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Abstract—We consider the problem of recovering a signal
from nonlinear transformations, under convex constraints
modeling a priori information. Standard feasibility and opti-
mization methods are ill-suited to tackle this problem due to
the nonlinearities. We show that, in many common applica-
tions, the transformation model can be associated with fixed
point equations involving firmly nonexpansive operators. In
turn, the recovery problem is reduced to a tractable common
fixed point formulation, which is solved efficiently by a
provably convergent, block-iterative algorithm. Applications
to signal and image recovery are demonstrated. Inconsistent
problems are also addressed.

Index Terms—firmly nonexpansive operator, fixed point
model, nonlinear transformation, signal recovery.

[. INTRODUCTION

Under consideration is the general problem of recover-
ing an original signal T in a Euclidean space H from a
finite number of transformations (74 )xcx of the form

D

where Ry: H — Gj is an operator mapping the solution
space H to the Euclidean space Gi. In addition to these
transformations, some a priori constraints on T are avail-
able in the form of a finite family of closed convex subsets
(Cj)jes of H [4], [14], [17], [18], [20]. Altogether, the
recovery problem is to

find x € ﬂ C; such that (Vk € K) Rpx =ry.
jed

r, = RyT € Gy,

(2

One of the most classical instances of this formulation was
proposed by Youla in [19], namely

€))

where V; and V5 are vector subspaces of H and projy,
is the projection operator onto V5. As shown in [19],
(3) covers many basic signal processing problems, such
as band-limited extrapolation or image reconstruction

find = € Vi such that projy,r =72,
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from diffraction data, and it can be solved with a simple
alternating projection algorithm. The extension of (3) to
recovery problems with several transformations modeled
as linear projections r, = projy, 7 is discussed in [9], [13].
More broadly, if the operators (Ry)rck are linear, reliable
algorithms are available to solve (2). In particular, since
the associated constraint set is an affine subspace with
an explicit projection operator, standard feasibility algo-
rithms can be used [4]. Alternatively, proximal splitting
methods can be considered; see [6] and its references.

In the present paper we consider the general situation
in which the operators (Ry)rck in (1) are not necessarily
linear, a stark departure from common assumptions in
signal recovery problems. Examples of such nonlinearly
generated data (ry)rex in (1) include hard-thresholded
wavelet coefficients of T, the positive part of the Fourier
transform of 7, a mixture of best approximations of &
from closed convex sets, a maximum a posteriori denoised
version of T, or measurements of T acquired through
nonlinear sensors.

A significant difficulty one faces in the nonlinear con-
text is that the constraint (1) is typically not representable
by an exploitable convex constraint; see, e.g., [2], [3]. As
a result, finding a solution to (2) with a provenly conver-
gent and numerically efficient algorithm is a challenging
task. In particular, standard convex feasibility algorithms
are not applicable. Furthermore, variational relaxations
involving a penalty of the type >, ¢x([|Rez — i)
typically lead to nonconvex problems, even for choices as
basic as ¢ = |-|? and Ry, taken as the projection operator
onto a closed convex set.

Our strategy to solve (2) is to forego the feasibility
and optimization approaches in favor of the flexible and
unifying framework of fixed point theory. Our first con-
tribution is to show that, while Ry in (1) may be a very
badly conditioned (possibly discontinuous) operator, com-
mon transformation models can be reformulated as fixed
point equations with respect to an operator with much
better properties, namely a firmly nonexpansive operator.
Next, using a suitable modeling of the constraint sets



(C;) e, we rephrase (2) as an equivalent common fixed
point problem and solve it with a reliable and efficient
extrapolated block-iterative fixed point algorithm. This
strategy is outlined in Section II, where we also provide
the algorithm. In Section III, we present several numeri-
cal illustrations of the proposed framework to nonlinear
signal and image recovery. Finally, inconsistent problems
are addressed in Section IV.

I1. FIXED POINT MODEL AND ALGORITHM

For background on the tools from fixed point theory and
convex analysis used in this section, we refer the reader
to [1]. Let us first recall that an operator T: H — H is
firmly nonexpansive if

(Vo e H)(Vy € H) [Tz~ Ty|* <
lo =yl = [(Id ~=T)z — (Id =T)y|*, (4
and firmly quasinonexpansive if
(Ve e H)(Vy € FixT) (y—Tz|z—Tz) <0, (5

where FixT = {z € H | Tz = z}. Finally, the subdiffer-
ential of a convex function f: H — R at z € H is

={ueH|(VyeH)ly—z|u)+ f)<fy)}. 6)

As discussed in Section I, the transformation model
(1) is too general to make finding a solution to (2)
via a provenly convergent method possible. We therefore
assume the following.

Assumption 1 The problem (2) has at least one solution,
JNK = g, and the following hold:

(i) For every k € K, Ry is proxifiable: there exists
Sk: Gr, — H such that Sy, o Ry, is firmly nonexpansive
and (VI S ﬂJEJ ) Sk(RkI) = Sprr = Rix = 1.
(ii) For every j € J; C J, the operator projc, is easily
implementable.
(iif) For every j € J\ Ji, fj: H — R is a convex function
such that C; = {z € H | f;(z) <0}.

In view of Assumption 1(i), let us replace (2) by the
equivalent problem

find » € (") C; such that (Vk € K) Si(Rex) =
jeJ

(7

Sk’l’k.

Concrete examples of suitable operators (Si)rex Wwill be
given in Section III (see also [10]). The motivation behind
(7) is that it leads to a tractable fixed point formulation.
To see this, set

(Vk S K) Ty = Spri +1Id —S o Ry, (8)

and let © € ﬂjej C;. Then, for every k € K, (1) &
Sk(RkCL') =Spry & x = Sprp+ax— Sk(Rk:v) & x € Fix Ty
A key observation at this point is that (4) implies that the
operators (1) )rex are firmly nonexpansive, hence firmly
quasinonexpansive.

If j € Ji, per Assumption 1(ii), the set C; will be
activated in the algorithm through the use of the operator
T; = proj.,, which is firmly nonexpansive [1, Proposi-
tion 4.16]. On the other hand, if 7 € J \ Ji, the convex
inequality representation of Assumption 1(iii) will lead
to an activation of C; through its subgradient projector.
Recall that the subgradient projection of = € H onto C;
relative to u; € df;(z) is

|fj(|)2 Uy, if fJ(I)>O
.7

x, if f;(z) <0,

and that 7} is firmly quasinonexpansive, with FixT; = C;
[1, Proposition 29.41]. The advantage of the subgradlent
projector onto C; is that, unlike the exact projector, it
does not require solving a nonlinear best approximation
problem, which makes it much easier to implement in the
presence of convex inequality constraints [5]. Altogether,
(2) is equivalent to the common fixed point problem

find z € ﬂ Fix T;,

e JUK

9

(10)

where each T; is firmly quasinonexpansive. This allows us
to solve (2) as follows.

Theorem 2 [10] Consider the setting of problem (2)
under Assumption 1. Let zyp € H, let 0 < ¢ < 1/card(JUK),
and set (Vk € K) pr, = Skri and Fy, = Sy o Ry. Iterate

for n=0,1,...
g+, cJUK
{wintier, C e, 1], Zie[n Win =1
for every i€ I,
lf 1€ Jl
| Yin = Projg, an — T
lf 1€ J~ Jl
Uin € (9fl(xn)
_ fz(xn)
l[wi,nl[?

0, if fi(z
else

\_yi,n =Di— Fixy,
L Vig = Yimll
VUn = Zie[n ‘“iynViQ,n
ifv, =0
L Tn4+1 = Tn
else
Yn = Zie]n Wi nYin
Ap = Vn/”ynH2
An € [g,(2 — e)A,)]
Tn+1 = Tn + )\nyn

Uim lffl(xn) >0
n) <0

Yion =
(11)

Suppose that there exists an integer M > 0 such that

M-—1
U nim=JUK.

m=0

(Vn € N) (12)



Then (x,)nen converges to a solution to (2).

When K = @, (11) coincides with the extrapolated
method of parallel subgradient projections (EMOPSP) of
[5]. It has in addition the ability to incorporate the
constraints (1), while maintaining the attractive features
of EMOPSP. First, it can process the operators in blocks of
variable size. The control scheme (12) just imposes that
every operator be activated at least once within any M
consecutive iterations. Second, because the extrapolation
parameters (A,),en can attain large values in [1, +o0],
large steps are possible, which lead to fast convergence
compared to standard relaxation schemes, where A,, = 1.

III. APPLICATIONS

We illustrate several instances of (2), develop tractable
reformulations of the form (7), and solve them using
(11), where zy = 0 and the relaxation strategy is that
recommended in [4, Chapter 5], namely

if n=0 mod 3;
otherwise.

An/2,

13
1.99A,,, (13)

(Vn € N) /\n:{

A. Restoration from distorted signals

The goal is to recover the original form of the N-point
(N = 2048) signal = from the following (see Fig. 1):

o A bound v, on the energy of the finite differences of
7, namely [|DF]| < 71, where D: (&)ic(o,...v-1} +
(§i+1 —&i)ieqo,....N—23- The bound is given from prior
information as v; = 1.17.

« A distortion 7o = RyZ, where R, clips component-
wise to [—72,72] (y2 = 0.1) [16, Section 10.5].

o A distortion r3 = R3T of a low-pass version of
T, where R3 = Q3 o L3. Here L3 bandlimits by
zeroing all but the 83 lowest-frequency coefficients
of the Discrete Fourier Transform, and @3 induces
componentwise distortion via the operator [16, Sec-
tion 10.6] 03 = (2/7) arctan(ys ), where 3 = 10 (see
Fig. 2).

The solution space is the standard Euclidean space ‘H =
RY. To formulate the recovery problem as an instance
of (2), set J = {1}, J1 = @, K = {2,3}, and C;, =
{z € H | fi(z) <0}, where fi = ||D - | — v. Then the
objective is to

find z € Cy such that Rox =1, and Rsx =r3. (14)

Next, let us verify that Assumption 1(i) is satisfied. On
the one hand, since R, is the projection onto the closed
convex set [—72,72]]\’ , it is firmly nonexpansive, so we
set So = Id. On the other hand, R3 is proxifiable with
S3 = ygng [10]. We thus obtain an instance of (7), to
which we apply (11) with (13) and (Vvn e N) I,, = JUK
and (Vi € I,,) w;, = 1/3. The recovered signal shown in
Fig. 1 effectively incorporates the information from the
prior constraint and the nonlinear distortions.
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Fig. 1. Signals in Section III-A. Top to bottom: original signal z, distorted
signal ro, distorted signal r3, recovered signal.

B. Reconstruction from thresholded scalar products

The goal is to recover the original form of the N-point
(N = 1024) signal T shown in Fig. 3 from thresholded
scalar products (r;)rex given by

(Vk S K) r, = RpT, with

Rip: H—R:xz— Qy(x|er), (15)

where

o (er)rex is a collection of normalized vectors in RY
with zero-mean i.i.d. entries.
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Fig. 2. Distortion operator 3 in Section III-A.
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Fig. 3. Original signal = (top) and recovery (bottom) in Section III-B.

e QQy (v =0.05) is the thresholding operator
Q. € sign(§) /€% — 7%, if €] >
" 0, if €] <~y

of [15] (see Fig. 4).
e K ={1,...,m}, where m = 1200.
The solution space # is the standard Euclidean space RY,
and (15) gives rise to the special case of (2)

find z € # such that (Vk € K) 7, = Q~(z|ex), (17)

in which J = @. Note that the standard soft-thresholder
on [—v,~] can be written as

(16)

soft, : & — sign(Q,¢) < (Q~6)? +~2 — 'y) . (18)
To formulate (7) we set, for every k € K,

Sk: R — H: & sign(§) (\/524—72 —’y) ks

which fulfills Assumption 1(i) and yields Sy o Ry =
(soft (- | ex))er [10]. We apply (11) with (13) and the
following control scheme. We split K into 12 blocks of

(19)

100 consecutive indices, and select I, by periodically
sweeping through the blocks, hence satisfying (12) with
M = 12. Moreover, w; , = 1/100. The reconstructed signal
shown in Fig. 3 illustrates the ability of the proposed ap-
proach to effectively exploit nonlinearly generated data.

C. Image recovery

The goal is to recover the N x N (N = 256) image T
from the following (see Fig. 5):

o The Fourier phase ZDFT (z) (DFT (Z) denotes the
2D Discrete Fourier Transform of 7).

« The pixel values of Z reside in [0, 255].

« An upper bound ~5; on the total variation tv(Z) [8].
In this experiment, v3 = 1.2tv(Z) = 1.10 x 10°.

o A compressed representation r4, = R4%. Here, Ry =
Q4 0o W, where W is the 2D Haar wavelet transform
and Q, performs componentwise hard-thresholding
via (p = 325)

& if g > p;

20
0. if [ <p 2O

(V€ €R) hard, ¢ = {

o A down-sampled blurred image r; = Rs%. Here R5 =
Qs o Hs, where the linear operator Hy: RV*N —
RN*N convolves with a 5 x 5 Gaussian kernel with
variance 1, and Q5 : RV*N — R®*® maps the average
of each of the 64 disjoint 32 x 32 blocks of an N x N
image to a representative pixel in an 8 x 8 image [12].

The solution space is H = RM*N equipped with the
Frobenius norm || - ||. To cast the recovery task as an
instance of (2), we set J = {1,2,3}, J1 = {1,2}, K =
{4,5}, C1 = {x €M | ZDFT (2) = ZDFT (2)}, C; =
[0,255]V XN f3 = tv —n3, and C3 = {z € H | f3(z) < 0}.
Expressions for proj,, and 0fs are provided in [11] and
[8], respectively. The objective is to

3 J— .
find z € ﬂ C; such that {R4:c - 2D

j=1 5L = T5.

Let us verify that Assumption 1(i) holds. For every £ € R,
—p, if hard, & > p;
soft,{ = hard,{+<¢0, if —p<hard, & <p;
p, if hard, & < —p.

(22)

Fig. 4. The thresholder (16) of [15] (red) and the soft thresholder
(blue) used in Section III-B.
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Fig. 5. Images from Section III-C. (a) Original image Z. (b) Compressed
image W*r4. (c) Down-sampled 8 x 8 image r5. (d) Recovered image.

We construct Sy such that Sy 0o Ry = W toT oW,
where T applies soft, componentwise. In turn, recalling
that r4 is the result of hard-thresholding, Syr4 is built
by first adding the quantity on the right-hand side of
(22) to r4 componentwise, and then applying the in-
verse Haar transform. This guarantees that S, satisfies
Assumption 1(i) [10]. Next, we let D5 C H be the
subspace of 32 x 32-block-constant matrices and construct
an operator S5 satisfying Assumption 1(i) and the identity
Ss 0o Rs = Hs o pl’OjD5 o Hs [10]. In turn, Ssrs = Hsss,
where s5 € Ds is built by repeating each pixel value of rs
in the block it represents. We thus arrive at an instance
of (7), which we solve using (11) with (13) and

(VneN) I, =JUK and (Vi € I,) win = 1/5.  (23)

The resulting image displayed in Fig. 5(d) shows that our
framework makes it possible to exploit the information
from the three prior constraints and from the transforma-
tions 74, and r5 to obtain a quality recovery.

IV. INCONSISTENT PROBLEMS

Inaccuracies and unmodeled dynamics may cause (2)
to admit no solution. In such instances, we propose the
following relaxation for (2) [10].

Assumption 3 For every j € J, the operator projcj is eas-
ily implementable and, for every k € K, Assumption 1(i)
holds. In addition, {w;};es € ]0,1] and {wg}rex C ]0,1]
satisfy > o ywj + D peg wr = 1.

Under Assumption 3, the goal is to

find = € H such that

ij (CE — prOjij) + Z wk(SkRkiE — Ska) =0. (29
jeJ keK

When K = @, the solutions of (24) are the minimizers of
the least squared-distance proximity function >, ; w; d2cj
[4]. If (2) does have solutions, then it is equivalent to
(24). The algorithm of [7] can be used to solve (24) block-
iteratively.
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