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A B S T R A C T

The paper studies an Allen–Cahn-type equation defined on a time-dependent surface as a model of phase
separation with order–disorder transition in a thin material layer. By a formal inner–outer expansion, it
is shown that the limiting behavior of the solution is a geodesic mean curvature type flow in reference
coordinates. A geometrically unfitted finite element method, known as a trace FEM, is considered for the
numerical solution of the equation. The paper provides full stability analysis and convergence analysis that
accounts for interpolation errors and an approximate recovery of the geometry.
1. Introduction

Phase separation may happen in thin material layers such as poly-
er films, lipid bilayers, binary alloy interfaces or biophotonic nanos-
ructures. One example of such essentially 2D phenomenon is the
ipid rafts formation in a multi-component plasma membrane, while
he membrane is advected by an extracellular fluid flow and exhibit
angential motion due to the membrane lateral fluidity [1,2]. In this
nd some other applications the thin layer is compliant so that a con-
inuum based model represents it by a surface underdoing radial and
ateral deformations. Motivated by these examples we adopt the model
f Allen and Cahn [3] to describe the phase evolution on a surface
ith a prescribed material motion. The model uses a smooth indicator
unction 𝑢 (order parameter) to characterize ordered / disordered states
nd a transition region. This renders the model as a diffusive interface
pproach.
Before applying a numerical method to the derived Allen–Cahn type

quation, the paper addresses well-posedness of the problem and the
imiting behavior of 𝑢 when the width of the transition region tends
o zero. The latter is done here by extending the standard technique
f inner (with respect to the transition layer) and outer expansions
or the solution. In a steady domain the asymptotic behavior is well
nown to be the mean curvature flow [4] for the limit sharp interface
or the mean geodesic curvature flow on surfaces [5]). In the case of
he deforming surface 𝛤 (𝑡) we obtain that for each time 𝑡 the material
elocity of the sharp interface is defined by (instantaneous) geodesic
ean curvature, which can be also seen as a mean curvature type flow
n reference coordinates.
The main focus of the paper is a finite element analysis of the

llen–Cahn type equation posed on an evolving surface. The paper
ntroduces a geometrically unfitted finite element method, known as
trace FEM [6,7], to discretize the problem. The method considers a
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E-mail addresses: molshan@math.uh.edu (M. Olshanskii), xmxu@lsec.cc.ac.cn (X. Xu), yushutin@umd.edu (V. Yushutin).

sharp representation of 𝛤 (𝑡) (e.g., as a zero level of a level set function)
and uses degrees of freedom tailored to an ambient tetrahedral mesh,
which can be chosen independent of the surface and its evolution. The
numerical approach benefits from the embedding 𝛤 (𝑡) ⊂ R3 by using
tangential calculus to define surface differential operators. Tangential
calculus assumes an extension of functions from 𝛤 (𝑡) to its (narrow)
neighborhood. The latter is also used here to define a time-stepping
numerical procedure following the ideas from [8,9]. We prove stability
and error estimates for the numerical method. The error analysis ac-
counts for all types of discretization errors, e.g., those resulting from
the time stepping, polynomial interpolation and the geometric consis-
tency error due to a possible inexact integration over 𝛤 (𝑡). Besides the
difficulties associated with time-dependent domains and the treatment
of tangential quantities, the current analysis is complicated by the
following factor. While in a stationary domain (e.g., in a non-compliant
material surface) the Allen–Cahn model defines the evolution of the or-
der parameter as the 𝐿2-gradient flow of the Ginzburg–Landau energy
functional, such minimization property fails to hold for time-dependent
domains.

Computational methods and numerical analysis for Allen–Cahn type
equations in planar and volumetric domains have received much atten-
tion in the literature, see e.g. [10–14] among recent publications. At
the same time, numerical treatment of surface Allen–Cahn equations
is a relatively recent topic in the literature. Work has been done
on developing a closest point finite difference method [15], a mesh
free method [16], and finite elements methods (FEMs) [5,17–19] as
the most versatile and mathematically sound approach. Among those
papers [5] allows deformation of the surface due to line tension forces
and applies a (fitted) FEM on a triangulated surface. The authors
of [18] applied unfitted (trace) FEM to phase-field models on stationary
surfaces. Numerical analysis for equations governing phase separation
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on (evolving) surfaces is largely an open topic. Another two closely
related studies [20,21] deal with FEMs for the Cahn–Hilliard equation
on a time-dependent surface: in [20] the authors develop numerical
analysis of a fitted FEM and [21] applies the trace FEM. Trace FEM is a
member of a large family of geometrically unfitted finite element meth-
ods along with such as XFEM [22], immersed interface FEM [23] and
cutFEM [24], the most closely related approach. For the later approach,
other authors considered stabilized space–time formulations [25,26]
and semi-Lagrangian type methods [27] to integrate in time PDEs posed
on evolving surfaces.

The outline of the paper is as follows. In Section 2, we introduce the
model. The weak formulation of the problem and its well-posedness
are discussed in Section 4. An asymptotic behavior of the solution
to the problem is studied in Section 3. After necessary preliminaries,
the numerical method is introduced in Section 5. Error and stability
analyses are carried out in Section 6. Section 7 supplements the paper
with numerical examples.

2. Allen–Cahn equation on an evolving surface

Consider a material surface 𝛤 (𝑡) ⊂ R3, 𝑡 ∈ [0, 𝑇 ], with density dis-
tribution 𝜌 ∶ 𝛤 (𝑡) → R. Assume 𝛤 (𝑡) is passively advected by a smooth
velocity field 𝐰 = 𝐰(𝐱, 𝑡), 𝐱 ∈ R3, and for all times 𝛤 (𝑡) stays smooth,
losed (𝜕𝛤 (𝑡) = ∅), connected and orientable. We are interested in a
hase separation process on 𝛤 (𝑡) with a transition between order and
isorder states. The state of matter at 𝐱 ∈ 𝛤 (𝑡) is characterized by a
mooth indicator function 𝑢(𝐱, 𝑡), 𝑢 ∶ 𝛤 (𝑡) → [−1, 1], with 𝑢 ≃ −1 in the
less ordered phase and 𝑢 ≃ 1 in the more ordered phase.

To describe an evolution of phases, we follow the classical approach
of Allen and Cahn [3] and assume that an instantaneous change in the
order per area 𝑠(𝑡) ⊂ 𝛤 (𝑡) is proportional to the variation of the total
specific free energy for 𝑠(𝑡):

𝑑
𝑑𝑡 ∫𝑠(𝑡)

𝜌𝑢 𝑑𝑠 = −∫𝑠(𝑡)
𝑐𝑘

𝛿𝑒(𝑢)
𝛿𝑢

𝑑𝑠, (2.1)

where 𝑐𝑘 is a positive kinetic coefficient, and the energy density is given
by

𝑒(𝑢) = 𝜌
(

1
𝜖2

𝐹 (𝑢) + |∇𝛤 𝑢|
2
)

,

here ∇𝛤 𝑢 is the tangential gradient of 𝑢 ( cf. definition in (2.7)).
he energy of a homogeneous state 𝐹 (𝑢) has a double–well form of
inzburg–Landau potential to allow for phase separation, and 𝜖 is a

characteristic width of a transition region between phases. Further we
choose 𝐹 (𝑢) = (1 − 𝑢2)2∕4.

Application of the surface Reynolds transport theorem (also known
s the Leibniz formula for evolving surfaces, e.g., [28]) to (2.1) gives

∫𝑠(𝑡)
(
.

(𝜌𝑢) + 𝜌𝑢 div𝛤𝐰) 𝑑𝑠 = −∫𝑠(𝑡)
𝑐𝑘

𝛿𝑒(𝑢)
𝛿𝑢

𝑑𝑠.

By
.
𝑓 we denote the material derivative of a smooth function 𝑓 defined

on 𝛤 (𝑡) for 𝑡 ∈ [0, 𝑇 ] and div𝛤 stands for the surface divergence ( cf.
(2.7)). Computing the functional derivative of 𝐹 (𝑢) with respect to 𝑢,
𝑓 (𝑢) = 𝐹 ′(𝑢), and varying 𝑠(𝑡) for every fixed 𝛤 (𝑡), 𝑡 ∈ [0, 𝑇 ] leads to the
Allen–Cahn equation on the deforming surface:
.

(𝜌𝑢) + 𝜌𝑢 div𝛤𝐰 = −𝑐𝑘(𝜖−2𝜌𝑓 (𝑢) − div𝛤 (𝜌∇𝛤 𝑢)) on 𝛤 (𝑡), 𝑡 ∈ (0, 𝑇 ). (2.2)

Likewise, the conservation of mass and the surface Reynolds transport
theorem yield the identity
.𝜌 + 𝜌 div𝛤𝐰 = 0 on 𝛤 (𝑡). (2.3)

Thanks to (2.3), the surface Allen–Cahn equation (2.2) can be written
in the equivalent form

.𝑢 = −𝑐𝑘

(

𝜖−2𝑓 (𝑢) − 1 div𝛤 (𝜌∇𝛤 𝑢)
)

on 𝛤 (𝑡), 𝑡 ∈ (0, 𝑇 ). (2.4)

𝜌
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The equation should be complemented with the initial condition 𝑢(𝐱, 0)
𝑢0(𝐱), 𝐱 ∈ 𝛤 (0), describing the state of matter at time 𝑡 = 0.
Eqs. (2.2) or (2.4) are solved for the order parameter 𝑢 with given

𝜌 satisfying (2.3). In this paper, we assume 𝜌 = const. In practice, this
assumption is plausible for surfaces with initially homogeneous density
distribution and exhibiting small or area-preserving deformations. The
latter is characterized by div𝛤𝐰 = 0 and is a valid assumption for
several types of biological membranes, such as lipid mono- or bi-
layers [29,30]. Due to this assumption, the model (slightly) simplifies
to the following system of equation and initial condition:
{ .𝑢 = −𝜖−2𝑓 (𝑢) + 𝛥𝛤 𝑢 on 𝛤 (𝑡), 𝑡 ∈ (0, 𝑇 ),

𝑢 = 𝑢0 on 𝛤 (0),
(2.5)

𝛥𝛤 is the Laplace–Beltrami operator and we set 𝑐𝑘 = 1.
We close this section by noting the analogy between Allen–Cahn

Eqs. (2.2) or (2.4) and those describing the compressible two-phase
luid flow (in the Euclidean space) with phase transition; see [31].

.1. Preliminaries

We need more precise assumptions for the evolution of 𝛤 (𝑡). To
ormulate them, assume that 𝐰 and 𝛤0 are sufficiently smooth such that
or all 𝑦 ∈ 𝛤0 the ODE system

(𝑦, 0) = 𝑦, 𝜕𝛷
𝜕𝑡

(𝑦, 𝑡) = 𝐰(𝛷(𝑦, 𝑡), 𝑡), 𝑡 ∈ [0, 𝑇 ],

has a unique solution 𝑥 ∶= 𝛷(𝑦, 𝑡) ∈ 𝛤 (𝑡), which defines the Lagrangian
apping 𝛷 ∶ 𝛤0 → 𝛤 (𝑡). The inverse mapping is given by 𝛷−1(𝑥, 𝑡) ∶=
∈ 𝛤0, 𝑥 ∈ 𝛤 (𝑡). With the help of 𝛷, we define the bijection 𝛹 between
0 × [0, 𝑇 ], with 𝛤0 ∶= 𝛤 (0), and the space–time manifold

∶=
⋃

𝑡∈(0,𝑇 )
𝛤 (𝑡) × {𝑡},  ⊂ R4

s follows

∶ 𝛤0 × [0, 𝑇 ] → , 𝛹 (𝑦, 𝑡) ∶= (𝛷(𝑦, 𝑡), 𝑡). (2.6)

e assume 𝛹 is a 𝐶2-diffeomorphism between these manifolds.
For 𝛤 (𝑡), consider a signed distance function 𝜙(𝑡) (positive in the

xterior and negative in the interior of 𝛤 (𝑡)). Let 𝛿() be a tubulate
-neighborhood of 𝛤 :

𝛿() ∶= {(𝑥, 𝑡) ∈ R4 ∶ |𝜙(𝑥, 𝑡)| ≤ 𝛿}.

he above assumptions imply that for sufficiently small 𝛿 > 0 it holds
∈ 𝐶2(𝛿()) and the normal projection onto 𝛤 (𝑡), 𝐩 ∶ 𝛿() → 𝛤 (𝑡)

s well defined for each 𝑡 ∈ [0, 𝑇 ]. We fix such 𝛿 and further often skip
t in notation () = 𝛿(). Likewise, we shall write 𝛿(𝛤 (𝑡)) to denote
𝛿-neighborhood of 𝛤 (𝑡) in R3 and (𝛤 (𝑡)) = 𝛿(𝛤 (𝑡)) for 𝛿 as above.
or every fixed 𝑡 ∈ [0, 𝑇 ], the gradient of 𝜙 defines in (𝛤 (𝑡)) normal
irection to 𝛤 (𝑡) with 𝐧 = ∇𝜙 being the outward normal vector on 𝛤 (𝑡),
ere and below ∇ is spacial gradient in R3.
For a smooth 𝑢 defined on , a function 𝑢𝑒 denotes the extension of

to () along spatial normal directions to the level-sets of 𝜙, it holds
𝑢𝑒 ⋅ ∇𝜙 = 0 in (), 𝑢𝑒 = 𝑢 on , and 𝑢𝑒(𝐱) = 𝑢𝑒(𝐩(𝐱)) in (). The
xtension 𝑢𝑒 is smooth once 𝜙 and 𝑢 are both smooth. Further, we use
he same notation 𝑢 for the function on  and its extension to ().
Once a function 𝑢 on  is identified with its extension on (),

ne can write the surface differential operators arising in the model,
n terms of tangential calculus:

𝛤 𝑢 = (𝐈 − 𝐧 × 𝐧𝑇 )∇𝑢, div𝛤𝐰 = tr
(

(𝐈 − 𝐧 × 𝐧𝑇 )∇𝐰
)

, 𝛥𝛤 𝑢 = div𝛤∇𝛤 𝑢.

(2.7)

urthermore, one can expand the intrinsic surface quantity .𝑢 in Eulerian
terms:
.𝑢 = 𝜕𝑢 + 𝐰 ⋅ ∇𝑢. (2.8)
𝜕𝑡
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Identity (2.8) allows us to rewrite (2.5) as follows:

⎧

⎪

⎨

⎪

⎩

𝜕𝑢
𝜕𝑡

+ 𝐰 ⋅ ∇𝑢 = −𝜖−2𝑓 (𝑢) + 𝛥𝛤 𝑢 on 𝛤 (𝑡),

∇𝑢 ⋅ ∇𝜙 = 0 in (𝛤 (𝑡))
𝑡 ∈ (0, 𝑇 ], (2.9)

subject to 𝑢 = 𝑢0 on 𝛤 (0). This formulation will be useful for the
design of a finite element method in Section 5. We note that equalities
(2.7)–(2.8) are valid for any smooth extension (not necessarily a normal
one).

3. Asymptotic analysis

In this section, we study an asymptotic behavior of 𝑢 solving (2.5)
when 𝜀 goes to zero. Our analysis follows the inner–outer expansion
arguments, which are now standard for phase-field equations defined
on Euclidean domains in R𝑑 , 𝑑 = 2, 3, [32–34] and also has been
used recently to study sharp interface limits of two phase-field models
defined on surfaces [28,35].

We assume 𝑡 ≥ 𝑡0 sufficiently large such that the separation of phases
happened and 𝑢 exhibits an inner layer (diffuse interface) of width 𝑂(𝜀).
Consider the central line of the diffuse interface defined as the zero
level of 𝑢, 𝛾(𝑡) ∶= {𝐱 ∈ 𝛤 (𝑡) ∶ 𝑢(𝐱, 𝑡) = 0}. For all 𝑡 ∈ (𝑡0, 𝑇 ) we assume
that 𝛾(𝑡) is a smooth closed curve on 𝛤 (𝑡). The interior and exterior
domains with respect to 𝛾(𝑡) are denoted by 𝛤±(𝑡) ∶= {𝐱 ∈ 𝛤 (𝑡) ∶ ±𝑢(𝐱,
𝑡) > 0}.

Outer expansion. Denote by 𝑢± the order parameter restricted to 𝛤±.
Following, e.g., [33] we assume that away from the interfacial layer
around 𝛾(𝑡), both 𝑢± can be expanded in the form

𝑢±(𝐱, 𝑡) = 𝑢±0 (𝐱, 𝑡) + 𝜀𝑢±1 (𝐱, 𝑡) +⋯ , (3.1)

with smooth 𝑢±𝑘 (𝐱, 𝑡). Substituting (3.1) into (2.5) and using the Taylor
expansion for 𝑓 (𝑢), 𝑓 (𝑢±) = 𝑓 (𝑢±0 ) + 𝜀𝑓 ′(𝑢±0 )𝑢

±
1 +⋯ , yield

( .𝑢
±

0 (𝐱, 𝑡) + 𝜀 .𝑢
±

1 (𝐱, 𝑡) +⋯
)

− 𝛥𝛤
(

𝑢±0 (𝐱, 𝑡) + 𝜀𝑢±1 (𝐱, 𝑡) +⋯
)

+ 𝜀−2
(

𝑓 (𝑢±0 ) + 𝜀𝑓 ′(𝑢±0 )𝑢1 +⋯
)

= 0.

Considering the leading order term with respect to 𝜀 → 0 gives 𝑓 (𝑢±0 ) =
0. Therefore, away from the layer it holds

𝑢±0 (𝐱, 𝑡) = ±1. (3.2)

Inner expansion. Denote by 𝑑𝛾 the signed geodesic distance on 𝛤 (𝑡)
for any fixed 𝑡, and ±𝑑𝛾 (𝐱) > 0 for 𝐱 ∈ 𝛤±. Consider the inner layer
𝑈𝜀(𝛾(𝑡)), which we define as an 𝑂(𝜀) neighborhood of 𝛾(𝑡): 𝑈𝜀(𝛾(𝑡)) ∶=
{𝐱 ∈ 𝛤 (𝑡) ∶ |𝑑𝛾 (𝐱)| ≤ 𝑐0 𝜀}, with sufficiently large 𝑐0, independent of 𝜀.
We assume 𝜀 to be sufficiently small such that the geodesic closest point
projection 𝐪(𝐱) ∶ 𝑈𝜀(𝛾(𝑡)) → 𝛾(𝑡) is well-defined so that (𝐪(𝐱), 𝑑𝛾 (𝐱))
is the local (time dependent) coordinate system in 𝑈𝜀(𝛾(𝑡)). In 𝑈𝜀(𝛾(𝑡))
the conormal directions are defined by the tangential vector field 𝐦 =
∇𝛤 𝑑𝛾 . For 𝐱 ∈ 𝛾(𝑡), 𝐦(𝐱) is a unit conormal of 𝛾(𝑡) pointing into 𝛤+(𝑡).

Following [33,34], we introduce a fast variable in 𝑈𝜀(𝛾(𝑡)) by re-
scaling the coordinate in the conormal direction 𝜉 = 𝑑𝛾 (𝐱)

𝜀 , and represent
(𝐱, 𝑡) as

(𝐱, 𝑡) = 𝑢̃(𝐱, 𝜉, 𝑡) for 𝐱 ∈ 𝑈𝜀(𝛾(𝑡)), (3.3)

where 𝑢̃(𝑡) ∶ 𝑈𝜀(𝛾(𝑡)) × (−𝑐0, 𝑐0) → R is defined as 𝑢̃(𝐲, 𝜉, 𝑡) ∶= 𝑢(𝐱, 𝑡)
for 𝐱 ∈ 𝑈𝜀(𝛾(𝑡)) such that 𝐪(𝐲) = 𝐪(𝐱) and 𝜉 = 𝑑𝛾 (𝐱)∕𝜀. Given the new
variables we find the identities:

∇𝛤 𝑢 = ∇𝐱
𝛤 𝑢̃ + 𝜀−1𝜕𝜉 𝑢̃𝐦, 𝛥𝛤 𝑢 = 𝛥𝐱

𝛤 𝑢̃ + 𝜀−2𝜕𝜉𝜉 𝑢̃ + 𝜀−1𝜕𝜉 𝑢̃𝛥𝛤 𝑑𝛾 , (3.4)

where for the second equality we used 𝐦 ⋅ ∇𝐱
𝛤 𝑢̃ = 0 and div𝛤𝐦 = 𝛥𝛤 𝑑𝛾

(same identities in terms of fast and slow surface variables are deduced
by slightly different arguments in [35] and [36]). Denoting by

.
𝑢̃ the

material derivative of 𝑢̃(𝐲, 𝜉, 𝑡) we also compute

.𝑢 =
.
𝑢̃ + 𝜀−1𝜕 𝑢̃

.
𝑑 . (3.5)
𝜉 𝛾
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We assume that 𝑢̃ in the layer can be expanded

𝑢̃(𝐱, 𝜉, 𝑡) = 𝑢̃0(𝐱, 𝜉, 𝑡) + 𝜀𝑢̃1(𝐱, 𝜉, 𝑡) +⋯ ,

with smooth 𝑢̃0, 𝑢̃1,… . Substituting this in (2.5), using (3.4)–(3.5) and
Taylor expansion for 𝑓 (𝑢̃), i.e. 𝑓 (𝑢̃) = 𝑓 (𝑢̃0)+𝜀𝑓 ′(𝑢̃0)𝑢̃1+⋯, we find that
𝑂(𝜀−2) order terms give

− 𝜕𝜉𝜉 𝑢̃0 + 𝑓 (𝑢̃0) = 0. (3.6)

Accounting for 𝑂(𝜀−1) order terms we obtain

𝜕𝜉 𝑢̃0

( .
𝑑𝛾 − 𝛥𝛤 𝑑𝛾

)

− 2∇𝛤 𝑑𝛾 ⋅ ∇𝛤 (𝜕𝜉 𝑢̃0) − 𝜕𝜉𝜉 𝑢̃1 + 𝑓 ′(𝑢̃0)𝑢̃1 = 0. (3.7)

To proceed we need conditions on 𝑢̃0 for 𝜉 → ∞ (which can be allowed
if 𝜀 → 0).

Matching conditions. We now have a representation of the solution
in the narrow layer around 𝛾(𝑡) and another representation valid away
from the interface. Following [33,34] we consider matching conditions
between these two representations. We formulate the conditions below,
while details of derivation can be found in [37]. Denote 𝑢±𝑘 (𝐱, 𝑡) =
lim𝑠→±0 𝑢

±
𝑘 (𝐱 + 𝑠𝐦, 𝑡) when 𝐱 ∈ 𝛾(𝑡) and 𝜀 → 0, and similar we define

∇𝛤 𝑢
±
0 (𝐱, 𝑡) for 𝐱 ∈ 𝛾(𝑡). The matching conditions read:

𝑢̃0(𝐱, 𝜉, 𝑡) = 𝑢±0 (𝐱, 𝑡), as 𝜉 → ±∞, 𝜀𝜉 → 0 (3.8)
𝑢̃1(𝐱, 𝜉, 𝑡) = 𝑢±1 (𝐱, 𝑡) + 𝜉𝐦 ⋅ ∇𝛤 𝑢

±
0 (𝐱, 𝑡), as 𝜉 → ±∞, 𝜀𝜉 → 0 (3.9)

𝜕𝜉 𝑢̃1(𝐱, 𝜉, 𝑡) = 𝐦 ⋅ ∇𝛤 𝑢
±
0 (𝐱, 𝑡), as 𝜉 → ±∞, 𝜀𝜉 → 0. (3.10)

From condition (3.8) and (3.2) it follows that

lim
𝜉→±∞

𝑢̃0 = ±1. (3.11)

This and 𝑢̃0(𝐱, 0, 𝑡) = 0 supplies Eq. (3.6) with necessary boundary
conditions. For 𝑓 (𝑢̃0) = −𝑢̃0 + 𝑢̃30 it provides us with the unique solution

𝑢̃0(𝐱, 𝜉, 𝑡) = tanh(𝜉∕
√

2).

In particular, we see that 𝑢̃0 does not depend on (𝐱, 𝑡). This simplifies
equation (3.7) to

𝜕𝜉 𝑢̃0

( .
𝑑𝛾 − 𝛥𝛤 𝑑𝛾

)

− 𝜕𝜉𝜉 𝑢̃1 + 𝑓 ′(𝑢̃0)𝑢̃1 = 0.

e multiply the above identity by 𝜕𝜉 𝑢̃0 and integrate it for 𝜉 ∈ (−∞,∞).
his leads to
( .
𝑑𝛾 − 𝛥𝛤 𝑑𝛾

)

− ∫

∞

−∞
(𝜕𝜉 𝑢̃0)[𝜕𝜉𝜉 𝑢̃1 − 𝑓 ′(𝑢̃0)𝑢̃1]𝑑𝜉 = 0. (3.12)

here 𝜎 ∶= ∫ ∞
−∞(𝜕𝜉 𝑢̃0)2𝑑𝜉 is a positive constant that can be interpreted

s interface tension coefficient. Now let us take a further look into
atching conditions (3.8)–(3.10). The first one implies 𝑓 ′(𝑢̃0) = 𝑓 (𝑢̃0) =
for 𝜉 → ±∞. Since 𝐦 ⋅ ∇𝛤 𝑢

±
0 (𝐱, 𝑡) = 0, from (3.9) and (3.10) we also

see that |𝑢̃1| is bounded and 𝜕𝜉 𝑢̃1 = 0 for 𝜉 → ±∞. Using these limit
values for the integration by parts, we obtain

∫

∞

−∞
𝜕𝜉 𝑢̃0[𝜕𝜉𝜉 𝑢̃1 − 𝑓 ′(𝑢̃0)𝑢̃1]𝑑𝜉 = ∫

∞

−∞
𝜕𝜉 𝑢̃0𝜕𝜉𝜉 𝑢̃1 − 𝜕𝜉𝑓 (𝑢̃0)𝑢̃1𝑑𝜉

= ∫

∞

−∞
[𝜕𝜉𝜉 𝑢̃0 − 𝑓 (𝑢̃0)]𝜕𝜉 𝑢̃1𝑑𝜉 = 0,

where for the last equality we use (3.6). Eq. (3.12) reduces to
.
𝑑𝛾 − 𝛥𝛤 𝑑𝛾 = 0. (3.13)

Consider the limiting interface 𝛾(𝑡) as the zero level of the order-
parameter as 𝜀 → 0. Eq. (3.13) for the signed distance function
describes the evolution of 𝛾(𝑡) on the passively advected material
surface 𝛤 (𝑡). The quantity 𝛥𝛤 𝑑𝛾 = 𝜅𝑔 is the geodesic curvature of 𝛾(𝑡)
on 𝛤 (𝑡) satisfying that 𝜅𝑔(𝐱) is positive when 𝛤 (𝑡)− is convex at 𝐱. While
.
𝑑𝛾 = 0 corresponds to the passive evolution along material trajectories,
.
𝑑𝛾 = 𝜅𝑔 can be seen as an active evolution or a mean curvature
type flow in the reference (Lagrangian) coordinates. The (tangential)
geometric motion of the sharp interface is defined by the conormal

velocity of 𝛾(𝑡) given by 𝐦 ⋅ 𝐰 − 𝜅𝑔 .
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4. Weak formulation and well-posedness

Consider a slightly more general problem:

.𝑢 + 𝛼𝑢 − 𝛥𝛤 𝑢 + 𝜀−2𝑓 (𝑢) = 0 on 𝛤 (𝑡), (4.1)
𝑢(𝐱, 0) = 𝑢0 for 𝐱 ∈ 𝛤 (0), (4.2)

with an 𝐿∞() function 𝛼, and let 𝛼∞ ∶= ‖𝛼‖𝐿∞(). Following [10] we
onsider a modified double-well potential 𝐹 such that for some 𝑀 > 1

′(𝑥) = 𝑓 (𝑥) =

⎧

⎪

⎨

⎪

⎩

(3𝑀2 − 1)𝑥 − 2𝑀3, 𝑥 > 𝑀,
𝑥(𝑥2 − 1), 𝑥 ∈ [−𝑀,𝑀],
(3𝑀2 − 1)𝑥 + 2𝑀3, 𝑥 < −𝑀.

(4.3)

unction 𝑓 (𝑥) satisfies the following growth conditions with 𝐿 = 3𝑀2

1

𝑓 (𝑥)| ≤ 𝐿|𝑥|, 𝑓 (𝑥)𝑥 ≥ −𝑥, (4.4)

nd Lipschitz condition:

− 1 ≤ 𝑓 (𝑥) − 𝑓 (𝑦)
𝑥 − 𝑦

≤ 𝐿, ∀𝑥, 𝑦 ∈ R, 𝑥 ≠ 𝑦. (4.5)

Given our assumptions on the evolution of 𝛤 (𝑡), the scalar product

(𝑢, 𝑣)0 = ∫

𝑇

0 ∫𝛤 (𝑡)
𝑢𝑣 𝑑𝑠𝑑𝑡

induces a norm ‖ ⋅ ‖0 on 𝐿2() equivalent to the standard 𝐿2()-norm.
Besides standard Lebesgue spaces 𝐿𝑞(), 1 ≤ 𝑞 ≤ ∞, and Sobolev
spaces 𝐻𝑘(), 𝑘 = 1, 2,… , we need the following analogues of standard
Bochner spaces:

𝐻 = {𝑢 ∈ 𝐿2() ∶ ‖∇𝛤 𝑢‖0 < ∞}, with (𝑢, 𝑣)𝐻 = (𝑢, 𝑣)0 + (∇𝛤 𝑢,∇𝛤 𝑣)0,
𝐿∞

1 = {𝑢 ∈ 𝐿∞() ∶ ess sup
𝑡∈[0,𝑇 ]

‖∇𝛤 𝑢‖𝐿2(𝛤 (𝑡)) ≤ ∞},

𝑊 = {𝑢 ∈ 𝐿∞
1 ∶ .𝑢 ∈ 𝐿2()}, ‖𝑢‖2𝑊 = ‖𝑢‖2𝐿∞

1
+ ‖

.𝑢‖2𝐿2().

From [20,38] we know that 𝐻 is a Hilbert space and smooth functions
are everywhere dense in 𝐻 and 𝑊 .

Exploiting the smoothness properties of the mapping 𝛹 between 𝛤0×
(0, 𝑇 ) and  one shows (cf. [20,38]) that the following isomorphisms
hold algebraically and topologically: 𝐻 ≅ 𝐿2(0, 𝑇 ;𝐻1(𝛤 0)) and 𝑊 ≅
𝐿∞(0, 𝑇 ;𝐻1(𝛤 0)) ∩𝐻1(0, 𝑇 ;𝐿2(𝛤 0)).

We consider the following weak formulation of (4.1): For 𝑢0 ∈
𝐻1(𝛤0), find 𝑢 ∈ 𝑊 such that 𝑢(0) = 𝑢0 and

( .𝑢, 𝑣)0 + (𝛼𝑢 + 𝜀−2𝑓 (𝑢), 𝑣)0 + (∇𝛤 𝑢,∇𝛤 𝑣)0 = 0, for all 𝑣 ∈ 𝐻. (4.6)

Lemma 4.1. The week formulation (4.6) is well posed.

Proof. A standard approach to the analysis of Allen–Cahn type equa-
tions solvability is based on the energy minimization principle, which
does not hold in the case of equations posed in the evolving do-
main. Hence we consider a different argument. For 𝑢̂ = 𝑢◦𝛹 ∈
𝐿∞(0, 𝑇 ;𝐻1(𝛤 0)) ∩ 𝐻1(0, 𝑇 ;𝐿2(𝛤 0)), 𝑣 ∈ 𝐿2(0, 𝑇 ;𝐻1(𝛤 0)) we rewrite
(4.6) in the reference cylinder 𝑆 = 𝛤 0 × (0, 𝑇 ):

∫

𝑇

0 ∫𝛤0

{

(𝑢̂𝑡 + 𝛼𝑢̂ + 𝜀−2𝑓 (𝑢̂))𝑣̂ + (∇𝛤𝐹 )−𝑇∇𝛤 𝑢̂ ∶ (∇𝛤𝐹 )−𝑇∇𝛤 𝑣̂
}

𝜇𝑑𝑠̂𝑑𝑡 = 0,

(4.7)

for all 𝑣̂ ∈ 𝐿2(0, 𝑇 ;𝐻1(𝛤 0)). Here 𝜇 ∈ 𝐶1(𝑆), ∇𝛤𝛹 ∈ 𝐶1(𝑆)3×3 are such
hat 𝜇 > 0 and ∇𝛤𝛹 (∇𝛤𝛹 )𝑇 is uniformly bounded on 𝑆. Therefore, the
roblem (4.7) can be formulated to fit an abstract framework from [39]:
ind 𝑢̂ ∈ 𝐿∞(0, 𝑇 ;𝐻1(𝛤 0)) ∩ 𝐻1(0, 𝑇 ;𝐿2(𝛤 0)) such that 𝑢̂(0) = 𝑢0 ∈

𝐻1(𝛤 0) and

𝑀𝑢̂′ + 𝐵𝑢̂ + 𝛾(𝑢̂) = 0 in 𝐻−1(𝛤 ) for a.e. 𝑡 ∈ [0, 𝑇 ], (4.8)
0

151
where operators 𝑀 ∈ (𝐿2(𝛤0)), 𝐵 ∈ (𝐻1(𝛤 0),𝐻−1(𝛤 0)) and 𝛾 ∶
1(𝛤 0) → 𝐿2(𝛤 0) are defined by the identities

𝑤̂ = 𝜇𝑤̂, ⟨𝐵𝑢̂, 𝑣̂⟩ = ∫𝛤0
(∇𝛤𝛹 )−𝑇∇𝛤 𝑢̂ ∶ (∇𝛤𝛹 )−𝑇∇𝛤 𝑣̂𝜇𝑑𝑠̂,

𝛾(𝑢̂) = (𝛼𝑢̂ + 𝜀−2𝑓 (𝑢̂))𝜇,

or all 𝑤̂ ∈ 𝐿2(𝛤0), 𝑢̂, 𝑣̂ ∈ 𝐻1(𝛤 0). It is easy to verify that 𝑀 is positive
efinite, 𝐵 is such that

𝐵𝑣, 𝑣⟩ ≥ 𝑐1‖𝑣‖
2
𝐻1(𝛤 0)

− 𝑐2‖𝑣‖
2
𝐿2(𝛤 0)

, with some 𝑐1 > 0, 𝑐2 ≥ 0, (4.9)

nd 𝛾 is continuous and, thanks to (4.4) and (4.5),

‖𝛾(𝑣)‖2𝐿2(𝛤 0)
≤ 𝐶̂1 + 𝐶̂2‖𝑣‖

2
𝐻1(𝛤 0)

, with some 𝐶̂1 > 0, 𝐶̂2 > 0,

(𝛾(𝑣) − 𝛾(𝑤), 𝑣 −𝑤)𝐿2(𝛤 0) ≥ −𝐶̂0‖𝑣 −𝑤‖

2
𝐿2(𝛤 0)

, with some 𝐶̂0 > 0,

(4.10)

for all 𝑣,𝑤 ∈ 𝐻1(𝛤 0).
Problem (4.8)–(4.10) is well posed ([39, Theorem 2.1]) and so is

(4.6). □

5. Discretization method

To set up a numerical method, one needs to define a time-stepping
procedure, spatial discretization approach and a practical way of han-
dling surface integrals and derivatives. The approach taken here bene-
fits from the embedding of 𝛤 (𝑡) in R3 for all 𝑡 ∈ [0, 𝑇 ], which allows to
use tangential calculus in an ambient (bulk) functional space (rather
than computations in intrinsic time-dependent surface coordinates).
The bulk space supports well-defined traces of functions on 𝛤 (𝑡) and
functions from the bulk space are further approximated in a standard
time-independent finite element space. Our time-stepping procedure
exploits an observation made earlier in Section 2.1 that a function on
𝛤 (𝑡) can be identified with its smooth extension to a neighborhood
of the surface. Finally, the geometry representation is based on the
implicit definition of 𝛤ℎ(𝑡), an approximation of 𝛤 (𝑡), as a zero level of
a finite element function. Altogether, this approach resembles the trace
finite element method for partial differential equations on evolving
surfaces introduced and analyzed in [8,9] for the diffusion problem on
𝛤 (𝑡). The approach is also known as a hybrid FD in time — trace FEM in
space, since a (standard) finite difference scheme is adopted for treating
the time dependence and an unfitted finite element method is used in
space.

We start with explaining the time-stepping method.

5.1. Time-stepping scheme

Consider a uniformly distributed time nodes 𝑡𝑛 = 𝑛𝛥𝑡, 𝑛 = 0,… , 𝑁 ,
with the uniform time step 𝛥𝑡 = 𝑇 ∕𝑁 . It is crucial to assume that 𝛥𝑡 is
sufficiently small that

𝛤 (𝑡𝑛) ⊂ (𝛤 (𝑡𝑛−1)) 𝑛 = 1,… , 𝑁. (5.1)

Recall that (𝛤 (𝑡)) is a neighborhood of the surface, where the normal
projection on 𝛤 (𝑡) is well defined, and so are the extensions of surface
quantities.

Using the notation 𝑢𝑛 for an approximation to 𝑢(𝑡𝑛), and 𝜙𝑛 = 𝜙(𝑡𝑛),
we consider the following semi-implicit first order method for the
Eulerian formulation (2.9) of the Allen–Cahn surface problem:

⎧

⎪

⎨

⎪

⎩

(1 + 𝛽𝑠𝛥𝑡)
𝑢𝑛 − 𝑢𝑛−1

𝛥𝑡
+ 𝐰𝑛 ⋅ ∇𝑢𝑛 − 𝛥𝛤 𝑢

𝑛 = −𝜀−2𝑓 (𝑢𝑛−1) on 𝛤 (𝑡𝑛),

∇𝑢𝑛 ⋅ ∇𝜙𝑛 = 0 in (𝛤 (𝑡𝑛)).
(5.2)
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Here 𝛽𝑠 > 0 is a stabilization parameter as suggested in [10] to allow
the explicit treatment of the non-linear part on the right-hand side of
(5.2). This leads to a linear problem with respect to 𝑢𝑛 on each time
step. More important is that the function 𝑢𝑛−1 is well-defined on 𝛤 (𝑡𝑛)
through its extension. Indeed, if one considers (5.2) with index shifted
𝑛 → 𝑛 − 1, i.e. Eq. (5.2) written for the previous time step, then the
second equation defines the extension of 𝑢𝑛−1 to (𝛤 (𝑡𝑛−1)) and because
of (5.1) it defines an extension to 𝛤 (𝑡𝑛) ⊂ (𝛤 (𝑡𝑛−1)). Therefore, all
erms in (5.2) on the current step are well defined.
For a finite element method, we shall need the integral formulation

f (5.2), where we enforce the second equation weakly, as a constraint:
ny smooth 𝑢𝑛 solving (5.2) satisfies

∫𝛤 (𝑡𝑛)

(

(1 + 𝛽𝑠𝛥𝑡)
𝑢𝑛 − 𝑢𝑛−1

𝛥𝑡
+ 𝐰𝑛 ⋅ ∇𝑢𝑛

)

𝑣 𝑑𝑠 + ∫𝛤 (𝑡𝑛)
∇𝛤 𝑢

𝑛 ⋅∇𝛤 𝑣 𝑑𝑠

+𝜌∫(𝛤 (𝑡𝑛))
(∇𝑢𝑛 ⋅ ∇𝜙𝑛)(∇𝑣 ⋅ ∇𝜙𝑛) 𝑑𝑥 = −𝜀−2∫𝛤 (𝑡𝑛)

𝑓 (𝑢𝑛−1)𝑣 𝑑𝑠, (5.3)

or all sufficiently smooth test functions 𝑣 ∶ (𝛤 (𝑡𝑛)) → R. 𝜌 > 0 is an
ugmentation parameter for the normal extension condition.
Let 𝐰𝑇 = 𝐰 − (𝐰 ⋅ 𝐧)𝐧 be the tangential part of 𝐰. We need the

ntegration by parts identity:

∫𝛤 (𝑡)
(𝐰 ⋅ ∇𝑢)𝑣 𝑑𝑠 = 1

2 ∫𝛤 (𝑡)
(𝐰𝑇 ⋅ ∇𝛤 𝑢𝑣 − 𝐰𝑇 ⋅ ∇𝛤 𝑣𝑢) 𝑑𝑠

− 1
2 ∫𝛤 (𝑡)

(div𝛤𝐰𝑇 )𝑢𝑣 𝑑𝑠
(5.4)

for sufficiently smooth 𝑢, 𝑣 such that 𝐧 ⋅ ∇𝑢 = 𝐧 ⋅ ∇𝑣 = 0 (recall that
𝐧 = ∇𝜙 on 𝛤 ).

5.2. Finite element method

To reduce the repeated use of generic but unspecified constants,
further in the paper we write 𝑥 ≲ 𝑦 to state that the inequality 𝑥 ≤ 𝑐𝑦
holds for quantities 𝑥, 𝑦 with a constant 𝑐, which is independent of the
mesh parameters ℎ, 𝛥𝑡, time instance 𝑡𝑛, and the position of 𝛤 and 𝛤ℎ
in the bulk mesh. Similarly we give sense to 𝑥 ≳ 𝑦.

Consider a family {ℎ}ℎ>0 of shape-regular consistent triangulations
of the bulk domain 𝛺, with max𝑇∈ℎ diam(𝑇 ) ≤ ℎ. The bulk triangula-
tion supports a standard finite element space of piecewise polynomial
continuous functions of a fixed degree 𝑘 ≥ 1:

𝑉ℎ = {𝑣ℎ ∈ 𝐶(𝛺) ∶ 𝑣ℎ|𝑆 ∈ 𝑃𝑘(𝑆),∀𝑆 ∈ ℎ}. (5.5)

We next approximate the sign distance function 𝜙 by a finite element
distance function 𝜙ℎ of degree 𝑞, i.e. 𝜙ℎ ∈ 𝑉ℎ for 𝑘 = 𝑞, such that

‖𝜙 − 𝜙ℎ‖𝐿∞((𝛤 (𝑡))) + ℎ‖∇(𝜙 − 𝜙ℎ)‖𝐿∞((𝛤 (𝑡))) ≲ ℎ𝑞+1, ∀ 𝑡 ∈ [0, 𝑇 ], (5.6)

where we need to assume 𝜙 ∈ 𝐶𝑞+1(()). Following [40], we also
assume that ∇𝜙ℎ(𝐱, 𝑡) ≠ 0 in (𝛤 (𝑡)), 𝑡 ∈ [0, 𝑇 ], and that on every time
interval 𝐼𝑛 = [𝑡𝑛−1, 𝑡𝑛] there holds

‖𝜙𝑛−1
ℎ − 𝜙𝑛

ℎ‖𝐿∞(𝛺) ≲ 𝛥𝑡‖𝐰 ⋅ 𝐧‖∞,𝐼𝑛 , (5.7a)
‖∇𝜙𝑛−1

ℎ − ∇𝜙𝑛
ℎ‖𝐿∞(𝛺) ≲ 𝛥𝑡

(

‖𝐰 ⋅ 𝐧‖∞,𝐼𝑛 + ‖∇(𝐰 ⋅ 𝐧)‖∞,𝐼𝑛

)

, for 𝑛 = 1,… , 𝑁,

(5.7b)

where 𝜙𝑛
ℎ(𝐱) = 𝜙ℎ(𝐱, 𝑡𝑛), 𝑛 = 0,… , 𝑁 , and ‖𝑣‖∞,𝐼𝑛 ∶= sup𝑡∈𝐼𝑛 ‖𝑣‖𝐿∞(𝛤 (𝑡)),

for 𝑣 defined on 𝛤 (𝑡).
We now introduce the ‘‘discrete’’ surfaces 𝛤 𝑛

ℎ as the zero level of 𝜙
𝑛
ℎ,

𝛤 𝑛
ℎ ∶= {𝐱 ∈ R3 ∶ 𝜙𝑛

ℎ(𝐱) = 0}.

Thanks to (5.6) it approximates the original surface 𝛤 in the following
sense

dist(𝛤 𝑛
ℎ , 𝛤 (𝑡ℎ)) = max

𝑥∈𝛤 𝑛
ℎ

|𝜙𝑛(𝐱)| = max
𝑥∈𝛤 𝑛

ℎ

|𝜙𝑛(𝐱) − 𝜙𝑛
ℎ(𝐱)| ≤ ‖𝜙𝑛 − 𝜙𝑛

ℎ‖𝐿∞(𝛺) ≲ ℎ𝑞+1.
(5.8) i
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For the normal vector to 𝛤 𝑛
ℎ , 𝐧

𝑛
ℎ = ∇𝜙𝑛

ℎ∕|∇𝜙
𝑛
ℎ|, and the extended normal

vector to 𝛤 (𝑡𝑛), 𝐧𝑛 = ∇𝜙𝑛, the following consistency bound follows from
(5.6):

|𝐧𝑛ℎ(𝐱) − 𝐧𝑛(𝐱)| ≲ |∇𝜙𝑛
ℎ(𝐱) − ∇𝜙𝑛(𝐱)| ≲ ℎ𝑞 , 𝐱 ∈ 𝛤 𝑛

ℎ . (5.9)

For practical reasons, the finite element method does not look for
an extension of the discrete solution to the whole neighborhood ().
Instead it provides an extension to a narrow band around 𝛤 𝑛

ℎ . For each
𝑛, the extension band consists of all tetrahedra on a 𝛿𝑛 distance from
𝛤 𝑛
ℎ , for

𝛿𝑛 ∶= 𝑐𝛿‖𝐰 ⋅ 𝐧‖∞,𝐼𝑛 𝛥𝑡 (5.10)

and 𝑐𝛿 ≥ 1, an 𝑂(1) mesh-independent constant. More precisely, we
define the mesh-dependent narrow band as

ℎ(𝛤 𝑛
ℎ ) =

⋃

{

𝑆 ∶ 𝑆 ∈ ℎ ∶ |𝜙𝑛
ℎ(𝐱)| ≤ 𝛿𝑛 for some 𝐱 ∈ 𝑆

}

.

We also need a subdomain of ℎ(𝛤 𝑛
ℎ ) only consisting of tetrahedra

intersected by 𝛤 𝑛
ℎ ,

𝛤 (𝛤 𝑛
ℎ ) ∶=

⋃

{

𝑆 ∈ ℎ ∶ 𝑆 ∩ 𝛤 𝑛
ℎ ≠ ∅

}

.

Since dist(𝛤 𝑛
ℎ , 𝛤 (𝑡𝑛)) ≲ ℎ𝑞+1, the narrow band width 𝛿𝑛 and ℎ can be as-

sumed small enough such that

ℎ(𝛤 𝑛
ℎ ) ⊂ (𝛤 (𝑡𝑛)). (5.11)

This and (5.10) implies the restriction on the time step of the form

𝛥𝑡 ≤ 𝑐0(𝑐𝛿‖𝐰 ⋅ 𝐧‖∞,𝐼𝑛 )
−1 = 𝑂(1), 𝑛 = 1,… , 𝑁, (5.12)

with some 𝑐0 sufficiently small, but independent of ℎ, 𝛥𝑡 and 𝑛. On one
time step from 𝑡𝑛−1 to 𝑡𝑛, the surface may travel up to 𝛥𝑡‖𝐰 ⋅ 𝐧‖∞,𝐼𝑛
distance in normal directions, which is thus the maximum distance
from 𝛤 𝑛

ℎ to 𝛤 𝑛−1
ℎ . Therefore, 𝑐𝛿 can be taken sufficiently large, but

independent of ℎ, such that

𝛤 (𝛤 𝑛
ℎ ) ⊂ ℎ(𝛤 𝑛−1

ℎ ). (5.13)

To see this, one applies (5.10) to determine 𝛿𝑛−1, which in turn defines
ℎ(𝛤 𝑛−1

ℎ ). This condition is the discrete analog of (5.1) and it is essential
or the well-posedness of the finite element formulation below.
Next we define test and trial finite element spaces of degree 𝑚 ≥ 1

s restrictions of the time-independent bulk space 𝑉ℎ, 𝑘 = 𝑚, on all
etrahedra from (𝛤 𝑛

ℎ ):

𝑛
ℎ = {𝑣 ∈ 𝐶(ℎ(𝛤 𝑛

ℎ )) ∶ 𝑣 ∈ 𝑃𝑚(𝑆), ∀𝑆 ∈ ℎ, 𝑆 ⊂ (𝛤 𝑛
ℎ )}, 𝑚 ≥ 1.

(5.14)

e further use 𝑉 𝑛
ℎ as test and trial spaces in the integral formulation

5.3), where we use identity (5.4) and replace 𝛤 (𝑡𝑛) by 𝛤 𝑛
ℎ , (𝛤 (𝑡𝑛)) by

ℎ(𝛤 𝑛
ℎ ). The resulting FE formulation reads: For a given 𝑢0ℎ ∈ 𝑉 0

ℎ find
𝑛
ℎ ∈ 𝑉 𝑛

ℎ , 𝑛 = 1,… , 𝑁 , solving

𝛤 𝑛
ℎ

{

(1 + 𝛽𝑠𝛥𝑡)
𝑢𝑛ℎ − 𝑢𝑛−1ℎ

𝛥𝑡
𝑣ℎ +

1
2

(

𝐰𝑒
𝑇 ⋅ ∇𝛤ℎ

𝑢𝑛ℎ𝑣ℎ − 𝐰𝑒
𝑇 ⋅ ∇𝛤ℎ

𝑣ℎ𝑢
𝑛
ℎ

−(div𝛤ℎ𝐰
𝑒
𝑇 )𝑢

𝑛
ℎ𝑣ℎ

)}

𝑑𝑠ℎ

+∫𝛤 𝑛
ℎ

∇𝛤ℎ
𝑢𝑛ℎ ⋅ ∇𝛤ℎ

𝑣ℎ 𝑑𝑠ℎ + 𝜌𝑛 ∫ℎ(𝛤 𝑛
ℎ )
(𝐧𝑛ℎ ⋅ ∇𝑢

𝑛
ℎ)(𝐧

𝑛
ℎ ⋅ ∇𝑣ℎ)𝑑𝐱

−𝜀−2∫𝛤 𝑛
ℎ

𝑓 (𝑢𝑛−1ℎ )𝑣ℎ 𝑑𝑠ℎ, (5.15)

or all 𝑣ℎ ∈ 𝑉 𝑛
ℎ . Here 𝐧ℎ = ∇𝜙𝑛

ℎ∕|∇𝜙
𝑛
ℎ| in ℎ(𝛤 𝑛

ℎ ), 𝜌𝑛 > 0 is a pa-
ameter, 𝐰𝑒(𝐱) = 𝐰(𝐩𝑛(𝐱)) is a lifted data on 𝛤 𝑛

ℎ from 𝛤 (𝑡𝑛). The
erms involving 𝑢𝑛−1 are well-defined thanks to condition (5.13). With
uitable restrictions on problem parameters the last term on the left-
and side of (5.15) ensures the whole bilinear form is elliptic on 𝑉 𝑛

ℎ ;
ee (6.12). Therefore, on each time step we obtain a FE solution defined

𝑛 𝑛
n ℎ(𝛤ℎ ) (not just on 𝛤ℎ and this can be seen as an implicit extension



M. Olshanskii, X. Xu and V. Yushutin Computers and Mathematics with Applications 90 (2021) 148–158

𝑂
a

𝛽

t
m

𝑐

U
‖

‖

𝐻

B

𝑎

T
o

F
(
t

t

T
(

w
d

P

procedure). As discussed in many places in the literature, see, e.g. [8],
this term also stabilizes the problem algebraically, i.e. the resulting
systems of algebraic equations are well-conditioned independent on
how the surface 𝛤ℎ cuts through the ambient triangulation.

We finally note that an accurate integration over 𝛤 𝑛
ℎ may be not

feasible using standard quadrature rules for higher than second order
surface representation, i.e. for 𝑞 > 1. More sophisticated numerical
integration techniques should be applied as discussed in the literature
[41–46].

6. Analysis of the finite element method

In this section we address stability and error analysis of the finite
element formulation (5.15). For a proper control of the geometric error,
the analysis requires the following mild restriction on the mesh step,

ℎ2𝑞 ≲ 𝛥𝑡. (6.1)

We recall that 𝑞 ≥ 1 is the degree of geometry approximation from
(5.6).

We shall need the following two lemmas from [8]. The result of the
first lemma allows the control of the 𝐿2 norm of 𝑣ℎ ∈ 𝑉 𝑛

ℎ in the narrow
band by its 𝐿2 norm on 𝛤ℎ and a term similar to the normal volume
stabilization in (5.15). While the second lemma provides control over
the 𝐿2 norm of the extension of a FE function on 𝛤 𝑛

ℎ by its values on
𝛤 𝑛−1
ℎ . That lemma is essential for applying a Gronwall type argument
later.

Lemma 6.1. Assume conditions (5.10) and (5.12) are satisfied, then for
any 𝑣ℎ ∈ 𝑉 𝑛

ℎ it holds

‖𝑣ℎ‖
2
ℎ(𝛤 𝑛

ℎ )
≲ (𝛿𝑛 + ℎ)‖𝑣ℎ‖2𝛤 𝑛

ℎ
+ (𝛿𝑛 + ℎ)2‖𝐧𝑛ℎ ⋅ ∇𝑣ℎ‖

2
ℎ(𝛤 𝑛

ℎ )
. (6.2)

Lemma 6.2. In addition to (5.10) and (5.12) assume (6.1) is satisfied.
Assume ℎ is a subset of𝐻1 (ℎ(𝛤 𝑛−1

ℎ )
)

that supports the following inequal-
ities:

‖∇𝑣‖𝑆 ≤ 𝐶ℎ−1‖𝑣‖𝑆 , ‖∇𝑣‖𝐷 ≤ 𝐶|𝐷 ∥ 𝑆|−1‖∇𝑣‖𝑆 ,

‖𝐧𝑛−1ℎ ⋅ ∇𝑣‖𝐷 ≤ 𝐶|𝐷 ∥ 𝑆|−1‖𝐧𝑛−1ℎ ⋅ ∇𝑣‖𝑆 , (6.3)

for all 𝑣 ∈ ℎ, 𝑆 ∈ ℎ, 𝑆 ⊂ ℎ(𝛤 𝑛−1
ℎ ), where 𝐷 is a subdomain in 𝑆, and

𝐶 depends only on the shape-regularity of 𝑆. Then for any 𝑣 ∈ ℎ it holds

‖𝑣‖2𝛤 𝑛
ℎ
≤ (1 + 𝑐1𝛥𝑡)‖𝑣‖2𝛤 𝑛−1

ℎ
+ 𝑐2𝛿𝑛−1(𝛿𝑛−1 + ℎ)−1‖𝐧𝑛−1ℎ ⋅ ∇𝑣‖2

ℎ(𝛤 𝑛−1
ℎ )

, (6.4)

for some 𝑐1 and 𝑐2 independent of ℎ, 𝛥𝑡 and 𝑛.

Proof. For ℎ = 𝑉 𝑛
ℎ the result is found as Lemma 9 in [8]. The exa-

mination of the proof reveals that inequalities in (6.3) are the only
assumptions required to extend the result from 𝑉 𝑛

𝑘 to a more general
subset of 𝐻1 (ℎ(𝛤 𝑛−1

ℎ )
)

. □

6.1. Stability analysis

In addition to (5.12), we need another 𝑂(1) restriction on the time
step:

𝛥𝑡 ≤ (4𝜉ℎ)−1 with 𝜉ℎ ∶= 1
2

max
𝑛=0,…,𝑁

‖div𝛤ℎ𝐰
𝑒
𝑇 ‖∞,𝛤 𝑛

ℎ
. (6.5)

From the definition of 𝜉ℎ, smoothness of 𝐰, and geometry approxima-
tion condition (5.6), it follows that

𝜉ℎ ≲ 1. (6.6)

The normal volume stabilization parameter 𝜌𝑛 in (5.15) should be
chosen to satisfy:

𝜌 ≥ 𝐶 (𝛿 + ℎ)−1 (6.7)
𝑛 𝜌 𝑛
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with some sufficiently large, but independent of 𝛥𝑡 and ℎ, constant
𝐶𝜌 > 0. Recalling that 𝛿𝑛 ≲ 𝛥𝑡 (see (5.10)) we see that (6.7) leads an
((𝛥𝑡+ ℎ)−1) lower bound on 𝜌𝑛. For the stabilization parameter 𝛽𝑠 we
ssume

𝑠 ≥ 2𝜉ℎ + 𝜀−2𝐿 + 1. (6.8)

It is noted already in [10] that the stabilization term with 𝛽𝑠 ≃ 𝜀−2 in-
roduces the consistency error of the same order as the explicit treat-
ent of 𝑓 . With the help of (5.10) and (6.7) we obtain the inequality

2𝛿𝑛−1(𝛿𝑛−1 + ℎ)−1 ≤ 𝑐2𝑐𝛿‖𝐰 ⋅ 𝐧‖∞,𝐼𝑛−1𝛥𝑡𝐶
−1
𝜌 𝜌𝑛−1.

sing this, estimate (6.4) for 𝐶𝜌 large enough, i.e. such that 𝐶𝜌 ≥ 𝑐2𝑐𝛿
𝐰 ⋅ 𝐧‖∞, we get

𝑣ℎ‖
2
𝛤 𝑛
ℎ
≤ (1 + 𝑐1𝛥𝑡)‖𝑣ℎ‖2𝛤 𝑛−1

ℎ
+ 𝜌𝑛−1𝛥𝑡‖𝐧𝑛−1ℎ ⋅ ∇𝑣ℎ‖2ℎ(𝛤 𝑛−1

ℎ )
∀ 𝑣ℎ ∈ 𝑉 𝑛−1

ℎ .

(6.9)

For the sake of convenience, we define the bilinear form on
1(ℎ(𝛤 𝑛

ℎ )) ×𝐻1(ℎ(𝛤 𝑛
ℎ )):

𝑎𝑛(𝑢, 𝑣) ∶=
1
2 ∫𝛤 𝑛

ℎ

(

(𝐰𝑒
𝑇 ⋅ ∇𝛤ℎ

𝑢)𝑣 − (𝐰𝑒
𝑇 ⋅ ∇𝛤ℎ

𝑣)𝑢 − (div𝛤ℎ𝐰
𝑒
𝑇 )𝑢𝑣

)

𝑑𝑠

+ ∫𝛤 𝑛
ℎ

(∇𝛤ℎ
𝑢) ⋅ (∇𝛤ℎ

𝑣) 𝑑𝑠 + 𝜌𝑛 ∫ℎ(𝛤 𝑛
ℎ )
(𝐧𝑛ℎ ⋅ ∇𝑢)(𝐧

𝑛
ℎ ⋅ ∇𝑣)𝑑 𝐱.

(6.10)

ecause of obvious cancellations, 𝑎𝑛(𝑣ℎ, 𝑣ℎ) satisfy the lower bound:

𝑛(𝑣ℎ, 𝑣ℎ) ≥ ‖∇𝛤ℎ
𝑣ℎ‖

2
𝛤 𝑛
ℎ
− 𝜉ℎ‖𝑣ℎ‖

2
𝛤 𝑛
ℎ
+ 𝜌𝑛‖𝐧𝑛ℎ ⋅ ∇𝑣ℎ‖

2
ℎ(𝛤 𝑛

ℎ )
, ∀ 𝑣ℎ ∈ 𝑉 𝑛

ℎ .

(6.11)

he low bound (6.11) and condition (6.5) imply that the bilinear form
n the left-hand side of (5.15) is positive definite,

∫𝛤 𝑛
ℎ

1 + 𝛽𝑠𝛥𝑡
𝛥𝑡

𝑣2ℎ 𝑑𝑠 + 𝑎𝑛(𝑣ℎ, 𝑣ℎ) ≥
1 + 2𝛽𝑠𝛥𝑡

2𝛥𝑡
‖𝑣ℎ‖

2
𝛤 𝑛
ℎ

+ ‖∇𝛤ℎ
𝑣ℎ‖

2
𝛤 𝑛
ℎ
+ 𝜌𝑛‖𝐧𝑛ℎ ⋅ ∇𝑣ℎ‖

2
ℎ(𝛤 𝑛

ℎ )
.
(6.12)

rom (6.2) it follows that the square root of the right-hand side in
6.12) defines a norm on 𝑉 𝑛

ℎ . Hence, due to the Lax–Milgram lemma,
he problem in each time step of (5.15) is well-posed.
We next derive an a priori estimate for the finite element solution

o (5.15).

heorem 6.3. Assume conditions (5.10), (5.12), (6.1), (6.5), (6.7), and
6.8), then the solution of (5.15) satisfies the following stability estimate:

‖𝑢𝑛ℎ‖
2
𝛤 𝑛
ℎ
+ 𝛥𝑡𝜀−2∫𝛤 𝑛

ℎ

𝐹 (𝑢𝑛ℎ)𝑑𝑠ℎ + 𝛥𝑡
𝑛
∑

𝑘=1

(

‖∇𝛤ℎ
𝑢𝑘ℎ‖

2
𝛤 𝑘
ℎ
+ 𝛥𝑡𝜌𝑘‖𝐧𝑘ℎ ⋅ ∇𝑢

𝑘
ℎ‖

2
(𝛤 𝑘

ℎ )

)

≤ 𝑐0,

𝑘 = 1,… , 𝑁,

(6.13)

here 𝑐0 is independent of 𝛥𝑡, ℎ, 𝑛 and position of 𝛤ℎ in the mesh, but
epends on 𝑢0, 𝜀, and 𝑀 .

roof. We test (5.15) with 𝑣ℎ = 𝑢𝑛ℎ to arrive at the equality

1 + 𝛽𝑠𝛥𝑡
2𝛥𝑡

(‖𝑢𝑛ℎ‖
2
𝛤 𝑛
ℎ
+ ‖𝑢𝑛ℎ − 𝑢𝑛−1ℎ ‖

2
𝛤 𝑛
ℎ
) + 𝑎𝑛(𝑢𝑛ℎ, 𝑢

𝑛
ℎ)

=
1 + 𝛽𝑠𝛥𝑡

2𝛥𝑡
‖𝑢𝑛−1ℎ ‖

2
𝛤 𝑛
ℎ
− 𝜀−2∫𝛤 𝑛

ℎ

𝑓 (𝑢𝑛−1ℎ )𝑢𝑛ℎ 𝑑𝑠ℎ.

From the Taylor expansion we get

− ∫𝛤 𝑛
ℎ

𝑓 (𝑢𝑛−1ℎ )𝑢𝑛ℎ 𝑑𝑠ℎ =∫𝛤 𝑛
ℎ

𝐹 (𝑢𝑛−1ℎ ) − 𝐹 (𝑢𝑛ℎ) 𝑑𝑠ℎ −∫𝛤 𝑛
ℎ

𝑓 (𝑢𝑛−1ℎ )𝑢𝑛−1ℎ 𝑑𝑠ℎ

+∫𝛤 𝑛
ℎ

𝑓 ′(𝑐)
2

(𝑢𝑛ℎ − 𝑢𝑛−1ℎ )2𝑑𝑠ℎ
(6.14)

with some 𝑐 ∈ 𝐶(𝛤 𝑛).
ℎ
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We bound 𝑎𝑛(𝑢𝑛ℎ, 𝑢
𝑛
ℎ) from below through (6.11) and further use

4.4), (4.5), (6.9), and (6.14) to arrive at

1 + 𝛥𝑡(𝛽𝑠 − 2𝜉ℎ))‖𝑢𝑛ℎ‖
2
𝛤 𝑛
ℎ
+ 2𝛥𝑡‖∇𝛤ℎ

𝑢𝑛ℎ‖
2
𝛤 𝑛
ℎ
+ 2𝛥𝑡𝜌𝑛‖𝐧𝑛ℎ ⋅ ∇𝑢

𝑛
ℎ‖

2
ℎ(𝛤 𝑛

ℎ )

+ 2𝛥𝑡𝜀−2∫𝛤 𝑛
ℎ

𝐹 (𝑢𝑛ℎ)𝑑𝑠ℎ

≤ (1 + 𝛥𝑡(𝛽𝑠 + 2𝜀−2))
[

(1 + 𝑐1𝛥𝑡)‖𝑢𝑛−1ℎ ‖

2
𝛤 𝑛−1
ℎ

+ 𝛥𝑡𝜌𝑛−1‖𝐧𝑛−1ℎ ⋅ ∇𝑢𝑛−1ℎ ‖

2
ℎ(𝛤 𝑛−1

ℎ )

]

+ 2𝛥𝑡𝜀−2∫𝛤 𝑛
ℎ

𝐹 (𝑢𝑛−1ℎ )𝑑𝑠ℎ − (1 + 𝛥𝑡(𝛽𝑠 − 𝜀−2𝐿))‖𝑢𝑛ℎ − 𝑢𝑛−1ℎ ‖

2
𝛤 𝑛
ℎ
. (6.15)

Using (6.8) simplifies the above estimate to

‖𝑢𝑛ℎ‖
2
𝛤 𝑛
ℎ
+ 2𝛥𝑡‖∇𝛤ℎ

𝑢𝑛ℎ‖
2
𝛤 𝑛
ℎ
+ 2𝛥𝑡𝜌𝑛‖𝐧𝑛ℎ ⋅ ∇𝑢

𝑛
ℎ‖

2
ℎ(𝛤 𝑛

ℎ )
+ 2𝛥𝑡𝜀−2∫𝛤 𝑛

ℎ

𝐹 (𝑢𝑛ℎ)𝑑𝑠ℎ

≤ (1 + 𝑐𝛥𝑡)
[

‖𝑢𝑛−1ℎ ‖

2
𝛤 𝑛−1
ℎ

+ 𝛥𝑡𝜌𝑛−1‖𝐧𝑛−1ℎ ⋅ ∇𝑢𝑛−1ℎ ‖

2
ℎ(𝛤 𝑛−1

ℎ )

]

+ 2𝛥𝑡𝜀−2∫𝛤 𝑛
ℎ

𝐹 (𝑢𝑛−1ℎ )𝑑𝑠ℎ, (6.16)

where the constant 𝑐 is independent of ℎ, 𝛥𝑡 and 𝑛.
We further estimate the 𝐹 -term on the right-hand side employing

emma 6.2 and the elementary inequality |

(

√

𝐹 (𝑥)
)

𝑥
| ≤ 𝐶 = 2𝑀 for

lmost all 𝑥 ∈ R:

∫𝛤 𝑛
ℎ

𝐹 (𝑢𝑛−1ℎ )𝑑𝑠ℎ = ‖

√

𝐹 (𝑢𝑛−1ℎ )‖2𝛤 𝑛
ℎ

≤ (1 + 𝑐1𝛥𝑡)‖
√

𝐹 (𝑢𝑛−1ℎ )‖2
𝛤 𝑛−1
ℎ

+ 𝑐2𝛿𝑛−1(𝛿𝑛−1 + ℎ)−1‖𝐧𝑛−1ℎ ⋅ ∇
√

𝐹 (𝑢𝑛−1ℎ )‖2
ℎ(𝛤 𝑛−1

ℎ )

≤ (1 + 𝑐1𝛥𝑡)∫𝛤 𝑛−1
ℎ

𝐹 (𝑢𝑛−1ℎ )𝑑𝑠ℎ + 𝑐3𝜌𝑛−1𝛥𝑡‖(𝐧𝑛−1ℎ ⋅ ∇𝑢𝑛−1ℎ )‖2
ℎ(𝛤 𝑛−1

ℎ )

ith 𝑐2 and 𝑐3 independent of problem parameters. Substituting this
nto (6.16) we obtain the estimate

‖𝑢𝑛ℎ‖
2
𝛤 𝑛
ℎ
+ 2𝛥𝑡‖∇𝛤ℎ

𝑢𝑛ℎ‖
2
𝛤 𝑛
ℎ
+ 2𝛥𝑡𝜌𝑛‖𝐧𝑛ℎ ⋅ ∇𝑢

𝑛
ℎ‖

2
ℎ(𝛤 𝑛

ℎ )
+ 2𝛥𝑡𝜀−2∫𝛤 𝑛

ℎ

𝐹 (𝑢𝑛ℎ)𝑑𝑠ℎ

≤ (1 + 𝑐 𝛥𝑡)
(

‖𝑢𝑛−1ℎ ‖

2
𝛤 𝑛−1
ℎ

+ 2𝛥𝑡𝜌𝑛−1‖𝐧𝑛−1ℎ ⋅ ∇𝑢𝑛−1ℎ ‖

2
ℎ(𝛤 𝑛−1

ℎ )

+2𝛥𝑡𝜀−2∫𝛤 𝑛−1
ℎ

𝐹 (𝑢𝑛−1ℎ )𝑑𝑠ℎ

)

,

with some 𝑐 independent of ℎ, 𝛥𝑡 and 𝑛. Applying discrete Gronwall
inequality proves the theorem. □

We now proceed with a consistency estimate and further combine
it and interpolation bounds with the above stability analysis to arrive
at an error estimate in the energy norm. Thanks to the hybrid (FD in
time — FE in space) structure of the discretization method, geometric
and interpolation error estimates will be computed on each time step
for a ‘steady’ surface 𝛤 𝑛

ℎ . This allows re-using the consistency and error
bounds from [7,47].

6.2. Consistency estimate

For parameter 𝜌𝑛 we earlier required the lower bound (6.7). For
optimal order consistency we now assume a similar upper bound:

𝜌𝑛 ≲ (ℎ + 𝛿𝑛)−1. (6.17)

Substituting in (5.15) 𝑢𝑛 = 𝑢(𝑡𝑛) for the smooth solution 𝑢(𝑡) of (2.9) we
btain

∫𝛤 𝑛
ℎ

(1 + 𝛽𝑠𝛥𝑡)
(

𝑢𝑛 − 𝑢𝑛−1

𝛥𝑡

)

𝑣ℎ 𝑑𝑠 + 𝑎𝑛(𝑢𝑛, 𝑣ℎ) + 𝜀−2∫𝛤 𝑛
ℎ

𝑓 (𝑢𝑛−1)𝑣ℎ 𝑑𝑠

= 𝑛
𝐶 (𝑣ℎ), ∀ 𝑣ℎ ∈ 𝑉 𝑛

ℎ , (6.18)
154
with 𝑛
𝐶 (𝑣ℎ) collecting consistency terms due to geometric errors, time

derivative approximation and nonlinear term, i.e.

𝑛
𝐶 (𝑣ℎ) = ∫𝛤 𝑛

ℎ

(1 + 𝛽𝑠𝛥𝑡)
(

𝑢𝑛 − 𝑢𝑛−1

𝛥𝑡

)

𝑣ℎ 𝑑𝑠ℎ − ∫𝛤 (𝑡𝑛 )
𝑢𝑡(𝑡𝑛)𝑣𝓁ℎ 𝑑𝑠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼1

+ 𝜌𝑛 ∫ℎ (𝛤 𝑛
ℎ )
((𝐧𝑛ℎ − 𝐧𝑛) ⋅ ∇𝑢𝑛)(𝐧𝑛ℎ ⋅ ∇𝑣ℎ)𝑑𝐱

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼2

+ 1
2 ∫𝛤 𝑛

ℎ

𝐰𝑒
𝑇 ⋅ ∇𝛤ℎ

𝑢𝑛𝑣ℎ − 𝐰𝑒
𝑇 ⋅ ∇𝛤ℎ

𝑣ℎ𝑢
𝑛 𝑑𝑠ℎ −

1
2 ∫𝛤 (𝑡𝑛 )

𝐰 ⋅ ∇𝑢𝑛𝑣𝓁ℎ − 𝐰 ⋅ ∇𝑣𝓁ℎ𝑢
𝑛 𝑑𝑠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼3,𝑎

+ 1
2 ∫𝛤 (𝑡𝑛 )

div𝛤 (𝐰𝑇 )𝑢𝑛𝑣𝓁ℎ 𝑑𝑠 −
1
2 ∫𝛤 𝑛

ℎ

div𝛤ℎ
(𝐰𝑒

𝑇 )𝑢
𝑛𝑣ℎ 𝑑𝑠ℎ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼3,𝑏

+ ∫𝛤 𝑛
ℎ

∇𝛤ℎ
𝑢𝑛 ⋅ ∇𝛤ℎ

𝑣ℎ 𝑑𝑠ℎ − ∫𝛤 (𝑡𝑛 )
∇𝛤 𝑢

𝑛 ⋅ ∇𝛤 𝑣
𝓁
ℎ 𝑑𝑠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼4

+ 𝜀−2 ∫𝛤 𝑛
ℎ

𝑓 (𝑢𝑛−1)𝑣ℎ 𝑑𝑠ℎ − 𝜀−2 ∫𝛤 (𝑡𝑛 )
𝑓 (𝑢𝑛)𝑣𝓁ℎ 𝑑𝑠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼5

,

where 𝑣𝓁ℎ is the lifting of 𝑣ℎ to 𝛤 (𝑡𝑛) as defined in Section 2.1. An
estimate for consistency terms is given in the following lemma.

Lemma 6.4. Let 𝑢 ∈ 𝑊 2,∞(). The consistency error satisfies the bound

|𝑛
𝐶 (𝑣ℎ)| ≲ (𝛥𝑡 + ℎ𝑞)‖𝑢‖𝑊 2,∞()

(

‖𝑣ℎ‖𝛤 𝑛
ℎ
+ ‖∇𝛤 𝑣ℎ‖𝛤 𝑛

ℎ
+ 𝜌

1
2
𝑛 ‖(𝐧𝑛ℎ ⋅ ∇𝑣ℎ)‖ℎ(𝛤 𝑛

ℎ )

)

.

(6.19)

roof. The required estimate for 𝐼1,… , 𝐼4 is found in [8]. The last term
5 gets estimated as

2
|𝐼5| =

|

|

|

|

|

∫𝛤 𝑛
ℎ

(

𝑓 (𝑢𝑛−1) − 𝑓 (𝑢𝑛)
)

𝑣ℎ 𝑑𝑠ℎ

+∫𝛤 𝑛
ℎ

𝑓 (𝑢𝑛)𝑣ℎ 𝑑𝑠ℎ − ∫𝛤 (𝑡𝑛)
𝑓 (𝑢𝑛)𝑣𝓁ℎ 𝑑𝑠

|

|

|

|

|

≤ 𝐿 ∫𝛤 𝑛
ℎ

|

|

|

(

𝑢𝑛−1 − 𝑢𝑛
)

𝑣ℎ
|

|

|

𝑑𝑠ℎ +
|

|

|

|

|

∫𝛤 𝑛
ℎ

𝑓 (𝑢𝑛)(1 − 𝜇ℎ)𝑣ℎ 𝑑𝑠ℎ
|

|

|

|

|

≤ 𝐿𝛥𝑡‖𝑢𝑡‖𝐿∞(())‖𝑣ℎ‖𝛤 𝑛
ℎ
+ 𝐿‖𝑢‖𝐿∞(())ℎ

𝑞+1
‖𝑣ℎ‖𝛤 𝑛

ℎ

≲ (𝛥𝑡 + ℎ𝑞+1)‖𝑢‖𝑊 2,∞()‖𝑣ℎ‖𝛤 𝑛
ℎ
.

ere we have used 𝜇ℎ𝑑𝑠ℎ(𝐱) = 𝑑𝑠(𝑝(𝐱)), 𝐱 ∈ 𝛤 𝑛
ℎ , with ‖1−𝜇ℎ‖∞,𝛤 𝑛

ℎ
≤ ℎ𝑞+1

cf. [47]). □

.3. Error estimate in the energy norm

Denote the error function by E𝑛 = 𝑢𝑛 − 𝑢𝑛ℎ, E
𝑛 ∈ 𝐻1(ℎ(𝛤 𝑛

ℎ )). From
5.15) and (6.18) we get the error equation, for 𝑣ℎ ∈ 𝑉 𝑛

ℎ :

∫𝛤 𝑛
ℎ

(1 + 𝛽𝑠𝛥𝑡)
(

E𝑛 − E𝑛−1

𝛥𝑡

)

𝑣ℎ 𝑑𝑠

+ 𝑎𝑛(E𝑛, 𝑣ℎ) + 𝜀−2 ∫𝛤 𝑛
ℎ

(𝑓 (𝑢𝑛−1) − 𝑓 (𝑢𝑛−1ℎ ))𝑣ℎ 𝑑𝑠 = 𝑛
𝐶 (𝑣ℎ).

(6.20)

We assume 𝑢𝑛 sufficiently smooth in ℎ(𝛤 𝑛
ℎ ) so that the nodal inter-

polant 𝑢𝑛𝐼 ∈ 𝑉 𝑛
ℎ is well-defined. We split E𝑛 into finite element and

approximation parts,

E𝑛 = (𝑢𝑛 − 𝑢𝑛𝐼 )
⏟⏞⏟⏞⏟

𝑒𝑛

+ (𝑢𝑛𝐼 − 𝑢𝑛ℎ)
⏟⏞⏟⏞⏟

𝑒𝑛ℎ

.

rom (6.20) we get

∫𝛤 𝑛
ℎ

(1 + 𝛽𝑠𝛥𝑡)

(

𝑒𝑛ℎ − 𝑒𝑛−1ℎ
𝛥𝑡

)

𝑣ℎ 𝑑𝑠 + 𝑎𝑛(𝑒𝑛ℎ, 𝑣ℎ)

+ 𝜀−2 ∫ 𝑛
(𝑓 (𝑢𝑛−1𝐼 ) − 𝑓 (𝑢𝑛−1ℎ ))𝑣ℎ 𝑑𝑠 = 𝑛

𝐼 (𝑣ℎ) + 𝑛
𝐶 (𝑣ℎ),

(6.21)
𝛤ℎ
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‖

(

+

≤

𝜌

T
i

≤

+

U

T

for any 𝑣ℎ ∈ 𝑉 𝑛
ℎ , and

𝑛
𝐼 (𝑣ℎ) = −(1 + 𝛽𝑠𝛥𝑡)∫𝛤 𝑛

ℎ

(

𝑒𝑛 − 𝑒𝑛−1

𝛥𝑡

)

𝑣ℎ 𝑑𝑠ℎ − 𝑎𝑛(𝑒𝑛, 𝑣ℎ)

− 𝜀−2 ∫𝛤 𝑛
ℎ

(𝑓 (𝑢𝑛−1) − 𝑓 (𝑢𝑛−1𝐼 ))𝑣ℎ 𝑑𝑠.

An estimate for these interpolation terms is given in the following
lemma. Further we assume  sufficiently smooth to support functions
from 𝑊 𝑚+1,∞().

Lemma 6.5. Assume 𝑢 ∈ 𝑊 𝑚+1,∞(), then it holds

|𝑛
𝐼 (𝑣ℎ)| ≲ ℎ𝑚 ‖𝑢‖𝑊 𝑚+1,∞ (‖𝑣ℎ‖𝛤 𝑛

ℎ
+ ‖∇𝛤ℎ𝑣ℎ‖𝛤 𝑛

ℎ
). (6.22)

Proof. We only need to estimate the third term of 𝑛
𝐼 (𝑣ℎ). The required

bound for other terms is given in [8]. We make use of the following
local trace inequality, cf. [47–49]:

𝑣‖𝑆∩𝛤 𝑛
ℎ
≤ 𝑐(ℎ−

1
2
‖𝑣‖𝑆 + ℎ

1
2
‖∇𝑣‖𝑆 ), 𝑣 ∈ 𝐻1(𝑆), 𝑆 ∈  𝛤

ℎ , (6.23)

with some 𝑐 independent of 𝑣, 𝑇 , ℎ, and position of 𝛤 𝑛
ℎ in 𝑆. We need

interpolation properties of polynomials and their traces [47,50]:

‖𝑣𝑒 − 𝑣𝐼‖𝛤 (𝛤 𝑛
ℎ )

+ ℎ‖∇(𝑣𝑒 − 𝑣𝐼 )‖𝛤 (𝛤 𝑛
ℎ )

≲ ℎ𝑚+1‖𝑣𝑒‖𝐻𝑚+1(𝛤 (𝛤 (𝑡𝑛)))

for 𝑣 ∈ 𝐻𝑚+1(𝛤 (𝑡𝑛)).

(6.24)

With the help of (4.4), (6.23), and (6.24) we estimate
|

|

|

|

|

∫𝛤 𝑛
ℎ

(𝑓 (𝑢𝑛−1) − 𝑓 (𝑢𝑛−1𝐼 ))𝑣ℎ 𝑑𝑠
|

|

|

|

|

≤ 𝐿∫𝛤 𝑛
ℎ

|

|

|

(𝑢𝑛−1 − 𝑢𝑛−1𝐼 )𝑣ℎ
|

|

|

𝑑𝑠

≤ 𝐿 ‖

‖

‖

𝑒𝑛−1‖‖
‖𝛤 𝑛

ℎ
‖𝑣ℎ‖𝛤 𝑛

ℎ

≲ ℎ−
1
2
(

‖𝑒𝑛−1‖𝛤 (𝛤 𝑛
ℎ )

+ ℎ‖∇𝑒𝑛−1‖𝛤 (𝛤 𝑛
ℎ )

)

‖𝑣ℎ‖𝛤 𝑛
ℎ

≲ ℎ−
1
2
(

ℎ𝑚+1‖𝑢‖𝐻𝑚+1(𝛤 (𝛤 𝑛−1))

)

‖𝑣ℎ‖𝛤 𝑛
ℎ

≲ ℎ−
1
2
(

ℎ𝑚+
3
2
‖𝑢‖𝑊 𝑚+1,∞()

)

‖𝑣ℎ‖𝛤 𝑛
ℎ
≲ ℎ𝑚+1‖𝑢‖𝑊 𝑚+1,∞()‖𝑣ℎ‖𝛤 𝑛

ℎ
. □

Now we are prepared to prove the main result of the paper. Let
𝑢0ℎ = 𝑢0𝐼 ∈ 𝑉 0

ℎ be a nodal interpolant to 𝑢0 ∈ (𝛤 0
ℎ ).

Theorem 6.6. Assume (5.6)–(5.7b), (5.10), (5.12), (6.1), (6.5), (6.7),
(6.8), and (6.17). Solution 𝑢 to (2.5) is such that 𝑢 ∈ 𝑊 𝑚+1,∞(). For 𝑢𝑛ℎ,
𝑛 = 1,… , 𝑁 , the finite element solution of (5.15), 𝑢𝑛 = 𝑢(𝑡𝑛), and the error
function E𝑛 = 𝑢𝑛ℎ − 𝑢𝑛 the following estimate holds:

‖E𝑛
‖

2
𝛤 𝑛
ℎ
+ 𝛥𝑡

𝑛
∑

𝑘=1
‖∇𝛤ℎ

E𝑘
‖

2
𝛤 𝑘
ℎ
≲ exp(𝑐 𝑡𝑛)‖𝑢‖2𝑊 𝑚+1,∞()(𝛥𝑡

2 + ℎ2min{𝑚,𝑞}),

(6.25)

with 𝑐 independent of ℎ, 𝛥𝑡, 𝑛 and the position of the surface in the back-
ground mesh.

Proof. Letting 𝑣ℎ = 2𝛥𝑡𝑒𝑛ℎ in (6.21) gives

(1 + 𝛽𝑠𝛥𝑡)
(

‖𝑒𝑛ℎ‖
2
𝛤 𝑛
ℎ
− ‖𝑒𝑛−1ℎ ‖

2
𝛤 𝑛
ℎ
+ ‖𝑒𝑛ℎ − 𝑒𝑛−1ℎ ‖

2
𝛤 𝑛
ℎ

)

+ 2𝛥𝑡𝑎𝑛(𝑒𝑛ℎ, 𝑒
𝑛
ℎ)

+2𝜀−2𝛥𝑡∫𝛤 𝑛
ℎ

(𝑓 (𝑢𝑛−1𝐼 ) − 𝑓 (𝑢𝑛−1ℎ ))𝑒𝑛ℎ 𝑑𝑠 = 2𝛥𝑡(𝑛
𝐼 (𝑒

𝑛
ℎ) + 𝑛

𝐶 (𝑒
𝑛
ℎ)).

The nonlinear term is estimated using (4.5):

2∫𝛤 𝑛
ℎ

(𝑓 (𝑢𝑛−1𝐼 ) − 𝑓 (𝑢𝑛−1ℎ ))𝑒𝑛ℎ 𝑑𝑠 ≤ 2∫𝛤 𝑛
ℎ

𝐿|𝑒𝑛−1ℎ ||𝑒𝑛ℎ| 𝑑𝑠 ≤ 𝐿(‖𝑒𝑛−1ℎ ‖

2
𝛤 𝑛
ℎ
+ ‖𝑒𝑛ℎ‖

2
𝛤 𝑛
ℎ
).

Dropping out the third term, using the lower bound (6.11) for 𝑎𝑛 and
applying (6.9) to bound ‖𝑒𝑛−1ℎ ‖

2
𝛤 𝑛
ℎ
yields

1 + (𝛽𝑠 − 2𝜉ℎ − 𝜀−2𝐿)𝛥𝑡)‖𝑒𝑛ℎ‖
2
𝛤 𝑛
ℎ
+ 2𝛥𝑡‖∇𝛤ℎ

𝑒𝑛ℎ‖
2
𝛤 𝑛
ℎ

2𝛥𝑡𝜌 ‖𝐧𝑛 ⋅ ∇𝑒𝑛‖2 𝑛 − 2𝛥𝑡(𝑛(𝑒𝑛 ) + 𝑛 (𝑒𝑛 ))
𝑛 ℎ ℎ ℎ(𝛤ℎ ) 𝐼 ℎ 𝐶 ℎ s
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(1 + (𝛽𝑠 + 𝜀−2𝐿)𝛥𝑡)(1 + 𝑐1𝛥𝑡)‖𝑒𝑛−1ℎ ‖

2
𝛤 𝑛−1
ℎ

+

𝑛−1𝛥𝑡‖𝐧𝑛−1ℎ ⋅ ∇𝑒𝑛−1ℎ ‖

2
ℎ(𝛤 𝑛−1

ℎ )
. (6.26)

o estimate the interpolation and consistency terms, we apply Young’s
nequality to the right-hand sides of (6.19) and (6.22) yielding

2𝛥𝑡𝑛
𝐶 (𝑒

𝑛
ℎ) ≤ 𝑐 𝛥𝑡(𝛥𝑡2 + ℎ2𝑞)‖𝑢‖2

𝑊 2,∞()

+ 𝛥𝑡
2

(

‖𝑒𝑛ℎ‖
2
𝛤 𝑛
ℎ
+ ‖∇𝛤ℎ𝑒

𝑛
ℎ‖

2
𝛤 𝑛
ℎ
+ 𝜌𝑛‖(𝐧𝑛ℎ ⋅ ∇𝑒

𝑛
ℎ)‖

2
ℎ(𝛤 𝑛

ℎ )

)

,

2𝛥𝑡𝑛
𝐼 (𝑒

𝑛
ℎ) ≤ 𝑐 𝛥𝑡 ℎ2𝑚‖𝑢‖2

𝑊 𝑚+1,∞() +
𝛥𝑡
2

(

‖𝑒𝑛ℎ‖
2
𝛤 𝑛
ℎ
+ ‖∇𝛤ℎ𝑒

𝑛
ℎ‖

2
𝛤 𝑛
ℎ

)

,

with a constant 𝑐 independent of ℎ, 𝛥𝑡, 𝑛 and of the position of the
surface in the background mesh. By substituting above estimates in
(6.26) we get

(1 + (𝛽𝑠 − 2𝜉ℎ − 𝜀−2𝐿 − 1)𝛥𝑡)‖𝑒𝑛ℎ‖
2
𝛤 𝑛
ℎ
+ 𝛥𝑡‖∇𝛤ℎ

𝑒𝑛ℎ‖
2
𝛤 𝑛
ℎ
+ 𝜌𝑛𝛥𝑡‖𝐧𝑛ℎ ⋅ ∇𝑒

𝑛
ℎ‖

2
ℎ(𝛤 𝑛

ℎ )

(1 + (𝛽𝑠 + 𝜀−2𝐿)𝛥𝑡)(1 + 𝑐1𝛥𝑡)‖𝑒𝑛−1ℎ ‖

2
𝛤 𝑛−1
ℎ

+ 𝜌𝑛−1𝛥𝑡‖𝐧𝑛−1ℎ ⋅ ∇𝑒𝑛−1ℎ ‖

2
ℎ(𝛤 𝑛−1

ℎ )

𝑐𝛥𝑡 ‖𝑢‖2𝑊 𝑚+1,∞()(𝛥𝑡
2 + ℎ2𝑞 + ℎ2𝑚).

sing lower bound (6.8) for 𝛽𝑠 leads to

‖𝑒𝑛ℎ‖
2
𝛤 𝑛
ℎ
+ 𝛥𝑡‖∇𝛤ℎ

𝑒𝑛ℎ‖
2
𝛤 𝑛
ℎ
+ 𝛥𝑡𝜌𝑛‖𝐧𝑛ℎ ⋅ ∇𝑒

𝑛
ℎ‖

2
ℎ(𝛤 𝑛

ℎ )
≤ (1 + 𝑐𝛥𝑡)‖𝑒𝑛−1ℎ ‖

2
𝛤 𝑛−1
ℎ

+𝛥𝑡𝜌𝑛−1‖𝐧𝑛−1ℎ ⋅ ∇𝑒𝑛−1ℎ ‖

2
ℎ(𝛤 𝑛−1

ℎ )
+ 𝑐𝛥𝑡 ‖𝑢‖2

𝑊 𝑚+1,∞()(𝛥𝑡
2 + ℎ2𝑞 + ℎ2𝑚),

with a constant 𝑐 independent of ℎ, 𝛥𝑡, 𝑛 and of the position of
the surface in the background mesh. Applying the discrete Gronwall
inequality proves the theorem. □

7. Numerical experiments

In this section, we present results of several numerical experiments,
which illustrate the finite element method performance and analysis.
In numerical examples we consider rigid surface motions or small
oscillations of a surface, which is consistent with our assumption of
small or area-preserving deformations. All experiments are done using
the finite element package DROPS [51]. To build computation mesh,
we use the combination of uniform subdivision into cubes with side
length ℎ and the Kuhn subdivision of each cube into 6 tetrahedra. This
provides us with a shape regular bulk triangulation ℎ. The temporal
grid is uniform in all experiments, 𝑡𝑛 = 𝑛𝛥𝑡 with 𝛥𝑡 = 𝑇

𝑁 . We use
piecewise linear bulk finite element space 𝑉ℎ (e.g., (5.5) with 𝑚 = 1)
for both finite element level set function and for the definition of test
and trial spaces in (5.14). This leads to geometry approximation (5.6)
with 𝑞 = 1,

Example 1. In the first example, we consider the Allen–Cahn equa-
tion on a sphere moving with constant velocity 𝐰 = (2, 0, 0)𝑇 . The
corresponding level set function is given by

(𝑥 − 𝑥0(𝑡))2 + (𝑦 − 𝑦0(𝑡))2 + (𝑧 − 𝑧0(𝑡))2 = 1, (7.1)

with the center 𝐱0(𝑡) = (𝑥0, 𝑦0, 𝑧0)𝑇 = 𝐰𝑡. We consider the Allen–Cahn
equation with nonzero right hand side term:
.𝑢 + (div𝛤𝐰)𝑢 − 𝛥𝛤 𝑢 − 𝜀−2𝑓 (𝑢) = 𝑔(𝐱) on 𝛤 (𝑡) (7.2)

such that solution is known explicitly:

𝑢 = 1
2
(1 − 0.8𝑒−40𝑡)

(
√

3
𝜋
(𝑦 − 𝑦0) + 1

)

.

We set 𝜀 = 0.1, 𝑇 = 0.1. According to (6.8) we need 𝛽𝑠 of order
𝜀−2, so we set 𝛽𝑠 = 0.2𝜀−2 in all further examples. We observed
that in practice the stabilization term cannot be completely omitted
without server restrictions on the time step. We do not study however
the optimal choice of parameter 𝛽𝑠. The computational domain is
𝛺 = [−2, 2]3; it contains 𝛤 (𝑡) (and 𝛤ℎ(𝑡)) at all times 𝑡 ∈ [0, 𝑇 ].
he error is measured in the 𝐿2(0, 𝑇 ;𝐻1(𝛤ℎ(𝑡))) and 𝐿∞(0, 𝑇 ;𝐿2(𝛤ℎ(𝑡)))
urface norms. The former is computed with the help of the composite
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Fig. 7.1. Example 2: Approximation to a mean curvature flow for varying 𝜀. The error between the true and numerical solution is shown at final time 𝑇 = 0.125.
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able 7.1
2(𝐻1)- and 𝐿∞(𝐿2)-norm error in Experiment 1 with backward Euler.
𝐿2(𝐻1)-norm of the error

ℎ = 1∕2 ℎ = 1∕4 ℎ = 1∕8 ℎ = 1∕16 eoc𝚝𝚝
𝛥𝑡 = 𝑇 ∕64 5.3⋅ 10−1 5.2⋅ 10−1 5.1⋅ 10−1 5.1⋅ 10−1 –
𝛥𝑡 = 𝑇 ∕256 2.5⋅ 10−1 1.9⋅ 10−1 1.7⋅ 10−1 1.7⋅ 10−1 1.60
𝛥𝑡 = 𝑇 ∕1024 2.0⋅ 10−1 1.1⋅ 10−1 6.6⋅ 10−2 5.0⋅ 10−2 1.74
𝛥𝑡 = 𝑇 ∕4096 1.9⋅ 10−1 9.8⋅ 10−2 5.0⋅ 10−2 2.7⋅ 10−2 0.91

eoc𝚡 — 0.98 0.98 0.90

eoc𝚡𝚝𝚝 — 1.47 1.55 1.30

𝐿∞(𝐿2)-norm of the error

ℎ = 1∕2 ℎ = 1∕4 ℎ = 1∕8 ℎ = 1∕16 eoc𝚝𝚝
𝛥𝑡 = 𝑇 ∕64 8.4⋅ 10−1 8.5⋅ 10−1 8.6⋅ 10−1 8.6⋅ 10−1 –
𝛥𝑡 = 𝑇 ∕256 2.4⋅ 10−1 2.4⋅ 10−1 2.4⋅ 10−1 2.4⋅ 10−1 1.81
𝛥𝑡 = 𝑇 ∕1024 9.5⋅ 10−2 6.1⋅ 10−2 6.1⋅ 10−2 6.1⋅ 10−2 1.99
𝛥𝑡 = 𝑇 ∕4096 8.8⋅ 10−2 2.5⋅ 10−2 1.5⋅ 10−2 1.5⋅ 10−2 2.02

eoc𝚡 — 1.81 0.72 0.01

eoc𝚡𝚝𝚝 — 1.81 1.98 2.00

trapezoidal quadrature rule in time and the latter is approximate by
max𝑛=1,…,𝑁 ‖ ⋅ ‖𝐿2(𝛤 𝑛

ℎ (𝑡))
. Table 7.1 shows the results of experiment.

To study the convergence rates, we apply successive refinements in
space and in time. The ‘‘experimental orders of convergence’’(eoc)
in space and time are then defined as eoc = log2(𝑒𝑏∕𝑒𝑎), where 𝑒𝑎
nd 𝑒𝑏 are corresponding error norms. In particular, eoc𝚡 stands for
he convergence order in space, when time is fixed. Likewise, eoc𝚝𝚝
hows convergence order in time per two refining steps; and eoc𝚡𝚝𝚝
ndicates the order for the simultaneous space and time refinement.
rom Table 7.1, we can see that in 𝐿2 (0, 𝑇 ;𝐻1(𝛤ℎ(𝑡))

)

norm the error
onverges with the first order both in space and time (this agrees with
ur analysis), while the 𝐿∞ (

(0, 𝑇 ;𝐿2(𝛤ℎ(𝑡))
)

norm of the error reduces
approximately four times if the mesh size is reduced two times and the
time step is reduced four times. The observed rates are optimal for our
choice of the finite element space and time-stepping scheme.

Example 2. We now consider the Allen–Cahn equation on a sphere of
varying radius 𝑅(𝑡). The level set function of the sphere is given by

= 𝑥2 + 𝑦2 + 𝑧2 − 𝑅(𝑡)2.

It defines a pulsation of the sphere. We are interested in the numerical
solution approximation of a geodesic curvature type flow defined by
(3.13). The phase separation curve 𝐶(𝑡) is initially a circle with radius
𝑟0 < 𝑅(0). Due to the axial symmetry, for all 𝑡 ∈ [0, 𝑡𝑐𝑟𝑖𝑡), 𝐶(𝑡) is a circle
of radius 𝑟(𝑡), where 𝑟(𝑡) solves the ODE (cf. Appendix)

𝑡 =
𝑟2 − 𝑅2

𝑟𝑅2
+ 𝑟

𝑅
𝑅𝑡. (7.3)

Our reference solution is computed by the direct integration of
7.3) with a higher order Runge–Kutta method. We next solve the
llen–Cahn equation on the sphere and compare the radius of the zero
evel-set of the numerical solution with the reference solution. In this
est, we set 𝑅(𝑡) = 1

√

1+𝛿 cos 𝑛𝑡
, with 𝛿 = 1

6 and 𝑛 = 16𝜋. We choose the
final time 𝑇 = 0.125 and 𝛿𝑡 ≈ 3.9063 × 10−6. We set 𝑢 = tanh(𝑑 (𝑥)∕𝜀)
0 𝐶0
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where 𝑑𝐶0
(𝑥) is the signed (geodesic) distance function to the circle 𝐶(0)

ith radius 𝑟0 on the initial sphere. We compute the numerical solution
or several values of 𝜀 = 0.4, 0.2, 0.1. The averaged radius evolution
ecovered from the finite element solution to the Allen–Cahn equation
s shown in Fig. 7.1. We can see that results are in a good agreement
ith the reference solution, and converge to the true solution for
ecreasing 𝜀.

xample 3. In this example, we consider the surface Allen–Cahn equa-
ion (2.5) on a deforming manifold of a general shape. The initial
anifold is given (as in [52]) by

(0) = { 𝐱 ∈ R3 ∣ (𝑥 − 𝑧2)2 + 𝑦2 + 𝑧2 = 1 }

he velocity field that deforms the surface is

(𝐱, 𝑡) =
(

10𝑥 cos(100𝑡), 20𝑦 sin(100𝑡), 20𝑧 cos(100𝑡)
)𝑇 .

n this example, we choose a slightly different 𝑓 (𝑢) = 𝑢2(1 − 𝑢2) so that
solution is in the interval [0, 1]. The initial function 𝑢0 is defined in each
node by a random number from [0, 1] using the uniform distribution.

In this example, we set 𝑎 = 1, 𝜀 = 0.01, 𝑇 = 0.04 and 𝛺 = [−2, 2]3.
e use the same bulk triangulation and spaces as in Example 1 and
𝑡 = 𝑇 ∕1024. Fig. 7.2 shows the (approximated) manifold and snapshots
f the discrete solution 𝑢ℎ at several time instances. In general, we
ote that the evolution of 𝑢 in this example is similar to what is
ound on the stationary surface 𝛤 (0) with surface FEM in [17]: the fast
ecomposition phase follows by the formation of phases with a narrow
ransition region (diffuse interface) between phases. As expected for
he mean curvature motion, the interface tends to straightening, second
hase regions are rounding and shrinking.
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ppendix

We give a brief derivation of (7.3). On a sphere of a varying radius
(𝑡) consider a circle 𝐶(𝑡) of radius 𝑟(𝑡) (see Fig. 7.3). Assume that the
ircle evolves according to the geodesic curvature flow given by (3.13).
he geodesic curvature can be computed as the curvature of the circle
rojection on the tangential planes:

𝑔 = 1
𝑟
cos 𝜃 =

√

𝑅2 − 𝑟2
𝑟𝑅

.

This determines the co-normal velocity of 𝐶(𝑡), while the normal veloc-
ity is given by 𝑅𝑡. Therefore, the material velocity of the points on 𝐶(𝑡)
is given by

−

√

𝑅2 − 𝑟2𝐦 + 𝑅 𝐧. (A.4)

𝑟𝑅 𝑡
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Fig. 7.2. Example 3: solutions for 𝑡 = 𝑘𝛥𝑡 with 𝑘 = 0, 32, 256, 512, 768, 1024.
Fig. 7.3. Illustration of quantities in (A.4).

hen the time derivative of the radius 𝑟 can be explicitly computed to
e

𝑡 = −

√

𝑅2 − 𝑟2
𝑟𝑅

cos 𝜃 + 𝑅𝑡 sin 𝜃 = 𝑟2 − 𝑅2

𝑟𝑅2
+ 𝑟

𝑅
𝑅𝑡.
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