared to visible
light, and the large difference in coherent scattering length
between hydrogen’s stable isotopes protium ('H) and
deuterium (*H). It has been used alongside molecular
dynamics simulation (MD) for over 15 years to uncover the
details of transverse membrane structure.”’ ~** More recently,
the joint refinement of force-field parameters against neutron
and X-ray scattering data has led to significant improvements
in lipid models.**™*

Recent work has focused on lateral structure. A judicious
choice of deuteration scheme readily reveals features of lateral
organization down to about 5 nm, as shown recently by
Heberle et al. using small-angle neutron scattering (SANS) to
detect nanoscale domains in unilamellar vesicles.”” A similar
approach was used to infer the presence of nanoscopic
domains in the membrane of B. subtilis.** However, detection
of lateral structure in the 5—10 nm range by SANS alone is
nontrivial. First, the range of deuteration schemes is
complicated by the incoherent background of the protium in
the sample, which makes the detection of small signals
challenging. Second, and more importantly, the scattering from
isotropic aqueous liposome dispersions mixes the desired
signal arising from in-plane contrast (i.e., domains) with that
arising from the transverse contrast normal to the plane of the
bilayer—as well as from the size and shape of the vesicle. To a
great extent, prior SANS experiments and concomitant analysis
exploited the variation in contrast in the transverse direction,
from solvent, to hydrocarbon, and back to solvent. It is
reasonable to consider only transverse contributions to the
scattering signal if the sample is laterally homogeneous on the
length scale of interest. This approach fails, however, if the goal
is to identify lateral structure on 5—10 nm length scales. For
this purpose, a method that allows direct calculation of the
SANS intensity from an MD simulation—without any
assumptions about lateral averaging—would be of great value.

Here, we introduce new methods for computing the SANS
intensity directly from MD simulations (all-atom or coarse-
grained) of planar bilayers. The problem of incorporating
scattering correlations between a target region (ie, a
nanoscopic region of the bilayer) and the surrounding material
is analogous to treating a protein solvated in water. A number
of software approaches make distinctions between the water
layer near the protein and the bulk water whose structure and
density are uncorrelated to the configuration of the
protein.”' =" This approach is viable due to the finite size of
the protein, but it is not easily extended to bilayers which are
effectively simulated as infinite sheets. Typical all-atom
simulation sizes are 10—20 nm, a length scale that is sufficient
to capture the local structure described above. However, a
naive approach that includes only contributions from
correlations within the simulation box fails to accurately
predict the SANS intensity in a way that allows meaningful
comparison with experimental data. Here, we describe two
methods that resolve the finite-size issue in different ways. The
Dirac Brush method (whose name is derived from a hairbrush-
like two-dimensional array of Dirac delta functions in Fourier
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space) is based on replication of the central box. It is relatively
straightforward but includes periodic boundary condition
artifacts that result from including correlations with neighbor-
ing cells, which, unlike for a fluid or protein, is generally
necessary when considering a system with long-range
correlations like a bilayer. The second approach, which we
term the Particle-Far-Field Transform (PFFT) method, uses
direct particle—particle correlations for near-field contributions
and a laterally averaged continuum for the far-field
contributions. Using a variable cutoff between full discrete
scattering and a mean-field model, PFFT allows a range of
correlations to be systematically investigated.

Both the Dirac Brush and PFFT methods differ significantly
from existing approaches, such as implemented in SimToExp**
and SASSENA,” as applied to bilayers. SimToExp first
averages the atomic scattering length densities in the plane
of the membrane to produce a one-dimensional profile that
accounts for contrast only in the transverse direction, which is
then followed by a one-dimensional Fourier transform to
compute the scattering intensity. This is typically the dominant
portion of the scattering intensity and is often sufficient to infer
agreement with the simulated structure. In SASSENA the
orientational averaging is not performed in closed form as can
be done following laterally averaging (shown below). This
results in an expensive calculation, especially for a high-
symmetry system, such as a lipid bilayer with periodic
boundary conditions. In contrast, both the Brush and PFFT
methods compute the SANS intensity for the periodically
replicated system with closed-form orientational averaging.
These methods therefore solve the problem that we stated
above: i.e, the prediction of scattering intensities directly from
simulations of bilayers with lateral structure.

The paper is structured as follows. A description of neutron
scattering and how the behavior of nuclei as “point-scatterers”
of neutrons translates to the relatively simple SANS signal at
the detector is provided in the Supporting Information. In
section 2 the process by which internal correlations produce an
interference pattern at the detector is explained, beginning with
an isolated system (section 2.2) and then moving to an infinite
two-dimensional slab (section 2.3). Two mathematical formal-
isms useful for computing intensities, the Fourier transform
and the Debye scattering formula, are explained in section 2.2.
These formalisms form the basis for the two complementary
approaches explained in Methods (section 3): first the “Brush”
method (section 3.1), which uses the full correlations manifest
in periodic boundary conditions by orientationally averaging
the Fourier transform of the scatterers, and second the PFFT
method (see section 3.3), which uses the Debye formula and a
continuum approximation for far-field correlations.

To demonstrate how in-plane correlations affect the
scattering signal, a simple molecular system was constructed
using the coarse-grained Martini force field. In section 3.3 we
describe how the system was constructed from two lipid
species that separate into a majority and minority domain with
sizes limited artificially by periodic boundaries. In Results
(section 4), the PFFT, Brush, and laterally averaged intensities
are presented, showing the presence or absence of lateral
correlations of the coarse-grained systems.

2. BACKGROUND

2.1. Small-Angle Scattering Reports the Internal
Structure of a Sample. Neutron waves interact with the
nuclei of the sample atoms and continue to travel until they are
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Table 1. Notation Used in This Work

symbol meaning
b; coherent scattering length for atom i
i j, k, ... labels individual atoms
k k (neutron) wavevector and its magnitude
q q wavevector difference and its magnitude
9w 9y 9- Cartesian components of q
r,r point in 3D real space and its distance to the origin
X9z Cartesian components of r
I(q), I(q) intensity at detector, intensity per unit area
In(q) orientationally averaged intensity at detector
1 -1
Iy, p position of detector relative to sample; distance to detector
b Fourier transform of real-space function f
w(r) neutron wave function
Bia(z) laterally averaged scattering length density, units length™
b total transverse scattering per unit area, f dz/)’(z)
B(q) Fourier transform of A(z), units length™
A(r) instantaneous scattering length density
P bulk solvent scattering length density
B(r) scattering-length-weighted distribution of pair separations
B(r) scattering-length-weighted distribution of pair separations, per
unit area
(o orientational average
A area of a bilayer patch
L,L,L, dimensions of a simulation box

w Ly Loz

absorbed by the detector (although this discussion focuses on
neutrons, the approach is general to X-rays, which are scattered
by the electron cloud). The detector consists of a two-
dimensional array of small elements, which detect neutrons
and produce an electronic signal. The internal structure of the
atomic scatterers yields a specific interference pattern of the
scattered waves. If the sample consists of randomly oriented
particles (i.e., powder samples, including lipid bilayer vesicles
in solution), the intensity measured at the detector will
manifest as concentric rings with no angular dependence. For
such samples, the intensity signal is reduced to a one-
dimensional graph by reporting only the angularly averaged
intensity, In(g), for each radial distance from the center of the
detector.

Analytical models for the scattering intensity start with an
idealized configuration for a SANS experiment, shown in
Figure 1. The coordinate system is chosen such that the path
of the incoming beam of neutrons is along 2, the unit vector

IS

neutron
—

Interference
pattern
at detector

q= 4msin(0)

neutron

Figure 1. Schematic of a SANS experiment. Not shown is the
possibility of the sign of the scattered wave flipping by 180° due to
scattering (e.g., in the case of hydrogen).

along the positive z axis. The phase relevant to interference at
the detector can be computed from two paths. First, from the
neutron source to particle r; the neutron accumulates phase

™™ before it scatters (relative to a particle at the origin). It
then undergoes elastic scattering with the same magnitude of
momentum, but in a new direction k’, with |k’l = |kl. The
scattered neutron travels to the detector, accumulating phase

ek () (the sign is now flipped because with the origin at the
sample, the detector is in the direction opposite to that of the
neutron source). The scattering direction k' is determined by
where the neutron registers at the detector, rp. The observable,
I(q), depends only on the difference q = k — k'.

The amplitude of the scattered wave depends on the identity
of the particle from which it scattered. Each type of nucleus has
an empirically measured coherent scattering length, b, and
these scattering lengths are tabulated for the different
elements.”® Multiple internal nuclear states, uncorrelated
with position, lead to incoherent scattering. This work
considers only coherent scattering, in which each atom has a
single average scattering length. The scattering observed from a
typical sample is the sum of the waves scattered from each
atom in the sample, and the magnitude of the squared neutron
wave function at the detector decays as rp” Rather than carry
this factor through every calculation, we define

1(q) = rply(xp(Q))’ (1)

where each vector q maps to a single point on the detector rp,

Figure 2 demonstrates the effect of lateral lipid inhomoge-
neity on a SANS signal (see section 3.3 for details). Viewed
from above (in Figure 2a), the inhomogeneity has a lateral
extent of approximately 6 nm. In Figure 2b, the SANS intensity
is computed using lateral averaging, as well as the Dirac Brush
and PFFT methods developed here. The difference between
the existing and new methodologies is due to the lateral
correlations (leading to overlaid “interference patterns”) that
are taken into account by the Dirac Brush and PFFT
approaches.

The intensity of the scattered signal is described by eq 2.
When generalized to a continuum model, the scattering length
is replaced with a scattering length density, f, and the summed
contributions from all points in the sample are then
represented by an integral, as shown in eq 3:

2

I(q) = z be '%%| (particle representation)

)
2
I(q) = ‘ / $rp(r)e™*|  (continuum representation)
(©)
where f#(r) is given by the relation in eq 4:
B(r) = Y b5(r — x)
i (4)
The absolute square can be expanded as
I(q) = Z bibje_lq.(ri_r")
ij (%)
@) = [ & [ Eopm)p)e o ©

We will make use of both of these forms below.
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Figure 2. Demonstration of the influence of a roughly circular lateral inhomogeneity on a SANS signal. The interior structure of the lipid bilayer is
shown from two perspectives (a), by first hiding the foreground quadrant and second by cross section. DFPC lipids are shown in blue, while DPPC
lipids are shown in red. Transparent gold lines indicate edges of the hidden quadrant in the first view and illustrate the bilayer thickness variation in
the second view. The SANS intensities computed by PFFT (green) and lateral averaging (red) are compared to show the effect of lateral structure
(b, in which the intensity near g = 0.14 A™" is increased relative to higher q).

2.2, Internal Structure of an Isolated System: The
Debye Scattering Formula. The orientationally averaged
scattering of a single molecular configuration of a finite system
can be computed using the Debye scattering formula.
Replacing (r; — r;) = r; in eq S yields

I(q) = ) bbe %%
i (7)
Orientational averaging is performed by sweeping the
scattering vector, q, over the spherical polar angles, 6 and ¢.
Each term in the summation can be integrated independently,
so the coordinate system can be freely chosen such that r;
always coincides with ¢ = 0, and therefore q-r; = gr; cos(¢h).
Integrating over the solid angle yields

1 Z” i : —l1qgr:; COS!
Io(q) = Zbibja fo a0 /0 dep sin(gp)e=" 1 <@
i,j

sin(qrij)
q

Ty

= bk
i (8)
Equation 8 has no dependence on absolute particle positions
and only takes into account the distribution of pairs of particle
separations, ry, for a single configuration. Given an ensemble of
system configurations sampled at temperature T, this
distribution, B, of scattering-length-weighted pair separations
can be recorded as shown in eq 9.

B(r) = Z bibja(rij - )

)

The intensity can now be computed as

_ B(r sin(qr)
o) = [ ()= o)

For periodically replicated simulated systems, B(r) is
replaced by its per-simulation-box average, B(r). The current
standard approach to computing simulated scattering in-
tensities, where the bilayer is laterally averaged, will be derived
in the next subsection both with and without the use of B(r).

2.3. Internal Structure of Infinite, Laterally Averaged
2D Fluid. Below we describe two mathematical approaches for
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obtaining the orientationally averaged scattering of an infinite
flat surface. The first is a “direct” method that performs the
orientational averaging explicitly, whereas the second “dis-
tribution” method first defines a weighted pair distribution
function and then applies the Debye scattering formula for
orientational averaging. The first derivation illustrates a
challenge that we address using the Dirac Brush method: i.e.,
the coherent scattering is dominated by one orientation of the
bilayer, in the infinite surface limit contributing as a J function.
The second derivation poses a challenge that we will address
with the PFFT method: ie., how to account for long-range
uncorrelated density by constructing a weighted pair distribu-
tion.

2.3.1. Orientationally Averaged Scattering from a
Laterally Averaged Bilayer, Computed Using the Fourier
Transform. Rather than a discrete set of scatterers {b},
consider instead a density of scatterers that are laterally
uniform but vary along z—this is the assumption that underlies
existing methods for interpreting the scattering intensity from
lipid bilayers.

The laterally averaged density f,(z) is computed from a full
3D scattering length density as

@ 1 L./2 L,/2
Pialz) = — dx/
LxLy -L./2 -L,/2 (11)

that can then be computed from a collection of discrete
scatterers by using the f(r) substitution from eq 4:

P = —— X b3z - 2)

XY i

dyp(r)

(12)

For an ensemble average, eq 12 is equivalent to eq 11. In
computing the scattering intensity, the one-dimensional
Fourier transform of f3;,(z) is a useful intermediate quantity:

~ o0
— r,lq 2 ’
ﬂLA(qz) - '/—loo dZ e ﬂLA(z ) (13)
In the limit L, — oo, L, — o0, the three-dimensional Fourier
transform is

5 L./2 —1q X1 L2 —g 1y
ﬂLA(q) =[ h do'e™ [ /2 dy'e qyyﬂLA(qz)

s ) (14)
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where ﬁLA(qz) is from eq 13. When orientationally averaging in
the limit L — oo, first consider that

fL/2 dr'e™ = 24" sin(Lq/2)

-L/2 (1)
In the limit of large L

L'[2q " sin(Lg/2)F = 278(q) (16)

This follows from a definition of the § function in terms of
the limit, as € goes to zero, of

n.(q) = e‘ln(%)

(17)
that yields
lim f_: dan(q)f (q) = £(0) (18)
In this case
n(q) = (22)"'[2q " sin(q/2)T (19)
and L = ¢~". The straightforward conditions on 7,.(q) to yield

6(q) in this manner are given in ref 47, p 34. They are
essentially that, in the ¢ — 0 limit, integration over 7,(q) must
yield a constant if zero is in the integration limit and zero
otherwise. As ¢ — 0, the function 7,(x) has its increasing
amplitude bunched around x = 0 and so samples only f(0).
From eq 3, the (laterally averaged) scattering intensity is the
absolute square of the three-dimensional Fourier transform.
Therefore, in the large L, and L, limit, the scattering intensity
is

(@) = L;'2q; " sin(L,g, /2)PL; [2q, " sin(Lyq, /2)P 15, (q,)P

(20)
= [278(q,)1125( )1IP, , (a,)F 1)

where here the intensity is divided by L, and L,, as in eq 16,
yielding the intensity per unit surface area.

The intensity can then be orientationally averaged by
computing

— 1 / N> ’
Taa(@) = - [ dQL2ns(q)i2ms(g)I,, (4P

(22)
where gq,, g,/, and q,’ are primed because as dummy
integration variables they are not explicitly components of q
as would be consistent with our notation. The orientational
average is performed by integrating over q,/, ,’, and gq,’, while

g=Ja+q’ +4q

selecting with

5(q -

in the Supporting Information for the Dirac Brush method.
Following integration over qz/, eq 22 becomes

q;z + q;z + qz'2 ). The integration strategy is detailed

Laole) = f da, f /— dq —[Zﬂé(q )
’ 2
X [2”5(‘1},)](2 lﬂLA(qz)l ) (23)
where q, = q — q q , a factor of g~ 2, is introduced by

integrating over the g’ volume with &( lq® - q;Z - q;z - qz),
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and q/q, is the Jacobian (needed to integrate a hemisphere
over its projection into the xy-plane). The upper and lower
hemispheres each contribute one term, resulting in

IﬁLA(qZ)I2 + IELA(—qZ)IZ. Since f;, is real and therefore f,
is even, the integral evaluates to

Laa(q) = 27g7 216, (g)

2.3.2. Orientationally Averaged Scattering from a
Laterally Averaged Bilayer Using B(r). The scattering
intensity can also be derived using the intermediate quantity
By A(7) from eq 9, with the subscript LA used to indicate lateral
averaging. Working in spherical polar coordinates {r, 6, ¢} for
the displacement between two points in the laterally
translationally invariant bilayer (one with coordinate z, the
other with coordinate z + r cos(¢)), the laterally averaged
planar scattering length density defined by f,(z) yields the
distribution

Bun(r) = 2074 " dop [ e (e + 1 cos())sin(g)
(25)

Using the Fourier space autocorrelation relation (see the
Supporting Material), i.e.,

[: dzp, , (z + Az)p, (2)
= (Zﬂ)_l,/_: dq’e_iq'Azl,/)l‘\(q’)l2

where Az = r cos(¢) results in

(24)

(26)

2 b3
d¢e_lq ’r C05(¢) sln(¢)
0

Bu(r) = rZA/ dq”ﬁLA

sm(q r)

B u(r) =2r A/ dq’ ﬂLA(q )

27)
Inserting By,(r) into eq 10 and using the Fourier identity

/oo dr sin(gr)sin(q'r) = z5(q -q) - z5(‘] +4q')
0 2 2
(28)

we get the expression

o) =24 [ g, [ 220 20
. gy )
(29)

which reduces, upon averaging per unit area, to

Laa(q) = 27q7 216, ()P (30)

2.4, Comparing Scattering from Flat and Spherical
Samples: The g Dependence of the Scattering Intensity.
At low g, fia(q) in eq 24 and eq 30 can be replaced by the
scattering length per unit area, b, that is, a two-dimensional
approximation. At low g, the scattering of a vesicle will reflect
its shape (radius), and so the planar and spherical geometries
cannot be compared directly. Rather, the scattered intensity
can only be compared at g values where both systems can be
considered planar. While in this work the primary goal is to
model the orientationally averaged three-dimensional scatter-
ing intensity, an approximation has recently been proposed
relating the in-plane (two-dimensional) scattering of spherical

https://dx.doi.org/10.1021/acs.jctc.0c00132
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and planar systems.*® The relations below briefly describe the
form of scattering from a thin sphere at low g to establish the
regime where planar and spherical systems can be compared.

SANS experiments of lipid membranes are usually applied to
a sample of vesicles of a given radius, R. Consider a spherical

shell with f(z) = % and thickness €. To compute the SANS

intensity in the € — 0 limit using eq 9, one can determine the
distribution of point-to-point distances on the sphere. As the
points on the sphere are equivalent, consider for convenience
the point ry at ¢ = 0. The distance between two points on the
sphere, separated by a central angle ¢, is given by 2R sin(¢/2).
The count, or weight, for this distance is 2zR sin(¢)b’. This
therefore defines the distribution necessary to resolve eq 9

lim By, (2R sin(¢p/2)) = 27ARD” sin(gh)
e—=0

(31)
and so computing the per-area intensity yields
— _ 7 . IR si 5
Tola) = b [ dgank® sin(g) SR @/2)
’ q2R sin(¢/2) (32)
= 4xb°q? sin(qR)? )

The intensity in eq 33 oscillates rapidly, with period %ﬂ. The

average intensity over an interval of many periods, however, is

- 22
To,thinshen(9) = 279 "°b (34)

For a sample containing a sufficiently broad distribution of
vesicle sizes, the oscillations of the signals will cancel, and the
intensity will average to this value. Compare this to the planar

case, with per-area intensity 277q " Iﬁm(q)lz. The average of

Bra(z) over the thickness of the bilayer is ELA(O) = b. Thus,

for low q where the thickness feature of the sample is
negligible, the intensity is approximately

— 272 1
IQ,planarsimuIation(q) = 2”‘1 b” for < ;

(33)
where a is the thickness of the bilayer. This correspondence
thus serves as a convenient normalization procedure for
comparing planar simulations to experiments on large vesicles;

if there is a regime of g where q is greater than % but much less

than 2, the samples can be compared by weighting using AD”.

Note that it is the NSLD per unit area, b, that is taken into
account in the case of a phase-separated mixture, as
normalization depends on the NSLD per unit area of the
phases.

3. METHODS

Both the Dirac Brush and PFFT methods model the scattering
from a simulation of a laterally infinite sheet with finite
thickness. In contrast to previous methods, which use the
lateral averaging approximation, the scattering from these
methods includes contributions from lateral correlations.

The challenges for capturing lateral correlations are (i)
extending the system to infinity and (ii) accounting for
orientational averaging. Consistent with previous work,
orientational averaging was demonstrated for finite systems
using the Debye formula (eq 8) and for laterally averaged
infinite bilayers with (section 2.3.2) and without (section
2.3.1) the use of an intermediate weighted pair distribution.
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As mentioned, the Dirac Brush method models scattering
including the full periodicity of the system. The scattering
profile includes periodic artifacts that appear systematically in
the scattered intensity. The derivation follows that in section
2.3.1. On the other hand, the PFFT method models scattering
at long length scales using the laterally averaged scattering
density; this is a mean-field approximation. Orientational
averaging is accomplished by constructing a weighted pair
distribution (akin to eq 25) to be used in conjunction with the
Debye scattering formula. The derivation follows that in
section 2.3.2.

3.1. Full Periodicity: The Dirac Brush Method. The
orientationally averaged scattering intensity of the simulated
system, with its z images (above and below the bilayer)
replaced with a uniform solvent density, can be computed
exactly.

Consider “copying-and-pasting” the system boxes laterally to
build up the infinite system, where duplicated scatterers’
coordinates are shifted by r,.:

p(x) = z bo(r — ) + Z bo(r — x, — rrep)

(36)

Each replicated simulation box contributes a phase term
(e™"%) according to the q value under consideration:

/dSrﬂ(r)e—qu — Z bie—lqr,. + Z bie—zq~(r,.+rrep)

— (1 + e—zq-r,ep)z bie—lq'r{
i (37)

The sum of exponential terms can be reduced into closed
form as a partial sum of a geometric series. For example,
applying M replications along the positive x-axis and M
replications along the negative x-axis, with a box width of L,

yields

equxLx + o+ equLx +1+ e_quLx + e+ e_lM‘lex
+M
— Z oM L
m=—M (38)
sin((M + 1/2)qux)
sin(q L,/2) (39)

where g, is the x-component of q. Increasing the number of
replicates causes the contributions from angles close to the z-
axis to increase while simultaneously becoming localized to a
shrinking region around the z-axis (i.e., consistent with the
behavior of a delta function). For noncrystalline systems, the
periodic replications introduce nonphysically perfect perio-
dicity to the system that creates artifacts in the scattering
intensity, discussed below. Extending the replicated system
infinitely in both lateral directions reduces the sum of
exponentials to a (one-dimensional) periodic Dirac delta
function, also known as a Dirac comb, III(gq), written as

I +M 24N 2
lim e~k e My | =
MN-c (2M + 1)(2N + 1)["2_:M ] [ZZ_:N

20T 2r
(L—xIIIZ,, /Lx(qx))(L_yIHzﬂ/Ly(qy))
(40)
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Here the comb selects wavevectors compatible with the
periodicity of the simulation box, e.g., L,. In the limit M — oo,
the integral of the periodic function (the square of eq 39)

L /b sin((M + l/Z)qux)2
4rM Ja sin(qux/Z)2 (41)

is unity if the interval between a and b contains zero and is
zero otherwise, with lal, bl < % Briefly, the denominator
sin(L,q,/2)* can be replaced with L,q,/2 near zero, which in
the limit of large M dominates the integral, as was the case in

eq 16. This behavior repeats every ZL—” The product of two

Dirac combs in perpendicular dimensions yields a hairbrush-
like two-dimensional array of Dirac delta functions, termed a
“Dirac Brush”. The orientational average over the Dirac combs
can be reduced analytically (see S3.2 of the Supporting
Information for details), resulting in the following expression:

T

In(q) = 1L
xly

" i i(a, 9, 9,) + (9, 9, —9,)
qq,

X

M==Myimie M= "Mimi

(42)

where I;(q,, g, q.) is the solvent-adjusted intensity as defined

in eq 43, q, = 2mm/L,, q = 27m/Ly, q,= m’

Mymie = |gLo/27] (ie., the greatest integer less than gL,/27),

x

2
and ny ;= \/(Lyq/Zﬂ')z - (%m) . With both the repli-

cations and the orientational average handled analytically, this
expression is not computationally intensive to evaluate. All
abrupt system—vacuum discontinuities are completely re-
moved as periodic boundary artifacts are introduced. For
membrane systems, the solvent—vacuum discontinuities can be
handled using the solvent adjustment explained in the
Supporting Information

I(q, 9, 4,)

2
L, Lyg L
= z be ' — B Vsinc 2 sinc| —2 [sind A,
i v 2 2 2

(43)

where L, L, and L, are the x-, y-, and z-dimensions of the
simulation box, and V = L,L L, is its volume.

3.2. Mean-Field Treatment of Long-Range Structure:
The PFFT Method. Lateral averaging neglects all lateral
correlations, while the Dirac Brush method exhaustively
includes them, including the long-range order resulting from
periodic boundary conditions. A typical modeling target of a
simulation will have short-ranged order but, as is meant to be
modeled by periodic boundary conditions, the exclusion of
long-range correlation. Our proposed Particle-Far-Field-Trans-
form technique, or PFFT, bridges the gap between lateral
averaging and the Dirac Brush method by employing a mean-
field model for far-field correlations.

The scattering intensity represents correlations of scattering

length density that are described by

Io(@) = [ @ [ Enpmptsincln - n)

Instead of squaring the Fourier transform (e.g, eq 2), the
PFFT method uses the Debye scattering formula (eq 44) that
sums over pairs of scatterers. The fundamental concept behind
PFFT is the decomposition of the (r;)(r,) products used to
represent pairs of scatterers with either particle or continuum
models. If the lateral distance between scattering elements is
within a cutoff r,, then the particulate model of the scattering
length density is used (ﬂpm(r)). The lateral cutoff forms a
cylindrical region around each scattering element, with the
cylinder oriented orthogonal to the plane of the bilayer. If,
however, the lateral distance is greater than the cutoff (i.e., one
scattering element is positioned outside of the other element’s
cylinder), then a laterally averaged continuum model is used
instead (B 5(2z)), thus preserving the transverse bilayer
structure but omitting the undesirable long-range lateral
structure. Additionally, the continuum model is convenient
for other mathematical constructions, where there is no lateral
information, since it is equivalent to the particulate model in
those circumstances.

Special consideration is necessary for the bulk solvent
regions above and below the simulation box. The direct
approach is to assign the solvent scattering length density to
the region outside of the simulation box. The solvent scattering
length density can then be subtracted from all space without
affecting the scattering intensity, which brings the scattering
length density to zero outside of the simulation box, while
maintaining a smooth transition across box boundaries. Since
the integrand is zero outside of the simulation box, these
regions can be excluded from the scattering integrals,
simplifying the necessary computations. Furthermore, since
the simulated system is periodic in the x- and y-directions, each
box contributes equally to the total scattering. The scattering
intensity per simulation box can be expressed by constraining
one of the integration domains to a single box. However, the
second integration domain must remain infinite because the
pairwise scattering contributions between different boxes on
the periodic lattice are not identical.

With these considerations, the scattering integral can be
rewritten as

FORN LY IR URORYSINCEYS

X sinc(qly — r,)) (45)

With ry = r, — r}, we will rewrite the r, integration in terms of
ra. Moreover, the cross-terms are expanded and handled
separately as

o@= [ @[ @080+ -
box z5+z,Ebox th A

ﬂwﬂ (1'1)

sys - ﬂw Sys(rA + 1'1) + @z)sinc(qrA)
I it v

(46)
Each term corresponds to a specific correlation between two
regions.

e I Correlations between a single simulation box and the
infinite bilayer model (both particulate and continuum
models contribute to this term).

https://dx.doi.org/10.1021/acs.jctc.0c00132
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Figure 3. Illustration of the PFFT cutoff system, including the terms Ia and Ib. When computing the scattering, every particle (for illustration
purposes, one headgroup particle was arbitrarily chosen and marked with bright magenta) sees full particulate detail within a cylindrical region
centered on its position, shown as a white rectangular region in the center of the figure. This region has a radius equal to the PFFT cutoff and
vertically spans the entire simulation box (that is depicted as a black rectangle, labeled “Periodic box”, with periodic images depicted by dotted gray
lines). The Ia term represents the scattering between the selected (magenta) particle and the other particles within the cylindrical region (one such
particle is illustrated in light pink). Outside of this region, the particle sees only a laterally averaged continuum, illustrated as broad colored stripes.
Term Ib represents the scattering between the selected particle and all of the volume elements of this continuum (also illustrated using a light pink
dot). This process is iterated over all other particles in the simulation box. The spatial scattering length density correlations are used to numerically
compute the weighted pair distribution function for all distances, up to some cutoff, depicted by the large black circle in the graphic.

e II Correlations between a single simulation box and the
infinite solvent background.

&,
Bu(ra) = 203 25 b [ dpHIry sin(g) — 1,

i€box -
e III Correlations between a single box of solvent

background and the infinite bilayer model. X (ry cos(¢) + z;)sin(¢) (50)

e IV Correlations between a single box of solvent

where ¢, corresponds to r sin(¢.) = r,, that is, the minimum
background and the infinite solvent background.

angle that exceeds the r. cutoff. The bounds exclude all points

Term I correlations are illustrated in Figure 3. The outside the r, cylindrical cutoff (r sin(¢) > r., which implies
calculation is performed using the intermediate quantity ¢ < ¢ < m — ¢.). This contribution to B(r) records the
B(r), as in section 2.3.2. The B terms are labeled with distribution of scattering pairs with r greater than r_ using the
Roman numerals corresponding to those in eq 46: laterally averaged continuum model of the system’s scattering

length density. The remaining terms account for the solvent

B(r) = By,(r) + By(r) + By(r) + Byy(r) + Byy(r) background, which must be subtracted from the total

(47) scattering, i.e.

Formally, the particle—particle near-field contribution (Ia) 2,

can be written as By(ra) = Bi(rp) = —2aLL,L.f rp f dz/f, ,(z))
z_
% . (s1)

Bu() = 223 X b, [ dgHIr, — ry sin(@) 1,

i€box By (ry) = ZﬂLxLyLzzﬂvirA (52)

X (ry + r.)sin(¢) (48)

- . Computing the scattering intensity requires performing the
wher(? t}.le Heaviside step function, H(r), excludes any integral in eq 10 to infinite R. For an infinite two-dimensional
contribution from the above r = r.: system, the integrand oscillates (according to the si_n(qr) term)

0 r<o0 around an approximately fixed magnitude (here, B(r) goes as

H(r) = r). At very large r, B(r) can be replaced by its limiting form

1 r>0 (49)

= 2
The ¢ integration bounds have been chosen to comply with B(r) ~ 22r x b” (forlarge r) (s3)

both constraints on the integration domain and include only
points inside the upper and lower boundaries of the simulation
box (¢_ < ¢ < ¢,). As performed in a computer, this is simply . —,_sin(qr) & —
a sum over particle pairs with a separation r and lateral Io(q) = [) dr{B(r) — 2arb ]T + /0‘ dr2zrb

and the integral can be computed in two pieces, as follows:

separation less than r. Furthermore, the calculation is sin(qr)
discretized, with a bin width %A (discretization error at this —_—
. o . qr
tiny length scale is irrelevant at practical values of q). The (54)
continuum piece of the system—system interaction is
computed as with
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/oo dr[277:r52] M

0 qr

27152
2

=2
= 27[? [1 — lim cos(gr)] ~

(88)

where the average value of cos(qr) (zero) is used for the limit
of large r. This is appropriate for a collection of large objects
whose size difference is much greater than g7

The inclusion of short-range particulate scattering captures
local lateral structure, but the use of long-range continuum
scattering prevents anomalous periodicity artifacts, as demon-
strated using systems described in the following section.

Source code for the PFFT and Brush methods is available on
GitHub.*

3.3. Construction of an Example Bilayer with Lateral
Substructure. There are well-studied lipid systems that have
nanometer-scale substructure. For example, mixtures of DSPC,
DOPC, POPC, and cholesterol exhibit nanometer-scale
domains over specific compositional ranges.”’ Additionally,
simulations indicate that the liquid-ordered phase has nano-
meter-scale substructure defined by the clustering of saturated
lipid chains.”' Both the Dirac Brush and PFFT methods are
designed to predict the scattering signature of such nanoscopic
lateral structure in lipid mixtures. In order to show how lateral
correlations are captured by the Dirac Brush and the PFFT
methods, a simple lipid mixture is first considered, with lateral
structure that is amenable to the simulated length scale and for
which the length scale of the lipid domain is easily tunable, e.g,,
by changing the mole fraction of each lipid type.

Lateral spatial correlations are indicated by deviation from
the predicted scattering obtained through lateral averaging.
However, even a single component fluid membrane still has
nanoscale s?atial correlations, for example from thickness
fluctuations.”’ To control for these, and to demonstrate the
scattering signature of lateral inhomogeneity most effectively,
the bilayers simulated here each have nearly equivalent laterally
averaged scattering profiles, f(z). This is accomplished by
choosing Martini”” lipids with the same bonding structure and
pseudodeuteration scheme regardless of the chemistry of the
underlying lipid segment (see Figure 4) and then simulating

(a) Matrix lipid

(b) Domain lipid

Figure 4. (a) Matrix and (b) domain lipid. Yellow Martini “beads” are
assigned scattering length 4.152 fm, while cyan tail beads are assigned
—3.332 fm, providing contrast between the matrix and domain lipids.
Choline (blue), phosphate (gold), and glycerol (pink) are assigned
scattering lengths of —5.158, 26.72, and 18.888 fm, respectively.
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each bilayer at the same fixed projected area. The principle of
coarse-graining is that fine-level detail, presumed to be
irrelevant to many questions, is averaged out to improve
performance. Fluctuations in this fine detail will lead to
changes in the scattering intensity at high g, as was
demonstrated, for example, in the difference between
continuum and molecular resolution of water in scattering.”

Nanometer-scale lateral inhomogeneity arises naturally in
the Martini coarse-grained model by mixing lipids with
gradually increased unsaturation content in their two (chemi-
cally identical) tails: ie., the Martini approximations of
dipalmitoylphosphatidylcholine, 16:0/16:0 (DPPC), dioleoyl-
phosphatidylcholine 18:1/18:1 (DOPC), dilinoleoylphospha-
tidylcholine, 18:2/18:2 (DIPC), and dioctadecatrienoylphos-
phatidylcholine, 18:3/18:3 (DFPC). With this version of
Martini, there is no difference between an 18:0 and 16:0 chain;
it is below the resolution of the coarse-graining. These lipids
are the matrix lipids; they are mixed with 25% DPPC, causing a
small DPPC domain to form in the disordered matrix that
surrounds it (when chain unsaturation differs enough to cause
demixing). Regardless of its chain identity, the scattering
lengths of the matrix lipid’s sites are equivalent. We refer to
this as a “pseudo-deuteration” scheme in analogy with the
classic strategy to create contrast in SANS. Two beads in each
chain are pseudodeuterated.

For convenience, each Martini system is named by its
majority, matrix lipid type (the minority lipid type is always
DPPC). The first system is a special case, but the other three
systems will be called DOPC, DIPC, and DFPC. Since the first
system is a pure DPPC bilayer, we relabel 75% of the lipids as
the majority lipid type, even though in this case the majority
and minority types are equivalent. Consequently, we identify
the first system as DPPC.

3.4. Simulation Parameters. Simulations were performed
using GROMACS version 5.1.4,”* with Martini lipids version
2.0,°7 in the constant surface area ensemble at 323 K, for 1 ps.
Pressure was controlled with a Parinello—Rahman barostat
with 7, = 12.0 and a compressibility of 3 X 10™* bar™' and a
reference pressure of 1 bar. The time step was 20 fs.
Electrostatics were computed using the reaction-field method
with rcouomp = 1.1 nm. Van der waals forces were computed
with the cutoff scheme (r,4y = 1.1 nm). Each simulation
included 10000 Martini water beads. Scattering lengths for
computations are provided in a table in the Supporting
Material.

4. RESULTS: PFFT AND DIRAC BRUSH METHODS
PREDICT THE SIGNATURE OF NANOSCOPIC
HETEROGENEITY

Figure 5 shows top-down views of the four bilayer mixtures
described above, confirming that the Martini systems do
exhibit the expected lateral inhomogeneities. Trivially, Figure
Sa shows that the DPPC system has no lateral inhomogene-
ities. Importantly, the pseudodeuteration scheme does not
affect the force-field parametrization, so the arbitrarily assigned
majority and minority lipid labels are uniformly mixed.
However, even this trivial case includes the effect of correlated
pseudodeuteration because the atoms of a single pseudodeu-
terated lipid are colocalized by chemical bonding.

Proceeding to the cases with gradually increased unsatura-
tion, the DOPC, DIPC, and DFPC systems show increasing
segregation of the unsaturated minority lipids, i.e., Figures Sb
and Sc. The extra unsaturation of DIPC increases the chain

https://dx.doi.org/10.1021/acs.jctc.0c00132
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(¢c) DIPC

(d) DFPC

Figure S. Top views of the four Martini systems. The boundaries of the simulation box are drawn in transparent gold. The minority lipid is shown
in red and is always DPPC. The majority lipid is shown in blue, with the lipid type indicated in the subfigure captions. In Figure 5a, where all lipids
are DPPC, a random subset is chosen to represent the majority lipid in order to compare to the other systems.
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Figure 6. Scattering intensity of the inhomogeneous systems using lateral averaging (a), the Dirac Brush method (b), and the PFFT method (c). In
each panel, the red curves represent the pure DPPC system, the green curves the DOPC/DPPC mixture, the blue curves the DIPC/DOPC
mixture, and the purple curves the DFPC/DOPC mixture. Notice that the red, green, and blue curves are similar. The purple curve indicates
significant lateral structure through the much shallower valley, a leftward-shifted local maximum, and the absence of the second local minimum near

q=033 A"

disorder to the point that DPPC lipids weakly prefer the local
environment of other DPPC lipids. While some separation is
clear from visual inspection, these small inhomogeneities do
not coalesce or grow over time.

In the case of DFPC, with three double bonds per acyl
chain, only then do the lipids exhibit full separation into a
single two-dimensional “droplet”. In this case, and as expected,
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the DPPC lipids strongly prefer the environment of other
DPPC lipids, leading to significant demixing that is visible in
Figure 5d. The separation is much more significant than in the
DIPC system, with almost every DPPC lipid participating in
the same cluster. The edge-on view in Figure 2a reveals
measurable differences between the bilayer thickness inside
and outside the cluster. Note that in a larger system with more

https://dx.doi.org/10.1021/acs.jctc.0c00132
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lipids of each type the droplet would be larger— here, the
nanoscopic size of the droplet is artificially enforced by the
system size.

The range of Martini simulations thus confirmed the
differing degrees of lateral structure, including a single
nanoscopic domain. These methods capture the lateral
structure in the resulting neutron scattering intensity graphs
that will be shown later on.

By simulating all four systems at constant area, and by using
the same pseudodeuteration scheme for the matrix lipids, we
expect that each system will have approximately the same
laterally averaged scattering density. Figure 6a shows the
results of computing the laterally averaged scattering intensities
for all four systems, and it can be observed that the intensity
patterns are nearly identical for all systems. Small differences
between them can be attributed to differences between the
simulations, such as in the transverse distributions of lipid
density due to differing amounts of chain order, as well as
suppressed height fluctuations due to differences in tension.
Nevertheless, these systems are practically indistinguishable
from each other.

The lateral averaging approximation uses a density-based
intermediate f(z) that eliminates the particle-based nature of
the scattering. For example, for a uniform (i.e., ideal gas)
distribution of atomic scatterers with scattering length b, the
resulting intensity will be uniform in q with magnitude Y b% In
contrast to the atomic distribution, for a continuous scattering
length density the scattering is zero. The lateral averaging
approximation, as specified here, can be adjusted by adding in
> b?, normalized according to the total intensity (e.g., per unit
surface area). This yields the most direct comparison to PFFT
and Brush, which naturally include the term by virtue of the
atomic-based methodology. Only if this correction is made can
the incoherent scattering be properly accounted for, which on
a per-atom basis, is (b*) — (b)?, where the angle brackets
indicate averaging over the internal states of the atom’s
nucleus.

The Dirac Brush method directly captures all lateral and
transverse scattering via an analytical solution to the scattering
intensity expression. Figure 6b shows the results of analyzing
the Martini simulations with the Brush method. The DPPC,
DOPC, and DIPC intensities are similar, but the DFPC curve
differs substantially near g 0.14 A7', indicating excess
scattering. The extent of this separation reflects the lateral
structure known to exist in these simulations. The depth of the
mid-q valley near q = 0.14 A™" can be interpreted as follows: A
shallower mid-q valley indicates the presence of lateral
structure, while similar mid-q and high-g valleys indicate little
or no lateral structure.

The sharp spike artifacts are Bragg peaks caused by the
perfect periodicity of the simulated system (as a result of the
periodic boundary conditions). To demonstrate this, we can
use the system dimensions (13 nm by 13 nm) to predict the
locations of the Bragg peaks and compare them to the
computed scattering intensity. Figure 7 shows the scattering
intensity for the DFPC system (without pseudodeuteration),
showing the low-order Bragg peaks marked with their indices
and higher order Bragg peaks (blue dots) aligning exactly with
the artificial Bragg peaks.

The Bragg artifacts can be avoided by using the PFFT
method. PFFT has most of the same advantages as the Brush
method but avoids long-range periodic correlations. For
demonstration purposes, the cutoff was chosen to be 30 A.
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Figure 7. Spurious peaks due to periodic boundary conditions that
arise from the fully correlated laterally averaged scattering when using
the Dirac Brush method. A selection of peaks have been labeled with
the periodicity indices from which the peaks originate. Bragg peaks are
infinitely tall but are shown here with finite heights due to numerical
sampling limitations. Red and blue dots indicate the predicted
locations of Bragg peaks. The horizontal positions of the markers are
computed analytically from the simulation dimensions, while the
vertical positions are arbitrarily chosen to visually fall on the curve.

Figure 6¢ shows the scattering intensities of each Martini
simulation, computed using the PFFT method. Comparing
Figures Figure 6b and ¢, it is clear that the same conclusions
can be drawn using the two different methods, but PFFT does
away with the artificial Bragg peaks. We can also notice an
additional difference between the curves. Specifically, in the
case of the PFFT method the crest of the DFPC curve is
shifted to a lower g. A range of cutoff choices are shown in
Figure 8, where 30, 50, 70, and 90 A are shown to be nearly
equivalent.
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Figure 8. Scattering signal varies according to the choice of the PFFT
cutoff. The black curve represents the intensity resulting from lateral
averaging. The red curve uses a cutoff of 10 A. The gold, teal, blue,
and purple curves use increasing cutoffs of 30, 50, 70, and 90 A,
respectively. The inset chart shows the intensity difference obtained
by subtracting the laterally averaged curve from each of the colored
PFFT curves, illustrating the lateral contributions to the intensity
which are captured by PFFT but absent from the lateral averaging
technique. Note how increasing the cutoff shifts the first local
maximum to lower g in the inset to the figure.

5. DISCUSSION AND CONCLUSIONS

This work described two methods for computing the
contribution of spatially correlated lateral scattering from a
surface to the neutron scattering intensity. Previous works
laterally averaged the scattering and, in doing so, removed all
in-plane correlations but reduced the data to a single one-
dimensional Fourier transform. Although this provides a
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convenient way to determine bilayer transverse structure, it
neglects all lateral structural information.

We presented two different methods to account for lateral
contributions to the scattering signal. The first, the Dirac Brush
method, is an exact computation of the intensity. However, by
making use of the periodically replicated simulation boxes to
simulate planar bilayers, the method introduces spurious
artifacts that complicate comparison to experiment. The
second method, PFFT, uses the Debye scattering formalism
to separate pairs between a particle—particle contribution and
a particle—continuum contribution in the far-field. By doing so,
long-range correlations are neglected and no periodic artifacts
are introduced.

The methods were applied to bilayer simulations of the
coarse-grained Martini force field, which allowed for
convenient simulation of artificially nanoscale domains. By
mixing saturated DPPC lipids in a matrix of lipids whose tails
gradually became more unsaturated, we were able to explore a
range of degrees of lateral inhomogeneity. By tuning the
scattering length of the coarse-grained matrix lipids (pseudo-
deuteration), the laterally averaged scattering of each
simulation was made to be nearly equivalent. This allowed
the lateral scattering contribution to be isolated and compared.
The signal increased dramatically when the DPPC coalesced
into a single domain.

The methods share a similar goal with a simpler approach
applied recently to bilayers with lateral structure.”*° In these
works, the in-plane (two-dimensional) structure factor

S(q) « |2, 'Y is computed by projecting all the structure

into the bilayer plane. Equivalently, g, is set to zero. Upon this
dimensional reduction, orientational averaging comprises only
rotation in the plane of the bilayer. The issue of the special
orientation (g, = 0) contributing dramatically to scattering
never arises because all orientations have g, = 0. Thus, the
spurious artifacts at q orientations that are both compatible
with the periodic boundary conditions and have g, = 0 do not
arise. While the in-plane S(q) does report lateral substructure,
it does not report the full three-dimensional, orientationally
averaged intensity. This approach will be most successful when
the scattering density is uniform across the bilayer, a
chemically challenging problem. However, Heberle et al.
were able to match the scattering length density of the
headgroup, acyl chain, and solvent regions of a quaternary
mixture such that a well-mixed system (high temperature) had
minimal scattering.39 Even in this case, upon demixing, this
property may no longer hold for the demixed regions
independently (at lower temperature). Alternatively, if a
multilamellar bilayer stack can be properly oriented with the
neutron beam, scattering can be restricted to those orientations
with g, = 0.”

With even more highly coarse-grained force fields, it is
possible to simulate large lipidic objects (like vesicles) without
periodic boundary conditions.”® This simulation paradigm
offers the opportunity to probe both short and long correlation
lengths. The PFFT and Dirac Brush methods can be applied to
both all-atom and coarse-grain resolution simulations of planar
bilayers and compared with such a large length-scale model.

Due to the finite correlation radius, the PFFT method as
described here is likely not the proper choice to capture
correlated lateral inhomogeneity with long-wavelength undu-
lations of the bilayer. Where PFFT assumes the surrounding
bilayer is on average flat, if the inhomogeneity prefers a
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particular curvature, it will be more likely to be found on a
fluctuation that is compatible. In fact, simulations indicate®”
that simple ordered phases have a positive curvature
preference. The challenge then is to simulate a sufficiently
large bilayer to capture this correlation and to have a method
that includes correlations of very large structures. We
anticipate that the PFFT approach will be modified in
conjunction with continuum models that include the physics
of how nanometer-scale inhomogeneities are expected to
redistribute on fluctuating bilayers.

The methods described here can also be applied to complex
mixtures of lipids mimicking the plasma and organelle
membranes of cells. Although few direct cases of macroscogic
lipid phase separation have been observed in living cells, *0°
nanoscopic complexes of lipids are expected to have unique
mechanical properties.””®" MD simulations, in combination
with SANS and the data simulation methods presented here,
offer a way to model the intensity of complex bilayers to
determine their difficult-to-observe nanometer-scale structure.
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