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Abstract—The goal of this paper is to promote the use of fixed
point strategies in data science by showing that they provide
a simplifying and unifying framework to model, analyze, and
solve a great variety of problems. They are seen to constitute a
natural environment to explain the behavior of advanced convex
optimization methods as well as of recent nonlinear methods
in data science which are formulated in terms of paradigms
that go beyond minimization concepts and involve constructs
such as Nash equilibria or monotone inclusions. We review the
pertinent tools of fixed point theory and describe the main
state-of-the-art algorithms for provenly convergent fixed point
construction. We also incorporate additional ingredients such as
stochasticity, block-implementations, and non-Euclidean metrics,
which provide further enhancements. Applications to signal and
image processing, machine learning, statistics, neural networks,
and inverse problems are discussed.

Index Terms—Convex optimization, fixed point, game theory,
monotone inclusion, image recovery, inverse problems, machine
learning, neural networks, nonexpansive operator, signal process-
ing.

I. INTRODUCTION

Attempts to apply mathematical methods to the extraction
of information from data can be traced back to the work of
Boscovich [34], Gauss [136], Laplace [166], and Legendre
[170]. Thus, in connection with the problem of estimating
parameters from noisy observations, Boscovich and Laplace
invented the least-deviations data fitting method, while Leg-
endre and Gauss invented the least-squares data fitting method.
On the algorithmic side, the gradient method was invented by
Cauchy [59] to solve a data fitting problem in astronomy, and
more or less heuristic methods have been used from then on.
The early work involving provenly convergent numerical solu-
tions methods was focused mostly on quadratic minimization
problems or linear programming techniques, e.g., [6], [151],
[154], [233], [238]. Nowadays, general convex optimization
methods have penetrated virtually all branches of data science
[11], [54], [67], [82], [100], [140], [219], [228]. In fact, the
optimization and data science communities have never been
closer, which greatly facilitates technology transfers towards
applications. Reciprocally, many of the recent advances in
convex optimization algorithms have been motivated by data
processing problems in signal recovery, inverse problems,
or machine learning. At the same time, the design and the
convergence analysis of some of the most potent splitting
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methods in highly structured or large-scale optimization are
based on concepts that are not found in the traditional op-
timization toolbox but reach deeper into nonlinear analysis.
Furthermore, an increasing number of problem formulations
go beyond optimization in the sense that their solutions are
not optimal in the classical sense of minimizing a function
but, rather, satisfy more general notions of equilibria. Among
the formulations that fall outside of the realm of standard
minimization methods, let us mention variational inequality
and monotone inclusion models, game theoretic approaches,
neural network structures, and plug-and-play methods.

Given the abundance of activity described above and the
increasingly complex formulations of some data processing
problems and their solution methods, it is essential to identify
general structures and principles in order to simplify and clar-
ify the state of the art. It is the objective of the present paper
to promote the viewpoint that fixed point theory constitutes
an ideal technology towards this goal. Besides its unifying
nature, the fixed point framework offers several advantages.
On the algorithmic front, it leads to powerful convergence
principles that demystify the design and the asymptotic anal-
ysis of iterative methods. Furthermore, fixed point methods
can be implemented using stochastic perturbations, as well as
block-coordinate or block-iterative strategies which reduce the
computational load and memory requirements of the iterations.

Historically, one of the first uses of fixed point theory in
signal recovery is found in the bandlimited reconstruction
method of [165], which is based on the iterative Banach-Picard
contraction process

Tpg1 = Ty, (1)

where the operator 7' has Lipschitz constant 6 < 1. The
importance of dealing with the more general class of non-
expansive operators, i.e., those with Lipschitz constant 6 = 1,
was emphasized by Youla in [247] and [249]; see also [213],
[230], [239]. Since then, many problems in data science have
been modeled and solved using nonexpansive operator theory;
see for instance [20], [54], [82], [106], [108], [117], [176],
[197], [220], [229].

The outline of the paper is as follows. In order to make the
paper as self-contained as possible, we present in Section II
the essential tools and results from nonlinear analysis on
which fixed point approaches are grounded. These include
notions of convex analysis, monotone operator theory, and
averaged operator theory. Section III provides an overview
of basic fixed point principles and methods. Section IV ad-
dresses the broad class of monotone inclusion problems and
their fixed point modeling. Using the tools of Section III,
various splitting strategies are described, as well as block-
iterative and block-coordinate algorithms. Section V discusses
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applications of splitting methods to a large panel of tech-
niques for solving structured convex optimization problems.
Moving beyond traditional optimization, algorithms for Nash
equilibria are investigated in Section VI. Section VII shows
how fixed point strategies can be applied to four additional
categories of data science problems that have no underlying
minimization interpretation. Some brief conclusions are drawn
in Section VIII. For simplicity, we have adopted a Euclidean
space setting. However, most results remain valid in general
Hilbert spaces up to technical adjustments.

II. NOTATION AND MATHEMATICAL FOUNDATIONS

We review the basic tools and principles from nonlinear
analysis that will be used throughout the paper. Unless other-
wise stated, the material of this section can be found in [21];
for convex analysis see also [206].

A. Notation

Throughout, H, G, (Hi)lgigm, and (gk)lgkgq are Eu-
clidean spaces. We denote by 2% the collection of all subsets
of Hand by H = Hi X -+ X Hyp and G = Gy X -+ X G,
the standard Euclidean product spaces. A generic point in
H is denoted by © = (x;)1<i<m- The scalar product of a
Euclidean space is denoted by (- | -) and the associated norm
by || - ||. The adjoint of a linear operator L is denoted by
L*. Let C be a subset of H. Then the distance function to
Cis d¢: x — infycc ||z — y|| and the relative interior of C,
denoted by riC, is its interior relative to its affine hull.

B. Convex analysis

The central notion in convex analysis is that of a convex set:
a subset C' of H is convex if it contains all the line segments
with end points in the set, that is,

Ve O)(Vye C)Vae€]0,1]) az+(l—a)yeC. (2)

The projection theorem is one of the most important results
of convex analysis.

Theorem 1 (projection theorem) Ler C' be a nonempty
closed convex subset of H and let x € H. Then there exists
a unique point projox € C, called the projection of x onto
C, such that ||z — projez|| = de(x). In addition, for every
p EH,

. peC
P =Pprojcr & (3)
‘ {(Vy60)<y—p|w—p><0-

Convexity for functions is inherited from convexity for sets
as follows. Consider a function f: H — ]—o0, +00]. Then f
is convex if its epigraph

epi f = {(2,6) e H xR | f() <&} @)

is a convex set. This is equivalent to requiring that

(Vz € H)(Vy € H)(Va € ]0,1])
flaz+(1—a)y) <af(@) +(1-a)f(y). ©)

gra (- | u)

epi f

flx)p------- Z

gramsg v

/

Sy S,
X

Fig. 1: The graph of a function f € T'o(#) is shown in brown.
The area above the graph is the closed convex set epi f of
(4). Let u € ‘H and let the red line be the graph of the linear
function (- | u). In view of (12), the value of f*(u) (in green)
is the maximum signed difference between the red line and the
brown line. Now fix € H and w € 9f(z). By (13), the affine
function my : y — (y — x| w) + f(z) satisfies my < f
and it coincides with f at x. Its graph is represented in blue.
Every subgradient w gives such an affine minorant.

If epi f is closed, then f is lower semicontinuous in the sense
that, for every sequence (Z,,)nen in H and x € H,

= f(z) <lim f(2n). (6)

Finally, we say that f: H — ]—o00, +00] is proper if epi f #
&, which is equivalent to

Ty — X

domf:{:CEH’f(:v)<+oo}7é®. @)

The class of functions f: H — ]—o00, +00] which are proper,
lower semicontinuous, and convex is denoted by T'g(H). The
following result is due to Moreau [185].

Theorem 2 (proximation theorem) Let f € T'o(H) and let
x € H. Then there exists a unique point proxsx € H, called
the proximal point of x relative to f, such that

1
f(prox;z) + §Hx — proxz||* =

mm<ﬂm+%w—yﬁ> ®)

yeH

In addition, for every p € H,

P =Pprox;xr <
VyeH)y—ple—p +flp) <fly). O

The above theorem defines an operator prox, called the
proximity operator of f (see [100] for a tutorial, and [21,
Chapter 24] and [89] for a detailed account with various
properties). Now let C' be a nonempty closed convex subset
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of H. Then its indicator function vc, defined by

0 if v e C;
tc:H —]—00,4+00]: =< ] ’ 10
“ ] ] {—I—oo, if z ¢ C, (10)
lies in T'g(H) and it follows from (3) and (9) that
prox, . = projc. (1

This shows that Theorem 2 generalizes Theorem 1. Let us
now introduce basic convex analytical tools (see Fig. 1). The
conjugate of f: H — ]—o0, +00] is

ffiH — [—o0,+00] : u— 21615 (x| u) — f(x)).

12)

The subdifferential of a proper function f: H — ]—o00, +0o0]
is the set-valued operator df: H — 2% which maps a point
x € H to the set (see Fig. 2)

Of () ={u et | (vy eH) (y—= | u)+ f(x) < f)}.
(13)
A vector in Of(x) is a subgradient of f at z. If C is a
nonempty closed convex subset of H, No = Juc is the normal
cone operator of C, that is, for every x € H,

New — {{UGH VMyeC)(y—x|u) g()}, if xE'C’;
a, otherwise.
(14)
Let us denote by Argmin f the set of minimizers of a function
f: H — ]—00,400] (the notation Argmin ;e f(x) will also
be used). The most fundamental result in optimization is
actually the following immediate consequence of (13).

Theorem 3 (Fermat’s rule) Let f: H — ]—o00,+00] be a
proper function. Then Argmin [ = {x eH ’ 0e Bf(:v)}

Theorem 4 (Moreau) Let [ € T'o(H). Then f* € Ty(H),
J** = f, and prox; + prox;. = Id.

A function f € T'o(H) is differentiable at € dom f if
there exists a vector V f(x) € H, called the gradient of f at
x, such that
St ay) — f(@)

(Vy € H) lin "

=y | Vf(z). (15

Example 5 Let C be a nonempty closed convex subset of 7.
Then VdZ% /2 = 1d — proj.

Proposition 6 Ler f € To(H), let € dom f, and suppose
that f is differentiable at x. Then 0f(x) = {V f(x)}.

We close this section by examining fundamental properties
of a canonical convex minimization problem.

Proposition 7 Let f € To(H), let g € T'o(G), and let
L: H — G be linear. Suppose that L(dom f) Ndomg # @
and set S = Argmin (f + g o L). Then the following hold:
i) Suppose that im0 f(x) + g(Lx) = +o00. Then
S # 2.
i) Suppose that ri(L(dom f)) Nri(dom g) # @. Then

S={zecH|0eaf(x)+L (g(Lx))}
={zeH ‘ (Jv € dg(Lz)) — L*v € 9f(x)}.

|
_
—

Fig. 2: Left: Graph of a function defined on ‘H = R. Right:
Graph of its subdifferential.

C. Nonexpansive operators

We introduce the main classes of operators pertinent to our
discussion. First, we need to define the notion of a relaxation
for an operator.

Definition 8 Let 7: % — H and let A € ]0, +o00[. Then the
operator R = Id + A\(T — 1Id) is a relaxation of T. If A < 1,
then R is an underrelaxation of T and, if A > 1, R is an
overrelaxation of T'; in particular, if A = 2, R is the reflection
of T.

Definition 9 Let o € ]0,1]. An «-relaxation sequence is a
sequence (An)nen in 0, 1/af such that ° _  An(1—ad,) =
+o00.

Example 10 Let « € ]0, 1] and let (\,,)nen be a sequence in
10, +o00[. Then (A\,)nen is an a-relaxation sequence in each
of the following cases:

i) a<land (VneN) A, =1.

i) (VneN) A\, =X€]0,1/al.

iil) infpen Ap > 0 and sup,,cy An < 1/

iv) There exists ¢ € ]0, 1] such that (Vn € N) e//n +1 <

A <1/a—¢e/v/n+1.

An operator T': H — H is Lipschitzian with constant § €
10, +o0f if

(Vx e H)(Vy € H) (16)

If § < 1 above, then T is a Banach contraction (also called a
strict contraction). If § = 1, that is,

(Vx e H)(Vy € H)

then T is nonexpansive. On the other hand, T' is cocoercive
with constant 8 € ]0, +oo if

[Tz =Tyl < dlle -yl

[Tz =Tyl < |z —yll, (17)

VreH)VyeH) (x—y|Tx—Ty) >

BTz —Ty|>. (18)

If 5 =1 in (18), then T is firmly nonexpansive. Alternatively,
T is firmly nonexpansive if

(Vo € H)(Vy € H) [Tz —Ty|* < [la -y

—|(1d = T)z — (1d = T)y[|*.  (19)
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Lipschitzian operators

nonexpansive operators

a-averaged operators, o < 1

firmly nonexpansive

cocoercive
operators/resolvents

operators

proximity operators

projection operators

Fig. 3: Classes of nonlinear operators.

Equivalently, 7" is firmly nonexpansive if the reflection

Id + 2(T —1d) is nonexpansive. (20)

More generally, let « € |0,1]. Then T is a-averaged if the

overrelaxation
Id + o (T — Id) is nonexpansive 21

or, equivalently, if there exists a nonexpansive operator
@ : H — H such that T" can be written as the underrelaxation

T=1d+ a(Q —1d). (22)
An alternative characterization of a-averagedness is

(Vo € H)(Vy € H) [Tz = Ty|* < [|lz — ylI?

1—
—||(1d = D)o — (14 = T)y|*. 23)

Averaged operators will be the most important class of non-
linear operators we use in this paper. They were introduced
in [12] and their central role in many nonlinear analysis
algorithms was pointed out in [87], with further refinements
in [111], [153]. Note that

T is firmly nonexpansive < Id — T is firmly nonexpansive
< Tis 1/2-averaged

< T'is 1-cocoercive. 24)

Here is an immediate consequence of (9) and (24).

Example 11 Let f € I'g(#H). Then prox; and Id — prox,
are firmly nonexpansive. In particular, if C' is a nonempty
closed convex subset of H, then (11) implies that proj- and
Id — proj, are firmly nonexpansive.

The relationships between the different types of nonlinear
operators discussed so far are depicted in Fig. 3. The next
propositions provide further connections between them.

Proposition 12 Let 6 € ]0,1], let T: H — H be o-
Lipschitzian, and set o = (6 + 1)/2. Then T is a-averaged.

Proposition 13 Let T: H — H, let § € ]0,+o00[, and let
v €10,28]. Then T is B-cocoercive if and only if Id — T is
~v/(2p)-averaged.

It follows from the Cauchy-Schwarz inequality that a (-
cocoercive operator is 8~ !-Lipschitzian. In the case of gradi-
ents of convex functions, the converse is also true.

Proposition 14 (Baillon-Haddad) Let f: H — R be a dif-
ferentiable convex function such that N f is 3~ '-Lipschitzian

Sor some 8 €10, +00[. Then V f is B-cocoercive.

We now describe operations that preserve averagedness and
cocoercivity.

Proposition 15 Ler T: H — H, let o € ]0,1], and let X €
10,1/al. Then T is a-averaged if and only if (1 — A\)Id + AT
is Aa-averaged.

Proposition 16 For every i € {1,...,m}, let a; € ]0,1], let
w; €10,1), and let T;: H — H be aj;-averaged. Suppose that
St wi =1 and set o = Y." wicy. Then Y v, w;T; is
a-averaged.

Example 17 For every ¢ € {1,...,m}, let w; € ]0, 1] and let
T;: H — H be firmly nonexpansive. Suppose that Y /" | w; =
1. Then ) ;" | w,;T; is firmly nonexpansive.

Proposition 18 For every i € {1,...,m}, let a; € )0, 1[ and
let T;: H — H be aj-averaged. Set

1
m and =g

14

m

Z N
1— oy

i=1 v

T=Tyo---0 25)

Then T is a-averaged.

Example 19 Let oy € ]0,1], let ap € ]0,1[, let Th: H — H
be «;-averaged, and let T»: H — H be ag-averaged. Set

a1 + as — 201 a0

T=Ti0Ty, and «a= (26)

1— a1

Then T' is a-averaged.
Proposition 20 ([118]) Let T1: H — H and To: H — H be

firmly nonexpansive, let oz € 10,1, and let T5: H — H be

ag-averaged. Set o« = 1/(2 — a) and
T=Tio(Th—Td+Ty0T) +1d—To.  (27)

Then T' is a-averaged.

Proposition 21 For every k € {1,...,q}, let 0 # Ly: H —
Gi be linear, let By, € 10,400], and let Ty: G — Gi be
Br-cocoercive. Set

q
* 1
T:ZLkOTkOLk and B:W
k=1 3 kll
— Bk
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Then the following hold:

i) T is B-cocoercive [21].

ii) Suppose that > %_, ||Ly||*> < 1 and that the operators
(Tk)1<k<q are firmly nonexpansive. Then T is firmly
nonexpansive [21].

iii) Suppose that S 7_, || Li||* < 1 and that (Tk)1<k<q
are proximity operators. Then T' is a proximity operator

[89].

Remark 22 The statement of Proposition 21iii) can be made
more precise [89]. To wit, for every k € {1,...,q}, let wy €
10, +o0l, let 0 # Ly : H — Gy, be linear, let g, € To(Gx), and
let hy: v = infyeg, (g7 (w) + ||[v — w||?/2) be the Moreau
envelope of gi. Then, if > 7 _, wy | Lk||* < 1, we have

Wik (LZ 0 prox,, o Lk) = proxy, where

el
Il =
—

q * 12
f= <ZwkhkoLk> | 2” . (29)
k=1
Let T: H — H and let
FixT = {z e | Tx=ux} (30)

be its set of fixed points. If T is a Banach contraction, then it
admits a unique fixed point. However, if T' is merely nonex-
pansive, the situation is quite different. Indeed, a nonexpansive
operator may have no fixed point (take 7': x — x + 2, with
z # 0), exactly one (take 7' = —Id), or infinitely many (take
T = 1d). Even those operators which are firmly nonexpansive
can fail to have fixed points.

Example 23 T: R — R: 2z — (x +vz2+4)/2 is firmly
nonexpansive and FixT' = &.

Proposition 24 Let T': H — H be nonexpansive. Then Fix T
is closed and convex.

Proposition 25 Let (T;)1<i<m be nonexpansive operators
from H to H, and let (w;)1<i<m be real numbers in ]0,1]
such that 3" | w; = 1. Suppose that (-, Fix T; # @. Then
Fix 37, wiT;) = Ni-, Fix T;.

Proposition 26 For every i € {1,...,m}, let o; € 10,1[ and
let T;: H — H be aj-averaged. Suppose that (., FixT; #
@. Then Fix (Ty o --- 0 Tp,) = (i, Fix T;.

D. Monotone operators

Let A: H — 2" be a set-valued operator. Then A is
described by its graph

graA:{(:v,u)E’Hx’H ‘ uEA:v}, 31)
and its inverse A~!, defined by the relation
(V(z,u) eHXH) z€A 'y o wueAz, (32

-

N <—

- \

Fig. 4: Left: Graph of a (nonmonotone) set-valued operator.
Right: Graph of its inverse.

Fig. 5: Left: Graph of a monotone operator which is not
maximally monotone: we can add the point (zg,ug) to its
graph and still get a monotone graph. Right: Graph of a
maximally monotone operator: adding any point to this graph
destroys its monotonicity.

always exists (see Fig. 4). The operator A is monotone if

(V(z,u) € graA)(V(y,v) € graA)

in which case A~! is also monotone.

Example 27 Let f: H — ]—o00,+0o0] be a proper function,
let (z,u) € gradf, and let (y,v) € gradf. Then (13) yields

{<x—y | u) + f(y) > f(x)
(y—x|v)+ f(z) = fy).

Adding these inequality yields (z —y | uw —v) > 0, which
shows that 0f is monotone.

(34)

A natural question is whether the operator obtained by
adding a point to the graph of a monotone operator A: H —
2* is still monotone. If it is not, then A is said to be
maximally monotone. Thus, A is maximally monotone if, for
every (z,u) € H X H,

(z,u) egrad & (V(y,v) egrad) (x—y|lu—v)>0.
(35
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These notions are illustrated in Fig. 5. Let us provide some
basic examples of maximally monotone operators, starting
with the subdifferential of (13) (see Fig. 2).

Example 28 (Moreau) Let f € I'o(#). Then Of is maxi-
mally monotone and (9f)~! = df*.

Example 29 Let 7: H{ — H be monotone and continuous.
Then 7' is maximally monotone. In particular, if 7" is cocoer-
cive, it is maximally monotone.

Example 30 Let 7': 4 — H be nonexpansive. Then Id — T’
is maximally monotone.

Example 31 Let T: H — H be linear (hence continuous)
and positive in the sense that (Vo € H) (z | Tx) > 0. Then
T is maximally monotone. In particular, if T is skew, i.e.,
T* = =T, then it is maximally monotone.

Given A: H — 2* the resolvent of A is the operator J4 =
(Id + A)~L, that is,

(V(z,p) e HxH) peax < x—p€eAp. (36)
In addition, the reflected resolvent of A is
Ra=2J4—1d. (37)

A profound result which connects monotonicity and non-
expansiveness is Minty’s theorem [180]. It implies that if,
A:H — 2% s maximally monotone, then .J 4 is single-valued,
defined everywhere on #H, and firmly nonexpansive.

Theorem 32 (Minty) Let T: H — H. Then T is firmly
nonexpansive if and only if it is the resolvent of a maximally
monotone operator A: H — 2.

Example 33 Let f € I'o(#). Then Jy; = prox;.

Let f and g be functions in I'g(#) which satisfy the
constraint qualification ri(dom f) Nri(dom g) # @. In view
of Proposition 7ii) and Example 28, the minimizers of f + ¢
are precisely the solutions to the inclusion 0 € Ax + Bx
involving the maximally monotone operators A = Jf and
B = 0g. Hence, it may seem that in minimization problems
the theory of subdifferentials should suffice to analyze and
solve problems without invoking general monotone operator
theory. As discussed in [89], this is not the case and monotone
operators play an indispensable role in various aspects of
convex minimization. We give below an illustration of this
fact in the context of Proposition 7.

Example 34 ([44]) Given f € T'g(H), g € To(G), and a
linear operator L: ‘H — G, the objective is to

minir%ize f(x) + g(Lx) (38)
EdS

using f and g separately by means of their respective proxim-
ity operators. To this end, let us bring into play the Fenchel-
Rockafellar dual problem

mininglize [ (=L*v) + g*(v). (39)
veE

We derive from [21, Theorem 19.1] that, if (z,v) € H x G
solves the inclusion

[3} © [aof 63} [if] *w[ﬂ (40)

subdifferential skew

then x solves (38) and v solves (39). Now introduce the
variable z = (z,v), the function To(H X G) > h: z —
f(z) + g*(v), the operator A = Oh, and the skew operator
B: z — (L*v,—Lx). Then it follows from Examples 28
and 31 that (40) can be written as the maximally monotone
inclusion 0 € Az + Bz, which does not correspond to a
minimization problem since B is not a gradient [21, Propo-
sition 2.58]. As a result, genuine monotone operator splitting
methods were employed in [44] to solve (40) and, thereby,
(38) and (39). Applications of this framework can be found in
image restoration [191] and in empirical mode decomposition
[198].

Example 35 The primal-dual pair (38)—(39) can be exploited
in various ways; see for instance [66], [90], [91], [164]. A
simple illustration is found in sparse signal recovery and
machine learning, where one often aims at solving (38) by
choosing ¢ to be a norm ||| - ||| [5], [11], [96], [123], [178].
Now let [[| - [[l«: G — R: v = supyjy <1 (¥ | v) be the dual
norm and let B, = {v e G | ||[v||[« <1} be the associated
unit ball. Then (39) is the constrained optimization problem

inimi *(=L*v). 41
minimize f (=L"v) (41)
This dual formulation underlies several investigations, e.g.,
[127], [188].

III. FIXED POINT ALGORITHMS

We review the main fixed point construction algorithms.

A. Basic iteration schemes

First, we recall that finding the fixed point of a Banach con-
traction is relatively straightforward via the standard Banach-
Picard iteration scheme (1).

Theorem 36 ([21]) Let 6 € 10,1, let T: H — H be o-
Lipschitzian, and let xo € H. Set

(MneN) x,11 =Tx,. 42)

Then T has a unique fixed point * and x, — %. More
precisely, (Vn € N) ||z, — Z| < §"||zo — Z|.

If T is merely nonexpansive (i.e., § = 1) with Fix T # &,
Theorem 36 fails. For instance, let 7' # Id be a rotation in
the Euclidean plane. Then it is nonexpansive with FixT =
{0} but the sequence (xy,)nen constructed by the successive
approximation process (42) does not converge. Such scenarios
can be handled via the following result.
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Theorem 37 ([21]) Let o € ]0,1], let T: H — H be an «-
averaged operator such that FixT # @, let (A\p)nen be an
a-relaxation sequence. Set

(Vn €N) Zpy1 =2n+ My (Txn — :Cn) (43)

Then (xy,)nen converges to a point in Fix T.

Remark 38 In connection with Theorems 36 and 37, let us
make the following observations.

i) If a < 1 in Theorem 37, choosing A, = 1 in (43) (see
Example 101)) yields (42).
ii) In contrast with Theorem 36, the convergence in Theo-
rem 37 is not linear in general [23], [32].
iii) When a = 1, (43) is known as the Krasnosel’skii-Mann
iteration.

Next, we present a more flexible fixed point theorem which
involves iteration-dependent composite averaged operators.

Theorem 39 ([111]) Let ¢ €]0,1/2[ and let xy € H. For ev-
eryn €N, let aq,, €10,1/(14¢)], let az, €10,1/(1 + €)],
let Ty p: H — H be ay n-averaged, and let T5 ,,: H — H be
o n-averaged. In addition, for every n € N, let

An € e, (1—e)(1 +ean)/on], (44)

where o, = (1.0 + Q2 — 200 n02.5) /(1 — 01 n0a,y), and
set
Tp4+1 = Tn + )\n (Tl,n(T2,nxn) - xn) (45)

Suppose that S = (), .yFix (Th,n 0 Ta) # @. Then the

Sfollowing hold:
) (Ve e8) Y, en Tty — 2n — Tonz + |* < +o0.
il) Suppose that a subsequence of (x,)nen converges to a
point in S. Then (x,)nen converges to a point in S.

neN

Remark 40 The assumption in Theorem 39ii) holds in par-
ticular when, for every n € N, T% ,, =T} and 15 ,, = Tb.

Below, we present a variant of Theorem 37 obtained by
considering the composition of m operators. In the case of
firmly nonexpansive operators, this result is due to Martinet
[177].

Theorem 41 ([87]) For every i € {1,...,m}, let a; €]0,1]
and let T;: H — H be «y-averaged. Let xo € H, suppose
that Fix (Ty o - - - o T),) # @, and iterate

forn=20,1,...
Tmn+1 = LmTmn
Lmn+2 = dm—1Tmn+1

(46)

Tmn+m—1— TmenerfZ

Tmn+m - Tlxanrmfl-

Then (Tmn)nen converges to a point Ty in Fix (Tyo---0Ty,).
Now set Ty, = ThT1, Tin—1 = Ty—1Tm, ..., To = 1oT3.
Then, for every i € {1,...,m—1}, (Tymn+ti)nen converges to
Tn41—i-

B. Algorithms for fixed point selection

The algorithms discussed so far construct an unspecified
fixed point of a nonexpansive operator 7: H — H. In some
applications, one may be interested in finding a specific fixed
point, for instance one of minimum norm or, more generally,
one that minimizes some quadratic function [6], [86]. One will
find in [86] several algorithms to minimize convex quadratic
functions over fixed point sets, as well as signal recovery
applications. Beyond quadratic selection, one may wish to
minimize a strictly convex function g € T'o(#) over the closed
convex set (see Proposition 24) Fix T, i.e.,

minimize g(z). 47
Instances of such formulations can be found in signal interpo-
lation [193] and machine learning [186]. Algorithms to solve
(47) have been proposed in [84], [152], [241] under various

hypotheses. Here is an example.

Proposition 42 ([241]) Let T: H — H be nonexpansive,
let g: H — R be strongly convex and differentiable with
a Lipschitzian gradient, let xo € H, and let (a,)nen be a
sequence in [0, 1] such that o, — 0, ) o = 400, and
Y nen |0ny1 — an| < +o0. Suppose that (47) has a solution
and iterate

(Vn € N)

Then (x,)nen converges to the solution to (47).

Tnt1 = Txy — ayVg(Txy,). (48)

C. A fixed point method with block operator updates

We turn our attention to a composite fixed point problem.

Problem 43 Let (w;)1<i<m be real numbers in 0, 1] such that
S w; = 1. For every i € {0,...,m}, let T;: H — H be
a-averaged for some «; € ]0,1[. The task is to find a fixed
point of Ty o > | w;T;, assuming that such a point exists.

A simple strategy to solve Problem 43 is to set R =
>t wiT;, observe that R is averaged by Proposition 16,
and then use Theorem 39 and Remark 40 to find a fixed
point of Ty o R. This, however, requires the activation of
the m operators (T;)1<i<m to evaluate R at each iteration,
which is a significant computational burden when m is sizable.
In the degenerate case when the operators (7;)o<i<m have
common fixed points, Problem 43 amount to finding such a
point (see Propositions 25 and 26) and this can be done using
the strategies devised in [17], [22], [82], [163] which require
only the activation of blocks of operators at each iteration.
Such approaches fail in our more challenging setting, which
assumes only that Fix (Tp o Y1, w;T}) # &. However, with
a strategy based on tools from mean iteration theory [93], it
is possible to devise an algorithm which operates by updating
only a block of operators (T;);cy, at iteration n.

Theorem 44 ([95]) Consider the setting of Problem 43. Let
M be a strictly positive integer and let (I,)ncn be a sequence
of nonempty subsets of {1,...,m} such that

n+M-—1

(neN) |J L={L....m} (49)
k=n
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Let xo € H, let (t;,—1)1<i<m € H™, and iterate

forn=0,1,...
for everyi € I,
L ti,n = lexn
Joreveryi e {l,.... m} NI,
{ tin =tin—1
Tnt1 =To( X0 witin).
Then the following hold:
i) Let x be a solution to Problem 43 and let i €
{1,...,m}. Then x, — Tz, — x — T;x.
i) (2n)nen converges to a solution to Problem 43.
iii) Suppose that, for some i € {0,...,m}, T; is a Banach
contraction. Then (T,)nen converges linearly to the
unique solution to Problem 43.

(50)

At iteration n, I,, is the set of indices of operators to be
activated. The remaining operators are not used and their most
recent evaluations are recycled to form the update z,,4;. Con-
dition (49) imposes the mild requirement that each operator in
(T)1<i<m be evaluated at least once over the course of any
M consecutive iterations. The choice of M is left to the user.

D. Perturbed fixed point methods

For various modeling or computational reasons, exact eval-
uations of the operators in fixed point algorithms may not be
possible. Such perturbations can be modeled by deterministic
additive errors [87], [162], [177] but also by stochastic ones
[102], [129]. Here is a stochastically perturbed version of
Theorem 37, which is a straightforward variant of [102,
Corollary 2.7].

Theorem 45 Let « € 10,1), let T: H — H be an a-averaged
operator such that FixT # &, and let (\p)nen be an a-
relaxation sequence. Let xy and (e,)nen be H-valued random
variables. Set

(Vn €N) Zpy1 =2n+ My (Txn +e, — :Cn) (51)
Suppose that ) .y A/ E(|len]]?|Xn) < +00 a.s., where

Xy, is the o-algebra generated by (xy, . .., x,). Then (y)nen
converges a. s. to a (Fix T')-valued random variable.

E. Random block-coordinate fixed point methods

We have seen in Section III-C that the computational
cost per iteration could be reduced in certain fixed point
algorithms by updating only some of the operators involved
in the model. In this section, we present another approach to
reduce the iteration cost by considering scenarios in which
the underlying Euclidean space H is decomposable in m
factors H = Hy X -+ X Hy,. In the spirit of the Gauss-
Seidel algorithm, one can explore the possibility of activating
only some of the coordinates of certain operators at each
iteration of a fixed point method. The potential advantages
of such a procedure are a reduced computational cost per
iteration, reduced memory requirements, and an increased
implementation flexibility.

In the product space H, consider the basic update process

Tn+1 = Tnmna (52)

under the assumption that the operator T}, is decomposable
explicitly as

T, H—-H:z— (Tie,...,Thax), (53)

with T;,: H — H,;. Updating only some coordinates is
performed by modifying iteration (52) as

(Vl S {1, ceey m}) Tint+l = Tin + Ein (E,nxn - xi,n)u

(54)
where ¢; ., € {0, 1} signals the activation of the i-th coordinate
of ©,. If £; , = 1, the i-th component is updated whereas, if
€i,n = 0, it is unchanged. The main difficulty facing such an
approach is that the nonexpansiveness property of an operator
is usually destroyed by coordinate sampling. To remove this
roadblock, a possibility is to make the activation variables
random, which results in a stochastic algorithm for which
almost sure convergence holds [102], [155].

Theorem 46 ([102]) Let o € |0,1], let € € ]0,1/2[, and let
T:H — H:x— (T,x)1<icm be an a-averaged operator
where T;: H — H;. Let (\y)nen be in [e,a™! — €], set
D = {0,1}™~ {0}, let &g be an H-valued random variable,
and let (€)nen be identically distributed D-valued random
variables. Iterate

forn=20,1,...
fori=1,....m (55)
L L Tint1l = Tin + EinAn (TziL‘n — xm)
In addition, assume that the following hold:
i) FixT # @.
il) For every n € N, g, and (xo,...,x,) are mutually
independent.

iii) (Vi e{1,...,m}) Prob[g;o=1] > 0.
Then (x,)nen converges a.s. to a FixT-valued random
variable.

Further results in this vein for iterations involving non-
stationary compositions of averaged operators can be found
in [102]. Mean square convergence results are also available
under additional assumptions on the operators (T}, )nen [104].

IV. FIXED POINT MODELING OF MONOTONE INCLUSIONS
A. Splitting sums of monotone operators

Our first basic model is that of finding a zero of the sum of
two monotone operators. It will be seen to be central in un-
derstanding and solving data science problems in optimization
form (see also Example 34 for a special case) and beyond.

Problem 47 Let A: H — 2™ and B: H — 2" be maximally
monotone operators. The task is to
find x € H such that 0 € Az + Bz, (56)

under the assumption that a solution exists.
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A classical method for solving Problem 47 is the Douglas-
Rachford algorithm, which was first proposed in [173] (see
also [126]; the following relaxed version is from [85]).

Proposition 48 (Douglas-Rachford splitting) Ler (\,)nen
be a 1/2-relaxation sequence, let y € ]0, +o0], and let yo € H.
Iterate
forn=0,1,...
Tn = J’yByn
Zn = J’yA(2xn - yn)
Yn+1 = Yn + /\n(zn - xn)

(57)

Then (xy)nen converges to a solution to Problem 47.

The Douglas-Rachford algorithm requires the ability to
evaluate two resolvents at each iteration. However, if one of
the operators is single-valued and Lipschitzian, it is possible
to apply it explicitly, hence requiring only one resolvent
evaluation per iteration. The resulting algorithm, proposed by
Tseng [232], is often called the forward-backward-forward
splitting algorithm since it involves two explicit (forward)
steps using B and one implicit (backward) step using A.

Proposition 49 (Tseng splitting) In Problem 47, assume that
B is §-Lipschitzian for some 6 € |0,+o00[. Let xy € H, let
€ €10,1/(0 + 1)|, let (yn)nen be in [, (1 —¢€)/d], and iterate

forn=0,1,...
Yn = Tn — YnBw,
Zn = J’ynAyn
Tn = Zn — YnBzn

Tn+1 = Tn — Yn + 7.

(58)

Then (xy,)nen converges to a solution to Problem 47.

As noted in Section II-C, if B is cocoercive, then it is
Lipschitzian, and Proposition 49 is applicable. However, in
this case it is possible to devise an algorithm which requires
only one application of B per iteration, as opposed to two in
(58). To see this, let v, € ]0,25[ and « € H. Then it follows at
once from (36) that x solves Problem 47 < —~,, Bx € 7, Ax
& (x—mBzx)—x € yAr & v =Jy a(x —y,Br) & v €
Fix (T} poTs.,), where Ty ,, = J., 4 and To ,, = Id—~, B. As
seen in Theorem 32, T} ,, is 1/2-averaged. On the other hand,
we derive from Proposition 13 that, if as,, = v,/(26), then
T>,, is o p-averaged. With these considerations, we invoke
Theorem 39 to obtain the following algorithm, which goes
back to [179].

Proposition 50 (forward-backward splitting [111])
Suppose that, in Problem 47, B is [-cocoercive for some
B €10,+00]. Let € € |0,min{1/2,8}|, let xo € H, and let
(Yn)nen be in [g,28/(1 4 ¢€)]. Let

(VReN) A, €le,(1—¢)(2+e—7/(28))].

Iterate

(59)

forn=0,1,...
Un = Tn — ’Yann
Tntl = Tn + An (J'ynAun

(60)

).

Then (xy)nen converges to a solution to Problem 47.

We now turn our attention to a more structured version
of Problem 47, which includes an additional Lipschitzian
monotone operator.

Problem 51 Let A: H — 2% and B: H — 2™ be maximally
monotone operators, let § € ]0, +oo[, and let C: H — H be
monotone and Jd-Lipschitzian. The task is to

find x € H such that 0 € Az + Bz + Ch, (61)
under the assumption that a solution exists.

The following approach provides also a dual solution.

Proposition 52 (splitting three operators I [101])
Consider Problem 51 and let ¢ € ]0,1/(2+ ) Let
(Yn)nen be in [g,(1 —¢€)/(1+9)], let zo € H, and let
ug € H. Iterate

forn=0,1,...
Yn = Ty — ’}/n(C.’L'n + Un)
DPn = J'ynA Yn

(62)
Gn = Un + Vn (In —JB/y, (wn/vn + xn))

Tntl = Tp — Yn +Pn — ’Vn(cpn + Qn)
Un+1 = gn + ’Yn(pn - xn)

Then (x,)nen converges to a solution to Problem 51 and
(un)nen converges to a solution u to the dual problem, i.e.,

0€—(A+C)(~u)+ B u

When C' is -cocoercive in Problem 51, we can take § =
1/5. In this setting, an alternative algorithm is obtained as
follows. Let us fix v € ]0, +o0[ and define

T =Jyao (20,5 —1d—~yCoJyg) +1d— Jyp.  (63)

By setting 77 = Jya, T2 = Jyp, and T3 = Id — vC' in
Proposition 20, we deduce from Proposition 13 that, if v €
10,25 and a = 25/(45 — 7y), then T is a-averaged. Now
take y € H and set x = J,py, hence y — x € yBx by
(36). Theny € FixT & J, a2z —y—1Cx)+y—2z =y &
Jya2e—y—~Cz) =z < v—y—yCx € yAz by (36). Thus,
0= (zx—y)+ (y—=x) € y(Az + Bx+ Cx), which shows that
x solves Problem 51. Altogether, since y can be constructed
via Theorem 37, we obtain the following convergence result.

Proposition 53 (splitting three operators II [118]) In
Problem 51, assume that C is [-cocoercive for some
B € 10,400 Let v € 10,20 and set o = 28/(48 — 7).
Furthermore, let (\p)nen be an a-relaxation sequence and
let yo € H. Iterate

forn=0,1,...
Tn = JyBYn
Tn = Yn +7Cxy (64)
2 = Jya(2xy —1y)

Yn+1 = Yn + /\n(zn - xn)

Then (xy,)nen converges to a solution to Problem 51.
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Remark 54

i) Work closely related to Proposition 53 can be found in
[41], [47], [200]. See also [199], which provides further
developments and a discussion of [41], [118], [200].

ii) Unlike algorithm (62), (64) imposes constant proximal
parameters and requires the cocoercivity of C, but it
involves only one application of C' per iteration. An
extension of (64) appears in [242] in the context of
minimization problems.

B. Splitting sums of composite monotone operators

The monotone inclusion problems of Section IV-A are
instantiations of the following formulation, which involves
an arbitrary number of maximally monotone operators and
compositions with linear operators.

Problem 55 Let § € |0, +oo[ and let A: H — 27 be maxi-
mally monotone. For every k € {1,...,q}, let By: Gy — 29
be maximally monotone, let 0 # Li: H — G be linear, and
let Ci: Gr — Gr be monotone and J-Lipschitzian. The task
1S to

find x € H such that

q
0€ Az + Y Li((Bi + Cr)(Lyz)), (65)
k=1

under the assumption that a solution exists.

In the context of Problem 55, the principle of a splitting
algorithm is to involve all the operators individually. In the
case of a set-valued operator A or By, this means using the
associated resolvent, whereas in the case of a single-valued
operator C or Ly, a direct application can be considered.
An immediate difficulty one faces with (65) is that it involves
many set-valued operators. However, since inclusion is a bi-
nary relation, for reasons discussed in [44], [88] and analyzed
in more depth in [210], it is not possible to deal with more than
two such operators. To circumvent this fundamental limitation,
a strategy is to rephrase Problem 55 as a problem involving at
most two set-valued operators in a larger space. This strategy
finds its root in convex feasibility problems [196] and it was
first adapted to the problem of finding a zero of the sum of m
operators in [142], [218]. In [44], it was used to deal with the
presence of linear operators (see in particular Example 34),
with further developments in [35], [36], [90], [101], [237]. In
the same spirit, let us reformulate Problem 55 by introducing

L:H—G:z— (Lz,...,Lx)
B: G —29: (yp)i1<heq = Xzlekyk

C:G—G: (Yr)i1<k<q — (CrlYr)i<r<q
V =rangeL.

(66)

Note that L is linear, B is maximally monotone, and C is
monotone and §-Lipschitzian. In addition, the inclusion (65)
can be rewritten more concisely as

find z € % such that 0 € Az + L*((B + C)(Lx)). (67)
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In particular, suppose that A = 0. Then, upon setting y =
Lz € V, we obtain the existence of a point u € (B + C)y
in ker L* = V1. In other words,

0€ Nyy+ By +Cly. (63)

Solving this inclusion is equivalent to solving a problem
similar to Problem 51, formulated in G. Thus, applying
Proposition 53 to (68) leads to the following result.

Proposition 56 In Problem 55, suppose that A = 0, that the
operators (Cy)1<k<q are B-cocoercive for some 3 € 10, +o0],
and that Q = Y3_, L} o Ly is invertible. Let v € 0,20],
set « = 2B/(48 — 7y), and let (A\,)nen be an a-relaxation
sequence. Further, let y, € G, set so = Q' Y1_, LZyo)k),
and iterate

forn=0,1,...

fork=1,...,q

|_ Pnk = J’yB;C Yn,k

oo = QM (Xioy Lipn.k)

Cn = Qil( Zzl L}tckpn,k)

Zn = Ty — Sp — YCn

fork=1,...,¢q

L Yn+1,k = YUn,k + )\n('rn + zn _pn,k)

(69)

Sn+1 = Sn + AnZn-

Then (xy,)nen converges to a solution to (65).

A strategy for handling Problem 55 in its general setting
consists of introducing an auxiliary variable v € B(Lx) in
(67), which can then be rewritten as

(70)

0€ Az + L*v+ L* (C(L:z:))
0€ —Lx+ B w.

This results in an instantiation of Problem 47 in K =H x G
involving the maximally monotone operators

A
A K =25 (z,v) — 0_1 v
0 B v
L*cCoL L*
B: K= K: (z,v) ete x]
—L 0 v

(71)
We observe that, in /C, B; is Lipschitzian with constant y =
|IL||(14]|L||)- By applying Proposition 49 to (70), we obtain
the following algorithm.

Proposition 57 ([101]) Consider Problem 55. Set

X =y Il (1+ 6y 2 ?).

(72)
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Let zg € H, let vg € G, let £ € 10,1/(x + 1)|, let (Yn)nen
be in [e,(1 —&)/x], and iterate
forn=0,1,...
Up = Tp — Tn ZZ:l LZ(Ck(kan) + Un-,k)
Pn = Jq, Alln
fork=1,...,q
Ynk = Unk + InLiTn
Znk = Yne — Yndoy-18, (Yn,k/Tn)
Sn.k = Zn.k + FYnLkpn
Un+1,k = Un,k — Yn,k T Sn,k
n = Pn = Vn 2pe1 Li(Cr(Lipn) + 2nk)
L Tnt1l = Ty — Up + Tp.

(73)

Then (xy,)nen converges to a solution to Problem 55.

An alternative approach consists of reformulating (70) in the
form of Problem 47 with the maximally monotone operators

A L* T
Ay IK— 25 (2,v) — 7 gt v}
(74)
L* L
By K= K: (z,v) oColL 0 x|
0 0 (v

Instead of working directly with these operators, it may be
judicious to use preconditioned versions V o A5 and V o Bs,
where V: I — K is a self-adjoint strictly positive linear
operator. If IC is renormed with

|- lv: @) o Ho) [ Vi), 35)
then V o Ay is maximally monotone in the renormed space

and, if C' is cocoercive in G, then V o Bs is cocoercive in the
renormed space. Thus, setting

V- w 0
|0 (0c7'Id—LoWoL")™ 1|’

where W: H — H, and applying Proposition 50 in this
context yields the following result (see [90]).

(76)

Proposition 58 Suppose that, in Problem 55, A = 0 and
(Cr)igcrgq are B-cocoercive for some € 0,400l Let
W H — H be a self-adjoint strictly positive linear operator
and let o € )0,+00| be such that k = ||[L oW o L*|| <
min{l/c,28}. Let ¢ € |0, min{1/2, 8/k}| let xo € H, and
let vg € G. For every n € N, let

A € [e,(1—¢)(24¢—r/28)]. (77)
Iterate
forn=20,1,...
fork=1,...,q
|_ Sn,k = C;C(Lkl'n)
o = T = W (ko Li(snk +vak)
fork=1,...,q (78)

Wp k= Unk +0Lkzn

Ynk = Wnk — 0Jg—1p5, (Wni/0)

Unt1,k = Unk + A (Ynk — Un,k)
Un = Tn, — W (X0 Li(Snk + Ynk))
Tyl = T+ An(tn — ).
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Then (xy)nen converges to a solution to Problem 55.

Other choices of the metric operator V' are possible, which
lead to different primal-dual algorithms [107], [112], [164],
[237]. An advantage of (73) and (78) over (69) is that the first
two do not require the inversion of linear operators.

C. Block-iterative algorithms

As will be seen in Problems 84 and 86, systems of inclu-
sions arise in multivariate optimization problems (they will
also be present in Nash equilibria; see, e.g., (153) and (183)).
We now focus on general systems of inclusions involving
maximally monotone operators as well as linear operators
coupling the variables.

Problem 59 For every i € [ = {1,...,m} and k € K =
{1,...,q}, let A;: H; — 2™ and By: G, — 29 be
maximally monotone, and let Ly ;: H; — G be linear. The
task is to

find T, € Hi,..., T € Hyy, such that (Vi € 1)

0€ AT + Z Ly (Bk ( Z Lk,jfj) >, (79)

keK jeI

under the assumption that the Kuhn-Tucker set

Z = {(575) EHXG } (Vi el) — Z Lz,iﬁk € AT

keK

and (Vk € K) Y LyiTi € Bklm} (80)
iel

is nonempty.

We can regard m as the number of coordinates of the
solution vector T = (T;)1<igm. In large-scale applications,
m can be sizable and so can the number of terms ¢, which
is often associated with the number of observations. We have
already discussed in Sections III-C and III-E techniques in
which not all the indices ¢ or k need to be activated at a
given iteration. Below, we describe a block-iterative method
proposed in [92] which allows for partial activation of both the
families (A;)1<i<m and (Bg)1<k<q. together with individual,
iteration-dependent proximal parameters for each operator.
The method displays an unprecedented level of flexibility
and it does not require the inversion of linear operators or
knowledge of their norms.

The principle of the algorithm is as follows. Denote by I,, C
I and K,, C K the blocks of indices of operators to be updated
at iteration n. We impose the mild condition that there exist
M € N such that each operator index ¢ and k is used at
least once within any M consecutive iterations, i.e., for every
n €N,

ntM—1 n+M—1
U n={...m}ad |J K;={1,....¢}. 8D
j=n j=n

For each i € I, and k € K, we select points (a;n,a},) €
graA; and (b n, b5 ) € graBj and use them to construct
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a closed half-space H,, C H x G which contains Z. The
primal variable x,, and the dual variable v,, are updated as
(®ny1,Vny1) = Projg, (Tn, vy ). The resulting algorithm can
also be implemented with relaxations and in an asynchronous
fashion [92]. For simplicity, we present the unrelaxed syn-
chronous version.

Proposition 60 ([92]) Consider the setting of Problem 59.
Take sequences (I)nen in I and (K, )nen in K satisfying
(81), with Iy = I and Ky = K. Let € € )0, 1] and, for every
i € I and every k € K, let (Vin)nen and (fign)nen be
sequences in [e,1/e]. Let ¢y € H, let vo € G, and iterate

forn=0,1,...
for every i € I,
l;n = ZkeK Lz,ivk,n
Ain = Jy; , A; (xzn - 'Yi.,nl;n)
a;i, = ’Y;i(il?zn —Qin) — I
for everyi € I \ I,
| (ain,a},) = (@in-1,0], 1)
for every k € K,,
e = ier Li,i%im
b = Jpn B (Lo + Vi)
Dt = Vkin + tign (I — bin)
for every k € K \ K,
[ (e b) = (ran—1,57,01)
for everyi € 1
|t = ahn + Shek Liibin
for every k € K
| thn = b — > icr Lrjitin
Tn = Y ier Mtiall? + X rek thnll?
ifrn, >0
0 = — max{0, ey ((win | 1) = (i | )
+2kerc ((tin [ ven) = (Orn [ 07,5)) }
else 0, =0
for everyi € 1
{ Tintl = Tin — Hnt;n
for every k € K
I L Vk,ntl = Vkn — entk,n-

(82)

Then (x,,)nen converges to a solution to Problem 59.

Recent developments on splitting algorithms for Problem 59
as well as variants and extensions thereof can be found in [48],
[50], [138], [159], [160].

V. FIXED POINT MODELING OF MINIMIZATION PROBLEMS

We present key applications of fixed point models in convex
optimization.

A. Convex feasibility problems

The most basic convex optimization problem is the convex
feasibility problem, which asks for compliance with a finite
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number of convex constraints the object of interest is known to
satisfy. This approach was formalized by Youla [247], [249]
in signal recovery and it has enjoyed a broad success [80],
[82], [150], [220], [227], [231].

Problem 61 Let (C;)1<i<m be nonempty closed convex sub-
sets of H. The task is to

find z € [ C. (83)
i=1

Suppose that Problem 61 has a solution and that each set C;
is modeled as the fixed point set of an «;-averaged operator
T;: H — H for some «; € ]0, 1. Then, applying Theorem 37
with T'= T} o ... 0T, (which is averaged by Proposition 18)
and A\, = 1 for every n € N, we obtain that the sequence
(25 )nen constructed via the iteration

(VTL S N) Tn41 = (Tl O--+0 Tm)ilfn (84)

converges to a fixed point x of 7} o --- o T,,. In view of
Proposition 26, z is a solution to (83). In particular, if each
T; is the projection operator onto C; (which was seen to be
1/2-averaged), we obtain the classical POCS (Projection Onto
Convex Sets) algorithm [39], [128]

(Vn €N) 41 = (projg, o+ 0 projo )an (85)

popularized in [249] and which goes back to [161] in the case
of affine hyperplanes. In this algorithm, the projection oper-
ators are used sequentially. Another basic projection method
for solving (83) is the barycentric projection algorithm

1 m
VneN) pii = — i T, 86
(VneN) x4 m;pro‘]cl:v (86)

which uses the projections simultaneously and goes back to
[78] in the case of affine hyperplanes. Its convergence is
proved by applying Theorem 37 to T = m~' " | proj,
which is 1/2-averaged by Example 17. More general fixed
point methods are discussed in [17], [22], [83], [163].

B. Split feasibility problems

The so-called split feasibility problem is just a convex
feasibility problem involving a linear operator [53], [60], [61].

Problem 62 Let C C H and D C G be closed convex sets
and let 0 # L: H — G be linear. The task is to

find x € C such that Lz € D, 87)

under the assumption that a solution exists.

In principle, we can reduce this problem to a 2-set version
of (83) with C; = C and Cy = L~!(D). However the
projection onto Cy is usually not tractable, which makes
projection algorithms such as (85) or (86) not implementable.
To work around this difficulty, let us define 77 = proj.- and
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Ty = Id — vGo, where G3 = L* o (Id — projp) o L and
v €10, +00|. Then (Vx € H) Lz € D < Gax = 0." Hence,

FixTy =C and FixTy={zeH |LzeD}. (88)

Furthermore, T3 is «;-averaged with oy = 1/2. In addition,
Id — projp is firmly nonexpansive by (24) and therefore 1-
cocoercive. It follows from Proposition 21 that G2 is cocoer-
cive with constant 1/||L||2. Now let y € ]0,2/||L||*[ and set
as = 7||L||?/2. Then Proposition 13 asserts that Id — vG
is ap-averaged. Altogether, we deduce from Example 19 that
Ty o Ty is a-averaged. Now let (\,,)n,en be an a-relaxation
sequence. According to Theorem 37 and Proposition 26, the
sequence produced by the iterations

(MneN) zpi1=z,+ N\
) (projc (zn —yL* (Lay — projD(L:rn))) — xn)

converges to a point in Fix 77 N Fix 15, i.e., in view of (88),
to a solution to Problem 62. In particular, if we take A\, = 1,
the update rule in (89) becomes

Zp41 = Projo (:vn —yL*(Lz,, — projD(L:vn))). (90)

C. Convex minimization

We deduce from Fermat’s rule (Theorem 3) and Proposi-
tion 6 the fact that a differentiable convex function f: H — R
admits z € H as a minimizer if and only if Vf(z) = 0.
Now let v € ]0,4o00[. Then this property is equivalent to
x =x — vV f(z), which shows that

Argmin f = FixT, where T =1d —~V/. on

If we add the assumption that V f is §-Lipschitzian, then it is
1/d-cocoercive by Proposition 14. Hence, if 0 < v < 2/4, it
follows from Proposition 13, that T in (91) is a-averaged with
a = v6/2. We then derive from Theorem 37 the convergence
of the steepest-descent method.

Proposition 63 (steepest-descent) Let f: H — R be a dif-
ferentiable convex function such that Argmin f # @& and V f
is 0-Lipschitzian for some § € 0, +oo|. Let v € 10,2/4|, let
(An)nen be a ~v0/2-relaxation sequence, and let xo € H. Set

(Vn eN) zp11 = a0 — YAV f(T0). (92)

Then (xy,)nen converges to a point in Argmin f.

Now, let us remove the smoothness assumption by consid-
ering a general function f € T'o(#). Then it is clear from (9)
that (Vox € H) = = proxsz < (Vy € H) f(z) < f(y). In
other words, we obtain the fixed point characterization

Argmin f = FixT, where T = prox;. (93)

ISet T = Id — projp and fix T € H such that Lz € D. Then
T(Lz) = 0 and thus G2Z = 0. Conversely, take © € # such that
Gox = 0. Since T is firmly nonexpansive by Example 11, applying
(18) with B = 1 yields 0 = (0| z—Z) = (Gox — G2ZT |z —T) =
(L*(T(Lz) — T(LT)) | —F) = (T(Lz)-T(LT)| Lz — LT) >
|T(Lz) — T(LZ)||? = ||T(Lx)||2. So T(Lz) = 0 and therefore Lz =
projp(Lz) € D.
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In turn, since proxy is firmly nonexpansive (see Example 11),
we derive at once from Theorem 37 the convergence of the
proximal point algorithm.

Proposition 64 (proximal point algorithm) Let f € T'o(H)
be such that Argmin f # @. Let vy € ]0, +00], let (Ap)nen be
a 1/2-relaxation sequence, and let xo € H. Set

(MneN) zpt1=z,+ N\ (proxﬁ:vn — xn) (94)

Then (xy)nen converges to a point in Argmin f.

Remark 65 We can interpret the barycentric projection al-
gorithm (86) as an unrelaxed instance of the proximal point
algorithm (94) with v = 1 by applying Remark 22 with ¢ = m
and, for every k € {1,...,q}, wx = 1/q, Gx = H, Ly = 1d,
and gk = LCy,-

A more versatile minimization model is the following
instance of the formulation discussed in Proposition 7.

Problem 66 Let f € I'o(H) and g € T'o(H) be such that
(ridom f) N (ridom g) # @ and lim|;|— 1o f(z) + g(z) =
—+00. The task is to

minimize f(x)+ g(z). 95)

TEH

It follows from Proposition 7i) that Problem 66 has a
solution and from Proposition 7ii) that it is equivalent to
Problem 47 with A = 0f and B = Jg. It then remains to
invoke Proposition 48 and Example 33 to obtain the following
algorithm, which employs the proximity operators of f and g
separately.

Proposition 67 (Douglas-Rachford splitting) Ler (\,)nen
be a 1/2-relaxation sequence, let y € 10, +00[, and let yo € H.
Iterate
forn=0,1,...
Ty, = ProX. Yn
Zp = proxvf(2:vn — Yn)
Yn+1 = Yn + /\n(zn - xn)

(96)

Then (xy,)nen converges to a solution to Problem 66.

The Douglas-Rachford algorithm was first employed in sig-
nal and image processing in [99] and it has since been applied
to various problems, e.g., [73], [172], [194], [221], [250].
For a recent application to joint scale/regression estimation in
statistical data analysis involving several product space refor-
mulations, see [97]. We now present two applications to matrix
optimization problems. Along the same lines, the Douglas-
Rachford algorithm is also used in tensor decomposition [135].

Example 68 Let H be the space of N x N real symmetric
matrices equipped with the Frobenius norm. We denote by
&;,; the ijth component of X € H. Let O € H. The graphical
lasso problem [133], [201] is to

mininﬂ:}ze F(X) 4+ 4(X) + trace(OX), 97)

Xe
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where
N N
FX)=xD_> &;l, withy €[0,+00[,  (98)
i=1j=1
and
(X) = {— Indet X, if X is' positive definite; 99)
+00, otherwise.

Problem (97) arises in the estimation of a sparse precision
(i.e., inverse covariance) matrix from an observed matrix
O and it has found applications in graph processing. Since
¢ € To(H) is a symmetric function of the eigenvalues of
its arguments, by [21, Corollary 24.65], its proximity oper-
ator at X is obtained by performing an eigendecomposition
U, (1i)1<icn] = eig(X) & X = UDiag(p,..., un)U "
Here, given v € ]0, +00], [21, Example 24.66] yields

) PTOX_ ln/l’N)) UT )
(100)

where prox_. ,: § = (§ + /&% +47)/2. Let (Ay)nen be a

1/2-relaxation sequence, let v € ]0,4o0[, and let Y5 € H.
Upon setting g = £+ (- | O), the Douglas-Rachford algorithm
of (96) for solving (97) becomes

forn=0,1,...
U, (pin)1<isn] = eig(Yn, —70)
Xy = Uy, Diag ((prox—vln L )1<i<n ) Uyt
Zy, = softy, (2X,, — Y3,)
Vi1 = Y + An(Zn — X)),

prox.,X = U Diag ((prox_ 41, - .-

(101)

where soft,, denotes the soft-thresholding operator on
[—vx,7x] applied componentwise. Applications of (101) as
well as variants with other choices of ¢ and g are discussed
in [27].

Example 69 (robust PCA) Let M and N be integers such
that M > N > 0, and let H be the space of N x M
real matrices equipped with the Frobenius norm. The robust
Principal Component Analysis (PCA) problem [56], [234] is
to

minimize [|¥||nue + [ X1, (102)
X+Y=0
where || - |1 is the componentwise ¢1-norm, || - ||nuc

is the nuclear norm, and xy € ]0,4+o00[. Let X =
U Diag(o1,...,0n)V " be the singular value decomposition
of X € H. Then || X||pue = sz\il o; and, by [21, Exam-
ple 24.69],

X = U Diag (softy o1, ..., softy UN)VT.
(103)

An implementation of the Douglas-Rachford algorithm in

the product space H x H to solve (102) is detailed in [21,

Example 28.6].

prOXXH . H nuc

By combining Propositions 50, 6, and 14, together with Ex-
ample 33, we obtain the convergence of the forward-backward
splitting algorithm for minimization. The broad potential of
this algorithm in data science was evidenced in [108]. Inertial
variants are presented in [4], [8], [24], [31], [65], [93].
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Proposition 70 (forward-backward splitting) Suppose that,
in Problem 66, g is differentiable everywhere and that its
gradient is §-Lipschitzian for some § € ]0,+o0[. Let € €
10,min{1/2,1/6}] let ©o € H, and let (Vn)nen be in
[€,2/(6(1+¢€))], and let

(WneN) N €le,(1—e)(2+e—0mm/2)]. (104)

Iterate
forn=20,1,...

{ Up = Tp — Y Vg(Tn)
Tntl = Tn + An (prox%fun —Ty).

(105)

Then (xy,)nen converges to a solution to Problem 66.

Example 71 Let M and N be integers such that M > N > 0,
and let H be the space of N x M real-valued matrices equipped
with the Frobenius norm. The task is to reconstruct a low-rank
matrix given its projection O onto a vector space V C H. Let
L = projy,. The problem is formulated as
minimize ~ [0 — LX|2 4+ x| X[nees  (106)
XeH 2
where y € |0, +o0[. As seen in Example 69, the proximity
operator of the nuclear norm has a closed form expression. In
addition, g: X + [|O — LX||?/2 is convex and its gradient
Vg: X — L*(LX — O) = LX — O is nonexpansive.
Problem (106) can thus be solved by algorithm (105) where
f = x|l - llnuc and 6 = 1. A particular case of (106) is
the matrix completion problem [57], [58], where only some
components of the sought matrix are observed. If K denotes

the set of indices of the unknown matrix components, we have
V={XeH|{Vij eK)&,; =0}

Example 72 Let X and W be mutually independent R™-
valued random vectors. Assume that X is absolutely con-
tinuous and square-integrable, and that its probability density
function is log-concave. Further, assume that W is Gaussian
with zero-mean and covariance 021y, where o € ]0, +ool. Let
Y = X + W. For every y € RV, Qy = E(X | Y =) is the
minimum mean square error (MMSE) denoiser for X given the
observation y. The properties of () have been investigated in
[145]. It can be shown that () is the proximity operator of the
conjugate of h = (—a?logp)* — || - ||?/2 € To(RY), where p
is the density of Y. Let g: RY — R be a differentiable convex
function with a J-Lipschitzian gradient for some ¢ € 0, 4+o00],
and let v € ]0,2/4[. The iteration

(Vn eN) z,411 = Q(«rn - FYVg(xn))

therefore turns out to be a special case of the forward-
backward algorithm (105), where f = h*/v and (Vn € N)
Ap = 1. This algorithm is studied in [240] from a different
perspective.

(107)

The projection-gradient method goes back to the classical
papers [141], [171]. A version can be obtained by setting f =
tc in Proposition 70, where C' is the constraint set. Below, we
describe the simpler formulation resulting from the application
of Theorem 37 to T' = proj- o (Id — yVg).
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Example 73 (projection-gradient) Let C' be a nonempty
closed convex subset of H and let g: H — R be a differ-
entiable convex function, with a §-Lipschitzian gradient for
some § € ]0, +oo[. The task is to

minimize g(z), (108)

zeC
under the assumption that lim,— 1o g(z) = +oo or C
is bounded. Let v € ]0,2/d[ and set &« = 2/(4 — ~9).

Furthermore, let (A, )nen be an a-relaxation sequence and let
zo € H. Iterate

forn=20,1,...
\‘ Yn = Tn — YV g(zn) (109)
Tpgl = Tp + Ap (projcyn — xn)

Then (2, )nen converges to a solution to (108).

As a special case of Example 73, we obtain the convergence
of the alternating projections algorithm [70], [171].

Example 74 (alternating projections) Let C; and C5 be
nonempty closed convex subsets of H, one of which is
bounded. Given zg € H, iterate

(Vn € N)  @p41 = proje, (Proje, n). (110)

Then (x,)nen converges to a solution to the constrained
minimization problem

minimize de, ().
zeCy

(111)

This follows from Example 73 applied to g = d2C2 /2. Note
that Vg = Id — projc, has Lipschitz constant § = 1 (see
Example 5) and hence (110) is the instance of (109) obtained
by setting v = 1 and (Vn € N) A, = 1 (see Example 10i)).

The following version of Problem 66 involves m smooth
functions.

Problem 75 Let (w;)1<i<m be real numbers in |0, 1] such that
Yo w; = 1. Let fo € To(H) and, for every i € {1,...,m},
let §; € 10, +o0o[ and let f;: H — R be a differentiable convex
function with a §;-Lipschitzian gradient. Suppose that

+Zw1f1 =

(112)

HIH—>+OO

The task is to

+ szfz

To solve Problem 75, an option is to apply Theorem 44 to
obtain a forward-backward algorithm with block-updates.

mlmmlze fo(z (113)

Proposition 76 ([95]) Consider the setting of Problem 75. Let
(In)nen be a sequence of nonempty subsets of {1,...,m}
such that (49) holds for some M € N ~ {0}. Let v €
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]O, 2/ maxigi<m 51[, let Ty € H, let (ti,—l)lgigm c H™,
and iterate
forn=0,1,...
for every i € I,
L tin = Tn — YV fi(Tn)
foreveryie {1,..., m}~1I,
L tin =tin-1
Tpt+1 = prOny0 ( Z:il witi,n) .
Then the following hold:
i) Let x be a solution to Problem 75 and let i €
{1,....,m}. Then V fi(x,) — V fi(x).
i) (zp)nen converges to a solution to Problem 75.
iii) Suppose that, for some i € {0,...,m}, f; is strongly
convex. Then (xy,)nen converges linearly to the unique
solution to Problem 75.

(114)

A method related to (114) is proposed in [181]; see also
[183] for a special case. Here is a data analysis application.

Example 77 Let (e)i1<k<n be an orthonormal basis of H
and, for every k € {1,...,N}, let ¢ € Tx(R). For every
ie{l,....m}, let 0 # a; € H, let u; € ]0,+0c0[, and let
¢i: R — [0, 400 be a differentiable convex function such
that ¢, is p;-Lipschitzian. The task is to

=Y il | )

As shown in [95], (115) is an instantiation of (113) and,
given v € ]0,2/(maxy<icm pillail|*) [ and subsets (I)nen

N
migiegl{ize ;wk(@c | ex)) + (115)

of {1,...,m} such that (49) holds, it can be solved by (114),
which becomes
forn=0,1,...
for every ¢ € I,
L ti,n =Tn — ’Y¢;(<.’L’n | ai>)a’i
for every i € {1,...,m} \ I, (116)
[ tim = tin—1

Yn = Z?;leiti,n
= L= (proxyy, yn | ex))en.
A popular setting is obtained by choosing # = RY and

(er)1<k<n as the canonical basis, a € |0, 4+00], and, for every
ke{l,...,K}, ¢ = a|-|. This reduces (115) to

L Tn+1

minimize ozl + Zgbl x| a)). (117)
ceRY

=1

Choosing, for every i € {1,...,m}, ¢;: t — |t — n;|* where
1; € R models an observation, yields the lasso formulation,
whereas choosing ¢;: t — In(1 + exp(t)) — n;t, where n; €
{0, 1} models a label, yields the penalized logistic regression
framework [148].

Next, we extend Problem 66 to a flexible composite mini-
mization problem. See [36], [71], [72], [74], [75], [90], [94],
[97], [182], [194], [195], [202] for concrete instantiations of
this model in data science.
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Problem 78 Let § € ]0,+oo[ and let f € T'o(H). For every
k € {1,...,(]}, let gr € Fo(gk), let O 75 Li:H — G
be linear, and let hy: G, — R be a differentiable con-
vex function, with a J-Lipschitzian gradient. Suppose that
lim”z”*)Jroo f(.%‘) + Zzzl(gk (LkiC) + hy (ka)) = +o0 and
that

(Fz €ridom f)(VE € {1,...,q}) Liz € ridom gy.
(118)
The task is to
q
minimize f(z) + >  (gr(Lex) + hi(Lix)).  (119)

eH
¥ k=1

Thanks to the qualification condition (118), Problem 78 is
an instance of Problem 55 where A = Of and, for every
ke{l,...,q}, Bx = 9gi and Cy, = Vgy. Since the operators
(Cr)i<rgq are 1/0-cocoercive, the iterative algorithms from
Propositions 56, 57, and 58 are applicable. For example,
Proposition 58 with the substitution J,-1p, = prox,-i,, (see
Example 33) allows us to solve the problem. In particular, the
resulting algorithm was proposed in [69], [175] in the case
when W = 7Id with 7 € ]0, +00/[. See also [66], [107], [112],
[113], [131], [149], [164], [237] for related work.

Example 79 Let 0 € RY and let M € RE*¥ be such that
Iy — M "M is positive semidefinite. Let ¢ € I'g(RY) and let
C be a nonempty closed convex subset of R"V. The denoising
problem of [216] is cast as

- 1 ,
minimize P(z) + §Hx - 0|, (120)
where the function
. 1
bia e @) - inf (o) + SIM@E-y)?) 21
yeH 2

is generally nonconvex. However, (120) is a convex problem.
Further developments can be found in [1]. Note that (120) is
actually equivalent to Problem 78 with ¢ = 2, H = RN xRN,
G =M, G =R, f: (z,y) = ¢(@), hn: (2,y) = o(2),
gr: (y) = at (I =M " M)z/2— (x| o) +||My|?/2, g2 =
©*, Ly =1d, La: (z,y) = M TM(x — ), and hy = 0.

Remark 80 (ADMM) Let us revisit the composite mini-
mization problem of Proposition 7 and Example 34. Let
f € To(H), let g € To(G), and let L: H — G be
linear. Suppose that lim 4o f(7) + g(Lx) = 400 and
ri(L(dom f)) Nri(dom g) # @. Then the problem

miniequtize f(z) + g(Lx) (122)
is a special case of Problem 78 and it can therefore be solved
by any of the methods discussed above. Now let y € ]0, +00[
and let us make the following additional assumptions:

i) L* o L is invertible.

ii) The operator

[ Lz —y||2)

prox,efz G—H: y'—>argmin(f(ac)+ 5

TEH

is easy to implement.
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Then, given yo € G and zy € G, the alternating-
direction method of multipliers (ADMM) constructs a se-
quence (z,,)nen that converges to a solution to (122) via the
iterations [37], [126], [134], [139]

forn=0,1,...
T, = proxﬁf(yn — 2p)
d, = Lz, (123)

Ynt+1 = prOXW (dn + Zn)
Zn+1 = Zn + dn — Yn+1-

This iteration process can be viewed as an application of the
Douglas-Rachford algorithm (96) to the Fenchel dual of (122)
[134], [126]. Variants of this algorithm are discussed in [14],
[100], [125], and applications to image recovery in [2], [3],
[132], [137], [143], [217].

D. Inconsistent feasibility problems

We consider a more structured variant of Problem 61 which
can also be considered as an extension of Problem 62.

Problem 81 Let C be a nonempty closed convex subset of H
and, for every i € {1,...,m}, let L;: H — G; be a nonzero
linear operator and let D; be a nonempty closed convex subset
of G;. The task is to

find € C such that (Vi € {1,...,m}) Lyx € D;. (124)

To address the possibility that this problem has no solution
due to modeling errors [62], [81], [248], we fix weights
(wi)1<i<m in ]0,1] such that >, w; = 1 and consider the
surrogate problem

1 m
minimize ~ Z wid3, (Liz), (125)
=1

zeC 2 .

where C acts as a hard constraint. This is a valid relaxation of
(124) in the sense that, if (124) does have solutions, then those
are the only solutions to (125). Now set fy = t¢. In addition,
for every i € {1,...,m}, set f;: x — (1/2)d}, (Lsx) and
notice that f; is differentiable and that its gradient Vf; =
L7 o (Id — projp,) o L; has Lipschitz constant §; = ||L;[|*.
Furthermore, (112) holds as long as C' is bounded or, for some
1€ {1,...,m}, D; is bounded and L; is invertible. We have
thus cast (125) as an instance of Problem 75 [95]. In view of
(114), a solution is found as the limit of the sequence (2, )nen
produced by the block-update algorithm

forn=20,1,...
for every i € I,
{ tim = Tn + YL} (projDi (Lizy,) — Lizzrn)
foreveryi € {1,...,m} \ I,
{ tin =tin—1

Tni1 = Projo( Yoty witin),

(126)

where v and (I,,)n,en are as in Proposition 76.
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E. Stochastic forward-backward method

Consider the minimization of f + g, where f € T'o(H)
and g: ‘H — R is a differentiable convex function. In certain
applications, it may happen that only stochastic approxima-
tions to f or g are available. A generic stochastic form of the
forward-backward algorithm for such instances is [103]

(MneN) xp11=xp+M\ (prox%fn (:Cn—wnun)—i—an—xn),

(127)
where v, € 0,400, A, € ]0,1], fn, € To(H) is an
approximation to f, wu, is a random variable approximating
Vg(z,), and a,, is a random variable modeling a possible
additive error. When f = f,, =0, A\, = 1, and a,, = 0, we
recover the standard stochastic gradient method for minimizing
g, which was pioneered in [129], [130].

Example 82 As in Problem 75, let f € To(#) and let
g = m 'Y g, where each g;: X — R is a differen-
tiable convex function. The following specialization of (127)
is obtained by setting, for every n € N, f, = f and
Up = Vgin)(2n), where i(n) is a {1,...,m}-valued random
variable. This leads to the incremental proximal stochastic
gradient algorithm described by the update equation

Tptl = Tnt+Apn (prox,ynf (a:n—”yani(n)(:cn)) —xn). (128)
For related algorithms, see [30], [119], [120], [158], [214].

Various convergence results have been established for al-
gorithm (127). If Vg is Lipschitzian, (127) is closely related
to the fixed point iteration in Theorem 45. The almost sure
convergence of (Z,)neny to a minimizer of f + g can be
guaranteed in several scenarios [7], [103], [208]. Fixed point
strategies allow us to derive convergence results such as the
following.

Theorem 83 ([103]) Let f € T'o(H), ler § € ]0,+o0|, and
let g: H — R be a differentiable convex function such that
Vg is 6-Lipschitzian and S = Argmin (f + g) # . Let
v € 10,2/0[ and let (A\y)nen be a sequence in 10, 1] such
that ) . An = +00. Let xo, (Un)nen, and (an)nen be H-
valued random variables with finite second-order moments. Let
(Zn)nen be a sequence produced by (127) with ~y, = v and
fn=f. For every n € N, let X, be the o-algebra generated
by (zo,...,xn) and set ¢, = E(|Jun — E(un | X,)[1? | Xn).
Assume that the following are satisfied a. s.:

i) ZnGN An v E([lan][?|Xn) < +o0.

i) ZneN \//\_WHE(unlxn) - VQ(xn)” < H-o00.

i) sup, ey Cn < 400 and Y, o VAnGn < +00.

Then (x,,)nen converges a. s. to an S-valued random variable.

Extensions of these stochastic optimization approaches can
be designed by introducing an inertial parameter [207] or by
bringing into play primal-dual formulations [103].

F. Random block-coordinate optimization algorithms

We design block-coordinate versions of optimization algo-
rithms presented in Section V-C, in which blocks of variables
are updated randomly.
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Problem 84 For every i € {1,...,m} and k € {1,...,q},
let fl (S Fo(Hi), let gr € Fo(gk), and let 0 75 L;m: Hi; — G
be linear. Suppose that

(Ezeﬂ)(ﬂweg)(we{l m})(Vk € {1,...,q})

- ZL qw; € Of;(2;) and ZLWJ € dgi(wg). (129)

Jj=1

The task is to
m q m
minimize Zl filzs) + ; 9k ( Zl Lk,ﬂi) .

Let v € ]0, 400, let (A,)nen be a sequence in ]0, 2[, and
set

(130)

V = {(zl,...,xm,yl,...,yq) EHXG
’ (Vke{l,....q}) yr = ZLk,iwi} (131)
i—1

Let us decompose the projection operator projy as
projy: € — (Q;®)i<j<m+q- A random block-coordinate
form of the Douglas-Rachford algorithm for solving Prob-
lem 84 is [102]

forn=0,1,...
fore=1,...,m
Zin+l = Zin + Ei,n(Qi(mn; Yp) — Zzn)
Tin+1 = Tin
i +einAn (prox (22141 — Tin) — zi,n+1)
fork=1,...,q
Wk,n+1 = Wik,n + Em+k,n (Qerk(CCn, Yn) — wk-,n)
Ykn+1 = Ykn
L +emtk,nAn (prOX’ng (2wk,n+1 - yk,n) - wk,n-i—l)u
(132)

where @, = (Zi.n)1<i<m and y,, = (Yk,n)1<k<q- Moreover,
(€j,n)1<j<m—+qneN are binary random variables signaling the
activated components.

Proposition 85 ([102]) Let S be the set of solutions to Prob-
lem 84 and set D = {0,1}™T% ~ {0}. Let v € |0, +o0], let

€ 10,1, let (An)nen be in [e,2 — €], let xy and zy be H-
valued random variables, let y, and wo be G-valued random
variables, and let (€,,)nen be identically distributed D-valued
random variables. In addition, suppose that the following
hold:

i) For everyn €N, &, and (xo,...,Tn,Yq,---,Y,) are
mutually independent.
i) (Vje{l,...,m+gq}) Problgjo=1] > 0.

Then the sequence (z, )nen generated by (132) converges a. s.
to an S-valued random variable.

Applications based on Proposition 85 appear in the areas of
machine learning [96] and binary logistic regression [42].
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If the functions (g )1<k<q are differentiable in Problem 84,
a block-coordinate version of the forward-backward algorithm
can also be employed, namely,

forn=20,1,...
fori=1,...,m

Tinm = Ein (I’Ln_
Vi 2oy L i (ng (X, Lk,jffj,n)))

Tint1 = Tip + EinAn (PrOX,, | 1.7in — Tin),

(133)
where 7; , € ]0,+0o0[ and A, € ]0,1]. The convergence of
(133) has been investigated in various settings in terms of
the expected value of the cost function [189], [203], [204],
[211], the mean square convergence of the iterates [104],
[203], [204], or the almost sure convergence of the iterates
[102], [211]. It is shown in [211] that algorithms such as the
so-called random Kaczmarz method to solve standard linear
systems are special cases of (133).

A noteworthy feature of the block-coordinate forward-
backward algorithm (133) is that, at iteration n, it allows
for the use of distinct parameters (7;,)i<i<m to update
each component. This was observed to be beneficial to the
convergence profile in several applications [76], [203]. See
also [211] for further developments along these lines.

G. Block-iterative multivariate minimization algorithms

We investigate a specialization of a primal-dual version
of the multivariate inclusion Problem 59 in the context of
Problem 84.

Problem 86 Consider the setting of Problem 84. The task is
to solve the primal minimization problem

m q m
mininq}tize Z filz) + Z Jk ( Z Lk,i$i> ) (134)
xTc
i=1 k=1 i=1

along with its dual problem
m q q
minimize - Ly v | + r(vg). 135
e 3057 (=Xt ) + Ykt 039

We solve Problem 86 with algorithm (82) by replacing
Jyina; bY prox,, . and Jy, g, by prox,, .. . This block-
iterative method then produces a sequence (&, )ncn Which
converges to a solution to (134) and a sequence (v,,)nen Which
converges to a solution to (135) [92].

Examples of problems that conform to the format of Prob-
lems 84 or 86 are encountered in image processing [28], [43],
[46] as well as in machine learning [5], [11], [96], [156], [157],
[178], [236], [251].

H. Splitting based on Bregman distances

The notion of a Bregman distance goes back to [40] and
it has been used since the 1980s in signal recovery; see [55],
[64]. Let ¢ € Tg(H) be strictly convex, and differentiable on
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int dom ¢ # @ (more precisely, we require a Legendre func-
tion, see [18], [19] for the technical details). The associated
Bregman distance between two points x and y in H is

() —p(y) — (x —y | Ve(y)),

Dy(z,y) = if y € int dom ¢; (136)

400, otherwise.

This construction captures many interesting discrepancy mea-
sures in data analysis such as the Kullback-Leibler divergence.
Another noteworthy instance is when ¢ = | - ||2/2, which
yields D, (z,y) = ||z—y||*/2 and suggests extending standard
tools such as projection and proximity operators (see Theo-
rems 1 and 2) by replacing the quadratic kernel by a Bregman
distance [18], [19], [40], [63], [124], [225]. For instance, under
mild conditions on f € To(H) [19], the Bregman proximal
point of y € int dom ¢ relative to f is the unique point prox?y
which solves

minimize f(p) + Dy (p,y). (137)

p€int dom ¢

The Bregman projection projgy of y onto a nonempty closed
convex set C' in H is obtained by setting f = (o above.
Various algorithms such as the POCS algorithm (85) or the
proximal point algorithm (94) have been extended in the
context of Bregman distances [18], [19]. For instance [18]
establishes the convergence to a solution to Problem 61 of a
notable extension of POCS in which the sets are Bregman-
projected onto in arbitrary order, namely

(Vne€N) xpy1 = proja(n)xn, (138)
where i: N — {1,...,m} is such that, for every p € N and
every j € {1,...,m}, there exists n > p such that i(n) = j.

A motivation for such extensions is that, for certain func-
tions, proximal points are easier to compute in the Bregman
sense than in the standard quadratic sense [16], [98], [190].
Some work has also focused on monotone operator splitting
using Bregman distances as an extension of standard methods
[98]. The Bregman version of the basic forward-backward
minimization method of Proposition 70, namely,

forn=0,1,...
un = Ve(n) — mVg(zn)
Tny1 = (Vo + Wnaf)_lun
has also been investigated in [16], [49], [190] (note that the
standard quadratic kernel corresponds to Vo = Id). In these

papers, it was shown to converge in instances when (105)
cannot be used because Vg is not Lipschitzian.

(139)

VI. FIXED POINT MODELING OF NASH EQUILIBRIA
In addition to the notation of Section II-A, given ¢ €
{1,...,m}, z; € H;, and y € H, we set
Hoi=Hi X XHimg X Hipr X - X Hp
Yo = Wi)i<icm, i
(i;9) = W1, Yim1, Tiy Yit 15+ -+ Ym)-

In various problems arising in signal recovery [9], [10], [28],
[43], [46], [114], [115], [121], telecommunications [168],

(140)
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[215], machine learning [38], [116], network science [244],
[246], and control [26], [33], [254], the solution is not a single
vector but a collections of vectors € = (z1,...,%,) € H
representing the actions of m competing players. Oftentimes,
such solutions cannot be modeled via a standard minimization
problem of the form

minimize h(x)
ceEH

(141)
for some function h: ‘H — |—o0, 400, but rather as a Nash
equilibrium [187]. In this game-theoretic setting [167], player
1 aims at minimizing his individual loss (or negative payoff)
function h;: H — ]—o00, +00], that incorporates the actions
of the other players. An action profile © € H is called a Nash
equilibrium if unilateral deviations from it are not profitable,

ie.,
xi€H;
(142)
In other words, if
best;: Hoi — 2% x i

{zi € Hi | (Vyi € Hy) hilys;oi) = hi(ws @)} (143)
denotes the best response operator of player i, * € H is a
Nash equilibrium if and only if

(Vie{l,...,m})

This property can also be expressed in terms of the set-valued
operator

B:H — 2% 2 besty(x 1) x - - - x best,, (€ ). (145)

T; € best; (E\l) (144)

Thus, a point © € H is a Nash equilibrium if and only if it
is a fixed point of B in the sense that * € Bz.

A. Cycles in the POCS algorithm

Let us go back to feasibility and Problem 61. The POCS
algorithm (85) converges to a solution to the feasibility prob-
lem (83) when one exists. Now suppose that Problem 61 is
inconsistent, with C; bounded. Then, as seen in Example 74,
in the case of m = 2 sets, the sequence (z2,)nen produced
by the alternating projection algorithm (110), written as

forn=0,1,...

{ Ton41 = Projo,Tan
Ton+2 = Projo, Tan+1,

(146)

converges to a point T; € Fix (projc, o projg,), ie., to a
minimizer of dc, over C;. More precisely [70], if we set
Ty = Projg,T1, then Ty = projg, T2 and (Z1,T2) solves

minimize (147)

21 — 2.
x1€C1, x2€C2
An extension of the alternating projection method (146) to m

sets is the POCS algorithm (85), which we write as
forn=20,1,...
Tmn+1 = PrOjo, Tmn
Tmn+2 = PrOjc,,  Tmn+1 (148)

m—1

Tmn+m = pl“Ojcl Tmn+m—1-

19

As first shown in [146] (this is also a consequence of The-
orem 41), for every i € {1,...,m}, (Tmnti)nen converges
to a point Typ41—; € Cpg1—4; in addition (T;)1<i<m forms a
cycle in the sense that (see Fig. 6)

y Tm—1 = pro.]cmflfmv

and ZT,, = proje, T1-

T = pI‘OjCITQ, e

(149)

As shown in [13], in stark contrast with the case of m = 2

Fig. 6: The POCS algorithm with m = 3 sets and initialized
at xo produces the cycle (T1, T2, T3).

sets and (147), there exists no function ®: H™ — R such that
cycles solve the minimization problem

minimize (150)

21€C1,..., m€CH

D(x1,.. .y Tm),
which deprives cycles of a minimization interpretation.
Nonetheless, cycles are equilibria in a more general sense,
which can be described from three different perspectives.

« Fixed point theory: Define two operators P and L from
H™ to H™ by

151
L:xw— (x2,...,2m,T1). (1s1)

{P: x — (projo, o1,...,Projo, Tm)
Then, in view of (149), the set of cycles is precisely the
set of fixed points of P o L, which is also the set of
fixed points of T' = P o F, where F = (Id + L)/2
(see [21, Corollary 26.3]). Since Example 11 implies that
P is firmly nonexpansive and since L is nonexpansive,
F' is firmly nonexpansive as well. It thus follows from
Example 19, that the cycles are the fixed points of the
2/3-averaged operator T'.

o Game theory: Consider a game in H™ in which the goal
of player ¢ is to minimize the loss

1
hi: (zi;2G) — Lo, (zi) + 5”% — $i+1H2; (152)

i.e., to be in C; and as close as possible to the action of
player ¢ + 1 (with the convention x,,+1 = x1). Then a
cycle (T1,...,Tm) is a solution to (142) and therefore
a Nash equilibrium. Let us note that the best response
operator of player i is best;: . ; = pProjc, it1.
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« Monotone inclusion: Applying Fermat’s rule to each line
of (142) in the setting of (152), and using (14), we obtain

0€ No,@1 +71 — T2

’ (153)
0eNc,, \Tm—1+Tm—1—Tm

0 € Ng, Tm + T — T1.

In terms of the maximally monotone operator A =
N¢, x...xc,, and the cocoercive operator

B:x— (1 —Z2,...,Tm-1 — T, Tm — x1), (154)

(153) can be rewritten as an instance of Problem 47 in
‘H™, namely, 0 € AZ + B=T.

B. Proximal cycles

We have seen in Section VI-A a first example of a Nash
equilibrium. This setting can be extended by replacing the
indicator function tc; in (152) by a general function ¢; €
To(H) modeling the self-loss of player 4, i.e.,

1
hi: (zi;20) = i) + 5”% — i (155)

The solutions to the resulting problem (142) are proximal
cycles, i.e., m-tuples (T;)1<icm € H™ such that
Ty = Prox, T2, ..., Tm—1 = ProxX,  Tm,

(156)

and T, = prox,, Ti.

Furthermore, the equivalent monotone inclusion and fixed
point representations of the cycles in Section VI-A remain
true with

P-H—-H x— (prox%xl,...,proxg,mxm) (157)

and A = Of, where f: x — Z:’;l vi(x;). Here, the best
response operator of player i is best;: ; — pProx, 1.
Examples of such cycles appear in [43], [108].

C. Construction of Nash equilibria

A more structured version of the Nash equilibrium for-
mulation (142), which captures (155) and therefore (152), is
provided next.

Problem 87 For every ¢ € {1,...,m}, let ¢, € To(H;),
let fi: H — ]—o00,+0o0], let g;: H — ]—o0,+00] be
such that, for every x € H, f;(sx;) € I'o(H;) and
g;(sx;) € To(H;). The task is to

find T € H such that (Vi€ {1,...,m})
Z; € Argmin ¥;(z;) + fi(xi; ) + g5(xi; ). (158)
x; €Hi

Under suitable assumptions on (f,)1<i<m and (g;)1<i<m.
monotone operator splitting strategies can be contemplated to
solve Problem 87. This approach was initiated in [79] in a
special case of the following setting, which reduces to that
investigated in [45] when (Vi € {1,...,m}) ¢; = 0.

20

Assumption 88 In Problem 87, the functions (f;)1<i<m co-
incide with a function f € T'o(#). For every i € {1,...,m}
and every ¢ € H, g;(;x-;) is differentiable on H, and
V; g;(x) denotes its derivative relative to x;. Moreover,

Ve e H)Vy € H)

m

Z (Vig;(z) —

=1

Vigi(y) | i —yi) 20, (159)

and

(Ez eEH) -— (vlgl(z)a"'7v7ngm(z))

€ 0f(2) + X Oui(z). (160)
=1

In the context of Assumption 88, let us introduce the
maximally monotone operators on H

A=0f
C:z— (Vigy(®), .., Ving,(2)).

(161)

Then the solutions to the inclusion problem (see Problem 51)
0 € Ax+ Bx + Cx solve Problem 87 [45]. In turn, applying
the splitting scheme of Proposition 52 leads to the following
implementation.

Proposition 89 Consider the setting of Assumption 88 with
the additional requirement that, for some § € |0, +00],

(VeeH)VyeH) Y |Vigi(x) - Vig,)|?
=1

<02 i —wil® (162)
=1

Let £ €10,1/(2+8)], let (Yn)nen be in [e,(1 —¢)/(1 +9)),
let xg € H, and let vy € H. Iterate

forn=0,1,...

fori=1,....m

|_ Yin = Tin — In (vz gz(wn) + Ui,n)

Pn = PIOX., § Y,

fori=1,....m
Qijn = Vin + In (xi,n — ProXy, /+,, (vi,n/'yn + Iln))
Tint1l = Tin — Yin + Pin — Vn (Vi 9:(p,) + Qi,n)
Vint1 = Gin + Yn(Din — Tin)-

(163)
Then there exists a solution @ to Problem 87 such that, for
every i € {1,...,m}, T;n — Ty.

Example 90 Let ¢;1: H1 — R be convex and differentiable
with a §p-Lipschitzian gradient, let ps: Ho — R be con-
vex and differentiable with a do-Lipschitzian gradient, let
L:Hy — Hs be linear, and let C; C Hi, Co C Ho, and
D C Hi x Hy be nonempty closed convex sets. Suppose
that there exists z € H; X Hao such that —(Vpi(z1) +
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L* 2z, VQDQ(ZQ) - LZl) S ND(Zl, 22) +NClzl X NCQZ2. Then
the 2-player game

T; € Argmin LD(LL'l,Tg) + (pl(l'l) + <L£L‘1 | fg)
x1€Cy

To € Argmin LD(fl,ZCQ) + (pQ(ZEQ) — <LT1 | I2>
x2€Cs

(164)

is an instance of Problem 87 with f, = f, = tp, ¥1 = tc,,
Y2 = Lc,, and

{912 (z1,22) = p1(21) + (La1 | 22)

165
gy (z1,22) = wa(x2) — (Lxy | 22). (165)

In addition, Assumption 88 is satisfied, as well as (162) with
§ = max{dy, d2} + || L||. Moreover, in view of (11), algorithm
(163) becomes

forn=20,1,...
Yin = 10 — Yo (Vo1 (z1,n) + L*@2m + v1,0)
Yon = Tan — Yo (Voo (z2,n) — La1n + v2,)
Pp =Projp Y,
qin =Vin +Mn (xl,n - pI"OjCl (Ul,n/Vn + xl,n))
G2,n = V2,0 + Tn ($2,n - pr0j02 (v2,n/7n + I2n))
Tintl =1 — Yi,n T Pin

—Vn (V<P1 (p1,n) + L pan + ih,n)
T2n+1 = T2n — Y2,n T D20

(V2 (p2,n) — Lp1n + q2,n)
Vint1 = Gin + Wm(P1n — T1,0)
V241 = @2,n + Yn(P2,n — Ton).

(166)

Condition (162) means that the operator C' of (161) is 4-
Lipschitzian. The stronger assumption that it is cocoercive,
allows us to bring into play the three-operator splitting algo-
rithm of Proposition 53 to solve Problem 87.

Proposition 91 Consider the setting of Assumption 88 with
the additional requirement that, for some f3 € 10, +|,

m

(Ve e H)(Vy € H) D> (2 —ui | Vigi(@) — Vigi(y))

i=1
>8> IVigi(x) - Vig,()lI*>. (167)
i=1

Let v € ]0,28[ and set o = 23/(48 — ). Furthermore, let
(An)nen be an a-relaxation sequence and let y, € H. Iterate

forn=0,1,...
fori=1,...,m
\‘ Tin = PYOXWM Yin
Tim = Yin +VVi gz(wn)

Zp = prox. ¢ (2T, — 1)

Ynt1 = Yp T An(2n — ).
Then there exists a solution @ to Problem 87 such that, for
every i € {1,....,m}, T;pn — Tj.

(168)

Example 92 For every i € {1,...,m}, let C; C H; be a
nonempty closed convex set, let L;: H; — G be linear, and

21

bl bm

—>@—> R, > - —> —>€lL>—> R,

z— W, —>Tx

Fig. 7: Feedforward neural network: the ith layer involves a
linear weight operator W;, a bias vector b;, and an activation
operator R;, which is assumed to be an averaged nonexpansive
operator.

let 0; € G. The task is to solve the Nash equilibrium (with the
convention Ly, +1Zm+1 = L171)

find Z € H such that (Vie {1,...,m})

| Lixi + Lis1Tiv1 — 04|

T; € Argmin ;(z;) +

(169)
z;€C; 2

Here, the action of player ¢ must lie in C};, and it is further
penalized by ; and the proximity of the linear mixture
L;x; + L;y17;41 to some vector o;. For instance if, for every
ie{l,....,m}, C; = H;, 0; =0, and L; = (—1)'Id, we re-
cover the setting of Section VI-B. The equilibrium (169) is an
instantiation of Problem 87 with f; = fo: @ — >0 tc, (2i)
and, for every i € {1,...,m}, g;: @ — ||Liz; + Lit1Ti41 —
0i||?/2. In addition, as in [45, Section 9.4.3], (167) holds with
B = (2maxi<i<m || Li]|*) . Finally, (168) reduces to (with
the convention Ly, 1Zm+1,n = L121,)

forn=20,1,...
fori=1,...,m
xiyn = pI‘OX,Ywi yi,n
Tin = Yin + VL7 (Li%in + Liy1Tit1,n — 04)
Ziin = PrOjc, (2Tim — Tin)

Yin+1 = Yin + )\H(Z’Ln - xi,n)-
(170)

Remark 93

i) As seen in Example 90, the functions of (165) satisfy
the Lipschitz condition (162). However the cocoercivity
condition (167) does not hold. For instance, if ¢; = 0
and o = 0 then, for every « and y in H; X Hao,

(Vigi(x) —Vig,(y) | ©1 —y1)
+ (Vago(x) — Vags(y) | 22 —y2) = 0.

ii) Distributed splitting algorithms for finding Nash equi-
libria are discussed in [25], [26], [244], [245].

iii) An asynchronous block-iterative decomposition algo-
rithm to solve Nash equilibrium problems involving a
mix of nonsmooth and smooth functions acting on linear
mixtures of actions is proposed in [51].

(171)

VII. FIXED POINT MODELING OF OTHER
NON-MINIMIZATION PROBLEMS

A. Neural network structures

A feedforward neural network (see Fig. 7) consists of
the composition of nonlinear activation operators and affine
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operators. More precisely, such an m-layer network can be
modeled as

T=T,o0---01y, (172)

where T, = R; o (W; - +b;), with W; € RNixNi—1
b; € RMi, and R;: RN: — RYi (see Fig. 7). If the i-th
layer is convolutional, then the corresponding weight matrix
W; has a Toeplitz (or block-Toeplitz) structure. Many common
activation operators are separable, i.e.,

where p;,: R — R. For example, the ReLU activation
function is given by

€ if £>0;
ik & 174
ik § {07 if £<0, (174)
and the unimodal sigmoid activation function is
1 1
ikl ——— — - 175
ikt § T5o¢ 3 (175)

An example of a nonseparable operator is the softmax activator

N;
Ri: (Sk)rchan, > | €% /> e (176)
j=1

1<k

It was observed in [106] that almost all standard activators are
actually averaged operators in the sense of (21). In particular,
as discussed in [105], many activators are proximity operators
in the sense of Theorem 2. In this case, in (173), there exist
functions (¢x)1<k<n; in To(R) such that

Ril (gk)lékSNi — (proxﬁt’ké.k)lgngi' (177)

For RelLU, ¢; reduces to L[0,+o00] whereas, for the unimodal
sigmoid, it is the function

€+1/2)In(§+1/2) + (1/2 = I(1/2 - ¢)

e i e < 1y
7Y -, it [¢) = 1/2
+o0, it €] > 1/2.

(178)
For softmax, we have R; = prox,, where

SV (& Inge — |€:[2/2),

N;
if min & >0and » & =1
k=1

. R
pit (Ek)1<h<N 1<k<N,

400, otherwise.
(179)
The weight matrices (W;)1<i<m play a crucial role in the
overall nonexpansiveness of the network. Indeed, under suit-
able conditions on these matrices, the network 7' is averaged.
For example, let W = W,,, --- W and let

m—1
O = W]+ >

£=1 0<j1<---<je<m—1

X AW, - Wil - - (W5 - - ol

Wi« Wi 41|

(180)

22

Then, if there exists & € [1/2,1] such that

(W =271 = a)ld]| = [[W] + 20, < 2™a, (181

T is a-averaged. Other sufficient conditions have been estab-
lished in [105]. These results pave the way to a theoretical
analysis of neural networks from the standpoint of fixed point
methods. In particular, assume that N,, = Ny and consider a
recurrent network of the form

(Vn eN) zpp1 = (1= N\p)zn + AT, (182)

where A, € ]0,4o0o[ models a skip connection. Then, accord-
ing to Theorem 37, the convergence of (z,)nen to a fixed
point of T is guaranteed under condition (181) provided that
(An)nen is an a-relaxation sequence. As shown in [105], when
for every ¢ € {1,...,m}, R; is the proximity operator of
some function ; € T'o(RY¢), the recurrent network delivers
asymptotically a solution to the system of inclusions

b e 1 —WiZm + 8(/71 (Tl)

by € To — WoT1 + a(pg(fg)
. (183)

bm S f1n - mfm—l + a‘pm(fm)u

where T,, € FixT and, for every i € {2,...,m}, T; =
T;z;—1. Alternatively, (183) is a Nash equilibrium of the form
(142) where (we set Tg = Ti,)

1
hi: (z;2) v i) + 5”%‘ — b — Wizia|®. (184)

Fixed point theory also allows us to provide conditions for
T to be Lipschitzian and to calculate an associated Lipschitz
constant. Such results are useful to evaluate the robustness
of the network to adversarial perturbations of its input [223].
As shown in [106], if 6, is given by (180), 6,,/2m 1 is a
Lipschitz constant of 7" and
O

WAl - W]

2m71 =

Wl < (185)

This bound is thus more accurate than the product of the
individual bounds corresponding to each layer used in [223].
Tighter estimations can also be derived, especially when the
activation operators are separable [106], [169], [212]. Note that
the lower bound in (185) would correspond to a linear network
where all the nonlinear activation operators would be removed.
Interestingly, when all the weight matrices have components
in [0, +o00[ and the activation operators are separable, ||| is
a Lipschitz constant of the network [106].

Special cases of the neural network model of [105] are
investigated in [147], [224]. Another special case of interest
is when the operator 7" in (172) corresponds to the unrolling
(or unfolding) of a fixed point algorithm [184], that is, each
operator T;; corresponds to one iteration of such an algorithm
[15], [144], [243], [253]. The algorithm parameters, as well
as possible hyperparameters of the problem, can then be opti-
mized from a training set by using differentiable programming.
Let us note that the results of [105], [106] can be used to
characterize the nonexpansiveness properties of the resulting
neural network [29].
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B. Plug-and-play methods

The principle of the so-called plug-and-play (PnP) methods
[52], [192], [205], [209], [222], [235] is to replace a proximity
operator appearing in some proximal minimization algorithm
by another operator (). The rationale is that, since a proximity
operator can be interpreted as a denoiser [108], one can con-
sider replacing this proximity operator by a more sophisticated
denoiser @, or even learning it in a supervised manner from a
database of examples. Example 72 described implicitly a PnP
algorithm that can be interpreted as a minimization problem.
Here are some techniques that go beyond the optimization
setting.

Algorithm 94 (PnP forward-backward) Let f: H — R
be a differentiable convex function, let Q: H — H, let
v €10, +0o0], let (A, )nen be a sequence in |0, oo, and let
xo € H. Iterate
forn=0,1,...
(186)

L Yn = Tp — va(xn)
Tp+1 = Tn + An(C?yn - xn)

The convergence of (x,)nen in (186) is related to the
properties of T = @Q o (Id — 4V f). Suppose that T is «-
averaged with o € 10, 1], and that S = FixT # &. Then it
follows from Theorem 37 that, if (A,)nen is an a-relaxation
sequence, then (x,),ecn converges to a point in S.

Algorithm 95 (PnP Douglas-Rachford) Let f € T'g(#H), let
Q:H — H, let v € ]0,+0c0], let (\,)nen be a sequence in
10, +o0], and let zy € H. lterate

forn=0,1,...
{ Ty, = PIOX. (Yn (187)
Ynt1 =Yn + An (Q(2xn —Yn) — :En)
In view of (187),
An An
(n€N) yoyr = (1= 3 )y + 3Ty, (189)

where T' = (2Q —1d) o (2prox. ; — Id). Now assume that @ is
such that T" is a-averaged for some « € ]0,1] and Fix T # .
Then it follows from Theorem 37 that, if (\,/2)nen iS an
a-relaxation sequence, then (y,)nen converges to a point in
Fix T and we deduce that (x,, )N converges to a point in S =
prox., ¢(FixT'). Conditions for 7" to be a Banach contraction
in the two previous algorithms are given in [209].

Applying the Douglas-Rachford algorithm to the dual of
Problem 66 leads to a simple form of the alternating direction
method of multipliers. Thus, consider algorithm 95, where f,
7, and @ are replaced by f*, 1/y and Id + v~ 1Q(—v-),
respectively, and (Vn € N) X, = 1. Then we obtain the
following algorithm [68], which is applied to image fusion
in [226].
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Algorithm 96 (PnP ADMM) Let f € To(H), let Q: H —
H, let v € ]0,+0], let yo € H, let z9 € H, and let v €
10, +o0]. Tterate

forn=0,1,...
Ty = Q(Yn — 2n)
Yn+1 = Prox ;(Tn + 2n)
Zn4+1 = Zn + Tp — Yn+1-

(189)

Note that, beyond the above fixed point descriptions of S,
the properties of the solutions in plug-and-play methods are
elusive in general.

C. Adjoint mismatch problem

A common inverse problem formulation is to

1 K
inimi —|Hz —y||* + =|z||? 190
minimize /(o) + 5[ Ho = yl* + Slel?, (190)
where f € T'g(H), y € G models the observation, H: H — G
is a linear operator, and k € [0, +oo]. This is a particular case
of Problem 66 where
= Sy S 2 (191)
g = 2 Yy 2 9
has Lipschitzian gradient Vg: x — H*(Hz — y) + kz. It
can therefore be solved via Proposition 70, which therefore
requires the application of the adjoint operator H* at each
iteration. Due to both physical and computational limitations
in certain applications, this adjoint may be hard to implement
and it is replaced by a linear approximation K: G — H

[174], [252]. This leads to a surrogate of the proximal-gradient
scheme (105) of the form

(VneN) zp11 =xn+
An (proxvf((l —yKk)xy — YK (Hx, — y)) — xn), (192)

with v € ]0, +o00[ and {A, }neny C ]0,1]. Let us assume that
L = K o H + kId is a cocoercive operator. Then the above
algorithm is an instance of the forward-backward splitting
algorithm introduced in Proposition 50 to solve Problem 47
where A = 0f and B = L - —Ky. This means that a
solution produced by algorithm (192) no longer solves a
minimization problem since L is not a gradient in general
[21, Proposition 2.58]. However, suppose that g is v-strongly
convex with v € ]0, 400/, let (iin be the minimum eigenvalue
of L + L*, set x = 1/(v + (nin), let T be the solution to
Problem 66, and let T be the solution to Problem 47. Then,
as shown in [77],

IF -3l < xII(H" - K)(HE—y)|.  (193)
A sufficient condition ensuring that L is cocoercive is that
Cmin > 0. The problem of adjoint mismatch when f = 0 is
studied in [122].



IEEE TRANSACTIONS ON SIGNAL PROCESSING

D. Problems with nonlinear observations

We describe the framework presented in [109], [110] to
address the problem of recovering an ideal object * € H from
linear and nonlinear transformations (ry)1<r<q of it.

Problem 97 For every k € {1,...
let 7, € G. The task is to

,q}, let Ry: H — Gy, and

find x € H such that (Vk € {1,...,¢}) Rrz =r. (194)

In the case when ¢ = 2, G; = Go = H, and R; and Rs
are projectors onto vector subspaces, Problem 97 reduces to
the classical linear recovery framework of [247] which can be
solved by projection methods. We can also express Problem 61
as a special case of Problem 97 by setting m = ¢ and

(Vke{1,...,q})

In the presence of more general nonlinear operators, however,
projection techniques are not applicable to solve (194). Fur-
thermore, standard minimization approaches such as minimiz-
ing the least-squares residual > ¢_, |[Rrz — 7||* typically
lead to an intractable nonconvex problem. Yet, we can employ
fixed point arguments to approach the problem and design a
provenly convergent method to solve it. To this end, assume
that (194) has a solution and that each operator Ry is prox-
ifiable in the sense that there exists Sy: Gy — H such that

re =0 and Ry =Id—projc,. (195)

Sk o Ry is firmly nonexpansive

(Vx S 7‘[) Sk(RkI) = Sk (196)

= Rix =r1%.

Clearly, if Ry is firmly nonexpansive, e.g., a projection or
proximity operator (see Fig. 3), then it is proxifiable with S}, =
Id. Beyond that, many transformations found in data analysis,

including discontinuous operations such as wavelet coefficients
hard-thresholding, are proxifiable [109], [110]. Now set

(VkE{l,...,q}) Ty = Skri +1d — Sk o Ry.

Then the operators (T})1<k<q are firmly nonexpansive and
Problem 97 reduces finding one of their common fixed points.
In view of Propositions 18 and 26, this can be achieved by
applying Theorem 37 with T" = T} o --- o T;. The more
sophisticated block-iterative methods of [22], [110] are also
applicable.

Let us observe that the above model is based purely on
a fixed point formalism which does not involve monotone
inclusions or optimization concepts. See [109], [110] for data
science applications.

(197)

VIII. CONCLUDING REMARKS

We have shown that fixed point theory provides an essential
set of tools to efficiently model, analyze, and solve a broad
range of problems in data science, be they formulated as tra-
ditional minimization problems or in more general forms such
as Nash equilibria, monotone inclusions, or nonlinear operator
equations. Thus, as illustrated in Section VII, nonlinear models
that would appear to be predestined to nonconvex minimiza-
tion methods can be effectively solved with the fixed point
machinery. The prominent role played by averaged operators
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in the construction of provenly convergent fixed point iterative
methods has been highlighted. Also emphasized is the fact
that monotone operators are the backbone of many powerful
modeling approaches. We believe that fixed point strategies
are bound to play an increasing role in future advances in
data science.
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