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Abstract

Obtaining sharp Lipschitz constants for feed-forward neural networks is essential to assess their
robustness in the face of perturbations of their inputs. We derive such constants in the context
of a general layered network model involving compositions of nonexpansive averaged operators
and affine operators. By exploiting this architecture, our analysis finely captures the interactions
between the layers, yielding tighter Lipschitz constants than those resulting from the product of
individual bounds for groups of layers. The proposed framework is shown to cover in particular
many practical instances encountered in feed-forward neural networks. Our Lipschitz constant
estimates are further improved in the case of structures employing scalar nonlinear functions, which
include standard convolutional networks as special cases.

1 Introduction

Artificial neural networks are becoming increasingly central tools in tasks such as learning, modeling,
data processing, and decision making. As first noted in [52], neural networks are vulnerable to
adversarial examples which, though close to other data inputs, lead to very different outputs. This
potential lack of stability makes the networks vulnerable and unreliable in key application areas; see,
for instance, [1, 30, 35] and the references therein. To protect networks against such instabilities
various techniques have been explored [39, 43, 44, 54]. Although these defense strategies may be
effective in certain scenarios, they do not provide formal guarantees of robustness for general networks
and they have been shown to be breakable by new attacks; see, for instance, [3, 18].

It has been acknowledged for some time that the Lipschitz behavior of a network plays a key role
in the analysis of its robustness [52]. Simply put, if a layered network is modeled by an operator T'
acting between normed spaces, with Lipschitz constant #, given an input x and a perturbation z, we
can majorize the perturbation on the output via the inequality

T (x4 z) — Tx| < 0]z]. (1.1

Thus 6 can be used as a certificate of robustness of the network provided that it is tightly estimated.
Lipschitz regularity is also an important ingredient in the derivation of generalization bounds and
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Figure 1: In Model 1.1, the ith layer involves a linear weight operator W;, a bias vector b;, and an
activation operator R;, which is assumed to be a nonlinear averaged nonexpansive operator.

approximation bounds [6, 11, 50], and of reachability conditions [47]. In [52] the estimation of 6 is
performed by evaluating the Lipschitz constant of the layers individually and then defining 6 as the
product of these constants, which typically yields pessimistic bounds. Lipschitz constants have also
been computed for specific situations, e.g., [5, 33, 49, 53]. Overall, however, deriving analytically
accurate constants for general contexts remains an open problem. The objective of the present paper
is to address this question for a general class of layered networks. Mathematically, our network model
is described as an alternation of affine and nonlinear operators. This type of structure also arises in
variational and equilibrium problems, as well as in network science, e.g., [16, 24, 27, 56]. Adopting
the same terminology as in the neural network literature, where they model the activity of neurons, the
nonlinear operators will be called activation operators. Our stability analysis focuses on the following
m-layer model, in which the activation operators are averaged nonexpansive operators (see Fig. 1).
Recall that an operator R: ‘H — # acting on a Hilbert space H is a-averaged for some « € [0, 1] if
there exists a nonexpansive (i.e., 1-Lipschitzian) operator Q): # — H such that

R=(1-«a)ld+aQ. (1.2)

In other words, R = Id +«a(Q — Id) is an underrelaxation of a nonexpansive operator (see [8] for a
detailed account). This class of operators was introduced in [4] and shown in [21] to model various
problems in nonlinear analysis as it includes common operators such as projection operators, proximity
operators, resolvents of monotone operators, reflection operators, gradient step operators, and various
combinations thereof. Recent theoretical developments and applications to data science include [9,
10, 12, 13, 15, 22, 26, 34, 41, 51, 55, 56].

Model 1.1 Let m > 1 be an integer and let (#;)o<;<m be nonzero real Hilbert spaces. For every
i€ {l,...,m}, let W;: H,_1 — H; be a bounded linear operator, let b; € H;, let a; € [0, 1], and let
R;: H; — H; be an «;-averaged operator. Set

T=1T,0---01T7, where (VZ S {1,. .. ,m}) Ti: Hioy = Hitx = RZ‘(WZ'.%' —l—bi). (1.3)

Since the operators (R;)1<i<m, are nonexpansive, a Lipschitz constant for 7" in (1.3) is
m
O = H [Will. (1.4)
i=1

However, as already mentioned, this constant is usually quite loose and of limited use to assess the
actual stability of the network. A novelty of our approach is to take into account the averagedness
properties of the individual activation operators to capture more sharply the overall interactions be-
tween the layers, yielding tighter constants than those provided by computing bounds for groups of
layers. Our specific contributions are the following:



* We show that the most common activation operators used in neural networks are averaged
operators. This not only provides an a posteriori justification for Model 1.1, but also indicates
that this highly structured framework should be of interest in the analysis of other properties of
layered networks beyond stability.

* We derive a general expression for a Lipschitz constant of 7" in terms of the averagedness con-
stants of the activation operators (R;)1<i<m and the norms of certain compositions of the linear
operators (W;)1<;<m. This Lipschitz constant is shown to lie between the simple upper bound
(1.4) and the lower bound ||W,, o --- o Wy|| corresponding to a purely linear network. Our
analysis applies to any type of linear operator, in particular convolutive ones, and it does not
require any additional assumptions on the activation operator. In particular, differentiability is
not assumed and our results therefore cover, in particular, networks using the rectified linear
unit (ReLU) and max-pooling operations.

* In the common situation when the activation operators are separable, we obtain tighter Lipschitz
constants for various norms.

* Under some positivity condition, we prove that a Lipschitz constant of the network reduces to
that of the associated purely linear network obtained by removing the nonlinear operators.

In [24], we investigated the special case of Model 1.1 in which the activation operators (R;)i<i<m
are proximity operators, hence 1/2-averaged (see Section 3.1). The objective there was to study the
asymptotic behavior of deep network structures rather than their stability.

The remainder of the paper is organized as follows. In Section 2 we present an illustration of
our main result in a simple special case. In Section 3.1 we provide the necessary nonlinear analysis
background. In Section 3.2 we show that a wide array of activation operators used in neural networks
are indeed nonexpansive. In Section 4 we derive general results concerning Lipschitz constants for
Model 1.1. Section 5 refines this analysis in the case of separable activation operators.

2 Preview of the main results in a simple scenario

We illustrate on a simple instance the main results of the paper. More precisely, we consider a three-
layer (m = 3) network where, for everyi € {0,1,2,3}, H; is the standard Euclidean space R":. In this
case, each linear operator W is identified with a matrix in RVi*Ni-1, To further simplify our setting,
we assume that the operators Ry, R», and Rj3 correspond to ReLU layers, that is, for each i € {1, 2, 3},

(Vo = (&)1<hen,) € ]RNi) Rix = (p(gk))KKNi, where p: & — max{0,&}. 2.1)

In view of (1.2), p = (1/2)1d +(1/2)|-| is 1/2-averaged since | - | has Lipschitz constant 1. This implies
that the operators Ry, Ry, and Rj are also 1/2-averaged [24]. Let us now introduce two parameters
which will play a central role in our analysis, namely,

1
Os = 7 (IWsWaWi || + [WsWa | [Wa [l + Wl [WaWall + [[Ws| [ Wall WA ) (2.2)

and

193 = sup HW3A2W2A1W1H, (23)
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where || - || is the spectral norm and, for each i € {1, 2}, @Eév '1)} denotes the set of N; x N; diagonal
matrices with entries in {0, 1}. In this context, our main result states that both #3 and ¥J5 are Lipschitz

constants of the network, and that
[WsWaWi || < 93 < 03 < [|[Wal| [|[Wal| [|[Wh]l. (2.4)

In addition, if the entries of the matrices (W;)1<;<3 are in [0, +oo], then a Lipschitz constant of the
network is ||WsWyWq]|.

Example 2.1 To illustrate the improvement of the proposed bound over the classical product norm
estimate, we consider a fully connected network with Ny = 8, N; = 10, Ny, = 6, and N3 = 3. The
entries of the matrices (1W;)1<;<3 are generated randomly and independently according to a normal
distribution. We evaluate the Lipschitz constant estimate 3 provided by (2.2) and the lower bound
in (2.4). The average (resp. minimal) value of 65/(||W1|| |W2|| ||W3]||) computed over 1000 realiza-
tions is approximately equal to 0.6699 (resp. 0.5112), while the average (resp. minimal) value of
[[WsWoW1||/(||Wh|| [[W2]| ||W3]]) is approximately equal to 0.3747 (resp. 0.1208). In addition, the aver-
age (resp. minimal) value of ¥3/(||W1]| |W2]| |[W3]|) computed over 1000 realizations is approximately
equal to 0.4528 (resp. 0.2424). In agreement with (2.4), this estimation of the Lipschitz constant is
better than 65 and significantly sharper than ||/ || ||[Wa|| ||Ws]).

In the remainder of this paper, we show that the above results hold in a much more general context
(for an arbitrary number of layers m, arbitrary Hilbert spaces, and a wide class of activation operators),
and that some of them can be extended to non-Euclidean norms. To establish these results, we need
to introduce suitable mathematical tools in the next section.

3 Nonexpansive averaged activation operators

3.1 Nonlinear analysis tools and notation

We review some key facts and definitions which will be used subsequently; see [8] for further infor-
mation. Throughout, A is a real Hilbert space with power set 2%, scalar product (- | -), and associated
norm || - ||.

Let R: H — H be an operator and let « € [0,1]. Then R is nonexpansive if it is 1-Lipschitzian,
a-averaged if there exists a nonexpansive operator : H — H such that R = (1 — «)Id+a@Q, and
firmly nonexpansive if it is 1/2-averaged. Let A: H — 27 be a set-valued operator. We denote by
graA = {(z,u) € H x H | u € Az} the graph of A and by A~! the inverse of 4, i.e., the operator with
graph {(u,z) € # x H | u € Az}. In addition, A is monotone if

(V(z,u) € graA)(V(y,v) € grad) (z—ylu—v) >0, (3.1)

and maximally monotone if there exists no monotone operator B: H — 2% such that gra A C graB #
gra A. If A is maximally monotone, then its resolvent J4 = (Id+A)~! is firmly nonexpansive. We
denote by I'g(#) the class of proper lower semicontinuous convex functions from # to |—oo, +00]. Let
f € To(H). The conjugate of f is

To(#) 5 f7: w = sup({w | u) = f(=)) (3.2)

and the subdifferential of f is the maximally monotone operator

OftH—o2M o {ueH | (WeH) (y—a|u)+ fz) < fy)} (3.3)
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For every z € H, the unique minimizer of f + ||z — -||?/2 is denoted by prox,;x. We have prox, = Jyy
and prox; is therefore firmly nonexpansive.

Let C be a nonempty convex subset of H. Then ¢ is the indicator function of C' (it takes values 0
on C and +oo on its complement) and d¢ : « — minyecc || — y|| is its distance function. If C is closed,
its projection operator is proj. = prox, ..

3.2 Activators as averaged operators

We show via various illustrations that the assumption made in Model 1.1 on the activation operators
covers many existing instances of feed-forward neural networks. Let us start with some key properties.

Proposition 3.1 Let H be a real Hilbert space, let « € [0, 1], and let R: H — H be a-averaged. Then the
following hold:

(i) There exist a maximally monotone operator A: H — 2" and a constant A € [0,2] such that
R =1d+A(Ja — Id). Furthermore, if A < 1, then R is firmly nonexpansive.

(ii) Suppose that H = R. Then there exist a function ¢ € I'y(R) and a constant A € [0, 2] such that
R =1d +A(prox, — Id). Furthermore, R is increasing if A < 1 and R is odd if ¢ is even.

(iii) Suppose that H = R and that R is increasing. Then there exists ¢ € I'o(R) such that R = prox,,.

Next, we illustrate the pervasiveness of nonexpansive averaged activation operators in practice,
starting with activation operators on the real line.

Example 3.2 Proposition 3.1(ii) states that activation functions on the real line can be expressed in
the generic form

R =1d+A(prox, —Id), where ¢ €I'o(R) and X€[0,2] 3.4
Here are a few explicit instantiations of this proximal representation.

(i) If A = 1, we obtain the class of proximal activation functions discussed in [24] and which was
seen there to include standard instances such as the unimodal sigmoid activation function [24,
Example 2.13], the saturated linear activation function [24, Example 2.5], the ReL.U activation
function [24, Example 2.6], the inverse square root unit activation function [24, Example 2.9],
the hyperbolic tangent activation function [24, Example 2.12], and the Elliot activation function
[24, Example 2.15]. Additional examples in this category are the following. Given 3 € ]0, 40|,
the capped ReLU activation function [36] is

(Vz eR) R(x)= prox, . (x) = min{max{x, 0}, 8}, (3.5)
and, for 8 < 1, the exponential linear unit (ELU) function [20] is
x if x>0:
VreR) R(z)=<{" - 3.6
(v ) (@) {5(exp(m)—1), if x <0. (3.6)
It follows from [8, Cor. 24.5, Prop. 24.32, and Exa. 13.2(v)] that R = prox, where
(0 if z>0;
2
(x+5)ln<x+ﬁ>—x—x—, if —B<z<0;
(Vz eR) o¢(x) = g2 2 (3.7)
- if = —f;
[ +00, if x <—4.
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Figure 2: Averaged activation functions: Illustration of Example 3.2(ii). Top: The function ¢ of (3.10).
Bottom: In blue, the activation operator R of (3.8) is the proximity operator of ¢, which corresponds
to A = 1 in (3.4). The green curve corresponds to the case when A = 0.5 in (3.4), and the red one to
the case when A = 1.5. As stated in Proposition 3.1(i), relaxation parameters A € [0, 1] yield increasing
activation functions. Non-monotonic averaged activation functions in (3.4) must be generated with
relaxation parameters \ € |1,2]. As seen in Proposition 3.1(ii), since ¢ is even, R is odd.

The softplus activation function [29] R: x — In((1 + €*)/2) is also a proximity operator since it
is nonexpansive and increasing (see Proposition 3.1(iii)).

(ii) The Geman-McClure function [28]

psign(z)z? 8
Vr€R) R(x)="—"—-—, where = —, 3.8
(Vo cR) R(x) = LoET =5 (3.8)
will be employed in Example 3.3. Set¢) = |- | —arctan | - | € I'o(R). Then R is nonexpansive and
R = ). The conjugate of u1) is 1-strongly convex and given by ut*(-/u), where
B - - .
arctan 12| |z|(1 —|z|), if |z| <1;
— T
(VzeR) ¢*(x)=qm : (3.9)
5 if |z| =1;
+o00, otherwise.



It follows from [8, Cor. 24.5] that R = prox with (see Fig. 2)

|| ’

x
parctan —lxl(p—|z|) = =, if |z| < u;
5 1/}*() ‘.’2 |z| 2 (3.10)
=) —)———:x— — .
+ 00, otherwise.

(iii) Take ¢ = L[0,4-00[- Then we obtain the leaky ReLU activation function [38] for 0 < A < 1, the
Rel.U activation function for A = 1, and the absolute value activation function [17] for A\ = 2.

(iv) The use of nonmonotonic activation functions has been advocated in various papers. They turn
out to be a-averaged (alternatively, in view of Proposition 3.1(ii), they are of the form (3.4)
with A € |1,2]). To compute the averagedness constant of a nonexpansive operator R: R — R,
one can proceed as follows. According to (1.2), we must find the smallest a € |0, 1] such that
Q = Id +a~!(R — 1d) remains nonexpansive. This means that the supremum of the modulus of
the one-sided derivatives (the derivatives if they exist) over R should be one. Thus, we obtain
o = 1 for the sine activation function R = sin [42], as well as for the absolute value function

R =] [17] and the mirrored ReLU activation function [58]
. x|, if |x| < 1;
(Vz € R) R(z) = projy y)|z| = =1 1 . (3.11)
’ 1, otherwise,
o ~ 0.546 for the swish activation function [45]
10x
Vr e R) R(z)= 3.12
(Vo €R)  R(z) 11(1 + exp(—x))’ (3.12)
a =~ 0.536 for the exponential linear squashing (ELiSH) function [7]
T ifz>o
10 1+ exp(—x)
(Vz €R) R(x)= I XN ex () — 1 (3.13)
B e <0,

1+ exp(—z)’
and a = (1 + /2/e)/2 for the Gaussian activation function R: z +— exp(—x?) [40].

Next, is a technique for lifting a proximal activation operator from R to a Hilbert space H.

Example 3.3 Let H be a real Hilbert space, let A\ € [0, 2], let C' be a nonempty closed convex subset
of H, let ¢ € I'o(R) be an even function such that ¢* is differentiable on R . {0} with 0 as its unique
minimizer. Set

e Aprox,dc(z)
(1-X) +7dc(x)

(1 =Nz, if zeC.

(x - projea), if @ ¢ C;

(VreH) Rx= (3.14)

Then R is \/2-averaged. In particular, set A = 1, C = {0}, u = 8/(3v/3) and define ¢ as in (3.10).
Then we infer that the squashing function
plz|
R: —_ 3.15
T T (319

used in capsule networks [48] is a proximal activation operator.
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Another construction that builds on activation functions on the real line is the following, which is
reminiscent of the original multilayer perceptrons [46].

Example 3.4 Let 7 be a separable real Hilbert space, let & # K C N, let (ex)xex be an orthonormal
basis of H, and let « € [0,1]. For every k € K, let gx.: R — R be a-averaged and such that g (0) = 0.
Define R: H — H: z+ ) cx ok({(x | ex))er. Then R is a-averaged.

Example 3.5 Let NV be a strictly positive integer, let w € [0, 1], and let C' be a nonempty closed convex
subset of RV, Set

R:RY 5 RY: (&) 1<hen — w(g,ﬁ)KKN + (1 — w)proje (&x)1<k<N, (3.16)

where (Eg)lgkg ~ denotes the vector obtained by sorting the components of (£)1<x<n in ascending
order. Then R is (1 + w)/2-averaged.

Remark 3.6 Set C = {(&)1<k<ny € RY | & =+ = £y} in Example 3.5. Then

N
1-w
Jj=1 1<k<N

Now set W: RN — R: (&)1<p<n = En. Then W o R corresponds to the max-average pooling per-
formed on a block of size N [37]. When w = 0, the standard average-pooling operation is obtained,
which is associated with the activation operator proj.. When w = 1, we recover the standard max-
pooling operation [14], which is the main building block of maxout layers [31]. The max-pooling
operator is nonexpansive.

Example 3.7 Let2 < N € N, let {7 }1<k<n—1 C ]—1,1[, and let € R. Set

R:RY1 S RV (&)1 chen_t = US([Tlfl, . ,TN,lgN,l,a]T), (3.18)
where U € RW=D*N i the matrix obtained by retaining the first (N — 1) rows of the identity matrix
of size N x N, and S: RN — RV: (&)1<chen — (€])1<ken- Then Ris (1 + max{|r|,...,|7v_1|})/2-
averaged.

Remark 3.8 Let N > 3 be an odd integer, let (7)1<k<n-1 € |—1, 1[N*1, let 8 € R, let R be the

activation operator defined in Example 3.7, and set W: RV =1 — R: (&)1<pcn_1 — Ensa. Then, for
2

every x = (&) 1<hen—1 € RV (W o R)z = median{r&,...,7v_1&N -1, 0}. This corresponds to the

median neuron model introduced in [2].

Remark 3.9 Multi-component averaged activation operators can be derived from the
above examples. Indeed, let (;)1<i<as be real Hilbert spaces and let H = H; @ --- @ H s be their
Hilbert direct sum. For everyi € {1,..., M}, let o; € [0,1] and let R;: H; — H; be a;-averaged. Then
R:H —H: (xi)lgigM — (Rixi)lgigM is a-averaged with o = maxi ;<M OG-

4 Lipschitz constants for layered networks
The objective of this section is to derive Lipschitz constants for networks conforming to Model 1.1.

Note that, if m = 1, a Lipschitz constant of 7" is clearly §; = ||W|| since R; is nonexpansive. We shall
therefore focus henceforth on the case m > 2. Throughout, the following notation is employed.
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Notation 4.1 Let2 < m € Nand k € {1,...,m — 1}. Then

g ENFLIS <o < <m—1}, if k>1;
T = {010 k) (1< Jp<m 1) CR))
(,...,m—1}, if k=1
and, for every (j1,...,jk) € Jmk»
Oms{jrgn} = Wm0 o Wy a[[ Wy 0o Wy |-+ [[Wjy 0+ 0 WA (4.2)

Theorem 4.2 Consider the setting of Model 1.1 with m > 2. Set

VIc{l,....,m—1}) Bmg= (Ha]) I - (4.3)

Jjel Je{l,...m—1}\J

and
m—1

Om =B Wi o oWill+ > Y Bulirii}Omslinein} (4.4)

k=1 (j1,--Jk)EIm,k

Then 0,, is a Lipschitz constant of T.
The following proposition features some important special cases.

Proposition 4.3 Consider the setting of Model 1.1 with m > 2, and let 0,, be defined as in (4.4). Then
the following hold:

@ [[Wi oo Wi < O < TLZy [|Will
(ii) Suppose that, for every i € {1,...,m — 1}, R; =1d. Then 6,, = ||[W,, 0--- o Wq|.

(iii) Suppose that, for every i € {1,...,m — 1}, R; is purely nonexpansive in the sense that a;; = 1 is its
smallest averaging constant. Then 0,,, = [/~ |Wi|.

(iv) Suppose that, for every i € {1,...,m — 1}, R; is firmly nonexpansive. Then

m—1
1
em = —2m71 (HWmOOWlH + Z Z O'm7{]177jk}> (4.5)

k=1 (j1,.-Jk)EJm,k
(v) Set ag = 0y = 1. Then
m—1 m—1
Om = aiai( IT a- aq)) [Win o0 Wip]|. (4.6)
‘ q=i+1

Remark 4.4 Proposition 4.3 (i)—4.3(iii) show that the tightest bound in terms of stability corresponds
to a linear network, while the loosest corresponds to a network with nonlinearities having no stronger
property than nonexpansiveness.

We close this section by observing that the Lipschitz constant exhibited in Theorem 4.2 is a com-
ponentwise increasing function of the averagedness constants of the activation operators.

Proposition 4.5 Consider the setting of Model 1.1 with m > 2. Make the Lipschitz constant 0,, in

Theorem 4.2 a function of (a1, ..., am—1) € [0,1]™ L. Let (a;)1<icm—1 € [0,1]™ ! and (&) 1<i<cm—1 €
[0,1]™~1 be such that (Vi € {1,...,m —1}) o; < . Then O (1. .y 1) < O (.. al, o).

Remark 4.6 Proposition 4.5 suggests that, in terms of stability, it is better to use proximal activation
operators, such as those listed in Example 3.2(i)—(ii), than a-averaged activation operators for which
a > 1/2, such as those mentioned in Example 3.2(iv).
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5 Networks using separable activation operators

We show that sharper Lipschitz constants can be derived in the case of networks featuring the type of
separable structure described in Example 3.4. Note that this class of networks is the most commonly
used, standard convnets being special cases. The following notation will be used.

Notation 5.1 Let H be a separable real Hilbert space, let @ # K C N, let £ = (ex)rex be an orthonor-
mal basis of H, and let I be a nonempty bounded subset of R. Then

@](E) = {A: H—o>H: z— Z )\k<1‘ ’ ek>ek {)\k}kEK C [} . (5.1)

keK

5.1 General results

Theorem 5.2 Consider the setting of Model 1.1 with m > 2. For every i € {1,...,m — 1}, suppose that
M, is separable, let & # K; C N, let E; = (e, 1 )kek, be an orthonormal basis of H;, and, for every k € K;,
let 0; 1,: R — R be a;-averaged and such that g; ;,(0) = 0. Assume that

(Vi < {1, oo, — 1}) Ri: 7‘[@ — 'Hz T +— Z Qi7k(<x ‘ ei,k>)ei7k (5.2)
keK;
and define
— sup Wi oAp—10-+-0A1 o Wy (5.3)

A1€@{172a1,1}(E1)

Am—1€9{172a.m_1,1}(Em—1)
Then the following hold:

(i) 9, is a Lipschitz constant of the operator T of (1.3).
(ii) Define 0, asin (4.4). Then ||Wp, 0 --- o Wi|| < ¥y, < Oppe

Remark 5.3 An expression similar to (5.3) was proposed empirically in [49] for a multilayer per-
ceptron operating on finite-dimensional spaces under the additional assumption that the activation
operators are continuously differentiable and firmly nonexpansive.

Remark 5.4 In Theorem 5.2, make the additional assumption that, for some
i € {1,...,m — 1}, the functions (g; 1 )rex, are increasing. Then it follows from Proposition 3.1(iii)
that there exist functions (¢; k)rek, in I'o(R) such that (Vk € K;) g; x = prox,, , . In addition, for every
k € K;, since g;;(0) = 0 and since the set of minimizers of ¢; ; coincides with the set of fixed points
of prox,  [8, Proposition 12.29], we deduce that ¢; , is minimized at 0. Furthermore, a; = 1/2 and
R; = prokw, where (Vo € H;) ¢i(z) = > ek, ¢ik({x | e;x)). Such a construction is used in [23, 25].

As in Proposition 4.5, the Lipschitz constant exhibited in Theorem 5.2 turns out to be a componen-
twise increasing function of the averagedness constants of the activation operators.
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Proposition 5.5 Consider the setting of Model 1.1 with m > 2. For every i € {1,...,m — 1}, suppose
that H; is separable, let @ # K; C N, and let E; = (e; ;)kek, be an orthonormal basis of H;. Define
O 0,1]™F = [0, +o0[ by

I (1, 1) — sup IWpoAp—10---0A; o Wi (5.4)
MED (120,13 (E1)

Am71€@{1—20:m,1,1}(Em71)

Let (o) 1<i<cm—1 € [0,1]™ 1 and (&) 1<i<cm—1 € [0,1]™ ! be such that (Vi € {1,...,m —1}) a; < o/

L.
Then V(a1 ...y m—1) < Op(ad, ..., al, ).

5.2 Extension to non-Hilbertian norms

In certain applications, Hilbertian norms may not be the most relevant measures to quantify errors.
We now state a variant of Theorem 5.2 which holds for alternative norms. It involves embeddings of
Hilbert spaces; standard examples can be found in [57]. Let us also point out that these embedding
conditions are automatically satisfied if the spaces are finite-dimensional.

Proposition 5.6 Consider the setting of Model 1.1 with m > 2. For every i € {1,...,m}, suppose that
H; is separable, let & # K; C N, let E; = (e;)kek, be an orthonormal basis of H;, and, for every
k € K;, let 0; - R — R be «j-averaged and such that ; ,(0) = 0. Let Gy be the normed space obtained
by equipping the vector space underlying H, with a norm for which Gy is continuously embedded in H,,
and let G,, be the normed space obtained by equipping the vector space underlying H.,, with a norm for
which H,, is continuously embedded in G,,. Assume that

(Vie{l,...,m}) R;:H; = H;: xz+— Z Qi7k(<$ | 6i,k>)€i,k- (5.5)
keK;
Then
O = sup | Ay, 0 Wi 00 Ay o WillGo,Gom (5.6)

A1€@{172a1,1}(E1)
Am€9{172.am,1}(Em)
is a Lipschitz constant of T': Gy — Gpm.

Corollary 5.7 Consider the setting of Model 1.1 with m > 2. Define Gy and (R;)1<i<m as in Proposi-
tion 5.6, let p € [1,400], and let {wy }kek,, C ]0,+oo[ be such that one of the following holds:

@ pel,2[and ¥pep, w0/ * ") < oo,
(i) p € [2,400] and supcg,, Wi < +00.

Let G, be the normed space obtained by equipping the vector space underlying H.,, with the norm

1/p
> willw | emplP| . if p< oo
(Vo € Hm) |llg,, = 4 | kexn (5.7)
sup wi[(z | emk)l, if p=+oo.
k€K,
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Then a Lipschitz constant of T': Gy — Gy, 1S
Y = sup Wi 0 App—i 0+ 0 Ay o Willgy G- (5.8)
MED1 20y 13 (E1)

Am—1€2012a,, 4 .1}(Em-1)

5.3 Networks with positive weights
Under certain positivity assumptions, the constant 1, of (5.3) and (5.8) can be simplified.

Assumption 5.8 Consider the setting of Model 1.1 with m > 2. For every ¢ € {0,...,m}, suppose
that #; is separable, let & # K; C N, and let E; = (e; »)rek, be an orthonormal basis of #;. For every
(ko - km) € Ko x -+ x Ky, set

ko, o = (W1€0ko | €11) * (Winem—1k_1 | €moem )- (5.9)
We suppose that

(V(k)o, ,km) eKgx -+ X Km)(V(lo, 7lm—1) eKgx---x Km—l)
Ko, lem—1 km Hoedim1.km = 0. (5.10)
Example 5.9 Consider the particular case of Model 1.1 in which, for every i € {0,...,m}, N; €
N~ {0}, #; = R, E; is the canonical basis of R and, for every k € {1,...,N;}, xix € {—1,1} with

the additional condition that, for every ! € {1,..., Ny}, xo.x = Xo,. Further, for every i € {1,...,m},
the matrix W; = [w; x1]1<k<n; 1<i<n;_, € RY*Ni-1 satisfies

(Vk S {1, ... ,NZ})(VZ c {1, . 7Nz‘—1}) Wi k1 = Xi,kXifl,l‘wi,k,l‘- (5.11)

Then Assumption 5.8 holds. This is true in particular if, for every ¢ € {1,...,m},
{wi k1 hi<k<n,1<i<n,_, C [0,400[, which corresponds to positively weighted networks. See [19] for
the design of such networks.

In the following result, a Lipschitz constant of the network (1.3) coincides with that of the linear
network W,,, o - -- o W for standard choices of norms.

Proposition 5.10 Suppose that the assumptions of Corollary 5.7 are satisfied, that

> Ereok > Iékleok

keKo k€Ko

) (5.12)
Go Go

and that Assumption 5.8 holds. Then the Lipschitz constant ¥,, of T: Go — G,, in (5.8) reduces to
O = Wi 0 -+ 0 Willgy G-

(V(&k)rex, € £°(Ko))

We show below that the Lipschitz constant of a positively weighted network associated with weight
operators (W;)1<i<m and nonseparable activation operators is not necessarily ||W,, o - -- o W1]|.

Example 5.11 Consider the toy version of Model 1.1 in which m = 2, Ho = H1 = Hs = R?. Set
p:x = (£1,82) = ¢(&1) + ¢(§2), where

(1+&n1+&+(1-&n1-¢) &

5 if |¢] < 1;
¢: R = ]—00,+00] : = In(2) —1/2 if ¢ =1 (5.13)
+00, if ¢ > 1.
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Let { € |-1,1[ = dom¢' = dom (Id +¢') = ranprox,. Then { + ¢'({) = arctanh(¢) and therefore
o0 = (Id+¢')~! = tanh. Consequently, we derive from [24, Example 2.13] that (Vz = (£1,&2) € R?)
prox,z = (tanh(¢;), tanh(¢z)). Now set

1
b= by = 0, U=§[f§ _1/5] le[l 3}, W2=[10 2}, (5.14)

Ry = prox,,; = U oprox,, o U [25, Lemma 2.8], and Ry = Id. Then |[WoW1|| ~ 54.72. If the input
x = (—3.4,2) is perturbed by z = 10~ x (1,+/3), we get | T(z + 2) — Tz||/| 2| =~ 58.18, which shows
that, although W, and W5 have strictly positive entries, the Lipschitz constant is larger than ||[IWo/7||.
Note that, in this scenario, the constant of (4.4) is

02 = ([[WaW1 | + [[Wa||[|[W1]])/2 = 60.50. (5.15)

A sharper Lipschitz constant can be obtained by noticing that this network is equivalent to a network
in which W3, Ws, and R; are replaced by W| = UW;, W} = W)U, and R| = prox,,. Since R is
separable, the constant of (5.4) is 95 ~ 59.54. In contrast, the naive bound of (1.4) is about 66.29.

For separable activators in finite-dimensional spaces, we have the following result, which does not
require Assumption 5.8.

Proposition 5.12 Consider the setting of Model 1.1 with m > 2. Suppose that the assumptions of
Corollary 5.7 hold and that || - ||g, satisfies (5.12). In addition, assume that, for every i € {0,...,m},
H; = RYi and E; is the canonical basis of R™:. For every i € {1,...,m}, let A; denote the matrix
obtained by taking the absolute values of the entries of the matrix W;. Then the Lipschitz constant 9,, of
T: Gy — G, in (5.8) satisfies Uy, < || Ap -+ - A1l|Go,Gon-

6 Conclusion

Using advanced tools from nonlinear analysis, we have derived sharp Lipschitz constants for layered
network structures involving compositions of nonexpansive averaged operators and affine operators.
This framework has been shown to model feed-forward neural networks having a chain graph struc-
ture. Extending these results to networks having a more general dyadic acyclic graph (DAG) structure
would be of interest. Among the many avenues of future research that this work suggests, it would
be interesting to exploit it to devise training strategies to achieve better robustness. The proposed
nonexpansive operator machinery could also be used to design network architectures with smaller
Lipschitz constants. Finally, computing local Lipschitz constants could be of interest in practice and
constitutes an important topic of future research.

A Technical lemmas

Lemma A.1 [23, Proposition 2.4] Let R be a function defined from R to R. Then R is the proximity
operator of a function in I'y(R) if and only if it is nonexpansive and increasing.

Lemma A.2 Let ¢ € N~ {0} and, for every i € {1,...,q}, let S; be a nonempty subset of a real vector
space X;. Let 1: Xy x --- x Xy — R be a function which is convex with respect to each of its q coordinates.
Set § =51 x --- x S, and let conv S be its convex envelope. Then sup(S) = sup ¢(conv .S).

13



Proof. Set i = sup#(S). Clearly, u < supy(conv S). Now take ¢ € convS. Thenz = >, ;o x;,
where (a;);er is a finite family in |0, 1] such that .., a; = 1 and, for every j € I, z; = (2j,)1<i<q>
with (Vi € {1,...,q}) z;; € S;. Note that (Y(j1,...,Jq) € 1) (xj,1,...,7j,4) € S. Therefore,

Y(z) = ¢< Z Q1 Ljy,1se 00 Z ajqqu7Q>

J1€l jq€l

< E :0411111(%,1’ E Ty, E :%’q%,q>

J1el jo€l Jjq€l

: q
< Z (Haji>¢(xj171,...,xjmq) < M- (Al)

J1€l,.jeel Ni=1
Hence, sup ¢)(conv S) = sup,cconvs ¥(x) < p. O

Lemma A.3 Let H be a separable real Hilbert space, let & # K C N, let E = (ex)rex be an orthonormal
basis of H, and let o € [0,1]. For every k € K, let or: R — R be a-averaged and such that g (0) = 0.
Define R: H — H: x> Y o ok((x | ex))ey, and fix x and y in H. Then there exists A € Djy_oq11(F)
such that Rx — Ry = A(z — y).

Proof. We saw in Example 3.4 that R is well defined. We have

Rr—Ry =" (ox((z | ex)) — ok((y | ex)))ex- (A.2)

keK

For every k € K, there exists a nonexpansive 0;: R — R such that g, = (1 — «a) Id +af; and, therefore,

or((z | er)) —ou((y | en)) = 1 — )z | ex) — (y | ex)) + a(6p((z | er)) — Ok({y | ex))).  (A3)

Consequently, for every k € K, there exists \; € [1 — 2a, 1] such that

(I—a)((z|ex) = (yler) +a(0u((z]er) — 0yl er)) = Ml(x | ex) — (y ] ex)). (A.4)

We deduce from (A.2) that Rz — Ry = Y, cx A\ ({x | ex) — (v | ex))ex, as claimed. 0

B Proofs of main results

B.1 Proof of Proposition 3.1

(i): As seen in (1.2), there exists a nonexpansive operator (): H — H such that R = (1 — ) Id +aQ.
However, by [8, Prop. 4.4 and Cor. 23.9], there exists a maximally monotone operator A: H — 27
such that @ = 2J4 — Id. Hence, R = Id +A(J4 — Id), where A = 2« € [0, 2]. For the last claim, notice
that, since J4 is firmly nonexpansive [8, Cor. 23.9], sois R = (1—\) Id +AJ4 as a convex combination
of two firmly nonexpansive operators [8, Exa. 4.7]. (ii)=-(i): It follows from [8, Cor. 22.23] that there
exists ¢ € I'g(R) such that A = 9¢, which provides the expression for R. The increasingness claim
follows from Lemma A.1. Finally, if ¢ is even, then prox, is odd [8, Prop. 24.10] and so is R. (iii):
This follows from Lemma A.1.
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B.2 Proof of Example 3.3

Let o¢ be the support function of C' and set f = o¢ + ¢ o - | € I'o(H). Then it follows from [8,
Prop. 24.30] and (3.14) that R = Id —M(proxf — Id), However, since prox; is firmly nonexpansive,
it is 1/2-averaged, which makes R a \/2-averaged operator. Now consider the function ¢ of (3.10).
Then it is an even function in I'o(R) with 0 as its unique minimizer. Next, set ¢ = | - | — arctan | - |. As
seen in Example 3.2(ii), ¢ = utp*(-/pu) — | - |*/2 and dom¢* is bounded. Therefore dom ¢ = pdom v*
is bounded. In turn, ¢ is supercoercive and we derive from [8, Prop. 14.15] that dom ¢* = R. Hence,
since ¢ = ¢** is strictly convex, it follows derive from [8, Prop. 18.9] that ¢* is differentiable on R. In
addition, dc = || - ||. Altogether, (3.14) reduces to

prox, ||z

VreH) Ro=d o » B0 (B.1)
0, if =0
and hence, in view of Example 3.2(ii), to (3.15).
B.3 Proof of Example 3.4
Let x € H and y € H. It follows from the nonexpansiveness of the functions (g )rex that
2 2 2
D lor(@ ler)]” =D lor((@ | er)) — or(0)]” < D (@ | ex) — 0" = [/, (B.2)

kekK keK keK

Hence, R is well defined. For every k € K, by (1.2) there exists a nonexpansive function 0;: R — R
such that g = (1 — a)ld+af,. Hence, Rz = (1 — )z + aQx, where Qz = >, x Or((z | ex))ex.
Therefore,

1Qz — Qy|* = Z 0k((z | ex)) — Oc((y | €k>)|2 < Z |(@ | ex) — (y | €k>|2 = ||z — yl*. (B.3)

kekK keK

This shows that () is nonexpansive and hence that R is a-averaged.

B.4 Proof of Example 3.5
Let S be the sorting operator of Example 3.7. Then
(Ve € RY)(Vy € RY) ||Sz — Sy||* = [|Sz|* — 2(Sz | Sy) + ISyl
= |l* - 2(Sz | Sy) + |1yl
< lzlf® = 2z [ y) + lyll? (B.4)
=z —yl?, (B.5)

where (B.4) follows from [32, Thm. 368]. This shows that S is nonexpansive. Furthermore, Q) =
2proj. — Id is nonexpansive [8, Cor. 4.18]. Note that

) 1+ w 14w /(1—w 2w
1-— =(1- I . B.
(1 —w)projo +wsS ( 5 > d+ 5 <1+WQ+ 1+w5> (B.6)

Since ((1 —w)@ + 2wS)/(1 + w) is nonexpansive as a convex combination of nonexpansive operators,
the operator (1 — w)proj- + wS' is (1 + w)/2-averaged.
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B.5 Proof of Example 3.7

Set A = Diag(m, .. _1). Let z and 5 be in RV~!, and define # = [(Az)",0] " and 5 = [(Ay)T,6]".
As seen in (B.5), S is nonexpanswe. Consequently,

Rz — Ry|| = |USz — USY|| < ||U|[|57 — Syl| = [|ST — Sy||

<z =yl = [lAz — Ayl < max{|n,..., [rv-1l}lz = y]. (B.7)
This shows that R is Lipschitzian with constant max{|m|,...,|rn—-1|} < 1. It is thus a-averaged with
a = (1 +max{|r|,...,|7~-1|})/2 [8, Prop. 4.38].

B.6 Proof of Theorem 4.2

For every i € {1,...,m}, P, = R;(- + b;) is a;-averaged and, therefore, there exists a nonexpansive
operator Q;: H; — H; such that P, = (1 — o;) Id +;Q;. Since T'= P, o W, 0---0 P, o Wj and P, is
nonexpansive, it suffices to show that

0., is a Lipschitz constant of W,,, 0 --- 0 P; o W7. (B.8)

Let us prove this result by induction. Let x € Hy and y € Hy. If m = 2, we derive from the
nonexpansiveness of ), that

(W0 P o Wh)z
=[[(Wao (1 —a1)Ild+a1Q1) o Wi)z — (Wao ((1 —ay)Id4+a1Q1) o W1)y||

(I —an)[(Wa o Wi)(z —y)[| + ar[| (W2 0 Q1o Wi)z — (W20 Q10 Wh)yl

(1 —an)[Wao Wil |lz — yl| + ea[[Wa || [|Q1 (Wrz) — Q1(Why)|]

(1 —a)|[Wa o Wil |z — yll + ca|[Wa|| [[Wi(z — )

(1= 1) [[Wa o Wi || + an[[Woall [[Will) ||z — yl|. (B.9)

— (Wy o Py o W)yl

INCINCININ

Hence, T is Lipschitzian with constant
(1 —a)[[Wa o Wil + aa |[|[Wal [[Wh | = Ba,e[|Wa o Wil + Ba,quy [Wal| Wi = 62. (B.10)
Now assume that m > 2 and that (B.8) holds at order m — 1. Then

[(Wi o Py 0---0ProWi)a — (Wi 0 Pp10---0Pro Wiyl
= [(Wn o (1 — am—1) Id 40— 1Qm-1) 0 -+- 0 Pro W1)z

— (Wino (1 = am—1)Id +am-1Qm-1) o -~ o Py o W1y

S =amn)[[(WyoWpyo---0oProW)z—(WyoWp yo---0ProWy|

+ am1||(Win 0o Q10 Wy—10---0PLoWi)x — (W, 0 Q10 W10+ 0P o Wy)y||
<1 —am1)||(WpoWp_q0---0ProWi)x— (WpoWp_q10---0P o W)yl

+ -1 Wil (Qm—1 0 Wip—1 00 Py o Wh)z — (Quu—1 © Wip—1 0+ 0 P o Wy)yl|.

Hence, the nonexpansiveness of ), 1 yields

[(WmoPpn_y0---0oProWi)x— (WyoPy, 10---0P oWyl
<A =am1)|(WnoWy 0Py g0---oWi)x— Wy oWy 10Py, g0---0 Wyl
+ -1 |[Winl| [(Wm-10 Pn—g0---0 PLoWi)z — (Wy—10 P00 ProW)yl.
(B.11)
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On the other hand, the induction hypothesis yields

[(Win—10Ppgo0---0oProWy)z— (Wp_10P,_20-0P oWy
<Oz =y

m—2
= <5m—1;@HWm—1 o---o Wi + Z Z /Bml;{jl,...,jk}am1;{j1,...,jk}> lz -yl

k=1 (j1,-s0k)E€Im—1,k
(B.12)

Similarly, replacing W,,_1 by W,,, o W,,,_1 above, we get

[(Wim o Wi—1) 0 Ppgo---0oProWi)z — (Wp 0 Wi1) 0 Ppgo---oProWp)y|

m—2
< </8m1;®||Wm OSWm—-10---0 WIH + Z Z 5m—1;{j1,...,jk}o-m;{jl,...,jk}> Hx - yH

k=1 (j1,.,Jk) EIm—1,k

(B.13)
Using (B.11), and then inserting (B.13) and (B.12), we obtain

[(Win o Pp10--0ProWi)z— (WyoPy_10--0P oWyl

< (I =am-1)[|(WmnoWp10Ppg0---oWi)x — (WpoWp_10Ppg0--- oWyl
+ 1 [|[Wen|[ |(Wim—1 0 P2 0---0 PLoWi)z — (W10 Ppg0---0PLo W)yl

< (1= apm-1)X

m—2
<5m1;®”Wm OWm—-10---0 Wl” + Z Z IBm—l;{jl,...,jk}am;{jl,...,jk}> ||$ - y”

k=1 (j1,--:Jk)E€Im—1,k
+ a1 || Wi || X

m—2
<Bm—1;®HWm—1 ©---0 Wl” + Z Z /Bm—l;{jl,...,jk}am—l;{jl,...,jk}> ”.%' - y”

k=1 (j1,-:Jk)E€Im—1,k

(B.14)
Furthermore, we deduce from (4.3) that
1-— _ _1. if -1 :
VIC{l,...,m—1}) Py = (1= am-)Bp-ry, i m—L1¢gJ; (B.15)
am—lﬂm—l;ﬂ\{m—1}7 it m—1¢€l.

Therefore

5m;® = (1 - am—l)ﬂm—l;@
5m;{j1,...,jk} = (1 - amfl)/ﬁm—l;{jh...,jk} if m—1 ¢ {jla s ’jk} (B.16)
Bm;{jl,...,jk} = amflﬁmfl;{jl,...,jk}\{mfl} if m—1c¢ {jla cee ’jk}’

which implies that, if m — 1 & {j1,...,jk}, then B 51y m—1} = ¥m—1Bm—1{j1,....;x}- Hence, (B.14)
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yields

(Wi © P10+ 0ProWi)az — (Wy 0 Pyoyo---0 PLoWyyl/|lz -yl
< Bm;@”Wm oWp—10--- OWl”

m—2
+ Z Z (1- O‘mfl)ﬁmfl;{j17~~~,jk}0m§{jl,---,jk}

k=1 (jlv"'vjk)ev]]m—l,k
+ ot Wl [ Wiy o0 W]

m—2
+ Z Z amflﬁmfl;{jl,...,jk}||Wm||o-m*1;{j17~~~7jk}

k=1 (j1,--Jk) EIm—1,k

= 5m,®”Wm oWm-10---0 Wl” + ﬁm;mflam;{mfl}

m—2

+ Z Bms{n,enii Y Tmi i}
k=1 (]177]k)€°ﬂm,k\{m71}
m—2

+ Z 5m7{]177]k7m71}0m1{]177]k7m71}
k=1 (j1,Jk)ETm—1,k

= B |[Win 0 o Wil 4+ Buniiy Oty

j=1
m—2
+ Z Brns1,eenin }Tmi it i}
k=2 (]177]k)€°ﬂm,k\{m71}
m—1
+ Z Brns{g1, ik} Omilin i}
k=2 (j1,...jk)EIm.k
Jrk=m—1

m—1
= 5m;®||Wm O-++0 WIH + Z Z 5m§{jl,---Jk}o-m;{jl""’j’“}
k=1 (j1,-,3k) EJm,k

=0,,. (B.17)
Thus, we obtain

(Wi o Pr10--0oProWi)a— (WpoPnyo--oProWyl| < bmlz -yl (B.18)
which establishes (B.8).

B.7 Proof of Proposition 4.3

Define (Bm.3)5cq1,...,m—1y as in (4.3). (i): For every k € {1,...,m — 1} and every (j1,...,jk) € Jm,
(4.2) yields

m

[Win o+ 0 Will < Gy < LLIWil. (8.19)
=1

Consequently, it follows from (4.4) that

Wino-o Wil Y By <0 < (H ||Wz||) Y. By (B.20)
i=1

Jc{l,...,m—1} Jc{l,...,m—1}

18



In view of (4.3), (8m.1)scq1,...,m—1} is the discrete probability distribution of a vector of m — 1 in-
dependent Bernoulli random variables. Hence, > ;¢ .13 Bmg = 1in (B.20). (iD): For every
ie{l,...,m—1}, a; = 0. Therefore, in view of (4.3),

1, if J=go;

B.21
0, if J#o. ( )

MIc{1l,...,m—1}) ﬁm;J:{

Hence, the result follows from (4.4). (iii): For every i € {1,...,m — 1}, a; = 1. Therefore, in view of
(4.3),

1, if J={1,....m—1}

. (B.22)
0, if J#{1,...,m—1}.

VI c{1,...,m—1}) ﬁm;J:{

Invoking (4.4) allows us to conclude. (iv): For everyi € {1,...,m — 1} o; = 1/2. Hence, (4.3) yields
(VI C {1,...,m —1}) By = 217™. Invoking once again (4.4) yields the result. (v): It follows from
(4.2) that

Z Bm§{j17---7jk}o-m§{jly---7jk}

= > Binstjn,enist Wi © -0 Wi [ [Wiy 0 -+ 0 Wi

k=1 1<j1<...<jp<m—1

---Hleo---oI/VlH. (B23)
We decompose this expression in a sum of terms depending on the value i taken by j;, namely,

m—1
Z Z Brns{vseenii} Tmi it s}

k=1 1<j1<...<jp<m—1

m—1
= BuWin oo Wi | [Wi o --- W1 |
=1

i—1
2 Y Bubhei | Wmo o Wi | [Wio- o Wy

k=21<j1<...<jg-1<—1

---Hleo---oI/VlH. (B24)
In addition, for every (ji,...,jk—1) € J; x—1, we derive from (4.3) that

ﬁm;{jl,...,jk,l,z‘} = < H aj) H (1- aj)

J€{in,du—1,i} Je{l, o m=1}\{j1,...dk—1,1}

:ai< 11 aj><7ﬁ1<1—aq)> 11 (1=aj)

Je{inin—1} g=itl Je{l o i=13{i1,dk—1}

m—1
=% ( IT a- %)> Bistiv,eomin}+ (B.25)

q=i+1
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Using the above equality in (B.24), factorizing common factors, and invoking (4.4) yields

m—1
Z Z ,Bm;{jl,...,jk}am;{ﬁ,---,jk}

k=1 1<j1<...<jp<m—1

m—1
ZOZ@< H 1—Oéq)>HWmo-..o i+1H<ﬁi;g||Wio...WI||

q=1+1

FY Y upnlWioe el W, 00 WA )

k=21<1<...<Jp—1<i—1

m—1
ZO‘Z Z< II 1—aq)>||WmO"'O i1 lls (B.26)

q=1+1

and we obtain (4.6).

B.8 Proof of Proposition 4.5
Letl e {1,...,m — 1} and set

VIc{l,...om—=1}~{1}) Bmipy= <Ha]> 11 (1—ay). (B.27)

jel Ge{L,.om—1}~(JU{l})

For every k € {1,...,m — 1} and every (ji,...,Jk) € Jmx, (4.2) yields

Tms{jtyenit} S Omilijt, i JULL}- (B.28)
We infer from (4.4) that

Hm(al, e ,Oémfl)

m—1
=(1—a)Bmpgl|Wmo--- oWy + QBN O 1)
k=1 (§1,,0k) EJm,k
le{j1,..jr}
m—2
n (1= @) B tss i i 1o}
k=1 (j1,-s5k) €T,k
1&{j1,-jk}
= B (1 = a)[[Win 0+ o Wil + 0 [Win 0+ - Wi || [Wi o+ 0 W)
m—2
+ Z Z Brndifir,eengiy (1= )0y i} + Q10mifin, g ufth)- (29
k=1 (j1,25k) €T,k
1&{j1,-jk}
In view of (B.28) we conclude that
00,
(“)041 (0617 ey, Oy 1 5m7l7g(HWm O-«-- Wl+1” HVV[ O:--0 W1H - HWm O:+++0 WlH)
m—2
+ Brndi{itreonin} (Um;{j17---7jk}U{l} - UW{jl"“’j’“}) > 0.
k=1 (§1,,0k)EJm,k
1€{j1,--dk}
(B.30)
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B.9 Proof of Theorem 5.2

(i): For every i € {1,...,m}, set P, = R;(- + ;) and (Vk € K;) 7, = 0 (- + (bi | €;ix)). Note
that, for every i € {1,...,m} and every k € K;, 7; ;, is o;-averaged. Furthermore, (Vi € {1,...,m —
(Ve € Hi) Pix = 3 ek, mik((z | eix))ei k. Now fix z and y in Ho. It follows from (1.3) and the
nonexpansiveness of P, that

| Tx—Ty| <||(WmoPp_10Wp_10---0ProWi)x—(WpoPy,_10Wy_j0---0PoW))y|. (B.31)

In view of Lemma A.3, for every i € {1,...,m — 1}, there exists A; € Z;_sq,,1)(E;) such that

(PioW;o---oPloWy)x — (PioW;o0---0P,oWi)y
:Ai<(Wio]3,~_1o---oPloW1)m—(WioPi_lo---oPlowl)y). (B.32)

Recursive application of this identity yields

(Prn—1oWyq10---oProWy)x — (Py_10Wy_10---0PLoWy)y
= (Ap—10Wp_q0---0AjoWy)(x —y). (B.33)

This implies that ||z — Ty|| < ||Wy 0 A1 0 -+ 0 Ay o Wi || ||z — y||. Thus,

Iy = sup (Wi oAp_10---0A; o Wil. (B.34)
M ED 20, ,1)(EL)

Am—1€9[172a.m_1 1] (Bm—1)

is a Lipschitz constant of T'. Set S = {1 —2ay, 1}t x - x {1 —2a,_1,1}m-1 and C = [1 —2a, 1]¥1 x
coox [1 =20y, _1,1]8m=1, For every i € {1,...,m — 1}, A;: H; — H; is generated from a sequence
(Xik)kek, in [1 — 2a;, 1] via the construction of (5.1). The function

Y C - R

B.35
((Mg)kekys - Ame1p)kekm_y) > Wm0 Apm_qo---0 Ay o Wy (B-35)

is convex with respect to each of its coordinates. Hence, we deduce from Lemma A.2 that sup¢(C) =
supt(conv S) = sup ¢(.5), as claimed.

(ii): For everyi € {1,...,m—1}, the identity operator Id; of H; lies in Z;_s,, 11 (£;). Hence, ¥, >
[Winoldy—10---0ld; oWl = [[Wy, 0--- 0 Wi||. Foreveryi € {1,...,m — 1}, let A; € D194, 13(E:)
and note that the linear operator

Ai — (1 — Oéi) Idz .
f ;
0, = . i £ 0 (B.36)
0, otherwise

is nonexpansive. Using the same kind of decomposition as in the proof of Theorem 4.2 yields

HWmOAmflo"'OAIOWIH
= HWm o ((1 - amfl)ldmfl +am71@m71) ©:--0 ((1 - al)Idl +a1®1) o Wl” <O

and allows us to conclude that 4,,, < 0,,.
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B.10 Proof of Proposition 5.5

It follows from (B.34) that

Iml(aq, ..., am1) = sup Wi oAp_10---0A o Wi
A €D 20, 1(E1)

Am7169[1_2a.m,1 1] (Bm—1)

< sup HWmOAm—lo"'oAlole
Ale@[l—Qa’l,l](El)

=VI(ad,...,al, ). (B.37)

B.11 Proof of Proposition 5.6

Let us first note that, because of the embeddings, W;: Gy — #; is continuous and, likewise, every
A € Dj—2a,,,1)(Er) is continuous from H,, to G,,. Hence, for every (A;)i<icm € Zj1—24a,,1)(E1) ¥

X D120 1] (Em-1), Ao Wy 0---0Ay o Wy: Gy — G, is continuous. We now follow the same
argument as in the proof of Theorem 5.2. Let x and y be in Gy. For every i € {1,...,m}, there
exists A; € Z[1_gq,1)(E;) such that Tox — Ty = (A, o Wy 0 Ay 1 0+ 0 Ay o Wi)(x — y). Thus,
1Tz — Tyllg,, < ||Am oWy oAp_10---0A;oWillganllz — yllg,, which leads to (5.6).

B.12 Proof of Corollary 5.7

Since, for every z € Hp, (7| emp))kek,, € (*(Ky), it follows from Holder’s inequality that || -
llg,, in (5.7) is well defined and does provide a continuous embedding of #,, in G,,. As in the
proof of Theorem 5.2, it is enough to take the supremum in (5.8) over D = % _s4, 1)(E1) X -+ X
Dl—20m_1,1)(Em-1). Forevery i € {1,...,m}, let A; € Z|1_sq,1)(£:). Then

Ao Wi o Apy10---0Ay0 WIHQO,Gm < ||AmHQm,Qm [WinoApy-10---0A10 WIH(Jo,Qm- (B.38)

Let us designate by (A, x)rek,, the sequence in [1 — 2y, 1] involved in the construction of A,, in
(5.1). If p < +o0, then

1/p
(Vo € Hm) [Anzllg,, = Z A k(T | emp)emp| = Z W Am k(T | em i) [P
keK,, Gm keK,
1/p
<Y wil@ [emiP| = llzllg., (B.39)
keKm

which shows that [|A,,[g,..,. < 1. This inequality holds analogously if p = +o0c. We then deduce from
(B.38) that ¥y, < supy,, A,_)ep Wm0 A1 0+ 0 Ay 0o Willg, g,,- On the other hand, it follows
from (5.6) that

Dy = sup | Idyy, oWy 0 Apy—q 0 -+ - 0 A1 o Wil|Go.Gons (B.40)
(Alv"'vAmfl)eD

which concludes the proof.
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B.13 Proof of Proposition 5.10
Foreveryi € {1,...,m — 1}, let A; € Z1_9,,1}(E;) and let (\;x)rek, be the associated sequence in
(5.1). Define

(Vk € Kp)

1, 3 (k... k1) €Kg x o X Ky 0:
>\m7k:{1 , 1 ( (0, s 1)6 0 X X 1) Mko,...,km,17k< (B41)

otherwise,
and set Ayt Hiy — Hin: T D gk, Amk{T | emp)em ik and Vi, = Ay, Wiy, Then, by (5.10),
(V(ko, ... km) € Ko x -+ x Kp,)
(Wieo ko | €1,)  (Win—1€m—2km_s | €m—1km—1){Vinem—1km_1 | €mpm) = 0. (B.42)
In addition, it follows from (5.7) and (B.41) that

[Wis© s 0+ 0 A1 0 Willgy G = IAms © Vi © At © Wono1 0+ 0 Ay 0 Wallgo,
= [[Vino A1 0Wy10---0Ay 0o Willgy.G,- (B.43)

Therefore, without loss of generality, we assume that

(V(kos -, km) €EKo X -+ X Kp) kg, o = 0. (B.44)
Let us now show that

Wi oAy 00 Ay o Willgy g, < [[Wm o oWillgg,.- (B.45)
Let ¢ € |0, +oc[. Then there exists = € H, such that ||z|/g, = 1 and

Wi 0 A1 00 A1 o Willgy.g < |(Wi 0 Ay 0+ 0 Ay o Wh)z|lg,, +&. (B.46)

If p < 400 in (5.7), this yields

Wi 0 A1 0+ 0 Ay o Wilgy g,
1/p
< Z Wy (Wi 0 A0+ -0 Ao Wh)z | e, )P | +e. (B.A7)
km€Km

On the other hand,

(WimoApy—10---0AjoWy)x

= Z {(Ap—10 W10 0 Ao W)z | €t ps ) Win€m—1kp_, (B.48)
k‘mfleKmfl

which, in view of (5.1), implies that
(Vkm € Kp) (WioAp—10---0AjoWh)x | emk,,)

= Z ((Am—10 Wi 00 Ay o W)Z | em1,k1 ) Wm€m—1km1 | €miom )
kmfleKmfl

= Z A1k (Win€m—1km 1 | €msem )((Win—10---0 Ay o W1)x | €m1k,_, )-

km—l EKm—l
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Using (5.9) recursively yields
(Vkm € Kp) (WmoAm—10---0AjoWy)z | enp,,)

= > [kl Am—Lk -1 ** ALk (T | €0,ko )- (B.49)
(k0yeeeykm—1)EKo XX Kp—1

We then deduce from (B.44) that
(Vkm € Kpp) |<(Wm oAm_10--0A o W)z | €mp,,)|

= Z kg Jom Am— L1 ** ALk (@ | €0,ko)
(ko,...,km_l)GKoX---XKm_l
< Z Nko,...,km|)‘m—1,kmf1| t |)‘1,/€1| |<£C | 607/€0>|
(k0yeeeskm—1)EKo XX Kpm—1
< > [k, o (2 | €010 )] - (B.50)

(ko,...,km_l)EKoX---XKm_l

Sety = > 1oek, (T | €0ko)| €0k~ In view of (5.12), [|y[lg, = [|z|lg, = 1. Thus, (B.50) yields

|<(Wm oAy 100N oWz | €m7km>‘ < Z Mko,...,km<y | 607k0>
(ko,...skm—1)€EKo X xKm—1
= (Wmo- oW1y | empkn)- (B.51)
It then follows from (B.46) and the fact that ||y||g, = 1 that
1/p
Wi 0 Am-1 00 A1 0 Willgog, <| > @kl {(Wino---o W)y | emp,)IP|  +¢
km €Km
< [Wimo---oWiyllg,, +¢
<|Wm oo Willgy 6 + & (B.52)

The same inequality is obtained similarly for p = +oc. This establishes (B.45), which leads to

sup [Win o Am—10---0A1 o Willgy G, < Wi o0 Willgy.Gn- (B.53)
MED1 20y 13 (E1)

Am—1€Z(12a,, 1 .1y(Em-1)

Since the converse inequality holds straightforwardly, the proof is complete.

B.14 Proof of Proposition 5.12

We use arguments similar to those of the proof of Proposition 5.10. For every i € {1,...,m — 1}, let
Ai € D1-24,,1}(E;). There exists x € H such that ||z|/g, = 1 and

[WinAm—1 - MiWilGo. G = [[(WinAm—1--- AiW1)z|lg,, - (B.54)
On the other hand, for every k,, € K,,,

|(Win A1+ MWZ | €y e, )| < Z ko Jom | 1T | €0,k0)| - (B.55)

(ko,...,km_l)GKoX---XKm_l

Setting Y = szGKO ’<.%' ’ 607k0>’ €0,k yields ‘(WmAm—l AW ‘ em,kmﬂ
< ((Am - ADY | emkm)> and (B.54) implies that Wi Am—1 - MiWillgo.Gm

<N Am - Ay, < [|Am - AillGo,6..» Which concludes the proof.
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